
SINUMERIK 840D sl/840Di sl/840D/840Di/810D Job planning

Preface

Flexible NC programming
 1

Subroutines, Macros
 2

File and Program
Management

 3

Protection zones
 4

Special Motion Commands
 5

Frames
 6

Transformations
 7

Tool offsets
 8

Path traversing behavior
 9

Motion synchronous actions
 10

Oscillation
 11

Punching and nibbling
 12

Additional functions
 13

User stock removal
programs

 14

Tables
 15

List of abbreviations
 A

SINUMERIK 840D sl/
840Di sl/840D/840Di/810D

Job planning

Programming Manual

03/2006 Edition
6FC5398-2BP10-1BA0

Valid for

Control

SINUMERIK 840D sl/840DE sl
SINUMERIK 840Di sl/840DiE sl
SINUMERIK 840D powerline/840DE powerline
SINUMERIK 840Di powerline/840DiE powerline
SINUMERIK 810D powerline/810DE powerline

Software Version

NCU system software for 840D sl/840DE sl 1.3
NCU system software for 840Di sl/DiE sl 1.0
NCU system software for 840D/840DE 7.4
NCU system software for 840Di/840DiE 3.3
NCU system software for 810D/810DE 7.4

 Safety Guidelines
This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

 Danger

indicates that death or severe personal injury will result if proper precautions are not taken.

 Warning

indicates that death or severe personal injury may result if proper precautions are not taken.

 Caution

with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

 Caution

without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

 Notice

indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel
The device/system may only be set up and used in conjunction with this documentation. Commissioning and
operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes
in this documentation qualified persons are defined as persons who are authorized to commission, ground and
label devices, systems and circuits in accordance with established safety practices and standards.

Prescribed Usage
Note the following:

 Warning

This device may only be used for the applications described in the catalog or the technical description and only in
connection with devices or components from other manufacturers which have been approved or recommended by
Siemens. Correct, reliable operation of the product requires proper transport, storage, positioning and assembly
as well as careful operation and maintenance.

Trademarks
All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability
We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

 Siemens AG
Automation and Drives
Postfach 48 48
90437 NÜRNBERG
GERMANY

Order No.: 6FC5398-2BP10-1BA0
Edition 05/2006

Copyright © Siemens AG 2006.
Technical data subject to change

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 iii

Preface

Foreword

SINUMERIK® Documentation
The SINUMERIK documentation is organized in 3 parts:
• General Documentation
• User Documentation
• Manufacturer/service documentation

An overview of publications (updated monthly) indicating the language versions available
can be found on the Internet at:
http://www.siemens.com/motioncontrol
Select the menu items "Support" → "Technical Documentation" → "Overview of
Publications".
The Internet version of DOConCD (DOConWEB) is available at:
http://www.automation.siemens.com/doconweb
Information about training courses and FAQs (Frequently Asked Questions) can be found
at the following website:
http://www.siemens.com/motioncontrol under menu option "Support"

Target group
This publication is intended for:
• Programmers
• Project engineers

Benefits
With the programming manual, the target group can develop, write, test, and debug
programs and software user interfaces.

Standard scope
This Programming Guide describes the functionality afforded by standard functions.
Extensions or changes made by the machine tool manufacturer are documented by the
machine tool manufacturer.

http://www.siemens.com/motioncontrol
http://www.automation.siemens.com/doconweb
http://www.siemens.com/motioncontrol

Preface

 Job planning
iv Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Other functions not described in this documentation might be executable in the control. This
does not, however, represent an obligation to supply such functions with a new control or
when servicing.
Further, for the sake of simplicity, this documentation does not contain all detailed
information about all types of the product and cannot cover every conceivable case of
installation, operation or maintenance.

Technical Support
If you have any questions, please get in touch with our hotline:

Europe and Africa time zone

A&D Technical Support
Tel.: +49 (0) 180 / 5050 - 222
Fax: +49 (0) 180 / 5050 - 223

Internet: http://www.siemens.com/automation/support-request

E-mail: mailto:adsupport@siemens.com

Asia and Australia time zone

A&D Technical Support
Tel.: +86 1064 719 990
Fax: +86 1064 747 474

Internet: http://www.siemens.com/automation/support-request

E-mail: mailto:adsupport@siemens.com

America time zone

A&D Technical Support
Tel.: +1 423 262 2522
Fax: +1 423 262 2289

Internet: http://www.siemens.com/automation/support-request

E-mail: mailto:adsupport@siemens.com

http://www.siemens.com/automation/support-request
mailto:adsupport@siemens.com
http://www.siemens.com/automation/support-request
mailto:adsupport@siemens.com
http://www.siemens.com/automation/support-request
mailto:adsupport@siemens.com

 Preface

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 v

 Note
Country telephone numbers for technical support are provided under the following Internet
address:
Enter http://www.siemens.com/automation/service&support

Questions about the Manual
If you have any queries (suggestions, corrections) in relation to this documentation, please
fax or e-mail us:

Fax: +49 (0) 9131 / 98 - 63315
E-mail: mailto:motioncontrol.docu@siemens.com

Fax form: See the reply form at the end of this publication

SINUMERIK Internet address
http://www.siemens.com/sinumerik

EC declaration of conformity
The EC Declaration of Conformity for the EMC Directive can be found/obtained from:
• the internet:

http://www.ad.siemens.de/csinfo
under product/order no. 15257461

• the relevant branch office of the A&D MC group of Siemens AG.

http://www.siemens.com/automation/service&support
mailto:motioncontrol.docu@siemens.com
http://www.siemens.com/sinumerik
http://www.ad.siemens.de/csinfo

Preface

 Job planning
vi Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Export version
The following functions are not available in the export version:

Function 810DE 840DE sl 840DE 840DiE sl 840DiE
Helical interpolation 2D+6
(Basic version, no options)

− − − − −

Milling machining package − − − − −
Five axis machining package − − − − −
Handling transformation package − − − − −
Multi-axis interpolation (> 4 interpolating axes) − − − − −
OA NCK compile cycles − − − − −
Clearance control 1D/3D in position-control cycle 1) − − − − −
Synchronized actions 1)
(Basic version, no options)

Master-value coupling and curve-table interpolation # # # # #
Sag compensation, multi-dimensional # # # # #
Synchronized actions, stage 2 1) − − # − #
Electronic gear 1) − − # − #
Electronic transfer − − # − #
 # Restricted functionality

- Function not available

1) The restricted functions for the SINUMERIK 810DE powerline/SINUMERIK 840DE sl/
SINUMERIK 840DE powerline/SINUMERIK 840DiE sl/SINUMERIK 840DiE powerline export
versions impose a limit of "max. 4 interpolating axes".

Description
Fundamentals
This Programming Guide "Fundamentals" is intended for use by skilled machine operators
with the appropriate expertise in drilling, milling and turning operations. Simple programming
examples are used to explain the commands and statements which are also defined
according to DIN 66025.
Job planning
The Programming Guide "Job Planning" is intended for use by technicians with in-depth,
comprehensive programming knowledge. By virtue of a special programming language, the
SINUMERIK 840D sl/840Di sl/840D/840Di/810D control enables the user to program
complex workpiece programs (e.g., for free-form surfaces, channel coordination, etc.) and
greatly facilitates the programming of complicated operations.
The commands and statements described in this Guide are not specific to one particular
technology.
They can be used for a variety of tasks, such as
• Turning, milling and grinding
• Cyclical machines (packaging, woodworking)
• Laser power controls.

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 vii

Table of contents
 Preface .. iii
1 Flexible NC programming ... 1-1

1.1 Variables and arithmetic parameters (user-defined variables, arithmetic parameters,
system variables) ... 1-1

1.2 Variable definition (DEF user-defined variables LUD, GUD, PUD) ... 1-3
1.3 Array definitions (DEF, SET, REP) .. 1-7
1.4 Indirect programming ... 1-13
1.4.1 Run string as parts program line (EXECSTRING)... 1-16
1.5 Assignments... 1-17
1.6 Arithmetic operations/functions.. 1-18
1.7 Comparison and logical operations ... 1-20
1.7.1 Precision correction on comparison errors (TRUNC) .. 1-22
1.8 Priority of the operations .. 1-24
1.9 Possible type conversions ... 1-25
1.10 String operations.. 1-26
1.10.1 Type conversion to STRING.. 1-27
1.10.2 Type conversion of STRING.. 1-28
1.10.3 Concatenation of strings .. 1-28
1.10.4 Conversion to lower/upper case .. 1-30
1.10.5 Length of the string .. 1-30
1.10.6 Look for character/string in the string .. 1-31
1.10.7 Selection of a substring.. 1-32
1.10.8 Selection of a single character... 1-33
1.11 CASE statement .. 1-34
1.12 Control structures... 1-36
1.13 Program coordination... 1-39
1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)... 1-45
1.15 Axis replacement, spindle replacement (RELEASE, GET, GETD) ... 1-54
1.16 Transfer axis to another channel (AXTOCHAN).. 1-58
1.17 NEWCONF: Setting machine data effective .. 1-60
1.18 WRITE: Write file.. 1-61
1.19 DELETE: Delete file ... 1-63
1.20 READ: Read lines in the file... 1-64
1.21 ISFILE: File present in the NCK user memory... 1-66
1.22 FILEDATE/TIME/SIZE/STAT/INFO: File information... 1-67

Table of contents

 Job planning
viii Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.23 CHECKSUM: Form the checksum over an array... 1-69
1.24 ROUNDUP: Round up ... 1-70

2 Subroutines, Macros... 2-1
2.1 Using subroutines .. 2-1
2.2 Subroutines with SAVE mechanism .. 2-3
2.3 Subroutines with parameter transfer (PROC, VAR) .. 2-5
2.4 Call subroutines (L or EXTERN) .. 2-9
2.5 Parameterized subroutine return (RET)... 2-14
2.6 Subroutine with program repetition (P) .. 2-18
2.7 Modal subroutine (MCALL) .. 2-19
2.8 Indirect subroutine call (CALL)... 2-21
2.9 Repeating program sections with indirect programming (CALL) ... 2-22
2.10 Indirect call of a program programmed in ISO language (ISOCALL) 2-23
2.11 Calling subroutine with path specification and parameters (PCALL)....................................... 2-24
2.12 Extend search path for subroutine calls with CALLPATH.. 2-24
2.13 Search path adaptation of the subroutines prepared during startup 2-26
2.14 Execute external subroutine (EXTCALL) ... 2-27
2.15 Subroutine call with M, T and D functions.. 2-31
2.16 Suppress individual block (SBLOF, SBLON)... 2-32
2.17 Suppress current block display (DISPLOF) ... 2-36
2.18 Cycles: Setting parameters for user cycles.. 2-37
2.19 Macro technique (DEFINE...AS) .. 2-41

3 File and Program Management .. 3-1
3.1 Program memory ... 3-1
3.2 Working memory .. 3-6
3.3 Defining user data .. 3-8
3.4 Protection levels for user data, MD, SD and NC commands... 3-12
3.4.1 Defining protection levels for user data (GUD) .. 3-12
3.4.2 Automatic activation of GUDs and MACs .. 3-14
3.4.3 Change the protection data for the machine and setting data (REDEF MD, SD).................... 3-15
3.4.4 Protection levels for NC commands (REDEF) ... 3-16
3.5 REDEF Changing the attributes of the NC language elements... 3-19
3.6 SEFORM structuring statement in the Step editor... 3-24

4 Protection zones... 4-1
4.1 Definition of the protection zones (CPROTDEF, NPROTDEF) ... 4-1
4.2 Activating, deactivating protection zones (CPROT, NPROT) .. 4-4
4.3 Checking for protection zone violation, working area limitation and software limits 4-7

5 Special Motion Commands ... 5-1
5.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN) ... 5-1

 Table of contents

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 ix

5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN) 5-3
5.3 Spline grouping (SPLINEPATH) .. 5-11
5.4 Compressor (COMPOF/ON, COMPCURV, COMPCAD) .. 5-12
5.5 Polynomial interpolation (POLY, POLYPATH) .. 5-16
5.6 Settable path reference (SPATH, UPATH).. 5-22
5.7 Measurements with touch trigger probe (MEAS, MEAW) ... 5-24
5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)... 5-27
5.9 Special functions for OEM users (OEMIPO1, OEMIPO2, G810 to G829) 5-36
5.10 Feed reduction with corner deceleration (FENDNORM, G62, G621)...................................... 5-36
5.11 Programmed end-of-motion criterion

(FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA) ... 5-38
5.12 Programmable servo parameter set (SCPARA) .. 5-41

6 Frames ... 6-1
6.1 Coordinate transformation via frame variables .. 6-1
6.1.1 Predefined frame variable ($P_BFRAME, $P_IFRAME, $P_PFRAME, $P_ACTFRAME)........ 6-3
6.2 Frame variables / assigning values to frames ... 6-9
6.2.1 Assigning direct values (axis value, angle, scale) ... 6-9
6.2.2 Reading and changing frame components (TR, FI, RT, SC, MI)... 6-12
6.2.3 Linking complete frames .. 6-13
6.2.4 Defining new frames (DEF FRAME).. 6-15
6.2.5 Specifying frame rotations (ROT, ROTS, TOFRAME, TOROT, PAROT) 6-15
6.3 Coarse and fine offsets (CFINE; CTRANS)... 6-16
6.4 DRF offset .. 6-18
6.5 External zero offset .. 6-19
6.6 Preset offset (PRESETON).. 6-20
6.7 Deactivating frames (DRFOF, G53, G153, and SUPA)... 6-21
6.8 Frame calculation from three measuring points in space (MEAFRAME) 6-22
6.9 NCU global frames... 6-26
6.9.1 Channel-specific frames ($P_CHBFR, $P_UBFR) .. 6-27
6.9.2 Frames active in the channel ... 6-28

7 Transformations.. 7-1
7.1 General programming of transformation types .. 7-1
7.1.1 Orientation movements for transformations... 7-4
7.1.2 Overview of orientation transformation TRAORI ... 7-7
7.2 Three, four and five axis transformation (TRAORI) ... 7-9
7.2.1 General relationships of universal tool head.. 7-9
7.2.2 Three, four and five axis transformation (TRAORI) ... 7-12
7.2.3 Variants of orientation programming and initial setting (OTIRESET) 7-13
7.2.4 Programming of the tool orientation (A..., B..., C..., LEAD, TILT).. 7-15
7.2.5 Face milling (3D-milling A4, B4, C4, A5, B5, C5) .. 7-22
7.2.6 Orientation axis reference (ORIWKS, ORIMKS) ... 7-23
7.2.7 Programming the orientation axes (ORIAXES, ORIVECT, ORIEULER, ORIRPY)................. 7-25
7.2.8 Orientation programming along the peripheral surface of a taper (ORIPLANE, ORICONxx) . 7-27
7.2.9 Specification of orientation for two contact points

(ORICURVE, PO[XH]=, PO[YH]=, PO[ZH]=)... 7-31

Table of contents

 Job planning
x Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.3 Orientation polynomials (PO[angle], PO[coordinate]).. 7-33
7.4 Rotations of the tool orientation (ORIROTA, ORIROTR/TT, ORIROTC, THETA)................... 7-35
7.5 Orientations relative to the path ... 7-37
7.5.1 Orientation types relative to the path ... 7-37
7.5.2 Rotation of the tool orientation relative to the path

(ORIPATH, ORIPATHS, angle of rotation) .. 7-39
7.5.3 Interpolation of the tool rotation relative to the path (ORIROTC, THETA)............................... 7-41
7.5.4 Smoothing of orientation characteristic (ORIPATHS A8=, B8=, C8=) 7-43
7.6 Compression of the orientation COMPON (A..., B..., C..., THETA)... 7-44
7.7 Online tool length compensation (TOFFON, TOFFOF)... 7-48
7.8 Kinematic transformation ... 7-51
7.8.1 Milling on turned parts (TRANSMIT).. 7-51
7.8.2 Cylinder surface transformation (TRACYL) ... 7-55
7.8.3 Inclined axis (TRAANG) ... 7-63
7.8.4 Inclined axis programming (G05, G07) .. 7-66
7.9 Cartesian PTP travel .. 7-68
7.9.1 PTP for TRANSMIT.. 7-72
7.10 Constraints when selecting a transformation... 7-76
7.11 Deselect transformation (TRAFOOF) .. 7-77
7.12 Chained transformations (TRACON, TRAFOOF).. 7-78
7.13 Replaceable geometry axes (GEOAX) .. 7-80

8 Tool offsets ... 8-1
8.1 Offset memory.. 8-1
8.2 Language commands for tool management .. 8-4
8.3 Online tool compensation (PUTFTOCF, PUTFTOC, FTOCON, FTOCOF) 8-7
8.4 Keep tool radius compensation constant (CUTCONON)... 8-13
8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...) .. 8-15
8.5.1 Activate 3D tool offsets (CUT3DC, CUT3DF, CUT3DFS, CUT3DFF)..................................... 8-15
8.5.2 3D tool radius compensation: peripheral milling, face milling .. 8-17
8.5.3 Tool types/tool change with changed dimensions (G40, G41, G42) 8-19
8.5.4 Compensation on the path, path curvature, and insertion depth ISD and

tool status (CUT3DC)... 8-21
8.5.5 Inside corners/outside corners and intersection procedure (G450/G451)............................... 8-23
8.5.6 3D circumferential milling with limitation surfaces general use.. 8-25
8.5.7 Consideration of a limitation surface (CUT3DCC, CUT3DCCD) ... 8-26
8.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, OSD, OST).................................. 8-30
8.7 Free assignment of D numbers, cutting edge numbers... 8-36
8.7.1 Free assignment of D numbers, cutting edge numbers (CE address) 8-36
8.7.2 Checking D numbers (CHKDNO) .. 8-37
8.7.3 Renaming D numbers (GETDNO, SETDNO) .. 8-38
8.7.4 Deriving the T number from the specified D number (GETACTTD) .. 8-39
8.7.5 Invalidate D numbers (DZERO) ... 8-39
8.8 Tool holder kinematics ... 8-40

9 Path traversing behavior ... 9-1
9.1 Tangential control (TANG, TANGON, TANGOF, TANGDEL) ... 9-1

 Table of contents

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 xi

9.2 Coupled motion (TRAILON, TRAILOF) ... 9-8
9.3 Curve tables (CTAB).. 9-12
9.3.1 Curve tables: general relationships ... 9-12
9.3.2 Principal functions curve tables (CTABDEF, CTABEND, CTABDEL) 9-13
9.3.3 Curve table forms (CTABDEL, CTABNOMEM, CTABFNO, CTABID, CTABLOCK,

CTABUNLOCK) ... 9-18
9.3.4 Behavior at the edges of curve tables (CTABTSV, CTABTSP, CTABMIN, CTABMAX)......... 9-22
9.3.5 Access to curve table positions and table segments

(CTAB, CTABINV, CTABSSV, CTABSEV).. 9-27
9.4 Axial leading value coupling (LEADON, LEADOF).. 9-31
9.5 Feedrate response (FNORM, FLIN, FCUB, FPO)... 9-37
9.6 Program run with preprocessing memory (STARTFIFO, STOPFIFO, STOPRE) 9-42
9.7 Conditionally interruptible program sections (DELAYFSTON, DELAYFSTOF) 9-44
9.8 Preventing program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)............................. 9-49
9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME) 9-51

10 Motion synchronous actions ... 10-1
10.1 Structure, basic information ... 10-1
10.1.1 Programming and command elements.. 10-3
10.1.2 Validity range: Identification number ID ... 10-4
10.1.3 Cyclic checking of the condition... 10-5
10.1.4 Actions ... 10-7
10.2 Operators for conditions and actions ... 10-8
10.3 Main run variables for synchronized actions.. 10-9
10.3.1 General information on system variables .. 10-9
10.3.2 Implicit type conversion.. 10-10
10.3.3 GUD variables for synchronous actions .. 10-11
10.3.4 Default axis identifier (NO_AXIS)... 10-13
10.3.5 Synchronized action marker $AC_MARKER[n] ... 10-14
10.3.6 Synchronized action parameters $AC_PARAM[n]... 10-15
10.3.7 Arithmetic parameter $R[n] .. 10-15
10.3.8 Read and write NC machine and NC setting data... 10-17
10.3.9 Timer-Variable $AC_Timer[n] .. 10-18
10.3.10 FIFO variable $AC_FIFO1[n] ... $AC_FIFO10[n] ... 10-19
10.3.11 Information about the block types in the interpolator ... 10-21
10.4 Actions in synchronized actions... 10-23
10.4.1 Overview .. 10-23
10.4.2 Output of auxiliary functions... 10-26
10.4.3 Set read-in disable (RDISABLE).. 10-26
10.4.4 Cancel preprocessing stop (STOPREOF) ... 10-27
10.4.5 Delete distance-to-go (DELDTG)... 10-28
10.4.6 Polynomial definition (FCTDEF) .. 10-30
10.4.7 Synchronized function (SYNFCT).. 10-33
10.4.8 Clearance control with limited compensation $AA_OFF_MODE... 10-36
10.4.9 Online tool offset (FTOC)... 10-39
10.4.10 Online tool length offset ($AA_TOFF[tool direction]) ... 10-41
10.4.11 Positioning movements.. 10-42
10.4.12 Position axis (POS).. 10-43
10.4.13 Position in specified reference range (POSRANGE)... 10-45
10.4.14 Start/stop axis (MOV)... 10-46
10.4.15 Axis replacement (RELEASE, GET).. 10-47
10.4.16 Axial feed (FA) ... 10-51

Table of contents

 Job planning
xii Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.17 Software limit switch... 10-51
10.4.18 Axis coordination.. 10-52
10.4.19 Set actual values (PRESETON) .. 10-53
10.4.20 Spindle motions.. 10-54
10.4.21 Coupled motion (TRAILON, TRAILOF).. 10-54
10.4.22 Leading value coupling (LEADON, LEADOF).. 10-56
10.4.23 Measuring (MEAWA, MEAC)... 10-58
10.4.24 Initialization of array variables with SET, REP... 10-59
10.4.25 Set/delete wait markers with SETM, CLEARM.. 10-60
10.4.26 Error responses during SETAL cycle alarms... 10-60
10.4.27 Travel to fixed stop (FXS and FOCON/FOCOF).. 10-61
10.4.28 Determining the path tangent in synchronized actions .. 10-63
10.4.29 Determining the current override ... 10-64
10.4.30 Time use evaluation of synchronized actions .. 10-65
10.5 Technology cycles.. 10-67
10.5.1 Context variable ($P_TECCYCLE) .. 10-70
10.5.2 Call by value parameters ... 10-71
10.5.3 Default parameter initialization... 10-71
10.5.4 Control processing of technology cycles (ICYCOF, ICYCON) .. 10-72
10.5.5 Cascading technology cycles... 10-73
10.5.6 Technology cycles in non-modal synchronized actions... 10-73
10.5.7 IF check structures... 10-74
10.5.8 Jump instructions (GOTO, GOTOF, GOTOB) ... 10-74
10.5.9 Lock, unlock, reset (LOCK, UNLOCK, RESET)... 10-75
10.6 Delete synchronized action (CANCEL).. 10-77
10.7 Restrictions .. 10-78

11 Oscillation ... 11-1
11.1 Asynchronous oscillation.. 11-1
11.2 Control oscillation via synchronized actions .. 11-6

12 Punching and nibbling .. 12-1
12.1 Activation, deactivation .. 12-1
12.1.1 Punching and nibbling On or Off (SPOF, SON, PON, SONS, PONS, PDELAYON/OF) 12-1
12.2 Automatic path segmentation... 12-5
12.2.1 Path segmentation for path axes ... 12-8
12.2.2 Path segmentation for single axes... 12-10

13 Additional functions... 13-1
13.1 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING)...................................... 13-1
13.2 Check scope of NC language present (STRINGIS)... 13-3
13.3 ISVAR () function call and read machine array index ... 13-8
13.4 Learn compensation characteristics (QECLRNON, QECLRNOF) .. 13-10
13.5 Synchronous spindle.. 13-12
13.5.1 Synchronous spindle (COUPDEF, COUPDEL, COUPON/ONC,

COUPOF/OFS, COUPRES) .. 13-12
13.6 Electronic gear (EG)... 13-24
13.6.1 Defining an electronic gear (EGDEF) .. 13-24
13.6.2 Activate electronic gear (EGON).. 13-25
13.6.3 Deactivate electronic gear (EGOFS) ... 13-28
13.6.4 Revolutional feedrate (G95)/electronic gear (FPR) ... 13-29

 Table of contents

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 xiii

13.7 Extended stop and retract.. 13-30
13.7.1 Drive-independent responses to ESR ... 13-32
13.7.2 NC-controlled reactions to retraction ... 13-34
13.7.3 NC-controlled reactions to stoppage ... 13-38
13.7.4 Generator operation/DC link backup ... 13-38
13.7.5 Drive-independent stopping ... 13-39
13.7.6 Drive-independent retraction.. 13-40
13.8 Link communication ... 13-41
13.8.1 Access to a global NCU memory area... 13-42
13.9 Axis container (AXCTWE, AXCTWED) ... 13-44
13.10 Program runtime/Workpiece counter ... 13-47
13.10.1 General .. 13-47
13.10.2 Program runtime .. 13-47
13.10.3 Workpiece counter ... 13-48
13.11 Interactive window call from parts program, command: .. 13-50
13.12 Influencing the motion control .. 13-51
13.12.1 Percentage jerk correction (JERKLIM) .. 13-51
13.12.2 Percentage velocity correction (VELOLIM).. 13-52
13.13 Master/slave grouping (MASLDEF, MASLDEL, MASLOF, MASLOF, MASLOFS) 13-53

14 User stock removal programs ... 14-1
14.1 Supporting function for stock removal ... 14-1
14.2 Contour preparation (CONTPRON)... 14-2
14.3 Contour decoding (CONTDCON) .. 14-8
14.4 Intersection of two contour elements (INTERSEC) ... 14-12
14.5 Traversing a contour element from the table (EXECTAB)... 14-14
14.6 Calculate circle data (CALCDAT) .. 14-15

15 Tables... 15-1
15.1 List of statements... 15-1

A List of abbreviations..A-1
 Glossary ... Glossary-1
 Index.. Index-1

Table of contents

 Job planning
xiv Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-1

Flexible NC programming 1
1.1 1.1 Variables and arithmetic parameters (user-defined variables,

arithmetic parameters, system variables)

Function
Using variables in place of constant values makes a program more flexible. You can respond
to signals such as measured values or, by storing setpoints in the variables, you can use the
same program for different geometries.
With variable calculation and jump instructions a skilled programmer is able to create a very
flexible program archive and save a lot of programming work.

Variable types
The control uses 3 classes of variable:

User-defined variables Name and type of variable defined by the user, e.g., arithmetic

parameter.
Arithmetic variables Special, predefined arithmetic variable whose address is R plus a

number. The predefined arithmetic variables are of the REAL type.
System variables Variable provided by the control that can be processed in the

program (write, read). System variables provide access to zero
offsets, tool offsets, actual values, measured values on the axes,
control states, etc.
(See Appendix for the meaning of the system variables).

Variable types

Type Meaning Value range
INT Integers with leading sign ±(231 - 1)
REAL Real numbers (fractions with decimal

point, LONG REAL in acc. with IEEE)
±(10-300 … 10+300)

Flexible NC programming
1.1 Variables and arithmetic parameters (user-defined variables, arithmetic parameters, system variables)

 Job planning
1-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

BOOL Boolean values: TRUE (1) and
FALSE (0)

1.0

CHAR ASCII character specified by the
code

0 … 255

STRING Character string, number of
characters in [...], maximum of 200
characters

Sequence of values with 0 ... 255

AXIS Axis identifiers only (axis addresses) Any axis identifiers in the channel
FRAME Geometric data for translation,

rotation, scaling, mirroring, see the
"Frames" Chapter

Arithmetic variables
Address R provides 100 arithmetic variables of type REAL by default.
The exact number of arithmetic variables (up to 32535) is defined in machine data.
Example: R10=5

System variables
The control provides system variables that can be contained and processed in all running
programs.
System variables provide machine and control states. Some system variables cannot be
assigned values.
Summary of system variables
Special identifiers of system variables always begin with a "$" sign. The specific names then
follow.

1st letter Meaning
$M Machine data
$S Setting data
$T Tool management data
$P Programmed values
$A Current values
$V Service data

2nd letter Meaning
N NCK global
C Channel-specific
A Axis-specific

Example: $AA_IM
Meaning: Current axis-specific value in the machine coordinate system.

 Flexible NC programming
 1.2 Variable definition (DEF user-defined variables LUD, GUD, PUD)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-3

1.2 1.2 Variable definition (DEF user-defined variables LUD, GUD, PUD)

Function
In addition to the predefined variables, programmers can define and initialize their own
variables.
Local variables (LUD) are only valid in the program where they are defined.
Global variables (GUD) are valid in all programs.
Machine data are used to redefine the local user variables (LUD) defined in the main
program as program-global user variables (PUD).
Machine manufacturer
See machine manufacturer's specifications.

Programming
Variable type INT
DEF INT name
or
DEF INT name=value
Variable type REAL
DEF REAL name
or
DEF REAL name1,name2=3,name4
or
DEF REAL name[array_index1,array_index2]
Variable type BOOL
DEF BOOL name
Variable type CHAR
DEF CHAR name
or
DEF CHAR name[array_index2]=("A","B",…)
Variable type STRING
DEF STRING[string_length] name
Variable type AXIS
DEF AXIS name
or
DEF AXIS name[array_index]
Variable type FRAME
DEF FRAME name

Flexible NC programming
1.2 Variable definition (DEF user-defined variables LUD, GUD, PUD)

 Job planning
1-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 Note
If a variable is not assigned a value on definition, the system sets zero as the default.
Variables must be defined at the beginning of the program before they are used. The
definition must be made in a separate block; only one variable type can be defined per block.

Parameters

INT Variable type integer, i.e. whole number

REAL Variable type real, i.e. factional number with decimal
point

BOOL Variable type Boolean, i.e. 1 or 0 (TRUE or FALSE)

CHAR Variable type char, i.e. ASCII-coded character
(0 to 255)

STRING Variable type string, i.e. character string

AXIS Variable type axis, i.e. axis addresses and spindles

FRAME Variable type frame, i.e. geometric data

Example

Variable type Meaning
INT
DEF INT NUMBER This creates a variable of type integer with the

name NUMBER.
System initializes with zero.

DEF INT NUMBER=7 This creates a variable of type integer with the
name NUMBER. The system initializes the
variable with 7.

REAL
DEF REAL DEPTH This creates a variable of type real with the name

DEPTH.
System initializes with zero (0.0).

DEF REAL DEPTH=6.25 This creates a variable of type real with the name
DEPTH. The variable is initialized with 6.25.

DEF REAL DEPTH=3.1,LENGTH=2,NUMBER More than one variable can be defined in a line.

 Flexible NC programming
 1.2 Variable definition (DEF user-defined variables LUD, GUD, PUD)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-5

BOOL
DEF BOOL IF_TOO_MUCH This creates a variable of type BOOL with the

name IF_TOO_MUCH.
System initializes with zero (FALSE).

DEF BOOL IF_TOO_MUCH=1 or
DEF BOOL IF_TOO_MUCH=TRUE or
DEF BOOL IF_TOO_MUCH=FALSE

This creates a variable of type BOOL with the
name IF_TOO_MUCH.

CHAR
DEF CHAR GUSTAV_1=65 A code value for the corresponding ASCII

character or the ASCII character itself
DEF CHAR GUSTAV_1="A" can be assigned to a variable of type CHAR (code

value 65 corresponds to letter "A").
STRING
DEF STRING[6] MUSTER_1="BEGIN" Variables of type string can contain a string

(sequence of characters). The maximum number
of characters is enclosed in square brackets after
the variable type.

AXIS
DEF AXIS AXIS_NAME=(X1) The variables of type AXIS have the name

AXIS_NAME and contain the axis designation of a
channel - here X1.
(Axis names with extended address are specified
within parentheses.)

FRAME
DEF FRAME BEVEL_1 Variables of type FRAME have names like

BEVEL_1.

 Note
A variable of type AXIS can contain an axis identifier and a spindle identifier of a channel.

 Note
Axis names with an extended address must be enclosed in parentheses.

Flexible NC programming
1.2 Variable definition (DEF user-defined variables LUD, GUD, PUD)

 Job planning
1-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: Redefine local (LUD) and program-global user variables (PUD)
If they are defined in the main program, they will also be valid at all levels of the subroutines
called. They are created with parts program start and deleted with parts program end or
reset.
If machine data $MN_LUD_EXTENDED_SCOPE is set, it is not possible to define a variable
with the same name in the main and subroutines.

$MN_LUD_EXTENDED_SCOPE=1

PROC MAIN ;Main program

DEF INT VAR1 ;PUD definition

... ;Subroutine call

SUB2

...

M30

PROC SUB2 ;Subroutine SUB2

DEF INT VAR2 ;LUD DEFINITION

...

IF (VAR1==1) ;Read PUD

 VAR1=VAR1+1 ;Read & write PUD

 VAR2=1 ;Write LUD

ENDIF ;Subroutine call

SUB3

...

M17

PROC SUB3 ;Subroutine SUB3

...

IF (VAR1==1) ;Read PUD

 VAR1=VAR1+1 ;Read & write PUD

 VAR2=1 ;Error: LUD from SUB2 not known

ENDIF

...

M17

Variable names
A variable name consists of up to 31 characters. The first two characters must be a letter or
an underscore.
The "$" sign can not be used for user-defined variables because it is used for system
variables.

 Flexible NC programming
 1.3 Array definitions (DEF, SET, REP)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-7

Example: Program-local variables

DEF INT COUNTER

LOOP: G0 X… ;Loop

COUNT=COUNT+1

IF COUNT<50 GOTOB LOOP

M30

Example: Querying existing geometry axes

DEF AXIS ABSCISSA; ;1. geometry axis

IF ISAXIS(1) == FALSE GOTOF CONTINUE

ABSCISSA = $P_AXN1

CONTINUE:

Example: Indirect spindle programming

DEF AXIS SPINDLE

SPINDLE=(S1)

OVRA[SPINDLE]=80 ;Spindle override = 80%

SPINDLE=(S3)

…

1.3 1.3 Array definitions (DEF, SET, REP)

Function
An array is a memory area defined using the variable type with name and size. Arrays with
up to two dimensions can be defined.

 Note
Maximum array size
When defining arrays, the maximum array size of the 1st and 2nd dimension is 32767 for the
array index [n, m].

Initialization of arrays
Initialization values can be assigned to the array elements:
• during the program execution
or
• already with the array definition.
In 2-dimensional arrays, the right array index is incremented first.

Flexible NC programming
1.3 Array definitions (DEF, SET, REP)

 Job planning
1-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
DEF CHAR NAME[n,m]
or
DEF INT NAME[n,m]
or
DEF REAL NAME[n,m]
or
DEF AXIS NAME[n,m]
or
DEF FRAME NAME[n,m]
or
DEF STRING[string_length] NAME[m]
or
DEF BOOL[n,m]
• Initialization with value lists; SET
Array definition options
DEF Type VARIABLE = SET(VALUE)
DEF Type ARRAY[n,m] = SET(VALUE, value, …)
or
DEF Type VARIABLE = Value
DEF Type ARRAY[n,m] = (value, value, …)

 Note
SET is optional in the array definition.

Initializing during the program run
ARRAY[n,m]= SET(value, value, value,…)
ARRAY[n,m]= SET(expression, expression, expression,…)
• Initialization with the same values, REP
Array definition options
DEF Type ARRAY[n,m] = REP(value)

 Note
Variables of type FRAME cannot be initialized.

Initializing during the program run
ARRAY[n,m] = REP(value)
ARRAY[n,m] = REP(expression)

 Flexible NC programming
 1.3 Array definitions (DEF, SET, REP)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-9

 Note
Variables of type FRAME are permissible and can be initialized very simply in this way.

Parameters

DEF Variable type Array definition

SET VALUE or expression Initialization with value lists for the array
definition or in the program execution

REP VALUE or expression Initialization with the same values for the array
definition or in the program execution

CHAR NAME[n,m]
INT NAME[n,m]
REAL NAME[n,m]
AXIS NAME[n,m]
FRAME NAME[n,m]
BOOL[n,m]

Variable type (CHAR, INTEGER, REAL, AXIS, FRAME, BOOL)

STRING[string_length]
NAME[m]

Data type STRING can only be defined for 1-dimensional
arrays.
The string length is specified after the data type
String.

NAME Variable name

Type VARIABLE Variable type (CHAR, INTEGER, REAL, AXIS, FRAME, BOOL)

ARRAY[n,m]= SET(value,
value,…)

Initialization of all elements of an array with the
listed values for the array definition

TYPE ARRAY[n,m] = REP(value) Initialization of all elements of an array with the
same value for the array definition

ARRAY[n,m]= SET(value,
value,…)
ARRAY[n,m]=
SET(expression,…)

Initialization of all elements of an array with the
listed values in the program execution

ARRAY[n,m]= REP(value)
ARRAY[n,m]= REP(expression)

Initialization of all elements of an array with the
same value in the program execution

ARRAY[n, m] Array index

n Array size for 1st dimension

m Array size for 2nd dimension

Maximum array size e.g. DEF INT NAME[32767]

Arrays with variables of type STRING can only be 1-dimensional.
Array_index [n,m]
Elements of an array are accessed via the array index. The array elements can either be
read or assigned values using this array index.
The first array element starts with index [0,0]; for example, for array size [3,4] the maximum
possible array index is [2,3].

Flexible NC programming
1.3 Array definitions (DEF, SET, REP)

 Job planning
1-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Memory requirements

Variable type Memory requirement per element
BOOL 1 byte
CHAR 1 byte
INT 4 bytes
REAL 8 bytes
STRING String length + 1
FRAME ∼ 400 bytes, depending on the number of axes
AXIS 4 bytes

 Note
The maximum array size determines the size of the memory areas in which the variable
memory is managed. It should not be set higher than actually required.
Default: 812 bytes
If no large arrays are defined, select: 256 bytes.

Example: Definition of BOOL arrays
Global user data must contain PLC machine data for switching the control on/off.
Example Definition of arrays with maximum array size for the 1st and 2nd dimension
DEF INT NAME[32767,32767]

 Flexible NC programming
 1.3 Array definitions (DEF, SET, REP)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-11

Example: Initialization of complete variable arrays
The current assignment is shown in the drawing.

N10 DEF REAL ARRAY1[10,3] = SET(0, 0, 0, 10, 11, 12, 20, 20, 20, 30, 30, 30, 40, 40,
40,)

N20 ARRAY1[0,0] = REP(100)

N30 ARRAY1[5,0] = REP(-100)

N40 ARRAY1[0,0] = SET(0, 1, 2, -10, -11, -12, -20, -20, -20, -30, , , ,

-40, -40, -50, -60, -70)

N50 ARRAY1[8,1] = SET(8.1, 8.2, 9.0, 9.1, 9.2)

Initialization with value lists for the array definition, SET
• As many array elements are assigned as initialization values are programmed.
• Array elements without values (gaps in the value list) are automatically initialized to 0.
• For variables of type AXIS, gaps in the value list are not permitted.
• Programming more values than exist in the remaining array elements triggers an alarm.
Example:
DEF REAL ARRAY[2,3]=(10, 20, 30, 40)

Flexible NC programming
1.3 Array definitions (DEF, SET, REP)

 Job planning
1-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Initialization with value lists in the program execution, SET
• Initialization is the same as in array definition.
• Expressions are possible values in this case too.
• Initialization starts at the programmed array indexes. Values can also be assigned

selectively to subarrays.
Example: Assignment of expressions
DEF INT ARRAY[5, 5]
ARRAY[0,0] = SET(1, 2, 3, 4, 5)
ARRAY[2,3] = SET(VARIABLE, 4*5.6)
The axis index of axis variables is not traversed:
Example: Initialization in one line
$MA_AX_VELO_LIMIT[1, AX1] = SET(1.1, 2.2, 3.3)
Is equivalent to:
$MA_AX_VELO_LIMIT[1,AX1] = 1.1
$MA_AX_VELO_LIMIT[2,AX1] = 2.2
$MA_AX_VELO_LIMIT[3,AX1] = 3.3

Initialization with the same values for the array definition, REP
All array elements are assigned the same value (constant).
Variables of type FRAME cannot be initialized.
Example:
DEF REAL ARRAY5[10,3] = REP(9.9)

Initialization with the same values in the program execution
• Expressions are possible values in this case too.
• All array elements are initialized to the same value.
• Initialization starts at the programmed array indexes. Values can also be assigned

selectively to subarrays.
Example: Initialization of all elements with one value
DEF FRAME FRM[10]
FRM[5] = REP(CTRANS (X,5))

 Flexible NC programming
 1.4 Indirect programming

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-13

1.4 1.4 Indirect programming

Function
Indirect programming permits general-purpose use of programs. The extended address
(index) is substituted by a variable of suitable type.
Indirect G code programming
Indirect programming of G codes using variables facilitates effective cycle programming.
Two parameters
G code groups with integer constants
G code numbers with integer/real type variables
are available for this purpose.

Programming
ADDRESS[INDEX]
or
G[<group_index>] = <integer/real_variable>
Indirect programming of G codes using variables for effective cycle programming

Parameters
All addresses are parameterizable except:
• N - block number
• L - subroutine
Indirect programming is not possible for settable addresses.
Example: X[1] in place of X1 is not permissible.

ADDRESS Address with parameter details as index

[INDEX] Index variable, e.g., spindle no., axis

G<group_index G code groups: Integer constants with which the
G code group is selected.

<Integer/real_variable> G code numbers: Variable of the integer or real type
with which the G code number is selected

Valid G code groups
Only modal G code groups can be programmed indirectly.
Non-modal G code groups are rejected with alarm 12470.
Valid G code numbers
Arithmetic functions are not permissible in indirect G code programming.
The G code number must be stored in a variable of type integer or real. Invalid G code
numbers are rejected with alarm 12475.

Flexible NC programming
1.4 Indirect programming

 Job planning
1-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

If it is necessary to calculate the G code number, this must be done in a separate parts
program line before the indirect G code programming.

 Note
All the valid G codes are shown in the PG, in the "List of G functions/preparatory functions"
section in various groups. See /PG/ Programming Guide Fundamentals, "Tables"

Example

Spindle

S1=300 ;Direct programming

DEF INT SPINU=1

S[SPINU]=300

;Indirect programming:

;Speed 300 rpm for the spindle
whose number is stored in the SPINU variable
(in this example 1).

Feed

FA[U]=300 ;Direct programming

DEF AXIS AXVAR2=U

FA[AXVAR2]=300

;Indirect programming:

;Feedrate for positioning axis whose
address name is stored in the variable of
type AXIS
with the variable name AXVAR2.

Measured value

$AA_MM[X] ;Direct programming

DEF AXIS AXVAR3=X

$AA_MM[AXVAR3]

;Indirect programming:

;Measured value in machine coordinates
for the axis whose name is stored
 in variable AXVAR3.

Array element

DEF INT ARRAY1[4,5] ;Direct programming

DEFINE DIM1 AS 4

DEFINE DIM2 AS 5

DEF INT ARRAY[DIM1,DIM2]

ARRAY[DIM1-1,DIM2-1]=5

;Indirect programming:

Array dimensions must be stated
as constant values.

Axis assignment with axis variables

X1=100 X2=200 ;Direct programming

DEF AXIS AXVAR1 AXVAR2

AXVAR1=(X1) AXVAR2=(X2)

AX[AXVAR1]=100 AX[AXVAR2]=200

;Indirect programming:

;Definition of variables

;Assignment of the axis names,
traversal of axes that are stored
in the variables to 100 or 200.

Interpolation parameters with axis
variables

G2 X100 I20 ;Direct programming

DEF AXIS AXVAR1=X

G2 X100 IP[AXVAR1]=20

;Indirect programming:

;Definition and assignment of the axis name

;Indirect programming
of the center

Indirect subroutine call

CALL "L" << R10 ;Call of the program whose number is in R10

 Flexible NC programming
 1.4 Indirect programming

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-15

 Note
R parameters can also be considered 1-dimensional arrays with abbreviated notation
(R10 is equivalent to R[10]).

Example: Indirect G code programming
Settable zero offset G code group 8

N1010 DEF INT INT_VAR

N1020 INT_VAR = 2

...

N1090 G[8] = INT_VAR G1 X0 Y0 ; G54

N1100 INT_VAR = INT_VAR + 1 ; G code calculation

N1110 G[8] = INT_VAR G1 X0 Y0 ; G55

Plane selection G code group 6

N2010 R10 = $P_GG[6] ; Read G code for current plane

...

N2090 G[6] = R10 ; G17

Flexible NC programming
1.4 Indirect programming

 Job planning
1-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.4.1 Run string as parts program line (EXECSTRING)

Function
Parts program command EXECSTRING passes a string as a parameter that already
contains the parts program line to run.

Programming
EXECSTRING (<string_variable>)

Parameters

EXECSTRING Transfer of a string variable with the parts program
line to run

(<string_variable>) Parameters with the parts program line actually to be
executed

 Note
All parts program constructions that can be programmed in a parts program can be output.
That excludes PROC and DEF instructions and all use of INI and DEF files.

Example: Indirect parts program line

N100 DEF STRING[100] BLOCK ;String variable to be included in ;parts
program line

N110 DEF STRING[10] MFCT1 = "M7"

N200 EXECSTRING(MFCT1 << " M4711") ;Run parts program line "M7 M4711"

N300 R10 = 1

N310 BLOCK = "M3"

N320 IF(R10)

N330 BLOCK = BLOCK << MFCT1

N340 ENDIF

N350 EXECSTRING(BLOCK) ;Run parts program line "M3 M4711"

 Flexible NC programming
 1.5 Assignments

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-17

1.5 1.5 Assignments

Function
Values of a suitable type can be assigned to the variables/arithmetic parameters in the
program.

Programming
Assignments to axis addresses (traversing instructions) always require a separate block to
variable assignments. Assignment to axis addresses (traverse instructions) must be in a
separate block from the variable assignments.

Parameters
Assignment to string variable
CHARs and STRINGs distinguish between upper and lower case.
If you want to include an ' or " in the string, put it in single quotes '...'.
Example:
MSG("Viene lavorata l'''ultima figura")
displays the text 'Viene lavorata l'ultima figura' on the screen.
The string can contain non-displayable characters if they are specified as binary or
hexadecimal constants.

Example

R1=10.518 R2=4 VARI1=45

X=47.11 Y=R2

;Assignment of a numeric value

R1=R3 VARI1=R4 ;Assignment of a suitable type variable

R4=-R5 R7=-VARI8 ;Assignment with opposite sign
;(only permitted for INT and REAL types)

Flexible NC programming
1.6 Arithmetic operations/functions

 Job planning
1-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.6 1.6 Arithmetic operations/functions

Function
The arithmetic functions are primarily for R parameters and variables (or constants and
functions) of type REAL. The types INT and CHAR are also permitted.
Arithmetic function ATAN2(,)
The function calculates the angle of the total vector from two mutually orthogonal vectors.
The result is in one of four quadrants (–° < 0 < +180°). The angular reference is always
based on the 2nd value in the positive direction.

The accuracy for comparison commands can be set using TRUNC()
See "Accuracy correction for comparison commands"

Programming
The usual mathematical notation is used for arithmetic operations. Priorities for execution are
indicated by parentheses. Angles are specified for trigonometry functions and their inverse
functions (right angle = 90°).

 Flexible NC programming
 1.6 Arithmetic operations/functions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-19

Parameters
Operators/Mathematical functions

+ Addition
- Subtraction
* Multiplication
/ Division

Caution: (type INT)/(type INT)=(type REAL)
;example: 3/4 = 0.75

DIV Division, for variable type INT and REAL
Caution: (type INT)DIV(type INT)=(type INT)
;example: 3 DIV 4 = 0

MOD Modulo division (INT or REAL) produces remainder of INT
division,
e.g., 3 MOD 4=3

: Chain operator (for FRAME variables)
Sin() Sine
COS() Cosine
TAN() Tangent
ASIN() Arcsine
ACOS() Arccosine
ATAN2 (,) Arctangent2
SQRT() Square root
ABS() Absolute value
POT() 2. power (square)
TRUNC() Truncate to integer
ROUND() Round to integer
LN() Natural logarithm
EXP() Exponential function
CTRANS() Translation
CROT () Rotation
CSCALE() Change of scale
CMIRROR() Mirroring

Example: Initialization of complete variable arrays

R1=R1+1 ;New R1 = old R1 +1

R1=R2+R3 R4=R5-R6 R7=R8*R9

R10=R11/R12 R13=SIN(25.3)

R14=R1*R2+R3 ;Multiplication or division takes precedence
over addition or subtraction

R14=(R1+R2)*R3 ;Parentheses are calculated first

R15=SQRT(POT(R1)+POT(R2)) ;Inner parentheses are resolved first
;R15 = square root of (R12+R22)

RESFRAME= FRAME1:FRAME2

FRAME3=CTRANS(…):CROT(…)

;The concatenation operator links frames
to form a resulting frame or assigns values
to frame components

Flexible NC programming
1.7 Comparison and logical operations

 Job planning
1-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.7 1.7 Comparison and logical operations

Function
Comparison operations can be used, for example, to formulate a jump condition. Complex
expressions can also be compared.
The comparison operations are applicable to variables of type CHAR, INT, REAL and BOOL.
The code value is compared with the CHAR type.
For types STRING, AXIS and FRAME, the following are possible: == and <>, which can be
used for STRING type operations, even in synchronous actions.
The result of comparison operations is always of BOOL type.
Logic operators are used to link truth values.
The logical operations can only be used for the BOOL type. However, they can also be
applied to the CHAR, INT and REAL data types via internal type conversion.
For the logic (Boolean) operations, the following applies to the BOOL, CHAR, INT and REAL
data types:
• 0 corresponds to: FALSE
• not equal to 0 means: TRUE
Bit logic operators
Logic operations can also be applied to single bits of types CHAR and INT. Type conversion
is automatic.

Programming
Relational operators
==
or
<>
or
>
or
<
or
>=
or
<=
Logic operators
AND
or
OR
or

 Flexible NC programming
 1.7 Comparison and logical operations

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-21

NOT
or
XOR
Spaces must be left between BOOLEAN operands and operators.
Bit-by-bit logic operators
B_AND
or
B_OR
or
B_NOT
or
B_XOR

Parameters
Meaning of relational operators

== equal to

<> not equal to

> greater than

< less than

>= greater than or equal to

<= less than or equal to

Meaning of logic operators

AND AND

OR OR

NOT Negation

XOR Exclusive OR

In arithmetic expressions, the execution order of all the operators can be specified by
parentheses, in order to override the normal priority rules.
Meaning of bit logic operators

B_AND Bit-serial AND

B_OR Bit-serial OR

B_NOT Bit-serial negation

B_XOR Bit-serial exclusive OR

 Note
The operator B_NOT refers to one operand only,
it comes after the operator.

Flexible NC programming
1.7 Comparison and logical operations

 Job planning
1-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: relational operators
IF R10>=100 GOTOF DEST
or
R11=R10>=100
IF R11 GOTOF DEST
The result of the R10>=100 comparison is first buffered in R11.

Example: logic operators
IF (R10<50) AND ($AA_IM[X]>=17.5) GOTOF DESTINATION
or
IF NOT R10 GOTOB START
NOT is only applied to one operand.

Example: bit logic operators
IF $MC_RESET_MODE_MASK B_AND 'B10000' GOTOF ACT_PLANE

1.7.1 Precision correction on comparison errors (TRUNC)

Function
The TRUNC command truncates the operand multiplied by a precision factor.
Settable precision for comparison commands
Program data of type REAL are displayed internally with 64 bits in IEEE format. This display
format can cause decimal numbers to be displayed imprecisely and lead to unexpected
results when compared with the ideally calculated values.
Relative equality
To prevent the imprecision caused by the display format from interfering with program flow,
the comparison commands do not check for absolute equality but for relative equality.

Programming
Precision correction on comparison errors
TRUNC (R1*1000)

 Flexible NC programming
 1.7 Comparison and logical operations

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-23

Parameters

TRUNC() Truncate decimal places

Relative equality considered 10-12 for
• Equality: (==)
• Inequality: (<>)
• Greater than or equal to: (>=)
• Less than or equal to: (<=)
• Greater/less than: (><) with absolute equality
• Greater than: (>)
• Less than: (<)
Compatibility
For compatibility reasons, the check for relative equality with (>) and (<) can be deactivated
by setting machine data MD 10280: PROG_FUNCTION_MASK Bit0 = 1.

 Note
Comparisons with data of type REAL are subject to a certain imprecision for the above
reasons. If deviations are unacceptable, use INTEGER calculation by multiplying the
operands by a precision factor and then truncating with TRUNC.

Synchronized actions
The response described for the comparison commands also applies to synchronized actions.

Example: precision considerations

N40 R1=61.01 R2=61.02 R3=0.01 ;Assignment of initial values

N41 IF ABS(R2-R1) > R3 GOTOF ERROR ;Jump was performed previously

N42 M30 ;End of program

N43 ERROR: SETAL(66000)

R1=61.01 R2=61.02 R3=0.01 ;Assignment of initial values

R11=TRUNC(R1*1000) R12=TRUNC(R2*1000)
 R13=TRUNC(R3*1000)

;Precision correction

IF ABS(R12-R11) > R13 GOTOF ERROR ;Jump is no longer executed

M30 ;End of program

ERROR: SETAL(66000)

Flexible NC programming
1.8 Priority of the operations

 Job planning
1-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: calculate and evaluate the quotient of both operands

R1=61.01 R2=61.02 R3=0.01 ;Assignment of initial values

IF ABS((R2-R1)/R3)-1) > 10EX-5 GOTOF
ERROR

;Jump not executed

M30 ;End of program

ERROR: SETAL(66000)

1.8 1.8 Priority of the operations

Function
Each operator is assigned a priority. When an expression is evaluated, the operators with
the highest priority are always applied first. Where operators have the same priority, the
evaluation is from left to right.
In arithmetic expressions, the execution order of all the operators can be specified by
parentheses, in order to override the normal priority rules.

Order of operators
From the highest to lowest priority

1. NOT, B_NOT Negation, bit-serial negation
2. *, /, DIV, MOD Multiplication, division
3. +, – Addition, subtraction
4. B_AND Bit AND
5. B_XOR Bit-serial exclusive OR
6. B_OR Bit-serial OR
7. AND AND
8. XOR Exclusive OR
9. OR OR
10. << Concatenation of strings, result type STRING
11. ==, <>, >, <, >=, <= Comparison operators

 Note
The concatenation operator ":" for Frames must not be used in the same expression as other
operators. A priority level is therefore not required for this operator.

Example: IF statement
If (otto==10) and (anna==20) gotof end

 Flexible NC programming
 1.9 Possible type conversions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-25

1.9 1.9 Possible type conversions

Function
Type conversion on assignment
The constant numeric value, the variable, or the expression assigned to a variable must be
compatible with the variable type. If this is this case, the type is automatically converted
when the value is assigned.

Possible type conversions

to REAL INT BOOL CHAR STRING AXIS FRAME
from
REAL yes yes* Yes1) yes* – – –
INT yes yes Yes1) Yes 2) – – –
BOOL yes yes yes yes yes – –
CHAR yes yes Yes 1) yes yes – –
STRING – – Yes 4) Yes 3) yes – –
AXIS – – – – – yes –
FRAME – – – – – – yes

Explanation

* At type conversion from REAL to INT, fractional values that are >=0.5 are rounded
up, others are rounded down (cf. ROUND function).

1) Value <> 0 is equivalent to TRUE; value == 0 is equivalent to FALSE
2) If the value is in the permissible range
3) If only 1 character
4) String length 0 = >FALSE, otherwise TRUE

 Note
If conversion produces a value greater than the target range, an error message is output.
If mixed types occur in an expression, type conversion is automatic. Type conversions are
also possible in synchronous actions, see Chapter "Motion-synchronous actions, implicit type
conversion".

Flexible NC programming
1.10 String operations

 Job planning
1-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.10 1.10 String operations

Overview
Further string manipulations are provided in addition to the conventional operations
"Assignment" and "Comparison" described in this section:

Parameters

Type conversion to STRING:

STRING_ERG = <<any type1) Result type: STRING

STRING_ERG = AXSTRING (AXIS) Result type: STRING

Type conversion from STRING:

BOOL_ERG = ISNUMBER (STRING) Result type: BOOL

REAL_ERG = NUMBER (STRING) Result type: REAL

AXIS_ERG = AXNAME (STRING) Result type: AXIS

Concatenation of strings:

any type1) << any Type 1) Result type: STRING

Conversion to lower/upper case:

STRING_ERG = TOUPPER (STRING) Result type: STRING

STRING_ERG = TOLOWER (STRING) Result type: STRING

Length of the string:

INT_ERG = STRLEN (STRING) Result type: INT

Look for character/string in the
string:

INT_ERG = INDEX (STRING, CHAR) Result type: INT

INT_ERG = RINDEX (STRING, CHAR) Result type: INT

INT_ERG = MINDEX (STRING, STRING) Result type: INT

INT_ERG = MATCH (STRING, STRING) Result type: INT

Selection of a substring:

STRING_ERG = SUBSTR (STRING, INT) Result type: INT

STRING_ERG = SUBSTR (STRING, INT,
INT)

Result type: INT

Selection of a single character:

CHAR_ERG = STRINGVAR [IDX] Result type: CHAR

CHAR_ERG = STRINGARRAY [IDX_FELD,
IDX_CHAR]

Result type: CHAR

1) "any type" stands for the variable types INT, REAL, CHAR, STRING, and BOOL.

Special meaning of the 0 char
The 0 char is interpreted internally as end-of-string. Replacing a character by the 0 character
truncates the string.

 Flexible NC programming
 1.10 String operations

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-27

Example

DEF STRING[20] STRG = "Axis .
stopped"

STRG[6] = "X" ;Returns the message "Axis X stopped"

MSG(STRG)

STRG[6] = 0

MSG(STRG) ;Returns the message "Axis"

1.10.1 Type conversion to STRING

Function
This enables use of variables of different types in a message (MSG).
Performed implicitly with use of the operator << for data types INT, REAL, CHAR, and BOOL
(see "Concatenation of strings").
An INT value is converted to normal readable format. REAL values convert with up to
10 decimal places.

Programming
Syntax

STRING_ERG = AXSTRING (AXIS) Result type: STRING

Semantics:
AXSTRING (AXIS) returns the specified axis identifier as a string.

Parameters
Variables of type AXIS can be converted to STRING by the AXSTRING function.
FRAME variables cannot be converted.
Example:
MSG("Position:"<<$AA_IM[X])

Example

DEF STRING[32] STRING_ERG

STRING_ERG = AXSTRING(X) ;Now: STRING_ERG == "X"

Flexible NC programming
1.10 String operations

 Job planning
1-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.10.2 Type conversion of STRING

Function
The NUMBER function converts from STRING to REAL.
If ISNUMBER returns the value FALSE, the CALL of NUMBER with the same parameter will
issue an alarm.
The AXNAME function converts a string to data type AXIS. An alarm is output if the string
cannot be assigned to any configured axis identifier.

Programming
Syntax

REAL_ERG = NUMBER (STRING) Result type: REAL
BOOL_ERG = ISNUMBER (STRING) Result type: BOOL
AXIS_ERG = AXNAME (STRING) Result type: AXIS

Semantics:
NUMBER (STRING) returns the number represented by the string as a REAL.
ISNUMBER (STRING) returns TRUE, if the string is a valid REAL by the rules of the
language. It is thus possible to check whether the string can be converted to a valid number.
AXNAME (STRING) converts the specified string to an axis identifier.

Example

DEF BOOL BOOL_ERG

DEF REAL REAL_ERG

DEF AXIS AXIS_ERG

BOOL_ERG = ISNUMBER ("1234.9876Ex-7") ;Now: BOOL_ERG == TRUE

BOOL_ERG = ISNUMBER ("1234XYZ") ;Now: BOOL_ERG == FALSE

REAL_ERG = NUMBER ("1234.9876Ex-7") ;Now: REAL_ERG == 1234.9876Ex-7

AXIS_ERG = AXNAME("X") ;Now: AXIS_ERG == X

1.10.3 Concatenation of strings

Function
This functionality puts a string together out of separate components.

 Flexible NC programming
 1.10 String operations

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-29

The chaining function is implemented via operator: <<. This operator has STRING as the
target type for all combinations of basic types CHAR, BOOL, INT, REAL, and STRING.
Any conversion that may be required is carried out according to existing rules.

Programming
Syntax

any type << any type Result type: STRING

Semantics
The strings specified (possibly implicitly converted non-string types) are concatenated.
This operator can also be used as a "unary" operator with a single operand. This can be
used for explicit type conversion to STRING (not for FRAME and AXIS).
Types FRAME and AXIS cannot be used with this operator.
Syntax

<< any type Result type: STRING

Semantics
The specified type is implicitly converted to STRING type.
This can be used to put together a message or a command out of text lists and insert
parameters into it (e.g. a module name):
MSG(STRG_TAB[LOAD_IDX]<<MODULE_NAME)

 Caution
The intermediate results of string concatenation must not exceed the maximum string length.

Example: concatenation of strings

DEF INT IDX = 2

DEF REAL VALUE = 9.654

DEF STRING[20]STRG = "INDEX:2"

IF STRG == "Index:" <<IDX GOTOF NO_MSG

MSG ("Index:" <<IDX <<"/value:" <<VALUE) ;Display: "Index: 2/value: 9.654"

NO_MSG:

Flexible NC programming
1.10 String operations

 Job planning
1-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.10.4 Conversion to lower/upper case

Function
This functionality permits conversion of all letters of a string to standard capitalization.
Syntax

STRING_ERG = TOUPPER (STRING) Result type: STRING
STRING_ERG = TOLOWER (STRING) Result type: STRING

Semantics
All lower case letters are converted to either upper or lower case letters.

Example
Because user inputs can be initiated on the HMI, they can be given standard capitalization
(upper or lower case):
DEF STRING [29] STRG
…
IF "LEARN.CNC" == TOUPPER (STRG) GOTOF LOAD_LEARN

1.10.5 Length of the string

Function
This functionality sets the length of a string.
Syntax

INT_ERG = STRLEN (STRING) Result type: INT

Semantics
It returns a number of characters that are not the 0 character, counting from the beginning of
the string.

Example
This can be used to ascertain the end of the string, for example, in conjunction with the
single character access described below:
IF(STRLEN (MODULE_NAME) > 10) GOTOF ERROR

 Flexible NC programming
 1.10 String operations

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-31

1.10.6 Look for character/string in the string

Function
This functionality searches for single characters or a string within a string. The function
results specify where the character/string is positioned in the string that has been searched.

Programming
Syntax

INT_ERG = INDEX (STRING,CHAR) Result type: INT
INT_ERG = RINDEX (STRING,CHAR) Result type: INT
INT_ERG = MINDEX (STRING,STRING) Result type: INT
INT_ERG = MATCH (STRING,STRING) Result type: INT

Semantics
Search functions: They return the position in the string (first parameter) where the search
has been successful. If the character/string cannot be found, the value "–1" is returned. In
this case, the first character is in position 0.

Parameters

INDEX searches for the character specified as
the second parameter in the string
specified as the second parameter (from
the beginning).

RINDEX searches for the character specified as
the second parameter in the string
specified as the second parameter (from
the end).

MINDEX same as the INDEX function except that a
list of characters is specified (as a
string) and the index of the first
character found is returned.

MATCH searches for a string in a string.

This can be used to break up a string by certain criteria, for example, at blanks or path
separators ("/").

Flexible NC programming
1.10 String operations

 Job planning
1-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: separating an input string into path and module names:

DEF INT PATHIDX, PROGIDX

DEF STRING[26] INPUT

DEF INT LISTIDX

INPUT = "/_N_MPF_DIR/_N_EXECUTE_MPF"

LISTIDX = MINDEX (EINGABE, "M,N,O,P") + 1 The value returned in LISTIDX is 3
because "N" is the first char from the
selection list in parameter INPUT,
searching from the beginning.

PATHIDX = INDEX (INPUT, "/") +1 ;Therefore: PATHIDX = 1

PROGIDX = RINDEX (INPUT, "/") +1 ;Therefore: PATHIDX = 1

 ;The SUBSTR function introduced in the
next section can be used to break up
variable INPUT into the components "Path"
and "Module":

VARIABLE = SUBSTR (INPUT, PATHIDX,
PROGIDX-PATHIDX-1)

;returning "_N_MPF_DIR"

VARIABLE = SUBSTR (INPUT, PROGIDX) ;returning "_N_EXECUTE_MPF"

1.10.7 Selection of a substring

Function
This functionality extracts a substring from a string. For this purpose, the index of the first
character and the desired string length (if applicable) are specified. If no length information is
specified, then the string data refers to the remaining string.

Programming
Syntax

STRING_ERG = SUBSTR (STRING,INT) Result type: INT
STRING_ERG = SUBSTR(STRING,INT, INT) Result type: INT

Semantics
In the first case, the substring from the position specified in the first parameter to the end of
the string is returned.
In the second case, the result string goes up to the maximum length specified in the third
parameter.
If the initial position is after the end of the string, the empty string (" ") will be returned.
A negative initial position or length triggers an alarm.

Example

DEF STRING [29] ERG

ERG = SUBSTR ("ACK: 10 to 99", 10, 2) ;Therefore: ERG == "10"

 Flexible NC programming
 1.10 String operations

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-33

1.10.8 Selection of a single character

Function
This functionality selects a single character from a string. This applies both to read access
and write access operations.

Programming
Syntax

CHAR_ERG = STRINGVAR [IDX] Result type: CHAR
CHAR_ERG = STRINGARRAY [IDX_FELD, IDX_CHAR] Result type: CHAR

semantics
The character at the specified position is read/written within the string. If the position
parameter is negative or greater than the string, then an alarm is output.
Example messages:
Insertion of an axis identifier into a prepared string.

DEF STRING [50] MESSAGE = "Axis n has
reached position"

MESSAGE [6] = "X"

MSG (MESSAGE) ;returns message "Axis X has
reached position"

Parameters
Single character access is possible only to user-defined variables
(LUD, GUD, and PUD data).
This type of access is also possible only for "call-by-value" type parameters in subroutine
calls.

Example: single character access to a system, machine data, …:

DEF STRING [50] STRG

DEF CHAR ACK

…

STRG = $P_MMCA

ACK = STRG [0] ;Evaluation of acknowledgment component

Flexible NC programming
1.11 CASE statement

 Job planning
1-34 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: single character access in call-by-reference parameter:

DEF STRING [50] STRG

DEF CHAR CHR1

EXTERN UP_CALL (VAR CHAR1) ;Call-by-reference parameter!

…

CHR1 = STRG [5]

UP_CALL (CHR1) ;Call-by-reference

STRG [5] = CHR1

1.11 1.11 CASE statement

Function
The CASE statement enables various branches to be executed according to a value of
type INT.
The program jumps to the point specified by the jump destination, depending on the value of
the constant evaluated in the CASE statement.

Programming
CASE (expression) OF constant1 GOTOF LABEL1 … DEFAULT GOTOF LABELn
CASE (expression) OF constant1 GOTOB LABEL1 … DEFAULT GOTOB LABELn

Parameters

CASE Keyword for jump statement

GOTOB Jump statement with jump destination
backward (toward the beginning of
program)

GOTOF Jump statement with forward jump
destination (toward the end of program)

GOTO Jump statement with the jump destination
first forward and then backward (the
direction first to the end of the program
and then to the start of the program)

GOTOC Suppress Alarm 14080 "Destination not
found".

Jump statement with the jump destination
first forward and then backward (the
direction first to the end of the program
and then to the start of the program)

LABEL Destination (label within the program)

LABEL: The name of the jump destination is
followed by a colon

Expression Arithmetic expression

Constant Constant of type INT

DEFAULT Program path if none of the previously
named constants applies

 Flexible NC programming
 1.11 CASE statement

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-35

 Note
For more information on the GOTO commands, see Chapter 10, Arithmetic parameters and
program jumps
In cases where the constant matches none of the predefined values, the DEFAULT
statement can be used to determine the branch destination.
If the DEFAULT statement is not programmed, the jump destination is the block following the
CASE statement.

Example 1
CASE(expression) OF 1 GOTOF LABEL1 2 GOTOF LABEL2 … DEFAULT GOTOF
LABELn
"1" and "2" are possible constants.
If the value of the expression = 1 (INT constant), jump to block with LABEL1
If the value of the expression = 2 (INT constant), jump to block with LABEL2
…
otherwise jump to the block with LABELn

Example 2

DEF INT VAR1 VAR2 VAR3

CASE(VAR1+VAR2-VAR3) OF 7 GOTOF LABEL1 9 GOTOF LABEL2 DEFAULT GOTOF LABEL3

LABEL1: G0 X1 Y1

LABEL2: G0 X2 Y2

LABEL3: G0 X3 Y3

Flexible NC programming
1.12 Control structures

 Job planning
1-36 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.12 1.12 Control structures

Function
The control processes the NC blocks as standard in the programmed sequence.
In addition to the program branches described in this chapter, these commands can be used
to define additional alternatives and program loops.
These commands enable the user to produce well-structured and easily legible programs.

Programming
Nesting depth
Control structures apply locally within programs. A nesting depth of up to 8 control structures
can be set up on each subroutine level.

Caution
Control structures may only be inserted in the statement section of a program. Definitions in
the program header may not be executed conditionally or repeatedly.
It is not permissible to superimpose macros on keywords for control structures or on branch
destinations. No such check is made when the macro is defined.

 Flexible NC programming
 1.12 Control structures

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-37

Parameters

IF Selection between 2 alternatives

LOOP Endless loop

FOR Count loop

WHILE Loop with condition at beginning of loop

REPEAT Loop with condition at end of loop

Example: endless program

%_N_LOOP_MPF

LOOP

 IF NOT $P_SEARCH ;No block search

 G01 G90 X0 Z10 F1000

 WHILE $AA_IM[X] <= 100

 G1 G91 X10 F500 ;Drilling pattern

 Z–F100

 Z5

 ENDWHILE

 Z10

 ELSE ;Block search

 MSG("No drilling during block search")

 ENDIF

 $A_OUT[1] = 1 ;Next drilling plate

 G4 F2

ENDLOOP

M30

Example: production of a fixed quantity of parts

%_N_WKPCCOUNT_MPF

DEF INT WKPCCOUNT

FOR WKPCCOUNT = 0 TO 100

 G01 …

ENDFOR

M30

Runtime response
In interpreter mode (active as standard), it is possible to shorten program processing times
more effectively by using program branches than can be obtained with control structures.
There is no difference between program branches and control structures in precompiled
cycles.

Flexible NC programming
1.12 Control structures

 Job planning
1-38 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Restrictions
Blocks with control structure elements cannot be suppressed. Labels may not be used in
blocks of this type.
Control structures are processed interpretively. When a loop end is detected, a search is
made for the loop beginning, allowing for the control structures found in the process.
For this reason, the block structure of a program is not checked completely in interpreter
mode.
It is not generally advisable to use a mixture of control structures and program branches.
A check can be made to ensure that control structures are nested correctly when cycles are
preprocessed.

Sequence
1. IF-ELSE-ENDIF
An IF-ELSE-ENDIF block is used to select one of two alternatives:
IF (expression)
NC blocks
ELSE
NC blocks
ENDIF
If the value of the expression is TRUE, i.e., the condition is fulfilled, then the next program
block is executed. If the condition is not fulfilled, then the ELSE program branch is executed.
The ELSE branch can be omitted.
2. Endless loop control LOOP
Endless loops are used in endless programs. At the end of the loop, there is always a branch
back to the beginning.
LOOP
NC blocks
ENDLOOP
3. Counter loop FOR
The FOR loop is used if it is necessary to repeat an operation by a fixed number of runs. In
this case, the count variable is incremented from the start value to the end value. The start
value must be lower than the end value. The variable must be of type INT.
FOR Variable = start value TO end value
NC blocks
ENDFOR

 Flexible NC programming
 1.13 Program coordination

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-39

4. Program loop with condition at start of loop WHILE
The WHILE program loop is executed for as long as the condition is fulfilled.
WHILE expression
NC blocks
ENDWHILE
5. Program loop with condition at end of loop REPEAT
The REPEAT loop is executed once and repeated continuously until the condition is fulfilled.
REPEAT
NC blocks
UNTIL (expression)

1.13 1.13 Program coordination

Function
Channels
A channel can process its own program independently of other channels. It can control the
axes and spindles temporarily assigned to it via the program.
Two or more channels can be set up for the control during startup.
Program coordination
If several channels are involved in the machining of a workpiece it may be necessary to
synchronize the programs.
There are special statements (commands) for this program coordination. Each statement is
programmed separately in a block.

 Note
Program coordination is also possible in its own channels.

Flexible NC programming
1.13 Program coordination

 Job planning
1-40 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Program coordination statements

• Specification with absolute path

 The absolute path is programmed according to

the following rules:
INIT (n,"/_HUGO_DIR/_N_name_MPF")
or

- Current directory/_N_name_MPF
"current directory" stands for the selected
workpiece directory or the standard directory
/_N_MPF_DIR.

INIT (n,"/_N_MPF_DIR/_N_name_MPF") -

-

Selects a particular program for execution in
a particular channel:
n: Number of the channel, the value depends
on the control configuration
Complete program name

Example: Up to SW 3:
INIT(2,"/_N_WKS_DIR/_DRESS_MPF")
G01 F0.1
START

At least one executable block must be
programmed between an init command
(without synchronization) and an NC start.
With subroutine calls "_SPF" must be added to
the path

INIT
(2,"/_N_WKS_DIR/_N_UNDER_1_SPF")

• Relative path specification

Example:

The same rules apply to relative path definition
as for program calls.

INIT(2,"DRESS")
INIT(3,"UNDER_1_SPF") With subroutine calls "_SPF" must be added to

the program name.

 Flexible NC programming
 1.13 Program coordination

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-41

Parameters
Variables, which all channels can access (NCK-specific global variables), can be used for
data exchange between programs. Otherwise separate programs must be written for each
channel.

INIT(n, path name, acknowledgement
mode)

Instruction for execution in a channel.
Selection of a particular program with an
absolute or relative path name.

START (n, n) Starts the selected programs in the other
channels.

n,n: Enumeration of the channel numbers:
value depends on control configuration

WAITM (marker no., n, n, ...) Sets the marker "marker no." in the same
channel. Terminate previous block with
exact stop. Waits for the markers with the
same "marker no." in the specified channels
"n" (current channel does not have to be
specified). Marker is deleted after
synchronization.

10 markers can be set per channel
simultaneously.

WAITMC (marker no., n, n, …) Sets the marker "marker no." in the same
channel. An exact stop is initiated only if
the other channels have not yet reached the
marker. Waits for the marker with the same
"marker No." in the specified channels "n"
(current channel does not have to be
specified). As soon as marker "marker no."
in the specified channels is reached,
continue without terminating exact stop.

WAITE (n, n, ...) Waits for the end of program of the
specified channels (current channel not
specified) Example: programming a delay
time after the Start command.

N30 START(2)
N31 G4 F0.01
N40 WAITE(2)

SETM (marker no., marker no., …) Sets the markers "marker no." in the same
channel without affecting current
processing. SETM() remains valid after
RESET and NC START.

CLEARM (marker no., marker no., …) Deletes the markers "Marker No." in the
same channel without affecting current
processing. All markers can be deleted with
CLEARM(). CLEARM (0) deletes the marker
"0". CLEARM() remains valid after RESET and
NC START.

n Corresponding channel number or channel
name

 Note
All the above commands must be programmed in separate blocks.
The number of markers depends on the CPU used.

Flexible NC programming
1.13 Program coordination

 Job planning
1-42 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Channel numbers
Up to 10 channels can be specified as channel numbers for the channels requiring
coordination.
Channel names
Channel names must be converted into numbers using variables (see "Variables and
arithmetic parameters"). Alternatively, the channel names defined using $MC_CHAN_NAME
can also be programmed rather than channel numbers. The defined names must comply
with the NC naming conventions (i.e. the first two characters must be either letters or an
underscore).

Caution
Protect the number assignments so that they are not changed unintentionally.
The names must not already exist in the NC with a different meaning, e.g. as key words,
commands, axis names etc.

SETM() and CLEARM()
SETM()and CLEARM() can also be programmed independently of a synchronized action.
See Chapter "Set/delete wait markers: SETM CLEARM"

Example
Channel called "MACHINE" is to contain channel number 1,
channel called "LOADER" is to contain channel number 2:
DEF INT MACHINE=1, LOADER=2
The variables are given the same names as the channels.
The statement START is therefore:
START(MACHINE)

Example: program coordination
Channel 1:
%_N_MPF100_MPF

N10 INIT(2,"MPF200")

N11 START(2)

.

;Processing in channel 2

N80 WAITM(1,1,2)

.

;Wait for WAIT mark 2 in channel 1 and
;in channel 2 and execution continued in
channel 1

N180 WAITM(2,1,2)

.

;Wait for WAIT mark 2 in channel 2 and
;in channel 2 and execution continued in
channel 1

N200 WAITE(2) ;Wait for end of program in channel 2

N201 M30

…

;Program end channel 1, total end

 Flexible NC programming
 1.13 Program coordination

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-43

Channel 2:
%_N_MPF200_MPF

;$PATH=/_N_MPF_DIR

N70 WAITM(1,1,2)

.

;Processing in channel 2

;Wait for WAIT mark 2 in channel 1 and
;in channel 2 and execution continued in
channel 1

N270 WAITM(2,1,2)

.

;Wait for WAIT mark 2 in channel 2 and
;in channel 2 and execution continued in
channel 1

N400 M30 ;End of program in channel 2

Example: program from workpiece
N10 INIT(2,"/_N_WKS_DIR/_N_SHAFT1_WPD/_N_CUT1_MPF")

Example: INIT command with relative path specification
Program /_N_MPF_DIR/_N_MAIN_MPF is selected in channel 1

N10 INIT(2,"MYPROG") ;Select program /_N_MPF_DIR/_N_MYPROG_MPF

;in channel 2.

Flexible NC programming
1.13 Program coordination

 Job planning
1-44 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of channel name and channel number with integer variable
$MC_CHAN_NAME[0]= "CHAN_X"
$MC_CHAN_NAME[1]= "CHAN_Y"

START(1, 2) ;Run start in 1st and 2nd channel

Similar to this, programming with the channel identifiers:

START(CHAN_X, CHAN_Y) ;Run start in 1st and 2nd channel

 ;The channel_X and channel_Y identifiers
represent $MC_CHAN_NAME internally due to the
machine data, channel numbers 1 and 2 also run
a start in the 1st and 2nd channel accordingly.

Programming with an integer variable:

DEF INT chanNo1, chanNo2) ;Define channel number

chanNo1=CHAN_X chanNo2=CHAN_Y

START(chanNo1, chanNo2)

 Flexible NC programming
 1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-45

1.14 1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

Function
The relationships concerned with programming an interrupt routine will be illustrated using a
typical example:
The tool breaks during machining. This triggers a signal that stops the current machining
process and simultaneously starts a subroutine – this subroutine is called an interrupt
routine. The interrupt routine contains all the statements, which are to be executed in this
case.
When the interrupt routine has finished being executed and the machine is ready to continue
operation, the control jumps back to the main program and continues machining at the point
of interruption – depending on the REPOS command.

For further information on REPOS, see "Repositioning".

Programming
SETINT(3) PRIO=1 NAME
SETINT(3) PRIO=1 LIFTFAST
SETINT(3) PRIO=1 NAME LIFTFAST
G… X… Y… ALF=…
DISABLE (3)
ENABLE (3)
CLRINT (3)

Flexible NC programming
1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

 Job planning
1-46 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

SETINT(n) Start interrupt routine if input n is enabled, n (1...8)
stands for the number of the input

PRIO=1 Define priority 1 to 128 (1 has top priority)

LIFTFAST Fast retraction from contour

NAME Name of the subroutine to be executed

ALF=… Programmable traverse direction (in motion block)

DISABLE(n) Deactivate interrupt routine number n

ENABLE(n) Reactivate interrupt routine number n

CLRINT(n) Clear interrupt assignments of interrupt routine number n

Retraction movement
The direction of the retraction movement is programmed by means of the G code LFTXT or
LFWP with the variable ALF.
• LFTXT

The plane of the retraction movement is determined by the path tangent and the tool
direction. This G code (default setting) is used to program the response on a fast lift.

• LFWP
The plane of the retraction movement is the active working plane selected with G codes
G17, G18 or G19. The direction of the retraction movement is not dependent on the path
tangent. This allows a fast lift to be programmed parallel to the axis.

• LFPOS
Retraction of the axis declared with POLFMASK to the absolute axis position
programmed with POLF. See also NC-controlled retraction in Function Manual M3
ALF has no affect on the lift direction for several axes and for several axes in a linear
system.

In the plane of the retraction movement, ALF is used, as before, to program the direction in
discrete steps of 45 degrees. With LFTXT, the retraction is defined in the tool direction for
ALF=1.
With LFWP the direction in the working plane is derived from the following assignment:
• G17:X/Y-levelALF=1retraction in X-direction

ALF=3retraction in Y-direction
• G18:Z/X-levelALF=1retraction in Z-direction

ALF=3retraction in X-direction
• G19:Y/Z-levelALF=1retraction in Y-direction

ALF=3retraction in Z-direction

 Flexible NC programming
 1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-47

Example
In this example, a broken tool is to be replaced automatically by an alternate tool. Machining
is continued with the new tool. Machining is then continued with the new tool.
Main program

N10 SETINT(1) PRIO=1 W_CHANGE ->
 -> LIFTFAST

When input 1 is enabled, the tool is
automatically retracted from the contour
with liftfast (code no. 7 for tool radius
compensation G41). Interrupt routine
W_CHANGE is subsequently executed.

N20 G0 Z100 G17 T1 ALF=7 D1

N30 G0 X-5 Y-22 Z2 M3 S300

N40 Z-7

N50 G41 G1 X16 Y16 F200

N60 Y35

N70 X53 Y65

N90 X71.5 Y16

N100 X16

N110 G40 G0 Z100 M30

Subroutine

PROC W_CHANGE SAVE Subroutine with storage of current
operating state

N10 G0 Z100 M5 ;Tool changing position, spindle stop

N20 T11 M6 D1 G41 ;Change tool

N30 REPOSL RMB M3 ;Repositioning and return
;to main program

-> programmed in a single block.

Caution
If you do not program any of the REPOS commands in the subroutine, the axis is moved to
the end of the block that follows the interrupted block.

Create interrupt routine as subroutine
The interrupt routine is identified as a subroutine in the definition.
Example:
PROC LIFT_Z
N10
N50 M17
Program name LIFT_Z, followed by the NC blocks, finally end-of-program M17 and return
to main program.

Flexible NC programming
1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

 Job planning
1-48 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 Note
SETINT statements can be programmed within the interrupt routine and used to activate
additional interrupt routines. They are triggered via the input.

You will find more information on how to create subroutines in Chapter "Subroutines,
Macros".

Save interrupt position, SAVE
The interrupt routine can be identified with SAVE in the definition.
Example:
PROC LIFT_Z SAVE
N10
N50 M17
At the end of the interrupt routine the modal G functions are set to the value they had at the
start of the interrupt routine by means of the SAVE attribute. The programmable zero offset
and the basic offset are reestablished in addition to the settable zero offset (modal
G function group 8). If the G function group 15 (feed type) is changed, e.g. from G94 to
G95, the appropriate F value is also reestablished.
Machining can thus be resumed later at the point of interruption.

 Flexible NC programming
 1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-49

Assign and start interrupt routine, SETINT
The control has signals (inputs 1 to 8)
to interrupt the program run and start the corresponding interrupt routine.
The assignment of input to program is made in the main program.
Example:
N10 SETINT(3) PRIO=1 LIFT_Z
When input 3 is enabled, routine LIFT_Z is started immediately.

Start several interrupt routines, define the priority, PRIO=
If several SETINT instructions are programmed in your NC program and several signals can
therefore occur at the same time, you must assign the priority of the interrupt routines to
determine the order in which they are executed: PRIO 1 to 128, 1 has highest priority.
Example:
N10 SETINT(3) PRIO=1 LIFT_Z
N20 SETINT(2) PRIO=2 LIFT_X
The routines are executed successively in the order of their priority if the inputs are enabled
at the same time. First SETINT(3), then SETINT(2).
If new signals are received while interrupt routines are being executed, the current interrupt
routines are interrupted by routines with higher priority.

Flexible NC programming
1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

 Job planning
1-50 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Deactivate/reactivate interrupt routine, DISABLE, ENABLE
You can deactivate interrupt routines in the NC program with DISABLE(n) and reactive
them with ENABLE(n) (n stands for the input number).
The input/routine assignment is retained with DISABLE and reactivated with ENABLE.

Reassign interrupt routines
If a new routine is assigned to an assigned input, the old assignment is automatically
canceled.
Example:
N20 SETINT(3) PRIO=2 LIFT_Z
…
…
N120 SETINT(3) PRIO=1 LIFT_X
Clear assignment, CLRINT
Assignments can be cleared with CLRINT(n).
Example:
N20 SETINT(3) PRIO=2 LIFT_Z
N50 CLRINT(3)
The assignment between input 3 and the routine LIFT_Z is cleared.

Rapid lift from contour, LIFTFAST
When the input is switched, LIFTFAST retracts the tool rapidly from the workpiece
contour.

 Flexible NC programming
 1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-51

If the SETINT instruction includes an interrupt routine as well as LIFTFAST , the liftfast is
executed before the interrupt routine.
Example:
N10 SETINT(2) PRIO=1 LIFTFAST
or
N30 SETINT(2) PRIO=1 LIFT_Z LIFTFAST
In both cases, the liftfast is executed when input 2 with top priority is enabled.
• With N10, execution is stopped with alarm 16010 (as no asynchronized subroutine, ASUB,

was specified).
• The ASUB "LIFT-Z" is executed with N30.
When determining the lift direction, a check is performed to see whether a frame with mirror
is active. If one is active, right and left are inverted for the lift direction with regard to the
tangent direction. The direction components in tool direction are not mirrored. This behavior
is activated via MD $MC_LIFTFAST_WITH_MIRROR=TRUE

Sequence of motions with lift fast
The distance through which the geometry axes are retracted from the contour on liftfast can
be defined in machine data.
Interrupt routine without LIFTFAST
Decelerates on the path and starts the interrupt routine as soon as motion on the path stops.
This position is stored as the interrupt position and is approached with REPOS with RMI at the
end of the interrupt routine.
Interrupt routine with LIFTFAST
Decelerates on the path and simultaneously performs the FIFTFAST motion as an overlaid
motion. If the path motion and LIFTFAST motion stop, the interrupt routine starts.
The position on the contour is stored as the interrupt position at which the LIFTFAST motion
was started, thus leaving the path.
The interrupt routine behaves with LIFTFAST and ALF=0 identical as the interrupt
routine without LIFTFAST.

Flexible NC programming
1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

 Job planning
1-52 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programmable traversing direction, ALF=...
You enter the direction in which the tool is to travel on liftfast in the NC program.
The possible traversing directions are stored in special code numbers on the control and can
be called up using these numbers.
Example:
N10 SETINT(2) PRIO=1 LIFT_Z LIFTFAST
ALF=7
The tool moves – with G41 activated (direction of machining to the left of the contour) – away
from the contour perpendicularly as seen from above.

Reference plane for describing the traversing directions
At the point of application of the tool to the programmed contour, the tool is clamped at a
plane which is used as a reference for specifying the liftoff movement with the corresponding
code number.

 Flexible NC programming
 1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-53

The reference plane is derived from the longitudinal tool axis (infeed direction) and a vector
positioned perpendicular to this axis and perpendicular to the tangent at the point of
application of the tool.

Code number with traversing directions summarized
The code numbers and the traversing directions in relation to the reference plane are shown
in the diagram on the right.

ALF=0 deactivates the liftfast function.

Flexible NC programming
1.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

 Job planning
1-54 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Caution
If tool radius compensation is activated, the codings 2, 3, 4 and the codings 6, 7, 8
should not be used
for G41 and
for G42, respectively.
In these cases, the tool would approach the contour and collide with the workpiece.

1.15 1.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

Function
One or more axes or spindles can only ever be interpolated in one channel. If an axis has to
alternate between two different channels (e.g., pallet changer) it must first be enabled in the
current channel and then transferred to the other channel. Axis replacement is effective
between channels.
Axis replacement extensions
An axis/spindle can be replaced either with a preprocessing stop and synchronization
between preprocessing and main run, or without a preprocessing stop. Axis replacement is
also possible via:
• Axis container rotation AXCTSWE or AXCTWED using implicit GET/GETD
• Frame with rotation if this process links the axis with other axes.
• Synchronized actions, see Motion-synchronous actions, "Axis replacement RELEASE,

GET".
Machine manufacturer
Please refer to the machine manufacturer's instructions. For the purpose of axis
replacement, one axis must be defined uniquely in all channels in the configurable machine
data and the axis replacement characteristics can also be set using machine data.

Programming
RELEASE (axis name, axis name, ...) or RELEASE (S1)
GET (axis name, axis name, ...) or GET (S2)
or
GETD (axis name, axis name, ...) or GETD (S3)
With GETD (GET Directly), an axis is fetched directly from another channel. That means that
no suitable RELEASE must be programmed for this GETD in another channel. It also means
that other channel communication has to be established (e.g. wait markers).

 Flexible NC programming
 1.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-55

Parameters

RELEASE (axis name, axis name, …) Release the axis (axes)

GET (axis name, axis name, …) Accept the axis (axes)

GETD (axis name, axis name, …) Directly accept the axis (axes)

Axis name Axis assignment in system: AX1, AX2, ... or
specify machine axis name

RELEASE (S1) Release spindles S1, S2, ...

GET(S2) Accept spindles S1, S2, ...

GETD(S3) Direct acceptance of spindles S1, S2, ...

GET request without preprocessing stop
If, following a GET request without preprocessing stop, the axis is enabled again with
RELEASE(axis) or WAITP(axis), a subsequent GET will induce a GET with
preprocessing stop.

Caution
An axis or spindle accepted with GET remains assigned to this channel even after a key or
program RESET.
When a program is restarted the replaced axes or spindles must be reassigned in the
program if the axis is required in its original channel.
It is assigned to the channel defined in the machine data on POWER ON.

Example of an axis replacement between two channels
Of the 6 axes, the following are used for machining in channel 1: 1., 2., 3. and 4th axis.
The 5th and 6th axes in channel 2 are used for the workpiece change.
Axis 2 is to be transferred between the 2 channels and then assigned to channel 1 after
power ON.
Program "MAIN" in channel 1

%_N_MAIN_MPF

INIT (2,"TRANSFER2") ;Select program TRANSFER2 in channel 2

N… START (2) ;Start program in channel 2

N… GET (AX2)

…

;Accept axis AX2

N… RELEASE (AX2) ;Enable axis AX2

N… WAITM (1,1,2) ;Wait for WAIT marker in channel 1 and 2
;for synchronizing in both channels

N…

N… M30

;Rest of program after axis replacement

Flexible NC programming
1.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

 Job planning
1-56 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Program "Replace2" in channel 2

%_N_TRANSFER2_MPF

N… RELEASE (AX2)

N160 WAITM (1,1,2) ;Wait for WAIT marker in channel 1 and 2
;for synchronizing in both channels

N150 GET (AX2) ;Accept axis AX2

N…

N… M30

;Rest of program after axis replacement

Example of axis replacement without synchronization
If the axis does not have to be synchronized no preprocessing stop is generated by GET.

N01 G0 X0

N02 RELEASE(AX5)

N03 G64 X10

N04 X20

N05 GET(AX5) ;If synchronization is not necessary,
;this is not an executable block.

N06 G01 F5000 ;Not an executable block.

N07 X20 ;Not an executable block because X position
;as for N04.

N08 X30 ;First executable block after N05.

N09 …

Example: activating an axis replacement without a preprocessing stop
Prerequisite
Axis replacement without a preprocessing stop must be configured via machine data.

N010 M4 S100

N011 G4 F2

N020 M5

N021 SPOS=0

N022 POS[B]=1

N023 WAITP(B) ;Axis B becomes the neutral axis

N030 X1 F10

N031 X100 F500

N032 X200

N040 M3 S500 ;Axis does not trigger preprocessing stop/
;REORG

N041 G4 F2

N050 M5

N099 M30

If the spindle or axis B is traversed, e.g., to 180 degrees and then back to 1 degree
immediately after block N023 as the PLC axis, this axis will revert to its neutral status and
will not trigger a preprocessing stop in block N40.

 Flexible NC programming
 1.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-57

Requirements
Preconditions for axis replacement
• The axis must be defined in all channels that use the axis in the machine data.
• It is necessary to define to which channel the axis will be assigned after POWER ON in

the axis-specific machine data.

Description
Release axis: RELEASE
When enabling the axis please note:
1. The axis must not be involved in a transformation.
2. All the axes involved in an axis link (tangential control) must be enabled.
3. A concurrent positioning axis cannot be replaced in this situation.
4. All the following axes of a gantry master axis are transferred with the master.
5. With coupled axes (coupled motion, master value coupling, electronic gear) only the

leading axis of the group can be enabled.
Accept axis: GET
The actual axis replacement is performed with this command. The channel for which the
command is programmed takes full responsibility for the axis.
Effects of GET:
Axis replacement with synchronization:
An axis always has to be synchronized if it has been assigned to another channel or the PLC
in the meantime and has not been resynchronized with "WAITP", G74 or delete distance-to-
go before GET.
• A preprocess stop follows (as for STOPRE).
• Execution is interrupted until the replacement has been completed.

Automatic "GET"
If an axis is in principle available in a channel but is not currently defined as a "channel axis",
GET is executed automatically. If the axis/axes is/are already synchronized no preprocess
stop is generated.

Flexible NC programming
1.16 Transfer axis to another channel (AXTOCHAN)

 Job planning
1-58 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Varying the axis replacement behavior
The transfer point of axes can be set as follows using machine data:
• Automatic axis replacement between two channels then also takes place when the axis

has been brought to a neutral state by WAITP (response as before)
• When requesting an axis container rotation, all axes of the axis container which can be

assigned to the executing channel are brought into the channel using implicit GET or
GETD. A subsequent axle replacement is only permitted again once the axis container
rotation has been completed.

• When an intermediate block is inserted in the main run, a check will be made to
determine whether or not reorganization is required. Reorganization is only necessary if
the axis states of this block do not match the current axis states.

• Instead of a GET block with preprocessing stop and synchronization between
preprocessing and main run, axes can be replaced without a preprocessing stop. In this
case, an intermediate block is simply generated with the GET request. In the main run,
when this block is executed, the system checks whether the states of the axes in the
block match the current axis states.

For more information about how axis or spindle replacement works, see
/FB2/ Function Manual, Extended Functions, Mode Groups, Channels, Axis
Replacement (K5).

1.16 1.16 Transfer axis to another channel (AXTOCHAN)

Function
The AXTOCHAN NC command can be used to request an axis in order to move it to a
different channel. The axis can be moved to the corresponding channel both from the
NC parts program and from a synchronized action.

Programming
AXTOCHAN(axis name,channel number[,axis name,channel number[,...]])

Parameters

AXTOCHAN Request axis for a specific channel

Axis name Axis assignment in system: X, Y, … or entry
of machine axis names concerned. The
executing channel does not have to be the
same channel or even the channel currently
in possession of the interpolation right
for the axis.

Channel number Name of the channel to which the axis is to
be assigned

 Flexible NC programming
 1.16 Transfer axis to another channel (AXTOCHAN)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-59

 Note
Competing positioning axis and PLC controlled axis exclusively
A PLC axis cannot replace the channel as a competing positioning axis. An axis controlled
exclusively by the PLC cannot be assigned to the NC program.
References
/FB2/ Function Manual, Extended Functions; Positioning Axes (P2)

Example of AXTOCHAN in the NC program
Axes X and Y have been declared in the first and second channels. Currently, channel 1 has
the interpolation right and the following program is started in that channel.

N110 AXTOCHAN(Y,2) ;Move Y axis to second channel

N111 M0

N120 AXTOCHAN(Y,1) ;Retrieve Y axis (neutral)

N121 M0

N130 AXTOCHAN(Y,2,X,2) ;Move Y axis and X axis to second channel (axes are
neutral)

N131 M0

N140 AXTOCHAN(Y,2) ;Move Y axis to second channel (NC program)

N141 M0

Description
AXTOCHAN in the NC program
A GET is only executed in the event of the axis being requested for the NC program in the
same channel (this means that the system waits for the state to actually change). If the axis
is requested for another channel or is to become the neutral axis in the same channel, the
request is sent accordingly.
AXTOCHAN from a synchronized action
In the event of an axis being requested for the same channel, AXTOCHAN from a
synchronized action is mapped to a GET from a synchronized action. In this case, the axis
becomes the neutral axis on the first request for the same channel. On the second request,
the axis is assigned to the NC program in the same way as the GET request in the NC
program. For more information about GET requests from a synchronized action, see
"Motion-synchronous actions".

Flexible NC programming
1.17 NEWCONF: Setting machine data effective

 Job planning
1-60 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.17 1.17 NEWCONF: Setting machine data effective

Function
All machine data of the effectiveness level "NEW_CONFIG" are set active by means of the
NEWCONF language command. The function can also be activated in the HMI user
interface by pressing the "MD data effective" softkey.
When the NEWCONF function is executed there is an implicit preprocessing stop, that is, the
path movement is interrupted.

Programming
NEWCONF

Parameter

NEWCONF All machine data of the "NEW_CONFIG" effectiveness level are
set active.

Cross-channel execution of NEWCONF from the parts program
If axial machine data from the parts program are changed and then activated with NEWCONF,
NEWCONF will only activate the machine data containing changes affecting the parts program
channel.

 Note
In order to ensure that all changes are made, the NEWCONF statement must be executed in
every channel in which the axes or functions affected by the changes in the machine data
are being calculated.
No axial machine data are effective for NEWCONF.
An axial RESET must be undertaken for axes controlled by the PLC.

Example
Milling: Machine drill position with different technologies

N10 $MA_CONTOUR_TOL[AX]=1.0 ; Change machine data

N20 NEWCONF ; Set machine data active

 Flexible NC programming
 1.18 WRITE: Write file

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-61

1.18 1.18 WRITE: Write file

Function
Using the WRITE command, data (e.g., measurement results for measuring cycles) can be
appended to the end of the specified file.
The files created can
• be read, edited, and deleted by all users,
• be written into the parts program being executed.
The blocks are inserted at the end of the file, after M30.
The currently set protection level must be equal to or greater than the WRITE right of the file.
If this is not the case, access is denied with an error message (error=13)

Programming
WRITE(VAR INT error, CHAR[160] filename, CHAR[200] STRING)

Parameters
Machine manufacturer
The WRITE command can be used to store blocks from the parts program in a file. The file
size for log files (KB) is specified in the machine data.
The MD 11420: LEN_PROTOCOL_FILE sets the maximum length of the log files in KB. This
length is applicable for all files created using the WRITE command.
Once the file reaches the specified length, an error message is output and the STRING is
not saved. If there is sufficient free memory, a new file can be created.

WRITE Add data at the end of the specified file

error Error variable for return

0: No error

1: Path not allowed

2: Path not found

3: File not found

4: Incorrect file type

10: File is full

11: File is in use

12: No resources available

13: No access rights

20: Other error

Flexible NC programming
1.18 WRITE: Write file

 Job planning
1-62 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

filename Name of file in which the string is to be written. If the
filename contains spaces or control characters (characters
with decimal ASCII code <= 32), the WRITE command will be
terminated with error code 1, "path not permitted".

The file name can be specified with path and file identifier.
Path names must be absolute, that is, start with "/". If the
file name does not contain a domain identifier (_N_), it is
added accordingly. If there is no identifier (_MPF or _SPF),
the file name is automatically completed with _MPF. If there
is no path specified, the file is saved in the current
directory (= directory of selected program). The file name
length can be up to 32 bytes, the path length up to 128 bytes.

Example:
PROTFILE
_N_PROTFILE
_N_PROTFILE_MPF
/_N_MPF_DIR_/_N_PROTFILE_MPF/

STRING Text to be written. Internally LF is then added; this means
that the text is lengthened by one character.

 Note
If no such file exists in the NC, it is newly created and can be written to by means of the
WRITE command.
If a file with the same name exists on the hard disk, it is overwritten after the file is closed (in
the NC).
Remedy: Change the name in the NC under the Services operating area using the
"Properties" soft key.

Example

N10 DEF INT ERROR

N20 WRITE(ERROR,"TEST1","LOG FROM
 7.2.97")

;Write the text from LOG FROM
;7.2.97 into the TEST1 file

N30 IF ERROR

N40 MSG ("Error with WRITE command:"
<<ERROR)

N50 M0

N60 ENDIF

...

WRITE(ERROR,
"/_N_WKS_DIR/_N_PROT_WPD/_N_PROT_MPF", "LOG
FROM 7.2.97")

;Absolute path

 Flexible NC programming
 1.19 DELETE: Delete file

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-63

1.19 1.19 DELETE: Delete file

Function
All files can be deleted by means of the DELETE command, irrespective of whether these
were created using the WRITE command or not. Files that were created using a higher
access authorization can also be deleted with DELETE.

Programming
DELETE(VAR INT error, CHAR[160] filename)

Parameters

DELETE Delete the specified file.

error Error variable for return

0: No error

1: Path not allowed

2: Path not found

3: File not found

4: Incorrect file type

11: File is in use

12: No resources available

20: Other error

filename Name of the file to be deleted

The file name can be specified with path and file identifier.
Path names must be absolute, that is, start with "/". If the
file name does not contain a domain identifier (_N_), it is
added accordingly. The file identifier ("_" plus 3
characters), e.g., _SPF) is optional. If there is no
identifier, the file name is automatically added _MPF. If
there is no path specified, the file is saved in the current
directory (= directory of selected program). The file name
length can be up to 32 bytes, the path length up to 128 bytes.

Example:
PROTFILE
_N_PROTFILE
_N_PROTFILE_MPF
/_N_MPF_DIR/_N_PROTFILE_MPF/

Example

N10 DEF INT ERROR

N15 STOPRE ;Preprocessing stop

N20 DELETE (ERROR,
 "/_N_SPF_DIR/_N_TEST1_SPF")

;deletes file TEST1 in the
;subroutine branch

N30 IF ERROR

N40 MSG ("Error with DELETE command:"
<<ERROR)

N50 M0

N60 ENDIF

Flexible NC programming
1.20 READ: Read lines in the file

 Job planning
1-64 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.20 1.20 READ: Read lines in the file

Function
The READ command reads one or several lines in the file specified and stores the
information read in an array of type STRING. In this array, each read line occupies an array
element.
The currently set protection level must be equal to or greater than the READ right of the file.
If this is not the case, access is denied with an error message (error=13).

Programming
READ(VAR INT error, STRING[160] file, INT line, INT number, VAR
STRING[255] result[])

Parameter

READ Read one or more lines in the specified file and store in an
array element of an array.
The information is available as STRING.

error Error variable for return (call-by-reference parameter, type
INT)

0: No error

1: Path not allowed

2: Path not found

3: File not found

4: Incorrect file type

13: Insufficient access rights

21: Line not present ("line" or "number" parameter
 larger than the number of lines in the file)

22: Array length of result variable "result" is too small

23: Line range too large ("number" parameter
 selected so large that the read would go beyond the end of
the file)

file Name/path of the file to be read (call-by-value parameter of
type STRING with a max. length of 160 bytes). The file must be
stored in the user memory of the NCK (passive file system).
The file name can be preceded by the domain identifier _N_. If
the domain identifier is missing, it is added correspondingly.

The file identifier ("_" plus 3 characters), e.g., _SPF) is
optional.

If there is no identifier, the file name is automatically
added _MPF.

If there is no path specified in "file", the file is searched
for in the current directory (=directory of selected program).
If a path is specified in "file", it must start with a slash
"/" (absolute path indication).

Position indication of the line range to be read
(call-by-value parameter of type INT).

line

0:

1 to n:

The number of lines specified with the "number"
parameter before the file end are read.
Number of the first line to be read.

number Number of lines to be read (call-by-value parameter of type
INT).

 Flexible NC programming
 1.20 READ: Read lines in the file

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-65

result Array of type STRING, where the read text is stored

(call-by-reference parameter with a length of 255).

If the number of lines specified in the parameter "number" is smaller than the array length of
"result", the other array elements are not altered.
Termination of a line by means of the control characters "LF" (Line Feed) or "CR LF"
(Carriage Return Line Feed) is not stored in the target variables "result". Read lines are cut
off, if the line is longer than the string length of the target variable "result". An error message
is not output.

 Note
Binary files cannot be read in.
The error message error=4: Wrong type of file is output. The following types of file are not
readable: _BIN, _EXE, _OBJ, _LIB, _BOT, _TRC, _ACC, _CYC, _NCK.

Examples

N10 DEF INT ERROR ;error variable

N20 STRING[255] RESULT[5] ;result variable

...

N30 READ(ERROR, "TESTFILE", 1, 5,

 RESULT)

;file name without domain and file
;identifier

...

N30 READ(ERROR, "TESTFILE_MPF", 1, 5,
 RESULT)

;file name without domain and with
;file identifier

...

N30 READ(ERROR,"_N_TESTFILE_MPF",1,5,
 RESULT)

;file name with domain and file
;identifier

...

N30 READ(ERROR,"/_N_CST_DIR/_N_TESTFILE
 _MPF", 1, 5 RESULT)

;file name with domain and file
;identifier and path specification

^...

N40 IF ERROR <>0 ;error evaluation

N50 MSG("ERROR "<<ERROR<<"
 WITH READ COMMAND")

N60 M0

N70 ENDIF

...

Flexible NC programming
1.21 ISFILE: File present in the NCK user memory

 Job planning
1-66 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

1.21 1.21 ISFILE: File present in the NCK user memory

Function
With the ISFILE command you check whether a file exists in the user memory of the NCK
(passive file system). As a result either TRUE (file exists) or FALSE (file does not exist) is
returned.

Programming
result=ISFILE(STRING[160]file)

Parameters

ISFILE Checks whether the file exists in the NCK user memory.

file Name/path of the file to be read (call-by-value parameter of
type STRING with a max. length of 160 bytes).

The file must be stored in the user memory of the NCK (passive
file system). The file name can be preceded by the domain
identifier _N_. If the domain identifier is missing, it is
added correspondingly.

The file identifier ("_" plus 3 characters), e.g., _SPF) is
optional. If there is no identifier, the file name is
automatically added _MPF.

If there is no path specified in "file", the file is searched
for in the current directory (=directory of selected program).
If a path is specified in "file", it must start with a slash
"/" (absolute path indication).

result Variable for storage of the result of type BOOL (TRUE or
FALSE)

Example

N10 DEF BOOL RESULT

N20 RESULT=ISFILE("TESTFILE")

N30 IF(RESULT==FALSE)

N40 MSG("FILE DOES NOT EXIST")

N50 M0

N60 ENDIF

...

or:

N30 IF(NOT ISFILE("TESTFILE"))

N40 MSG("FILE DOES NOT EXIST")

N50 M0

N60 ENDIF

...

 Flexible NC programming
 1.22 FILEDATE/TIME/SIZE/STAT/INFO: File information

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-67

1.22 1.22 FILEDATE/TIME/SIZE/STAT/INFO: File information

Function
The FILEDATE, FILETIME, FILESIZE, FILESTAT and FILEINFO commands can be used to
read particular pieces of file information, such as date, time, current file size, file status or the
sum of this information from the user memory of the NCK (passive file system).
The currently set protection level must be equal to or greater than the show right of the
superordinate directory. If this is not the case, access is denied with an error message
(error=13).
Application:
Provision of new file information if a file has changed for the user and this is for example to
be recalculated.

Programming
FILExxxx(VAR INT error, STRING[160] file, VAR {STRING[yy]INT}result)

Parameter

FILEDATE Returns date when file was last accessed and written

FILETIME Returns time when file was last accessed and written

FILESIZE Returns the current file size

FILESTAT Returns file status, such as read, write and execute rights

FILEINFO Returns the sum of the information from a directory entry

error Error variable for return

0: No error

1: Path not allowed

2: Path not found

3: File not found

13: Insufficient access rights

22: Array length of result variable "result" is too small

file Name/path of the file to be read (call-by-value parameter of
type STRING with a max. length of 160 bytes).

The file must be stored in the user memory of the NCK (passive
file system). The file name can be preceded by the domain
identifier _N_. If the domain identifier is missing, it is
added correspondingly.

The file identifier ("_" plus 3 characters), e.g., _SPF) is
optional. If there is no identifier, the file name is
automatically added _MPF.

If there is no path specified in "file", the file is searched
for in the current directory (=directory of selected program).
If a path is specified in "file", it must start with a slash
"/" (absolute path indication).

Flexible NC programming
1.22 FILEDATE/TIME/SIZE/STAT/INFO: File information

 Job planning
1-68 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

result Variable with the result in which the file information is
saved
(Call-by-reference parameter) of a STRING type for:
FILEDATE, the length must be 8, format is "dd.mm.yy"
FILETIME, the length must be 8, format is "hh:mm.ss"
FILESTAT, the length must be 5, format is "rwxsd"
FILEINFO, the length must be 32, format is
"rwxsd nnnnnnnn dd.mm.yy hh:mm:ss"

(Call-by-reference parameter) of a INT type for:
FILESIZE, file size is output in bytes

"rwxsd" (read, write, execute, show, delete)

Examples

N10 DEF INT ERROR ;error variable

N20 STRING[32] RESULT ;result variable

...

N30 FILEINFO(ERROR, "TESTFILE", RESULT) ;file name without domain and file
;identifier

...

N30 FILEINFO(ERROR, "TESTFILE_MPF",
 RESULT)

;file name without domain and with
;file identifier

...

N30 FILEINFO(ERROR,"_N_TESTFILE_MPF",
 RESULT)

;file name with domain and file
;identifier

...

N30 FILEINFO
(ERROR,"/_N_MPF_DIR/_N_TESTFILE_MPF",
 RESULT)

;file name with domain and file
;identifier and path specification

...

N40 IF ERROR <>0 ;error evaluation

N50 MSG("ERROR "<<ERROR<<"
 WITH FILE INFO COMMAND")

N60 M0

N70 ENDIF

...

Returns in the RESULT event variable: "77777 12345678 26.05.00 13:51:30"

 Flexible NC programming
 1.23 CHECKSUM: Form the checksum over an array

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 1-69

1.23 1.23 CHECKSUM: Form the checksum over an array

Function
With CHECKSUM you form a checksum over an array.
Application:
Check to see whether the initial contour has changed during stock removal.

Programming
error=CHECKSUM(VAR STRING[16] chksum, STRING[32]array, INT first,
INT last)

Parameter

CHECKSUM Form the checksum over an array

error Error variable for return

0: No error

1: Symbol not found

2: No array

3: Index 1 too large

4: Index 2 too large

5: Invalid data type

10: Check sum overflow

chksum Checksum over the array as a STRING (call-by-reference
parameter of type STRING, with a defined length of 16).

The checksum is indicated as a character string of 16
hexadecimal numbers. However, no format characters are
indicated.

Example: "A6FC3404E534047C"

array Number of the array over which the checksum is to be formed.
(call-by-value parameter of type STRING with a max. length of
32).

Permissible arrays:
1- or 2-dimensional arrays of the types
BOOL, CHAR, INT, REAL, STRING

Arrays of machine data are not permissible.

first Column number of start column (optional)

last Column number of end column (optional)

 Note
The parameters first and last are optional. If no column indices are indicated, the checksum
is formed over the whole array.
The result of the checksum is always definite. If an array element is changed, the result
string will also be changed.

Flexible NC programming
1.24 ROUNDUP: Round up

 Job planning
1-70 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example

N10 DEF INT ERROR

N20 DEF STRING[16] MY_CHECKSUM

N30 DEF INT MY_VAR[4,4]

N40 MY_VAR=...

N50 ERROR=CHECKSUM (CHECKSUM;"MY_VAR", 0, 2)

...

returns in MY_CHECKSUM the value "A6FC3404E534047C"

1.24 1.24 ROUNDUP: Round up

Function
The ROUNDUP function returns for
• positive input values

the next larger integer
• negative input values

 the next smaller integer
If the input value is an integer type value (a whole number), the value is returned unmodified.

Programming
ROUNDUP(Variable Real)

Parameters

ROUNDUP Rounds up to the next larger integer (observing the
sign).

Variable Input value of the type real

Real Variables type for fractions containing decimal points

ROUNDUP in the NC parts program

N10 X = ROUNDUP(3.5) Y = ROUNDUP(R2+2)

N15 R2 = ROUNDUP($AA_IM[Y])

N20 WHEN X = = 100 DO Y = ROUNDUP($AA_IM[X])

Examples
ROUNDUP(3.1) produces 4.0
ROUNDUP(3.6) produces 4.0
ROUNDUP(-3.1) produces -3.0
ROUNDUP(-3.6) produces -3.0
ROUNDUP(3.0) produces 3.0
ROUNDUP(3) produces 3.0

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-1

Subroutines, Macros 2
2.1 2.1 Using subroutines

Function
In principle, a subroutine has the same structure as a parts program. It consists of NC blocks
with traversing and switching commands.
Basically, there is no difference between a main program and a subroutine. The subroutine
contains either machining operations or sequences of operations that are to be performed
several times.

Subroutines, Macros
2.1 Using subroutines

 Job planning
2-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Application
Machining sequences that recur are only programmed once in a subroutine. Examples
include certain contour shapes, which occur repeatedly, and machining cycles.
The subroutine can be called and executed in any main program.

Structure of a subroutine
The structure of a subroutine is identical to that of the main program.
A program header with parameter definitions can also be programmed in the subroutine.

 Subroutines, Macros
 2.2 Subroutines with SAVE mechanism

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-3

Nesting of subroutines
A subroutine can itself contain subroutine calls. This subroutine also contains another
subroutine call, etc.
The maximum number of program levels or the nesting depth is 12.
This means: Up to 11 nested subroutine calls can be issued from the main program.

Restrictions on subroutines in interrupt routines and the cycle processing
It is also possible to call subroutines in interrupt routines. For work with subroutines you must
keep four levels free or only nest seven subroutine calls.
For SIEMENS machining and measuring cycles you require three levels. If you call a cycle
from a subroutine you must do this no deeper than level 5 (if four levels are reserved for
interrupt routines).

2.2 2.2 Subroutines with SAVE mechanism

Function
For this, specify the additional command SAVE with the definition statement with PROC.

Subroutines, Macros
2.2 Subroutines with SAVE mechanism

 Job planning
2-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
In the subroutine
PROC subroutine name SAVE
The SAVE attribute sets modal G functions to the same value at the end of subroutines that
they had at the beginning. If this action results in a change to the
G function group 8 (settable zero offset)
or
G function group 52 (frame rotations of a rotational workpiece)
or
G function group 53 (frame rotation in direction of tool),
then the relevant frames are restored.
• The active basic frame is not changed when the subroutine returns
• The programmable zero offset is restored

Parameters
The behavior of the settable zero shift and the basic frame can be changed using the
machine data MD 10617: FRAME_SAVE_MASK.
For more information on this, see
/FB1/ Function Manual Basic Functions; Axes, Coordinate Systems, Frames (K2), "Sub-
routine return with SAVE".

Example
Subroutine definition
PROC CONTOUR (REAL VALUE1) SAVE
N10 G91 …
N100 M17
Main program
%123
N10 G0 X… Y… G90
N20…
N50 CONTOUR (12.4)
N60 X… Y…
In the CONTOUR subroutine G91 incremental dimension applies. After returning to the main
program, absolute dimension applies again because the modal functions of the main
program were stored with SAVE.

 Subroutines, Macros
 2.3 Subroutines with parameter transfer (PROC, VAR)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-5

2.3 2.3 Subroutines with parameter transfer (PROC, VAR)

Function
Program start, PROC
A subroutine that is to take over parameters from the calling program when the program runs
is designated with the keyword PROC.
Subroutine end M17, RET
The command M17 designates the end of subroutine and is also an instruction to return to
the calling main program. As an alternative to M17: The keyword RET stands for end of
subroutine without interruption of continuous path mode and without function output to the
PLC.

Programming
The parameters relevant for parameter transfer must be listed at the beginning of the
subroutine with their type and name.
Parameter transfer call-by-value
PROC PROGRAM_NAME(VARIABLE_TYPE1 VARIABLE1,VARIABLE_TYPE2
VARIABLE2,…)
Example:
PROC CONTOUR(REAL LENGTH, REAL WIDTH)
Parameter transfer call-by-reference, identification with keyword VAR
PROC PROGRAM_NAME(VAR VARIABLE_TYPE1 VARIABLE1,VAR VARIABLE_TYPE2
…,)
Example:
PROC CONTOUR(VAR REAL LENGTH, VAR REAL WIDTH)
Array transfer with call-by-reference, identification with keyword VAR
PROC PROGRAM_NAME(VAR VARIABLE_TYPE1 ARRAY_NAME1[array size],
VAR VARIABLE_TYPE2 ARRAY_NAME2[array size],
VAR VARIABLE_TYPE3 ARRAY_NAME3[array size1, array size2],
VAR VARIABLE_TYPE4 ARRAY_NAME4[],
VAR VARIABLE_TYPE5 ARRAY_NAME5 [,array size])
Example:
PROC PALLET (VAR INT ARRAY[,10])

Parameters

PROC First instruction in a program

PROGRAM NAME Subroutine name that should accept the relevant values of the
parameters

VARIABLE_TYPE
VARIABLE

Variable types with specification of the variable values.
Several values can be specified.

VAR Keyword for the type of the parameter transfer

FIELDNAME Elements of an array with the listed values for the field
array

Array size1 For a one-dimensional array

Array size2 For a two-dimensional array

Subroutines, Macros
2.3 Subroutines with parameter transfer (PROC, VAR)

 Job planning
2-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 Note
The definition statement with PROC must be programmed in a separate NC block.
A maximum of 127 parameters can be declared for parameter transfer.

Example: parameter transfer between main program and subroutine
N10 DEF REAL LENGTH,WIDTH
N20 LENGTH=12 WIDTH=10
N30 BORDER(LENGTH,WIDTH)

The values assigned in N20 in the main program are transferred in N30 when the subroutine
is called. Parameters are transferred in the sequence stated.
The parameter names do not have to be identical in the main programs and subroutine.

 Subroutines, Macros
 2.3 Subroutines with parameter transfer (PROC, VAR)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-7

Second method of parameter transfer:
• Values are only transferred (call-by-value)
If the parameters transferred are changed as the subroutine runs this does not have any
effect on the main program. The parameters remain unchanged in it (see Fig.).

• Parameter transfer with data exchange (call-by-reference)
Any change to the parameters in the subroutine also causes the parameter to change in the
main program (see Fig.).

Example: variable array lengths

%_N_DRILLING_PLATE_MPF Main program

DEF REAL TABLE[100,2] ;Define position table

EXTERN DRILLING_PATTERN (VAR REAL[,2],INT)

TABLE[0,0]=-17.5 ;Define positions

…

TABLE[99.1]=45

DRILLING_PATTERN(TABLE,100) ;Subroutine call

M30

Subroutines, Macros
2.3 Subroutines with parameter transfer (PROC, VAR)

 Job planning
2-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: creating a drilling pattern using a transferred variable-length position table

%_N_DRILLING_PATTERN_SPF Subroutine

PROC DRILLING_PATTERN(VAR REAL ARRAY[,2],->
-> INT NUMBER)

;Parameter delivery

DEF INT COUNTER

STEP: G1 X=ARRAY[COUNTER,0]->
-> Y=ARRAY[COUNTER,1] F100

;Machining sequence

Z=IC(-5)

Z=IC(5)

COUNT=COUNT+1

IF COUNT<NUMBER GOTOB STEP

RET ;Subroutine end

Interruption of continuous-path mode
To prevent continuous-path mode from being interrupted:
Make sure the subroutine does not have the SAVE attribute. For further information about
the SAVE mechanism, refer to the section, Subroutine with SAVE Mechanism.
RET must be programmed in a separate NC block.
PROC CONTOUR
N10…
…
N100 M17

Parameter transfer between main program and subroutine
If you are working with parameters in the main program, you can use the values calculated
or assigned in the subroutine as well. For this purpose the values of the current parameters
of the main program are passed to the formal parameters of the subroutine when the
subroutine is called and then processed in subroutine execution.

Array definition
The following applies to the definition of the formal parameters: With two-dimensional arrays
the number of arrays in the first dimension does not need to be specified, but the comma
must be written.
Example:
VAR REAL ARRAY[,5]
With certain array dimensions it is possible to process subroutines with arrays of variable
length. However, when defining the variables you must define how many elements it is to
contain. The explanations of the array definition are contained in "Flexible NC Programming"
in the array definition section with the same name.

 Subroutines, Macros
 2.4 Call subroutines (L or EXTERN)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-9

2.4 2.4 Call subroutines (L or EXTERN)

Function
Calling subroutines without parameter transfer
In the main program, you call the subroutine either
• with the L address and the subroutine number or
• with the program name.
Example:
N10 L47 or
N10 SPIGOT_2

Programming
Subroutine with parameter transfer, explanation of EXTERN
EXTERN
Subroutines with parameter transfer must be listed with EXTERN in the main program before
they are called, e.g., at the beginning of the program.
The name of the subroutine and the variable types are declared in the sequence in which
they are transferred, see example.
Subroutines with parameter transfer
In the main program you call the subroutine by specifying the program name and parameter
transfer. When transferring parameters you can transfer variables or values directly (not for
VAR parameters), see example.

Subroutines, Macros
2.4 Call subroutines (L or EXTERN)

 Job planning
2-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

L address Subroutine number

EXTERN Broadcast a subroutine with specified parameters. You only
have to specify
EXTERN if the subroutine is in the workpiece or in the global
subroutine directory. You do not have to declare cycles as
EXTERN .

Incomplete parameter transfer
In a subroutine call only mandatory values and parameters can be omitted. In this case, the
parameter in question is assigned the value zero in the subroutine.
The comma must always be written to indicate the sequence. If the parameters are at the
end of the sequence you can omit the comma as well.

Caution
The current parameter of type AXIS must not be omitted. VAR parameters must be
transferred completely

Example: Subroutine with parameter transfer, declaration with EXTERN
N10 EXTERN BORDER(REAL, REAL, REAL)
…
N40 BORDER(15.3,20.2,5)
N10 Declaration of the subroutine, N40 Subroutine call with
parameter transfer.

 Subroutines, Macros
 2.4 Call subroutines (L or EXTERN)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-11

Example: Subroutine call with parameter transfer
N10 DEF REAL LENGTH,WIDTH,DEPTH
N20…
N30 LENGTH=15.3 WIDTH=20.2 DEPTH=5
N40 BORDER(LENGTH,WIDTH,DEPTH)
or
N40 BORDER(15.3,20.2,5)

Example: subroutine
PROC SUB1 (INT VAR1, DOUBLE VAR2)
IF $P_SUBPAR[1]==TRUE
;Parameter VAR1 was programmed in the subroutine call
ELSE
;Parameter VAR1 was not programmed in the subroutine call
;and initialized by the system with the default value 0
ENDIF
IF $P_SUBPAR[2]==TRUE
;Parameter VAR2 was programmed in the subroutine call
ELSE
;Parameter VAR2 was not programmed in the subroutine call
;programmed and initialized by the system with the default value 0.0
ENDIF
;Parameter 3 is not defined
IF $P_SUBPAR[3]==TRUE -> Alarm 17020
M17

Subroutines, Macros
2.4 Call subroutines (L or EXTERN)

 Job planning
2-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Description

Caution
Subroutine definition corresponds to subroutine call
Both the variable types and the sequence of transfer must match the definitions declared
under PROC in the subroutine name. The parameter names can be different in the main
program and subroutines.

Definition in the subroutine:
PROC BORDER(REAL LENGTH, REAL WIDTH, REAL DEPTH)
Call in the main program:
N30 BORDER(LENGTH, WIDTH, DEPTH)

Incomplete parameter transfer
Back to the last example:
N40 BORDER(15.3, ,5)
The mean value 20.2 was omitted here.

With incomplete parameter transfer, it is possible to tell by the system variable
$P_SUBPAR[i] whether the transfer parameter was programmed for subroutines or not.
The system variable contains as argument (i) the number of the transfer parameter.

 Subroutines, Macros
 2.4 Call subroutines (L or EXTERN)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-13

The system variable $P_SUBPAR returns
• TRUE, if the transfer parameter was programmed
• FALSE, if no value was set as transfer parameter.
If an impermissible parameter number was specified, parts program processing is aborted
with alarm output.

Call main program as subroutine
A main program can also be called as a subroutine. The end of program M2 or M30 set in
the main program is evaluated as M17 in this case (end of program with return to the calling
program).
You program the call specifying the program name.
Example:
N10 MPF739 or
N20 Shaft3

 Note
A subroutine can also be started as a main program.

Subroutines, Macros
2.5 Parameterized subroutine return (RET)

 Job planning
2-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

2.5 2.5 Parameterized subroutine return (RET)

Function
Usually, a RET or M17 end of subroutine returns to the calling program and execution of the
parts program continues with the lines following the subroutine call. However, some
applications may require program resumption at another position:
• Continuation of execution after call-up of the cutting cycles in ISO dialect mode, after the

contour definition.
• Return to main program from any subroutine level (even after ASUB) for error handling.
• Return over two or more program levels for special applications in compile cycles and in

ISO dialect mode.

Programming
RET (<blocknumber/label>, <block after block with
blocknumber/label>,
<number of return levels>), <return to program start>)
or
RET (<block_number/label>, < >, < >)
or subroutine return over several levels
(return to the specified number of subroutine levels).
RET (, , <number of return levels>, <return to program start>)

Parameters
The parameterizable command RET can fulfill these requirements of the continuation or the
return with 4 parameters:
1. <block_number/label>
2. <block after block with block number/label>
3. <number of return levels>
4. <return to beg. of program>

 Subroutines, Macros
 2.5 Parameterized subroutine return (RET)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-15

RET Subroutine end
(use instead of M17)

<block_number/label> Parameter: Block number or label as
STRING (constant or variable) of the
block at which to resume execution.

Execution is resumed in the calling
program at the block with the "Block
number/label".

<block after block with block number/label>, Parameter of type INTEGER

If the value is greater than 0,
execution is resumed at "Block
number/label". If the value is equal
to 0, the subroutine return goes to
the block with <block number/label>.

<no_of_return_levels>, Parameter of type INTEGER with the
permissible values 1 to 11.

Value = 1: The program is resumed in
the current program level –1 (like
RET without parameters).
Value = 2: The program is resumed in
the current program level –2,
skipping one level, etc.

<return to beg. of program>, Parameter of type BOOL

Value 1 or 0.

Value = 1 If the return goes to the
main program and ISO dialect mode is
active there, execution will be
resumed at the beginning of the
program.

Example of error handling: Resumption in the main program after ASUP processing

N10010 CALL "UP1" ; Program level 0 main program

 N11000 PROC UP1 ; Program level 1

 N11010 CALL "UP2"

 N12000 PROC UP2 ; Program level 2

 N19000 PROC ASUB ; Program level 2 (ASUB execution)

 ... RET("N10900", , ... ; Program level 3

 N19100 RET(N10900,,$P_STACK) ; Subroutine return

N10900 ; Resumption in main program

N10910 MCALL ; Deactivate modal subroutine

N10920 G0 G60 G40 M5 ; Correct further modal settings

Subroutines, Macros
2.5 Parameterized subroutine return (RET)

 Job planning
2-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Description
1. <block_number/label>
Execution is resumed in the calling program (main program) at the block with the <block
number/label>.

2. <block after block with block number/label>
The subroutine return goes back to the block with <block number/label>.

 Subroutines, Macros
 2.5 Parameterized subroutine return (RET)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-17

3. <number of return levels>
The program is resumed in the current program level minus <number of return levels>.

Impermissible return levels
If, for the number of return levels,
• a negative value or
• a value larger than the currently active program levels –(maximum 11)
is programmed, alarm 14091 is output with parameter 5.

Return with SAVE statements
On return over two or more program levels, the SAVE statements of each program level are
evaluated.

Modal subroutine active on return
If a modal subroutine is active on a return over two or more program levels and if the
deselection command MCALL is programmed for the modal subroutine in one of the skipped
subroutines, the modal subroutine will remain active.

Subroutines, Macros
2.6 Subroutine with program repetition (P)

 Job planning
2-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Caution
The user must always ensure that execution continues with the correct modal settings on
return over two or more program levels. This is done, for example, by programming an
appropriate main block.

2.6 2.6 Subroutine with program repetition (P)

Function
If a subroutine is to be executed several times in succession, the desired number of program
repetitions can be entered at address P in the block with the subroutine call.

Parameters

Caution
Subroutine call with program repetition and parameter transfer
Parameters are transferred only when the program is called, i.e., on the first run. The
parameters remain unchanged for the remaining repetitions.
If you want to change the parameters during program repetitions, you must make the
appropriate provision in the subroutine.

P Number of subroutine passes

Value range: 1, ..., 9999 (unsigned integers)

Caution
The following applies to every subroutine call:
The subroutine call must always be programmed in a separate NC block.

 Subroutines, Macros
 2.7 Modal subroutine (MCALL)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-19

Example
N40 FRAME P3

The subroutine FRAME must be executed 3 times in succession.

2.7 2.7 Modal subroutine (MCALL)

Function
This function causes the subroutine to be called and executed automatically after each block
that contains traversing movement. In this way you can automate the calling of subroutines
that are to be executed at different positions on the workpiece; for example, for the
production of drilling patterns.
Deactivating the modal subroutine call
With MCALL without a subroutine call or by programming a new modal subroutine call for a
new subroutine.

Parameters

MCALL Modal subroutine call

L address Subroutine number

Subroutines, Macros
2.7 Modal subroutine (MCALL)

 Job planning
2-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Caution
In a program run, only one MCALL call can apply at any one time. Parameters are only
transferred once with an MCALL. In the following situations the modal subroutine is also
called without motion programming: When programming the addresses S and F if G0 or G1
is active. G0/G1 is on its own in the block or was programmed with other G codes.

Example
N10 G0 X0 Y0
N20 MCALL L70
N30 X10 Y10
N40 X50 Y50
In blocks N30 to N40, the program position is approached and subroutine L70 is executed.
N10 G0 X0 Y0
N20 MCALL L70
N30 L80

In this example, the following NC blocks with programmed path axes are in subroutine L80.
L70 is called by L80.

 Subroutines, Macros
 2.8 Indirect subroutine call (CALL)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-21

2.8 2.8 Indirect subroutine call (CALL)

Function
Depending on the prevailing conditions at a particular point in the program, different
subroutines can be called. The name of the subroutine is stored in a variable of type
STRING. The subroutine call is issued with CALL and the variable name.

Programming
CALL <program name>

Parameters

CALL Keyword for indirect subroutine call

<program_name> Variable or constant of type string

Name of the program containing the program section to run

Caution
The indirect subroutine call is only possible for subroutines without parameter transfer. For
direct calling of the subroutine, store the name in a string constant

Example
Direct call with string constant
CALL "/_N_WKS_DIR/_N_SUBPROG_WPD/_N_PART1_SPF"
Indirect call via variable
DEF STRING[100] PROGNAME
PROGNAME="/_N_WKS_DIR/_N_SUBPROG_WPD/_N_PART1_SPF"
CALL PROGNAME
The subroutine Part1 is assigned the variable PROGNAME. With CALL and the path name
you can call the subroutine indirectly.

Subroutines, Macros
2.9 Repeating program sections with indirect programming (CALL)

 Job planning
2-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

2.9 2.9 Repeating program sections with indirect programming (CALL)

Function
CALL is used to call up subroutines indirectly in which the program section repetitions
defined with BLOCK are run according to the start label and end label.

Programming
CALL <program_name> BLOCK <start_label> TO <end_label>
CALL BLOCK <start_label> TO <end_label>

Parameters

CALL Keyword for indirect subroutine call

<program_name> (option) Variable or constant of type string,
name of the program containing the
program section to run.

If no <program_name> is programmed,
the program section with
<start_label> <end_label> in the
current program is searched for and
run.

BLOCK ... TO ... Keyword for

indirect program section repetition

<start_label> <end_label> Variable or constant of type string

Refers to the beginning or end of
the program section to run

Example

DEF STRING[20] STARTLABEL, ENDLABEL

STARTLABEL = "LABEL_1"

ENDLABEL = "LABEL_2"

...

CALL "CONTOUR_1" BLOCK STARTLABEL TO ENDLABEL ...

M17

PROC CONTOUR_1 ...

LABEL_1 ; Beginning of program section
; repetition

N1000 G1 ...

LABEL_2 ; End of program section repetition

 Subroutines, Macros
 2.10 Indirect call of a program programmed in ISO language (ISOCALL)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-23

2.10 2.10 Indirect call of a program programmed in ISO language (ISOCALL)

Function
The indirect program call ISOCALL is used to call up a program in ISO language. The ISO
mode set in the machine data is activated. At the end of the program, the original mode is
reactivated. If no ISO mode is set in the machine data, the subroutine is called in Siemens
mode.
For further information about the ISO mode, see
/FBFA/ ISO Dialects functional description.

Programming
ISOCALL <program_name>

Parameters

ISOCALL Subroutine call with which the ISO mode set in the machine
data is activated.

<program_name> Variable or constant of type string

Name of the program in ISO language

Example: Calling a contour with cycle programming from ISO mode

%_N_0122_SPF

N1010 G1 X10 Z20

N1020 X30 R5

N1030 Z50 C10

N1040 X50

N1050 M99

N0010 DEF STRING[5] PROGNAME = “0122“

...

N2000 R11 = $AA_IW[X]

N2010 ISOCALL PROGNAME

N2020 R10 = R10+1

N2300 ...

N2400 M30

Contour description in ISO mode

;Siemens parts program (cycle)

;Run program 0122.spf in ISO mode

Subroutines, Macros
2.11 Calling subroutine with path specification and parameters (PCALL)

 Job planning
2-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

2.11 2.11 Calling subroutine with path specification and parameters (PCALL)

Function
With PCALL you can call subroutines with the absolute path and parameter transfer.

Programming
PCALL <path/program_name>(parameter 1, …, parameter n)

Parameters

PCALL Keyword for subroutine call with absolute path name

<path_name> Absolute path name beginning with "/", including subroutine
names

If no absolute path name is specified, PCALL behaves like a
standard subroutine call with a program identifier.

The program identifier is written without the leading _N_ and
without an extension.

If you want the program name to be programmed with the
leading _N_ and the extension, you must declare it explicitly
with the leading _N_ and the extension as Extern.

Parameters 1 to n Current parameters in accordance with the PROC statement of
the subroutine.

Example
PCALL/_N_WKS_DIR/_N_SHAFT_WPD/SHAFT(parameter1, parameter2, ...)

2.12 2.12 Extend search path for subroutine calls with CALLPATH

Function
The CALLPATH command is used to extend the search path for subroutine calls. That
allows you to call subroutines from a non-selected workpiece directory without specifying the
complete absolute path name of the subroutine.
Search path extension precedes the user cycle entry (_N_CUS-DIR).
Deselection of the search path extension
The search path extension is deselected with the following events:
• CALLPATH with empty string
• CALLPATH without parameters
• End of parts program
• Reset

 Subroutines, Macros
 2.12 Extend search path for subroutine calls with CALLPATH

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-25

Programming
Adding subroutines stored outside the existing NCK file system to the existing NCK file
system.
CALLPATH <path_name>

Parameters

CALLPATH Keyword for programmable search path extension. The CALLPATH
command is programmed in a separate parts program line.

<path_name> Variable or constant of type string. The field contains the
absolute path of a directory beginning with "/" to extend the
search path. The path must be specified complete with
prefixes and suffixes (e.g. /_N_WKS_DIR/_N_WST_WPD). If
<path_name> contains the empty string or if CALLPATH is
called without parameters, the search path statement will be
reset. The maximum path length is 128 bytes.

 Note
CALLPATH checks whether the programmed path name really exists. An error aborts
program execution with correction block alarm 14009.

Example
CALLPATH ("/_N_WKS_DIR/_N_MYWPD_WPD")
That sets this search path (position 5 is new):
1. current directory/subroutine identifier
2. current directory/subroutine identifier_SPF
3. current directory/subroutine identifier_MPF
4. /_N_SPF_DIR/subroutine identifier_SPF
5. /_N_WKS_DIR/_N_MYWPD/subroutine identifier_SPF
6. N_CUS_DIR/_N_MYWPD/subroutine identifier_SPF
7. /_N_CMA_DIR/subroutine identifier_SPF
8. /_N_CST_DIR/subroutine identifier_SPF

 Note
CALLPATH can also be programmed in INI files. Then it applies for the duration of
execution of the INI file (WPD INI file or initialization program for NC active data, e.g.
Frames in the 1st channel _N_CH1_UFR_INI). The initialization program is then reset
again.

Subroutines, Macros
2.13 Search path adaptation of the subroutines prepared during startup

 Job planning
2-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

2.13 2.13 Search path adaptation of the subroutines prepared during startup

Function
Machine data can be used to set a situation where the PROC instructions of the
NC programs saved in the cycle directories are read prepared with parameters for the
subroutine call during startup. The sequence for this is identical to that which the cycle
directories searches when calling up the subroutine. The user cycles are thereby first
addressed, followed by the manufacturer cycles and finally the standard cycles.
Application
The user or machine manufacturer can therefore copy NC programs from the standard
cycles to then adapt these to their own requirements. The NC programs modified in this way
can then be saved in a directory of the same name for user or manufacture cycles.
Machine manufacturer
All files which are prepared during startup can be identified with the PREPRO key word in
the PROC instruction line with appropriately set machine data. Please see the machine
manufacturer’s specifications for further details.

Read subroutine with preparation and subroutine call
The cycle directories are addressed in the same order both for subroutines prepared with
parameters during startup and during subroutine call
1. _N_CUS_DIR user cycles
2. _N_CMA_DIR manufacturer cycles
3. _N_CST_DIR standard cycles
In cases of NC programs of the same name with different characteristics, the first PROC
instruction found is activated and the other PROC instruction overlooked without an alarm
message.

 Subroutines, Macros
 2.14 Execute external subroutine (EXTCALL)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-27

2.14 2.14 Execute external subroutine (EXTCALL)

Function
EXTCALL can be used to reload a program from the HMI in "Processing from external
source" mode. All programs that can be accessed via the directory structure of HMI can be
reloaded and run.

Programming
EXTCALL (<path/program_name>)

Parameters

EXTCALL\ Keyword for subroutine call

<path/program_name> Constant/variable of type STRING

An absolute path name or program name can
be specified.

 The program name is written with/without
the leading _N_ and without an extension.
An extension can be appended to the
program name using the <_> character.

Example:

EXTCALL ("/_N_WKS_DIR/_N_SHAFT_WPD/_N_SHAFT_SPF") or EXTCALL ("SHAFT")

 Note
External subprograms are not permitted to include jump commands such as GOTOF,
GOTOB, CASE, FOR, LOOP, WHILE or REPEAT.
IF-ELSE-ENDIF constructions are possible.
Subroutine calls and nested EXTCALL calls, may be used.

POWER ON, RESET
RESET and POWER ON cause external subroutine calls to be interrupted and the
associated load memory to be erased. The reloading programs does however remain
selected and is also immediately ready for SINUMERIK solution line systems for
implementation as before with no limitations.

Subroutines, Macros
2.14 Execute external subroutine (EXTCALL)

 Job planning
2-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: HMI Advanced
The program to be reloaded is stored on the local hard disk of HMI Advanced.
In the setting data SD 42700: EXT_PROG_PATH is stored in the following path:
"/_N_WKS_DIR/_N_WST1". The _N_MAIN_MPF main program is present in user memory
and has been selected.

N10 PROC MAIN

N20 ...

N30 EXTCALL "ROUGHING" ; Call of external subroutine
; ROUGHING

N40 ...

N50 M30

Subroutine "ROUGHING" (located in the HMI Advanced directory structure under
workpieces->WST1):

N10 PROC ROUGHING

N20 G1 F1000

N30 X=... Y=... Z=...

N40 ...

N90 M17

Example: HMI embedded powerline
The program to be reloaded is located on the network drive or ATA card
EXTCALL Windows path name
Call for ATA card (HMI embedded only for SINUMERIK powerline systems) e.g.
EXTCALL C:\Werkstücke\Kontur2.spf

Example: HMI Advanced or HMI Embedded with network drive option
Call for network drive (HMI Embedded or HMI Advanced)
EXTCALL \\R4711\Workpieces\Contour.1.spf

External program path
The call path can be set flexibly in SD 42700: EXT_PROG_PATH. SD 42700 contains a path
definition that builds the absolute path name of the program to be called in conjunction with
the programmed subroutine identifier.

 Subroutines, Macros
 2.14 Execute external subroutine (EXTCALL)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-29

Call of external subroutine for SINUMERIK with HMI Advanced
An external subroutine is called by means of parts program command EXTCALL.
From the
• subroutine names programmed with EXTCALL and
• setting data SD 42700: EXT_PROG_PATH provides the program path for the external

subroutine call by the concatenation of
• the content of SD 42700: EXT_PROG_PATH (e.g. /_N_WKS_DIR/_N_WKST1_WPD)
• the character "/" as a separator

(if a path has been specified via SD 42700: EXT_PROG_PATH)
• the subroutine path or subroutine identifier specified with EXTCALL.
SD 42700: EXT_PROG_PATH is a blank. If the external subroutine is called without an
absolute path name, the same search path is executed on the HMI Advanced as for calling a
subroutine from NCK memory.
1. current directory / subroutine identifier
2. current directory / subroutine identifier_SPF
3. current directory / subroutine identifier_MPF
4. /_N_SPF_DIR / subroutine identifier_SPF
5. /_N_CUS_DIR / subroutine identifier_SPF
6. /_N_CMA_DIR / subroutine identifier_SPF
7. /_N_CST_DIR / subroutine identifier_SPF
"current directory" represents the directory in which the main program has been selected
"subroutine designation" represents the subroutine identifier programmed in
EXTCALL.

 Note
The following applies to HMI embedded powerline:
An absolute path must always be specified in HMI Embedded.
The following applies to HMI embedded solution line:
Specified programs with EXTCALL and an absolute path are only used if the specified target
also exists. Program execution is canceled if a target is not found. This is the case, for
example, if the path is specified for a network drive with a mandatory option which is not
present.

Subroutines, Macros
2.14 Execute external subroutine (EXTCALL)

 Job planning
2-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Execution from external program saving
There are differences between how an external program is reloaded from an available
memory. These depend on the HMI operating panel used. The following memory variants
are available for SINUMERIK powerline and solution line systems:
• Process network drive as additional memory for HMI Embedded and Advanced.
• Process hard disk as option only for HMI Advanced powerline and solution.
• Process ATA card or via V.24 interface especially for HMI Embedded powerline.
• Process CompactFlash Card or USB drive for HMI solution line systems.
Programs to be reloaded can be saved with the existing option both on a network drive and a
CompactFlash card. An external user memory connected to the TCU is only fully supported
via USB interface X203. We cannot recommend using a USB FlashDrive as a persistent
memory.
Please note the relevant operating processes in the corresponding instructions.
References
/BEM/ HMI Embedded powerline or solution line
/BAD/ HMI Advanced powerline or solution line

Adjustable load memory (FIFO buffer)
A load memory is required in the NCK in order to process a program in "Execution from
external" mode (main program or subroutine). The size of the reload memory is preset to
30 Kbytes and like all other memory-related machine data, can only be changed to match
requirements by the machine manufacturer.
One reload buffer must be set for each program (main program or subroutine) to run
concurrently in "Processing from external source" mode.
Machine manufacturer
Please contact the machine manufacturer if the size and number of reloading buffers is to be
extended. For further information about "Processing from external source", see /FB1/
Function Manual, Basic Functions; BAG, Channel, Program Operation Mode (K1).

 Subroutines, Macros
 2.15 Subroutine call with M, T and D functions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-31

2.15 2.15 Subroutine call with M, T and D functions

Function
T, M and D functions can be replaced with a subroutine call by making the appropriate
machine data settings. This method can be used, for example, to call the tool change
routine. During block search with calculation and SERUPRO, subroutine calls with M, T and
D functions are processed in the same way as standard subroutine calls.

Example: tool change with M6
M function M6 is replaced by tool change routine TC_UP_M6.

N10 PROC ROUGHING3

N20 G1 F1000

N30 X=... Y=... Z=...

N40 T1234 M6 ; ; Call TC_UP_M6

M30

Associated subroutine TC_UP_M6:

N110 PROC TC_UP_M6

...

N130 G53 D0 G0 X=... Y=... Z=... ; ; Approach tool change point

N140 M6 ; ; Execute tool change

...

N190 M17

For further information about "Subroutine calls using M, T and D functions" see
/FB1/ Function Manual, Basic Functions; BAG, Channel, Program Operation Mode (K1).

Subroutines, Macros
2.16 Suppress individual block (SBLOF, SBLON)

 Job planning
2-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

2.16 2.16 Suppress individual block (SBLOF, SBLON)

Function
Program-specific single block suppression
For all single block types, the programs marked with SBLOF are executed in their entirety
like one block. SBLOF is written in the PROC line and is valid until the end of the subroutine
or until it is aborted. At the return command, the decision is made whether to stop at the end
of the subroutine.
Return jump with M17: Stop at the end of the subroutine
Return jump with RET: No stop at the end of the subroutine
SBLOF is also valid in subroutines, which are called.
Example for subroutine without stop in single block:
PROC EXAMPLE SBLOF
G1 X10
RET

Programming

PROC ... SBLOF
SBLON

; Command can be programmed in a PROC or a separate block
; The command must be programmed in a separate block

Single block suppression in the program
SBLOF must be alone in a block. Single block is deactivated after this block until
• the next SBLON or
• the end of the active subroutine level.

Parameters

SBLOF Deactivate single block

SBLON Reactivate single block

Example: single block suppression in the program

N10 G1 X100 F1000

N20 SBLOF

N30 Y20

N40 M100

N50 R10=90

N60 SBLON

N70 M110

N80 ...

;Deactivate single block

;Reactivate single block

The area between N20 and N60 is executed as one step in single block mode.

 Subroutines, Macros
 2.16 Suppress individual block (SBLOF, SBLON)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-33

Example: cycle is to act like a command for a user
Main program

N10 G1 X10 G90 F200

N20 X-4 Y6

N30 CYCLE1

N40 G1 X0

N50 M30

Program cycle:1

N100 PROC CYCLE1 DISPLOF SBLOF ;Suppress single block

N110 R10=3*SIN(R20)+5

N120 IF (R11 <= 0)

N130 SETAL(61000)

N140 ENDIF

N150 G1 G91 Z=R10 F=R11

N160 M17

CYCLE1 is processed for an active single block, i.e., the Start key must be pressed once for
machining with CYCLE1.

Example: an ASUP, which is started by the PLC in order to activate a modified zero offset and tool
offsets, is to be executed invisibly.

N100 PROC ZO SBLOF DISPLOF

N110 CASE $P_UIFRNUM OF 0 GOTOF _G500

 -->1 GOTOF _G54 2 GOTOF _G55 3

 -->GOTOF _G56 4 GOTOF _G57

 -->DEFAULT GOTOF END

N120 _G54: G54 D=$P_TOOL T=$P_TOOLNO

N130 RET

N140 _G54: G55 D=$P_TOOL T=$P_TOOLNO

N150 RET

N160 _G56: G56 D=$P_TOOL T=$P_TOOLNO

N170 RET

N180 _G57: G57 D=$P_TOOL T=$P_TOOLNO

N190 RET

N200 END: D=$P_TOOL T=$P_TOOLNO

N210 RET

Subroutines, Macros
2.16 Suppress individual block (SBLOF, SBLON)

 Job planning
2-34 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: use MD 10702 IGNORE_SINGLEBLOCK_MASK, bit 12 = 1 to prevent stopping
In single block type SBL2 (stop at each parts program line) in the SBLON statement.

;SBL2 is active

;$MN_IGNORE_SINGLEBLOCK_MASK = 'H1000' ;In the MD 10702: set bit 12 = 1

N10 G0 X0 ;Stop at this parts program line

N20 X10 ;Stop at this parts program line

N30 CYCLE ;Traversing block generated by the
;cycle

 PROC CYCLE SBLOF ;Suppress single block stop

 N100 R0 = 1

 N110 SBLON ;Because of MD 10702: bit 12 = 1
;prevents stopping

 N120 X1 ;Stop at this parts program line

 N140 SBLOF

 N150 R0 = 2

 RET

N50 G90 X20 ;Stop at this parts program line

M30

Example: single block suppression for program nesting

 ;Single block is active

N10 X0 F1000 ;Stop at this block

N20 UP1(0)

 PROC UP1(INT _NR) SBLOF ;Single block OFF

 N100 X10

 N110 UP2(0)

 PROC UP2(INT _NR)

 N200 X20

 N210 SBLON ;Single block ON

 N220 X22 ;Stop at this block

 N230 UP3(0)

 PROC UP3(INT _NR)

 N302 SBLOF ;Single block OFF

 N300 X30

 N310 SBLON ;Single block ON

 N320 X32 ;Stop at this block

 N330 SBLOF ;Single block OFF

 N340 X34

 N350 M17 ;SBLOF active

 N240 X24 ;Stop at this block
;SBLON active

 N250 M17 ;Stop at this block
;SBLON active

 N120 X12

 N130 M17 ;Stop at this return block
;SBLOF of the PROC statement active

N30 X0 ;Stop at this block

N40 M30 ;Stop at this block

 Subroutines, Macros
 2.16 Suppress individual block (SBLOF, SBLON)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-35

Restrictions
• The current block display can be suppressed in cycles using DISPLOF.
• If DISPLOF is programmed together with SBLOF, the cycle call continues to be displayed

on single block stops within the cycle.
• If the single block stop in the system ASUB or the user ASUB is suppressed with Bit0 = 1

or Bit1 = 1 for MD 10702: IGNORE_SINGLEBLOCK_MASK, the SBLON in the ASUB can
be programmed to reactivate the single block stop.

• The single block stop in the user ASUB is suppressed with
MD 20117: IGNORE_SINGLEBLOCK_ASUP and can no longer be activated by
programming the SBLON.

• By selecting SBL3 you can suppress the SBLOF command.
• Ignore single block stop in the single block type 2. Single block type 2 (SBL2) does not

stop in the SBLON block, if Bit12 = 1 is set in MD 10702:
IGNORE_SINGLEBLOCK_MASK.

 Note
Further information about the block display with/without single block suppression, see
/FB1/ Function Manual, Basic Functions; Mode Group, Channel, Program Operation
Mode (K1), "Single Block" chapter.

Single block disable for unsynchronized subroutines
To run an ASUB in single block mode in one step, the ASUB must contain a PROC
statement with SBLOF. This also applies to the function "editable system ASUB" in
MD 11610: ASUP_EDITABLE.
Example of "editable system ASUP":

N10 PROC ASUB1 SBLOF DISPLOF

N20 IF $AC_ASUP==’H200’

N30 RET

N40 ELSE

N50 REPOSA

N60 ENDIF

;No REPOS on mode change

;REPOS in all other cases

Program control in single block mode
With the single block function, the user can process a parts program block by block. The
single block function has the following settings:
• SBL1: IPO single block with stop after each machine function block.
• SBL2: Single block with stop after each block.
• SBL3: Stop in the cycle (by selecting SBL3 you can suppress the SBLOF command).

Subroutines, Macros
2.17 Suppress current block display (DISPLOF)

 Job planning
2-36 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Single block suppression for program nesting
If SBLOF is programmed in the PROC statement in a subroutine, stopping is performed on
the subroutine return jump with M17. That prevents the next block in the calling program
from already running. If single block suppression is activated with SBLOF (without SBLOF in
the PROC statement), execution stops after the next machine function block of the calling
program. If that is not wanted, SBLON must be programmed in the subroutine before the
return (M17). Execution does not stop on a return to a higher-level program with RET.

2.17 2.17 Suppress current block display (DISPLOF)

Function
DISPLOF suppresses the current block display for a subroutine. DISPLOF is placed at the
end of the PROC statement. Instead of the current block, the call of the cycle or the
subroutine is displayed.
By default the block display is activated. Deactivation of block display with DISPLOF applies
until the return from the subroutine or end of program.

Programming
PROC … DISPLOF
If further subroutines are called from the subroutine with the DISPLOF attribute, the current
block display is suppressed in these as well. If a subroutine with suppressed block display is
interrupted by an unsynchronized subroutine, the blocks of the current subroutine are
displayed.

Parameters

DISPLOF Suppress current block display

Example: suppress current block display in the cycle

%_N_CYCLE_SPF ;$PATH=/_N_CUS_DIR

PROC CYCLE (AXIS TOMOV, REAL POSITION) SAVE DISPLOF

 ;Suppress current block display

 ;Now the cycle call is displayed as
;the current block

 ;e.g.: CYCLE(X, 100.0)

DEF REAL DIFF ;Cycle contents

G01 …

…

RET ;Subroutine return, the following
;block of the calling program is
;displayed again

 Subroutines, Macros
 2.18 Cycles: Setting parameters for user cycles

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-37

2.18 2.18 Cycles: Setting parameters for user cycles

Function
You can use the cov.com and uc.com files to parameterize your own cycles.
The cov.com file is included with the standard cycles at delivery and is to be expanded
accordingly. The uc.com file is to be created by the user.
Both files are to be loaded in the passive file system in the "User cycles" directory (or must
be given the appropriate path specification):
;$PATH=/_N_CUS_DIR
in the program.

Files and paths

cov.com_COM Overview of cycles

uc.com Cycle call description

Adaptation of cov.com – Overview of cycles
The cov.com file supplied with the standard cycles has the following structure:

%_N_COV_COM File name
;$PATH=/_N_CST_DIR Path
;Vxxx 11.12.95 Sca cycle overview Comment line
C1(CYCLE81) drilling, centering Call for 1st cycle
C2(CYCLE82) drilling, counterboring Call for 2nd cycle
...
C24(CYCLE98) chaining of threads Call for last cycle
M17 End of file

Programming
For each newly added cycle a line must be added with the following syntax:
C<number> (<cycle_name>) comment_text
Number: an integer as long as it has not already been used in the file;
Cycle name: The program name of the cycle to be included
Comment text: Optionally a comment text for the cycle
Example:
C25 (MY_CYCLE_1) usercycle_1
C26 (SPECIAL CYCLE)

Subroutines, Macros
2.18 Cycles: Setting parameters for user cycles

 Job planning
2-38 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: uc.com file - user cycle description
The explanation is based on the continuation of the
example:
For the following two cycles a cycle parameterization is to be newly created:

PROC MY_CYCLE_1 (REAL PAR1, INT PAR2, CHAR PAR3, STRING[10] PAR4)
;The cycle has the following transfer parameters:
;PAR1: Real value in range –1000.001 <= PAR2 <= 123.456, default with 100
;PAR2: Positive integer value between 0 <= PAR3 <= 999999, default with 0
;PAR3: 1 ASCII character
;PAR4: String of length 10 for a subroutine name
...
M17

PROC SPECIAL CYCLE (REAL VALUE1, INT VALUE2)
;The cycle has the following transfer parameters:
;
;VALUE1: Real value without value range limitation and default
;VALUE2: Integer value without value range limitation and default
...
M17

Associated file uc.com:

%_N_UC_COM
;$PATH=/_N_CUS_DIR
//C25(MY_CYCLE_1) usercycle_1
(R/-1000.001 123.456 / 100 /Parameter_2 of cycle)
(I/0 999999 / 1 / Integer value)
(C//"A" / Character parameter)
(S///Subroutine name)

//C26(SPECIALCYCLE)
(R///Entire length)
(I/*123456/3/Machining type)
M17

 Subroutines, Macros
 2.18 Cycles: Setting parameters for user cycles

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-39

Example: both cycles
Display screen for cycle MY_CYCLE_1

Display screen for cycle SPECIAL CYCLE

Syntax description for the uc.com file - user cycle description
Header line for each cycle:
as in the cov.com file preceded by "//"
//C <number> (<cycle_name>) comment_text
Example:
//C25(MY_CYCLE_1) usercycle_
Line for description for each parameter:
(<data_type_id> / <minimum_value> <maximum_value>
/ <preset_value> /
Data type identifier:

R for real
I for integer
C for character (1 character)
S for string

Subroutines, Macros
2.18 Cycles: Setting parameters for user cycles

 Job planning
2-40 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Minimum value, maximum value (can be omitted)
Limitations of the entered values which are checked at input; values outside this range
cannot be entered. It is possible to specify an enumeration of values which can be operated
via the toggle key; they are listed preceded by "*", other values are then not permissible.
Example:
(I/*123456/1/Machining type)
There are no limits for string and character types.
Default value (can be omitted)
Value which is the default value in the corresponding screen when the cycle is called; it can
be changed via operator input.
Comment
Text of up to 50 characters which is displayed in front of the parameter input field in the call
screen for the cycle.

 Subroutines, Macros
 2.19 Macro technique (DEFINE...AS)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 2-41

2.19 2.19 Macro technique (DEFINE...AS)

Function
A macro is a sequence of individual statements, which have together been assigned a name
of their own. G, M and H functions or L subroutine names can also be used as macros.
When a macro is called during a program run, the statements programmed under the
program name are executed one after the other.
Use of macros
Sequences of statements that recur are only programmed once as a macro in a separate
macro module and once at the beginning of the program. The macro can then be called in
any main program or subroutine and executed.

Programming
Macros are identified with the keyword DEFINE...AS.
The macro definition is as follows:
DEFINE NAME AS <statement>
Example:
Macro definition:
DEFINE LINE AS G1 G94 F300
Call in the NC program:
N20 LINE X10 Y20
Activate macro
The macro is active when it is loaded into the NC ("Load" soft key).

Parameters

Caution
Keywords and reserved names must not be redefined with macros.
Use of macros can significantly alter the control's programming language! Therefore,
exercise caution when using macros.

DEFINE Define macro

NAME This is the name of the macro

AS STRING macro definition

Statement Programming statements, e.g., G, M, H and L functions

With macros you can define any identifiers, G, M, H functions and L program names.
Two-digit H and L functions can be programmed.

Subroutines, Macros
2.19 Macro technique (DEFINE...AS)

 Job planning
2-42 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Three-digit M/G function
Supports programming of three-digit M and G functions.
Example:
N20 DEFINE M100 AS M6
N80 DEFINE M999 AS M6

 Note
Macros can also be declared in the NC program. Only identifiers are permissible as macro
names. G function macros can only be defined in the macro module globally for the entire
control.
Nesting of macros is not possible.

Example: macro definitions

DEFINE M6 AS L6 A subroutine is called at tool change to handle the
necessary data transfer. The actual M function is
output in the subroutine (e.g., M106).

DEFINE G81 AS DRILL(81) Emulation of the DIN G function

DEFINE G33 AS M333 G333 During thread cutting synchronization is requested
with the PLC. The original G function G33 was renamed
to G333 by machine data so that the programming is
identical for the user.

Example: macro file
After reading the macro file into the control, activate the macros (see above). The macros
can now be used in the parts program.

%_N_UMAC_DEF

;$PATH=/_N_DEF_DIR ;Customer-specific macros

DEFINE PI AS 3.14

DEFINE TC1 AS M3 S1000

DEFINE M13 AS M3 M7 ;Spindle right, coolant on

DEFINE M14 AS M4 M7 ;Spindle left, coolant on

DEFINE M15 AS M5 M9 ;Spindle stop, coolant off

DEFINE M6 AS L6 ;Call tool change program

DEFINE G80 AS MCALL ;Deselect drilling cycle

M30

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-1

File and Program Management 3
3.1 3.1 Program memory

Function
The files and programs are stored in the program memory and are thus permanently stored
(passive file system).
Example: Main programs and subroutines, macro definitions.
Main programs and subroutines are stored in the main memory. A number of file types are
also stored here temporarily and these can be transferred to the working memory as
required (e.g., for initialization purposes on machining of a specific workpiece).

File and Program Management
3.1 Program memory

 Job planning
3-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Directories
Its standard complement of directories is as follows:

1. _N_DEF_DIR Data modules and macro modules

2. _N_CST_DIR Standard cycles

3. _N_CMA_DIR Manufacturer cycles

4. _N_CUS_DIR User cycles

5. _N_WKS_DIR Workpieces

6. _N_SPF_DIR Global subroutines

7. _N_MPF_DIR Standard directory for main programs

8. _N_COM_DIR Standard directory for comments

9. _N_EXT_DIR External parts program memory

 File and Program Management
 3.1 Program memory

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-3

File types
The following file types can be stored in the main memory:

name_MPF Main program

name_SPF Subroutine

name_TEA Machine data

name_SEA Setting data

name_TOA Tool offsets

name_UFR Zero offsets/frames

name_INI Initialization files

name_GUD Global user data

name_RPA R parameters

name_COM Comment

name_DEF Definitions for global user data and macros

Description
Workpiece directory, _N_WKS_DIR
The workpiece directory exists in the standard setup of the program directory under the
name _N_WKS_DIR. The workpiece directory contains all the workpiece directories for the
workpieces that you have programmed.
Workpiece directories, identification WPD
To make data and program handling more flexible certain data and programs can be
grouped together or stored in individual workpiece directories.
A workpiece directory contains all files required for machining a workpiece. These can be
main programs, subroutines, any initialization programs and comment files.
Initialization programs are executed once as specified in the machine data
MD 11280: WPD_INI_MODE after the program selection with the first parts program start.
Example: The workpiece directory _N_SHAFT_WPD, created for workpiece SHAFT contains
the following files:

_N_SHAFT_MPF Main program

_N_PART2_MPF Main program

_N_PART1_SPF Subroutine

_N_PART2_SPF Subroutine

_N_SHAFT_INI General initialization program for the data of the workpiece

_N_SHAFT_SEA Setting data initialization program

_N_PART2_INI General initialization program for the data for the Part 2
program

_N_PART2_UFR Initialization program for the frame data for the Part 2
program

_N_SHAFT_COM Comment file

File and Program Management
3.1 Program memory

 Job planning
3-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Creating workpiece directories on an external PC
The steps described below are performed on an external data station. Please refer to your
Operator's Guide for file and program management (from PC to control system) directly on
the control.
;$PATH statement
The destination path $PATH=… is specified within the second line of the file.
Example:
;$PATH=/_N_WKS_DIR/_N_SHAFT_WPD
The file is stored at the specified path.

 Note
If the path is missing, files of file type SPF are stored in /_N_SPF_DIR, files with extension
_INI in the working memory and all other files in /_N_MPF_DIR.

Example with the path for the previous example:
SHAFT: _/N_WELLE_MPF is stored in /_N_WKS_DIR/_N_WELLE_WPD
%_N_SHAFT_MPF
;$PATH=/_N_WKS_DIR/_N_SHAFT_WPD
N40 G0 X… Z…
•
M2
SHAFT: _/N_WELLE_SPF is stored in /_N_SPF_DIR
•
%_N_SHAFT_SPF
•
M17
Select workpiece for machining
A workpiece directory can be selected for execution in a channel. If a main program with the
same name or only a single main program (MPF) is stored in this directory, this is
automatically selected for execution.
Example:
The workpiece directory  /_N_WKS_DIR/_N_SHAFT_WPD contains the files _N_SHAFT_SPF
and _N_SHAFT_MPF.
HMI Advanced only: See "Operator's Guide" /BAD/ "Job list" and "Selecting a program for
execution".

 File and Program Management
 3.1 Program memory

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-5

Search paths for subroutine call
If the search path is not specified explicitly in the parts program when a subroutine (or
initialization file) is called, the calling program searches in a fixed search path.
Example of subroutine call with absolute path specification:
CALL"/_N_CST_DIR/_N_CYCLE1_SPF"
Programs are usually called without specifying a path:
Example:
CYCLE1
Search path order

1. Current directory / name Workpiece directory or

standard directory
_N_MPF_DIR

2. Current directory / name_SPF
3. Current directory / name_MPF
4. /_N_SPF_DIR / name_SPF Global subroutines
5. /_N_CUS_DIR / name_SPF User cycles
6. /_N_CMA_DIR / name_SPF Manufacturer cycles
7. /_N_CST_DIR / name_SPF Standard cycles

Programming search paths for subroutine call
CALLPATH command
The CALLPATH part program command is used to extend the search path of a subroutine
call.
Example:
CALLPATH ("/_N_WKS_DIR/_N_MYWPD_WPD")
The search path is stored in front of position 5 (user cycle) in accordance with the specified
programming.
For further information about the programmable search path for subroutine calls with
CALLPATH, see section "Extending the search path for subroutine calls with CALLPATH".

File and Program Management
3.2 Working memory

 Job planning
3-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

3.2 3.2 Working memory

Function
The working memory contains the current system and user data with which the control
operates (active file system).
Example: Active machine data, tool offset data, zero offsets.

Parameters
Initialization programs
These are programs with which the working memory data are initialized. The following file
types can be used for this:

name_TEA Machine data

name_SEA Setting data

name_TOA Tool offsets

name_UFR Zero offsets/frames

name_INI Initialization files

name_GUD Global user data

name_RPA R parameters

Data areas
The data can be organized in different areas in which they are to apply. For example, a
control can use several channels
(not 810D CCU1, 840D NCU 571) and can usually use several axes. The following exist:

Identifier Data areas
NCK NCK-specific data
CHn Channel-specific data (n specifies the

channel number)
AXn Axis-specific data (n specifies the number

of the machine axis)
TO Tool data
COMPLETE All data

Example: create initialization program on the external PC
The data area identifier and the data type identifier can be used to determine the areas,
which are to be treated as a unit when the data are saved.

_N_AX5_TEA_INI Machine data for axis 5

_N_CH2_UFR_INI Frames of channel 2

_N_COMPLETE_TEA_INI All machine data

When the control is started up initially, a set of data is automatically loaded to ensure proper
operation of the control.

 File and Program Management
 3.2 Working memory

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-7

Example: procedure for multi-channel controls
CHANDATA (channel number) for multiple channels is permitted only in the
N_INITIAL_INI file.
N_INITIAL_INI is the installation file with which all data of the control is initialized.
%_N_INITIAL_INI
CHANDATA(1)
;Channel 1 machine axis assignment
$MC_AXCONF_MACHAX_USED[0]=1
$MC_AXCONF_MACHAX_USED[1]=2
$MC_AXCONF_MACHAX_USED[2]=3
CHANDATA(2)
;Machine axis assignment channel 2
$MC_AXCONF_MACHAX_USED[0]=4
$MC_AXCONF_MACHAX_USED[1]=5
CHANDATA(1)
;Axial machine data
;Exact stop window coarse:
$MA_STOP_LIMIT_COARSE[AX1]=0.2 ;Axis 1
$MA_STOP_LIMIT_COARSE[AX2]=0.2 ;Axis 2
;Exact stop window fine:
$MA_STOP_LIMIT_FINE[AX1]=0.01 ;axis 1
$MA_STOP_LIMIT_FINE[AX1]=0.01 ;axis 2

Caution
CHANDATA statement
In the parts program, the CHANDATA statement may only be used for the channel on which
the NC program is running, i.e. the statement can be used to protect NC programs from
being executed accidentally on a different channel.
Program processing is aborted if an error occurs.

 Note
INI files in job lists do not contain any CHANDATA statements.

Saving the initialization programs
The files in the working memory can be saved on an external PC and read in again from
there.
• The files are saved with COMPLETE.
• INITIAL is used to create an INI file over all areas: _N_INITIAL_INI.

File and Program Management
3.3 Defining user data

 Job planning
3-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Loading initialization programs
INI programs can also be selected and called as parts programs if they only use the data of
a single channel. It is thus also possible to initialize program-controlled data.
Information on file types is given in the Operator's Guide.

3.3 3.3 Defining user data

Function

 Notice
User data (GUD) is defined at the time of start-up. The necessary machine data should be
initialized accordingly. The user memory must be configured. All relevant machine data have
as a component of their name GUD.

The user data definition (GUD) can be prepared in the Services operating area of the HMI
user interface. This eliminates the time-consuming reimport from data backup
(%_N_INITIAL_INI).
The following applies:
• Definition files that are on the hard disk are not active.
• Definition files that are on the NC are always active.

Programming
The GUD variables are programmed with the DEF command:
DEF range preprocessing stop type name[.., ...]=value

 File and Program Management
 3.3 Defining user data

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-9

Parameters

range Range identifies the variable as a GUD
variable and defines its validity scope:

NCK NCK-wide

CHAN channel-wide

preprocessing_stop Optional attribute preprocessing stop:

SYNR Preprocess stop while reading

SYNW Preprocess stop while writing

SYNRW Preprocess stop while
reading/writing

Type Data type

BOOL

REAL

INT

AXIS

FRAME

STRING

CHAR

name Variable name

[.., ...] Optional run limits for array variables

Value Optional initialization value, several
values for arrays, each separated with a
comma or REP (w1), SET(w1, W2, ...), (w1,
w2, ...)

Initialization values are not possible
for type Frame.

Example: definition file, global data (Siemens)

%_N_SGUD_DEF

;$PATH=/_N_DEF_DIR

DEF NCK REAL RTP ;Retraction plane

DEF CHAN INT SDIS ;Safety clearance

M30

Example: definition file, global data (machine manufacturer)

%_N_MGUD_DEF

;$PATH=/_N_DEF_DIR

;Global data definitions of the machine manufacturer

DEF NCK SYNRW INT QUANTITY ;Implicit preprocess stop while
;reading/writing

;Specific data present in the control

;Access from all channels

DEF CHAN INT TOOLTABLE[100] ;Tool table for channel-spec. View of

;the tool number at magazine locations

M30 ;Separate table created for each channel

File and Program Management
3.3 Defining user data

 Job planning
3-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Reserved block names
The following modules can be stored in the directory /_N_DEF_DIR:

_N_SMAC_DEF contains macro definitions (Siemens system applications)

_N_MMAC_DEF contains macro definitions (machine manufacturer)

_N_UMAC_DEF contains macro definitions (user)

_N_SGUD_DEF contains definitions for global data (Siemens system
applications)

_N_MGUD_DEF contains definitions for global data (machine manufacturer)

_N_UGUD_DEF contains definitions for global data (user)

_N_GUD4_DEF freely definable

_N_GUD5_DEF contains definitions for measuring cycles (Siemens system
applications)

_N_GUD6_DEF contains definitions for measuring cycles (Siemens system
applications)

_N_GUD7_DEF contains definitions for standard cycles (Siemens system
applications)

_N_GUD8_DEF freely definable

_N_GUD9_DEF freely definable

 Note
If no measuring cycles / standard cycles are present, the modules reserved for them can be
freely defined.

1. Defining user data (GUD)

1. Save module _N_INITIAL_INI.
2. Create a definition file for user data in the Services HMI operating area
3. Load definition file into the program memory of the control
4. Activating definition files
5. Data backup

6. Creating a definition file for user data
Definition files can be prepared on the external PC or in the Services operating area.
Predefined file names also exist (also see "Reserved module names"):
_N_SGUD_DEF
_N_MGUD_DEF
_N_UGUD_DEF
_N_GUD4_DEF … _N_GUD9_DEF
Files with these names can contain definitions for GUD variables.

7. Load definition file into the program memory of the control
The control always creates a default directory _N_DEF_DIR. This name is entered as the
path in the header of the GUD definition file and evaluated when read in via the
corresponding interface.

 File and Program Management
 3.3 Defining user data

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-11

8. Activate definition files and re-activate their content
When the GUD definition file is loaded into the NC ("Load" soft key), it becomes active.
See "Automatic activation ..." If the content of a particular GUD definition file is re-
activated, the old GUD data block in the active file system is deleted and the new
parameters reset. If this process is undertaken via the dialogue HMI services => Manage
data => Define and activate user data (GUD), then the variable contents are saved by INI
file and re-established at the end of the process.

9. Data backup
When the file _N_COMPLETE_GUD is archived from the working memory, only the data
contained in the file are saved. The created definition files for the global user variables
must be archived separately.
The variable assignments to global user data are also saved in _N_INITIAL_INI; the
names must be identical with the names in the definition files.

File and Program Management
3.4 Protection levels for user data, MD, SD and NC commands

 Job planning
3-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

3.4 3.4 Protection levels for user data, MD, SD and NC commands

3.4.1 Defining protection levels for user data (GUD)

Function
Access criteria can be defined for GUD modules to protect them against manipulation. In
cycles GUD variables can be queried that are protected in this way from change via the HMI
user interface or from the program. The access protection applies to all variables defined in
this module. When an attempt is made to access protected data, the control outputs an
appropriate alarm.

Programming
Protection levels for the whole module are specified in the headers.

%_N_MGUD_DEF ;module type

;$PATH=/_N_DEF_DIR ;path

APR value APW n ;protection levels in separate line

The access protection level is programmed with the desired protection level in the GUD
module before any variable is defined. Vocabulary words must be programmed in a separate
block.

Parameters

Protection level:

APW n

APR n

Access protection (Access Protection)

for writing (Write)

for reading (Read)

n Protection level n

from 0 or 10 (highest level)

to 7 or 17 (lowest level)

Meaning of the protection levels n:

0 or 10

1 or 11

2 or 12

3 or 13

4 or 14

...

7 or 17

SIEMENS

OEM_HIGH

OEM_LOW

End user

Keyswitch 3

...

Keyswitch 0

APW 0-7, APR 0-7

The read and write protection acts on the
user interface and in the NC program or in
the MDA operation.

APW 10-17, APR 10-17:

The read and write protection acts here on
the user interface.

These values are permissible in GUD
modules and in protection levels for
individual variables in the REDEF
instruction.

This values are only permissible for
module-specific GUD protection level.

 File and Program Management
 3.4 Protection levels for user data, MD, SD and NC commands

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-13

 Note
To protect a complete file, the commands must be placed before the first definitions in the
file. In other cases, they go into the REDEF instruction of the relevant data, see section
"Protection levels for NC commands".

Example: definition file with write access protection
(Machine manufacturer), read (key switch 2 on the user interface):

%_N_GUD6_DEF

;$PATH=/_N_DEF_DIR

APR 15 APW 12 ;Protection levels for all following
;variables

DEF CHAN REAL_CORRVAL

DEF NCK INT MYCOUNT

…

M30

Activating a GUD definition file for the first time
When a GUD definition file is first activated any defined access authorization contained
therein is evaluated and automatically re-transferred to the read/write access of the GUD
definition file.

 Note
Access authorization entries in the GUD definition file can restrict but not extend the required
access authorization for the GUD definition file.

Example:
The definition file _N_GUD7_DEF contains: APW2
10. The file _N_GUD7_DEF has value 3 as write protection. The value 3 is then overwritten

with value 2.
11. The file _N_GUD7_DEF has value 0 as write protection. There is no change to it.
With the APW statement a retrospective change is made to the file's write access.
With the APR statement a retrospective change is made to the file's read access.

 Note
If you erroneously enter in the GUD definition file a higher access level than your
authorization allows, the archive file must be reimported.

File and Program Management
3.4 Protection levels for user data, MD, SD and NC commands

 Job planning
3-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

3.4.2 Automatic activation of GUDs and MACs

Function
Definition files for GUD and macro definitions for HMI Advanced are edited in the Services
operating area.
If a definition file is edited in the NC, when exiting the Editor you are prompted whether the
definitions are to be set active.

Unloading the GUD and macro definitions
If a definition file is unloaded, the associated data block is deleted after a query is displayed.

Loading the GUD and macro definitions
If a definition file is loaded, a prompt is displayed asking whether to activate the file or retain
the data. If you do not activate, the file is not loaded.
If the cursor is positioned on a loaded definition file, the soft key labeling changes from
"Load" to "Activate" to activate the definitions. If you select "Activate", another prompt is
displayed asking whether you want to retain the data.
Data is only saved for variable definition files, not for macros.

 Note
HMI Advanced
If there is not enough memory capacity to activate the definition file, once the memory size
has been changed, the file must be transferred from the NC to the PCU and back to the NC
again for activation.

Example: prompt on exiting the editor
"Do you want to activate the definitions from file GUD7.DEF?"

"OK": A prompt appears that asks whether you want the save the currently active data.
 "Do you want to keep the previous data of the definitions?"
 OK": The GUD modules of the definition file to be edited will be saved, the

new definitions will be activated and the saved data will be reloaded.
 "Abort": The new definitions will be activated; the old data will be lost.
 "Abort": The changes in the definition file will be rejected; the associated data

block is not changed.

 File and Program Management
 3.4 Protection levels for user data, MD, SD and NC commands

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-15

3.4.3 Change the protection data for the machine and setting data (REDEF MD, SD)

Function
The user can change the protection levels. Only protection levels of lower priority can be
assigned to the machine data, setting data can also be assigned protection levels of higher
priority.

Programming
REDEF Machine data/setting data protection level

Parameters

REDEF Redefinition (REDEFinition) e.g.
Set the machine and setting data

Machine data / setting data Machine data or setting data to which a
protection level is to be assigned.

Protection level:

APW n

APR n

Access protection (Access Protection)

for writing (Write)

for reading (Read)

n Protection level n

from 0 or 10 (highest level)

to 7 (lowest level)

Resetting machine/setting data
To undo a change to the protection levels, the original protection levels must be written back
again.
REDEF extensions
For further information about the operation of the REDEF statement in the parts program, see
the section "Protection levels for NC commands".

Example: changing rights in individual MDs

%_N_SGUD_DEF

;$PATH=/_N_DEF_DIR

REDEF $MA_CTRLOUT_SEGMENT_NR APR 2 APW 2

REDEF $MA_ENC_SEGMENT_NR APR 2 APW 2

REDEF $SN_JOG_CONT_MODE_LEVELTRIGGRD APR 2 APW 2

M30

File and Program Management
3.4 Protection levels for user data, MD, SD and NC commands

 Job planning
3-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: resetting rights in individual MDs to the original values

%_N_SGUD_DEF

;$PATH=/_N_DEF_DIR

REDEF $MA_CTRLOUT_SEGMENT_NR APR 7 APW 2

REDEF $MA_ENC_SEGMENT_NR APR 0 APW 0

REDEF $SN_JOG_CONT_MODE_LEVELTRIGGRD APR 7 APW 7

M30

3.4.4 Protection levels for NC commands (REDEF)

Function
The existing protection level concept for access to machine/setting data and GUDs has been
expanded by the parts program commands listed above. For this purpose, a protection level
0 to 7 is assigned to a parts program command with the REDEF command.

 Note
This command will now only be executed during parts program execution when the
corresponding execution right exists.

Programming
G codes in accordance with the "List of G functions/preparatory functions"
REDEF (NC language element) APX value
or write access by the parts program or synchronous actions on the system variable.
REDEF (system variable) APW value
or change the write or read access to machine and setting data as previously
REDEF (machine data/setting data) APW value
REDEF (machine data/setting data) APR value

 File and Program Management
 3.4 Protection levels for user data, MD, SD and NC commands

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-17

Parameters
The REDEF command acts globally for all channels and mode groups

REDEF Effect and application of the REDEF command

NC language element Language element to which a protection level is to
be assigned for execution:

1. Predefined subroutines/functions
 (see list with same name).

2. "DO" statement keyword for synchronized actions

3. G functions (G functions/preparatory
functions).

4. Program identifier for cycle
The cycle must be stored in one of the cycle
directories and contain a PROC statement.

System variables System variable to which a protection level is to
be assigned for write access. Read access is
always possible. (see "List of system variables"):

Machine data/setting data Machine data or setting data to which a protection
level is to be assigned for read/write access.

APX

APW, APR

Vocabulary word for access protection

Execute

Write, read

Value Numerical value of the protective level (0 to 7)

from 0 or 10 (highest level)

to 7 (lowest level)

value 7 Keyswitch position 0 corresponds to the default
setting of all available parts program commands

Example: subroutine call in definition files

N10 REDEF GEOAX APX 3

N20 IF(ISFILE("/_N_CST_DIR/_N_SACCESS_SUB1_SPF"))

N30 PCALL /_N_CST_DIR/_N_SACCESS_SUB1_SPF

N40 ENDIF

N40 M17

File and Program Management
3.4 Protection levels for user data, MD, SD and NC commands

 Job planning
3-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Description
Like for the GUD definitions, separate definition files exist that are evaluated on control start-
up:
End user: /_N_DEF_DIR/_N_UACCESS_DEF
Manufacturer: /_N_DEF_DIR/_N_MACCESS_DEF
Siemens: /_N_DEF_DIR/_N_SACCESS_DEF
Subroutine call in definition files
It is possible to call subroutines containing REDEF statements from the above definition files.
The REDEF statements must always be at the beginning of the data part just like the DEF
statements. The subroutines must have the extension SPF or MPF and inherit the write-
protection of the definition files set with $MN_ACCESS_WRITE_xACCESS.

 Note
Extension of the REDEF command
As soon as the "Protection levels for NC commands" function is active, the redefinitions for
the machine data/setting data created in GUD definition files must be stored in the new
definition files for protection level assignments, i.e. the setting of protection levels for
machine and setting data is permitted only in the previously mentioned protection level
definition files and rejected in the GUD definition files with the alarm 15420.

 Note
Setting the initialization attributes and synchronization attributes is still only possible in the
GUD definition files.

Protection levels for system variables
Protection levels for system variables only apply to the value assignments via parts program
command. On the user interface, the protection level concept of the HMI
Advanced/Embedded applies.
For further information about the "protection level concept", please refer to:
/BAD/, HMI Operator's Guide, in the "Keyswitch" and "Machine Data" section
/IAD/, Installation and Start-Up Guide, "Setting Parameters for Control Unit"

 File and Program Management
 3.5 REDEF Changing the attributes of the NC language elements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-19

3.5 3.5 REDEF Changing the attributes of the NC language elements

Function
The extension of the REDEF statement makes available the functions described in the
previous subsection for defining data objects and protection levels into a general interface for
setting attributes and values.

Programming
REDEF NC language element attribute value
or
REDEF name (no further parameter details)

Parameters

NC language element This includes:

GUD

R parameters

Machine data/setting data

Synchronous variables ($AC_PARAM, $AC_MARKER, $AC_TIMER)

Synchronous variables that can be written from parts programs
(see PGA1)

User frames (G500, etc.)

Magazine/tool configurations

name The settings for APX, APR, APW are set to default values and
INIPO, INIRE, INICF, PRLOC are reset again.

Attribute

 Initializations

INIPO

INIRE

INICF

PRLOC

Permissible for:

GUD, R parameters, synchronous vars

GUD, R parameters, synchronous vars

GUD, R parameters, synchronous vars

Setting data

 Synchronization

SYNR

SYNW

SYNRW

Permissible for:

GUD

GUD

GUD

 Access
authorization

APW

APR

Permissible for:

Machine/setting data

Machine/setting data

Setting a default value:

Preprocess stop while reading

Preprocess stop while writing

Preprocess stop while reading and
writing

Access right during write

Access right during read

For machine and setting data you
can overwrite the preset access
authorization subsequently. The
permissible values range from

'0' (Siemens password) to
'7' (keyswitch setting 0)

File and Program Management
3.5 REDEF Changing the attributes of the NC language elements

 Job planning
3-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Optional parameters

Value (optional) Optional parameters for attributes INIPO, INIRE, INICF, PRLOC:
Subsequent start value(s)
forms:

Single value
value list

REP (w1)

SET(w1, w2, w3, ...)
(w1, w2, w3, ...)

n:

e.g. 5
e.g. (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) for variable with 10
elements with

w1: the value list to be repeated
for variable with several elements, e.g. REP(12)

or
value list

required protection level parameter for attributes for APR or
APW

 For GUD, the definition can contain a start value (DEF NCK INT
_MYGUD=5). If this start value is not stated (e.g. in DEF NCK
INT _MYINT), the start value can be defined subsequently in
the REDEF statement.

The initialization value for an array applies to all array
elements. Individual elements can be set using an
initialization list or REP(). Examples:

REDEF_MYGUD INIRE 5
REDEF_MYGUD INIRE 0,1,2,3,4,5,6,7,8,9
REDEF_MYGUD INIRE REP(12,14,16,18,20)

Cannot be used for R parameters and system variables.

Only constants can be assigned.
Expressions are not permitted values.

Meaning of the attributes

INIPO INIt for Power On

The data are overwritten with the default(s) on battery-back
restart of the NC.

INIRE INIt for operator panel front Reset or TP end

At the end of a main program, for example, with M2, M30 , etc.
or on cancellation with the reset, the data are overwritten with
the defaults.

INIRE also applies for INIPO.

INICF INIt for NewConf request or NEWCONF TP command

On NewConf request or TP command NEWCONF, the data are
overwritten with the default values.

INICF also applies to INIRE and INIPO.

PRLOC Only program-local change

If the data is changed in a parts program, subroutine, cycle, or
ASUB, it will be restored to its original value at the end of
the main program (end with, for example, M2, M30, etc. or on
cancellation by operator panel front reset).

This attribute is only permissible for programmable setting
data, see programmable setting data

The user is responsible for synchronization of the events triggering initialization. For
example, if an end of parts program is executed in two different channels, the variables are
initialized in each. That affects global and axial data!

 File and Program Management
 3.5 REDEF Changing the attributes of the NC language elements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-21

Programmable setting data and the writable system variables from the parts program
The following SD can be initialized with the REDEF instruction:

Number Name of identifier GCODE
42000 $SC_THREAD_START_ANGLE SF
42010 $SC_THREAD_RAMP_DISP DITS/DITE
42400 $SA_PUNCH_DWELLTIME PDELAYON
42800 $SA_SPIND_ASSIGN_TAB SETMS
43210 $SA_SPIND_MIN_VELO_G25 G25
43220 $SA_SPIND_MAX_VELO_G26 G26
43230 $SA_SPIND_MAX_VELO_LIMS LIMS
43300 $SA_ASSIGN_FEED_PER_REV_SOURCE FPRAON
43420 $SA_WORKAREA_LIMIT_PLUS G26
43430 $SA_WORKAREA_LIMIT_MINUS G25
43510 $SA_FIXED_STOP_TORQUE FXST
43520 $SA_FIXED_STOP_WINDOW FXSW
43700 $SA_OSCILL_REVERSE_POS1 OSP1
43710 $SA_OSCILL_REVERSE_POS2 OSP2
43720 $SA_OSCILL_DWELL_TIME1 OST1
43730 $SA_OSCILL_DWELL_TIME2 OST2
43740 $SA_OSCILL_VELO FA
43750 $SA_OSCILL_NUM_SPARK_CYCLES OSNSC
43760 $SA_OSCILL_END_POS OSE
43770 $SA_OSCILL_CTRL_MASK OSCTRL
43780 $SA_OSCILL_IS_ACTIVE OS
43790 $SA_OSCILL_START_POS OSB

The PGA1 "List of the system variables" contains the listing of the system variables. All
system variables that are marked W (write) or WS (write with preprocess stop) in column
parts program can be initialized with the RESET instruction.

Example

Reset behavior with GUD:

/_N_DEF_DIR/_N_SGUD_DEF

DEF NCK INT _MYGUD1 ;Definitions

DEF NCK INT _MYGUD2 = 2

DEF NCK INT _MYGUD3 = 3

Initialization on operator panel front reset/end of parts program:

DEF _MYGUD2 INIRE ;Initialization

M17

This sets "_MYGUD2" back to "2" on operator panel front reset / end of parts program
whereas "_MYGUD1" and "_MYGUD3" retain their value.

File and Program Management
3.5 REDEF Changing the attributes of the NC language elements

 Job planning
3-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: modal speed limitation in the parts program (setting data)

/_N_DEF_DIR/_N_SGUD_DEF

REDEF $SA_SPIND_MAX_VELO_LIMS PRLOC ;Setting data for limit speed

M17

/_N_MPF_DIR/_N_MY_MPF

N10 SETMS (3)

N20 G96 S100 LIMS=2500

...

M30

Let the limit speed defined in setting data ($SA_SPIND_MAX_VELO_LIMS) speed limitation
be 1200 rpm. Because a higher speed can be permitted in a set-up and completely tested
parts program, LIMS=2500 is programmed here. After the end of the program, the value
configured in the setting data takes effect here again.

Reset settings to default values and delete initializations again

New
definition

Attribute Reset default value initializations

REDEF NC language element APX = 7

REDEF Machine data/setting data Reset APW = 7 APR = 7 PRLOC

REDEF Synchronization variable Reset APW = 7 INIRE, INIPO, INICF

REDEF GUD, LUD Reset INIRE, INIPO, INICF

Example

REDEF MASLON APX 2

REDEF SYG RS INIRE APW3

REDEF R[] INIRE

REDEF MASLON ;Set APX to 7

REDEF SYG RS ;Set APW to 7 and INIRE deleted

REDEF R[] ;INIRE deleted

Restrictions
• The change to the attributes of NC objects can only be made after definition of the object.

In particular, it is necessary to pay attention to the DEF.../ REDEF sequence for GUD.
(Setting data/system variables are implicitly created before the definition files are
processed). The symbol must always be defined first (implicitly by the system or by the
DEF statement) and only then can the REDEF be changed.

• If two or more concurrent attribute changes are programmed, the last change is always
active.

 File and Program Management
 3.5 REDEF Changing the attributes of the NC language elements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 3-23

• Attributes of arrays cannot be set for individual elements but only always for the entire
array:

DEF CHAN INT _MYGUD[10,10]

REDEF _MYGUD INIRE // ok

REDEF _MYGUD[1,1] INIRE // not possible, alarm is output
// (array value)

• Initialization of GUD arrays themselves is not affected.

DEF NCK INT _MYGUD[10] =(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

DEF NCK INT _MYGUD[100,100] = REP (12)

DEF NCK INT _MYGUD[100,100] ;

• REDEF statements with R parameters must be enclosed in parentheses.

REDEF R[] INIRE

• INI attributes
Note, however, that when the INI attributes for these variables are set, that an
appropriately large memory for INIT values, can be set using MD 18150:
MM_GUD_VAL_MEM, must be available. In the machine data 11270:
DEFAULT_VALUES_MEM_MASK must be set to 1 (memory for initialization values
active). Too small a memory cause alarm 12261 "Initialization not allowed".

• R parameters and system variables
For R and system variables it is not possible to specify a default that deviates from the
compiled value. However, resetting to the compiled value is possible with INIPO, INIRE,
or INICF.

• For data type FRAME of GUD it is not possible to specify a default deviating from the
compiled value either (like for definition of the data item).

• GUD (DEF NCK INT_MYGUD)
Only the INIPO attribute is permissible for global GUD (DEF NCK INT_MYGUD).
Only the data in the corresponding channel is initialized for channel-specific GUD (DEF
CHAN INT_MYGUD) with the corresponding result (RESET, BAG-RESET or NewConfig).
Example: 2 channels are defined with the channel-specific GUD that is to be initialized
during RESET:
DEF CHAN INT _MYGUD
REDEF _MYGUD INIRE
During a RESET in the first channel, the GUD for this channel is reset and the value in
the second channel is not affected.

Setting a default value
If REDEF <name> INIRE, INIPO; INICF; PRLOC is used to change the behavior of a system
variable or GUD, the machine data DEFAULT_VALUES_MEM_MASK must be set to 1
(memory for initialization values active). Otherwise, alarm 12261 "Initialization not allowed" is
output.

File and Program Management
3.6 SEFORM structuring statement in the Step editor

 Job planning
3-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

3.6 3.6 SEFORM structuring statement in the Step editor

Function
The SEFORM statement is evaluated in the Step editor to generate the step view for HMI
Advanced. The step view available in the HMI Advanced improves the readability of the NC
subroutine. The SEFORM structuring statement supports the Step editor (editor-based
program support) over the three specified parameters.

Programming
SEFORM(STRING[128] section_name, INT level, STRING[128] icon)

Parameters

SEFORM Function call of structuring
statement with parameters:
section_name, level, and icon

section_name Identifier of the operation

level Index for the main or sublevel.

=0 corresponds to the main level

=1, ... corresponds to sublevel 1 to
n

icon Name of the icon displayed for this
section.

 Note
The SEFORM statements are generated in the Step editor.
The string transferred with the <section name> parameter is stored main-run-synchronously
in the OPI variable in a similar way to the MSG statement. The information remains until
overwritten by the next SEFORM statement. Reset and end of parts program clear the
content.
The level and icon parameters are checked by the parts program processing of the NCK but
not further processed.

For more information about editor-based programming support, see:
/BAD/ Operator's Guide HMI Advanced.

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 4-1

Protection zones 4
4.1 4.1 Definition of the protection zones (CPROTDEF, NPROTDEF)

Function
You can use protection zones to protect various elements on the machine, their components
and the workpiece against incorrect movements.
Tool-oriented protection zones:
For parts that belong to the tool (e.g. tool, toolholder)
Workpiece-oriented protection zones:
For parts that belong to the workpiece (e.g. parts of the workpiece, clamping table, clamping
shoe, spindle chuck, tailstock).

Programming
DEF INT NOT_USED
CPROTDEF(n,t,applim,appplus,appminus)
NPROTDEF(n,t,applim,applus,appminus)

Protection zones
4.1 Definition of the protection zones (CPROTDEF, NPROTDEF)

 Job planning
4-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

EXECUTE(NOT_USED)

Parameters

DEF INT NOT_USED Define local variable, data type integer (see Motion-
synchronous action section)

CPROTDEF Define channel-specific protection zones (for NCU 572/573 only)

NPROTDEF Defining machine-specific protection zones

EXECUTE End definition

n Number of defined protection zone

t TRUE = Tool-related protection zone

FALSE = workpieceprotection zone

applim Type of limitation in the third dimension

0 = No limit

1 = Limit in positive direction

2 = Limit in negative direction

3 = Limit in positive and negative direction

applus Value of the limit in the positive direction in the 3rd
dimension

appminus Value of the limit in the negative direction in the 3rd
dimension

NOT_USED Error variable has no effect in protection zones with EXECUTE

Description
Definition of the protection zones includes the following:
• CPROTDEF for channel-specific protection zones
• NPROTDEF for machine-specific protection zones
• Contour description for protection zone
• Termination of the definition with EXECUTE
You can specify a relative offset for the reference point of the protection zone when the
protection zone is activated in the NC parts program.

Reference point for contour description
The workpiece-oriented protection zones are defined in the basic coordinate system. The
tool-oriented protection zones are defined with reference to the tool carrier reference point F.

Contour definition of protection zones
The contour of the protection zones is specified with up to 11 traversing movements in the
selected plane. The first traversing movement is the movement to the contour. The valid
protection zone is the zone left of the contour. The travel motions programmed between
CPROTDEF or NPROTDEF and EXECUTE are not executed, but merely define the
protection zone.

 Protection zones
 4.1 Definition of the protection zones (CPROTDEF, NPROTDEF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 4-3

Plane
The required plane is selected before CPROTDEF and NPROTDEF with G17, G18, G19 and
must not be altered before EXECUTE. The applicate must not be programmed between
CPROTDEF or NPROTDEF and EXECUTE.

Contour elements
The following is permissible:
• G0, G1 for straight contour elements
• G2 for clockwise circle segments (only for tool-oriented protection zones)
• G3 for circular segments in the counterclockwise direction.

 Note
With the 810D, a maximum of 4 contour elements are available for defining one
protection zone (max. of 4 channel-specific and 4 NCK-specific protection zones).
If a full circle describes the protection zone, it must be divided into two half circles. The
order G2, G3 or G3, G2 is not permitted. A short G1 block must be inserted, if necessary.
The last point in the contour description must coincide with the first.

External protection zones (only possible for workpiece-related protection zones) must be
defined in the clockwise direction.
For rotation-symmetric protection zones (e.g. spindle chuck), you must describe the
complete contour and not only up to the center of rotation!.
Tool-oriented protection zones must always be convex. If a concave protected zone is
desired, this should be subdivided into several convex protection zones.

Protection zones
4.2 Activating, deactivating protection zones (CPROT, NPROT)

 Job planning
4-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

During definition of the protection zones
• no cutter or tool nose radius compensation,
• no transformation,
• no frame must be active.
Nor must reference point approach (G74), fixed point approach (G75), block search stop or
program end be programmed.

4.2 4.2 Activating, deactivating protection zones (CPROT, NPROT)

Function
Activating and preactivating previously defined protection zones for collision monitoring and
deactivating protection zones.
The maximum number of protection zones, which can be active simultaneously on the same
channel, is defined in machine data.
If no toolrelated protection zone is active, the tool path is checked against the workpiece-
related protection zones.

 Note
If no workpiece-related protection zone is active, protection zone monitoring does not take
place.

Programming
CPROT (n,state,xMov,yMov,zMov)
NPROT (n,state,xMov,yMov,zMov)

Parameters

CPROT Call channel-specific protection zone (for NCU 572/573 only)

NPROT Call machine-specific protection zone

n Number of protection zone

state Status parameter

0 = Deactivate protection zone

1 = Preactivate protection zone

2 = Activate protection zone

3 = Preactivate protection zone with conditional stop

xMov,yMov,zMov Move defined protection zone on the geometry axes

 Protection zones
 4.2 Activating, deactivating protection zones (CPROT, NPROT)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 4-5

Example of milling
Possible collision of a milling cutter with the measuring probe is to be monitored on a milling
machine. The position of the measuring probe is to be defined by an offset when the function
is activated. The following protection zones are defined for this:
• A machine-specific and a workpiece-related protection zone for both the measuring probe

holder (n-SB1) and the measuring probe itself (n-SB2).
• A channel-specific and a tool-oriented protection zone for the milling cutter holder

(c-SB1), the cutter shank (c-SB2) and the milling cutter itself (c-SB3).
The orientation of all protection zones is in the Z direction.
The position of the reference point of the measuring probe on activation of the function must
be X = –120, Y = 60 and Z = 80.

DEF INT PROTECTB Definition of a Help variable

Definition of protection zones

G17

Set orientation

NPROTDEF(1,FALSE,3,10,–10)

G01 X0 Y–10

X40

Y10

X0

Y–10

EXECUTE(PROTECTB)

Protection zone n–SB1

Protection zones
4.2 Activating, deactivating protection zones (CPROT, NPROT)

 Job planning
4-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

NPROTDEF(2,FALSE,3,5,–5)

G01 X40 Y–5

X70

Y5

X40

Y–5

EXECUTE(PROTECTB)

Protection zone n–SB2

CPROTDEF(1,TRUE,3,0,–100)

G01 X–20 Y–20

X20

Y20

X–20

Y–20

EXECUTE(PROTECTB)

Protection zone c–SB1

CPROTDEF(2,TRUE,3,–100,–150)

G01 X0 Y–10

G03 X0 Y10 J10

X0 Y–10 J–10

EXECUTE(PROTECTB)

Protection zone c–SB2

CPROTDEF(3,TRUE,3,–150,–170)

G01 X0 Y–27,5

G03 X0 Y27,5 J27,5

X0 Y27,5 J–27,5

EXECUTE(PROTECTB)

Protection zone c–SB3

Activation of protection zones:

NPROT(1,2,–120,60,80) Activate protection zone n–SB1 with offset

NPROT(2.2,–120,60,80) Activate protection zone n–SB2 with offset

CPROT(1,2,0,0,0) Activate protection zone c–SB1 with offset

CPROT(2,2,0,0,0) Activate protection zone c–SB2 with offset

CPROT(3,2,0,0,0) Activate protection zone c–SB3 with offset

Activation status
A protection zone is generally activated in the parts program with status = 2.
The status is always channel-specific even for machine-oriented protection zones.
If a PLC user program provides for a protection zone to be effectively set by a PLC user
program, the required preactivation is implemented with status = 1.
The protection zones are deactivated and therefore disabled with Status = 0. No offset is
necessary.

 Protection zones
 4.3 Checking for protection zone violation, working area limitation and software limits

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 4-7

Movement of protection zones for (pre)activating
The offset can take place in 1, 2, or 3 dimensions. The offset refers to:
• the machine zero in workpiece-specific protection zones,
• the tool carrier reference point F in tool-specific protection zones.

Status after booting
Protection zones can be activated straight after booting and subsequent reference point
approach. The system variable
$SN_PA_ACTIV_IMMED [n] or
$SN_PA_ACTIV_IMMED[n] = TRUE must be set for this.
They are always activated with Status = 2 and have no offset.

Multiple activation of protection zones
A protection zone can be active simultaneously in several channels (e.g. tailstock where
there are two opposite sides). The protection zones are only monitored if all geometry axes
have been referenced. The following applies:
• The protection zone cannot be activated simultaneously with different offsets in a single

channel.
• Machine-oriented protection zones must have the same orientation on both channels.

4.3 4.3 Checking for protection zone violation, working area limitation and
software limits

Function
The CALCPOSI function is for checking whether, starting from a defined starting point, the
geometry axes can traverse a defined path without violating the axis limits (software limits),
working area limitations, or protection zones.
If the defined path cannot be traversed, the maximum permissible path is returned.
The CALCPOSI function is a predefined subroutine. It must be alone in a block.

Programming
Status=CALCPOSI(_STARTPOS, _MOVDIST, _DLIMIT, _MAXDIST, _BASE_SYS,
_TESTLIM)

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limits

 Job planning
4-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

Status 0: Function OK;
the defined path can be traversed completely.

 –: In _DLIMIT at least one component is negative

 –: An error occurred in a transformation calculation.

If the defined path cannot be traversed completely, a positive,
decimally coded value is returned:

Units digit (type of violated limit):

 1: Software limits are limiting the traverse path.

 2: Working area limitation is limiting the traverse path.

 3: Protection zones are limiting limit the traverse path.

If several limits are violated at once (e.g. software limits and
protection zones), the limit leading to the greatest limitation of
the traverse path is indicated in a units digit.

 Tens digit

10:

The start value is violating the limit.

20:

The defined straight line is violating the limit. This value is
also returned if the end point does not violate any limit itself
but a limit value would be violated on the path from the start to
the end point (e.g. by passing through a protection zone, curved
software limits in the WCS for non-linear transformations, e.g.
Transmit).

 Hundreds digit

100:

The positive limit value is violated (only if the units digit is 1
or 2, i.e. for software limits and working area limitation).

100:

Only an NCK protection zone is violated (only if the units digit
is 3).

200:

The negative limit value is violated (only if the units digit is 1
or 2, i.e. for software limits and working area limitation).

200:

Only a channel-specific protection zone is violated (only if the
units digit is 3).

 Thousands digit

1000:

Factor by which the number of the axis is multiplied that violates
the limit (only if the units digit is 1 or 2, i.e. for software
limits and working area limitation).

The axis count starts at 1 and refers in the case of violated
software limits (units digit = 1) to the machine axes and in the
case of a working area limitation (units digit = 2) to the
geometry axes.

1000:

Factor by which the number of the violated protection zone is
multiplied (only if the units digit is 3).

If several protection zones are violated, the limit leading to the
greatest limitation of the traverse path is indicated in the
hundreds and thousands digit of the protection zone.

_STARTPOS Start value for abscissa [0], ordinate [1], and applicate [2] in
the (WCS)

_MOVEDIST Path definition incremental for abscissa [0], ordinate [1], and
applicate [2]

 Protection zones
 4.3 Checking for protection zone violation, working area limitation and software limits

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 4-9

_DLIMIT [0] - [2]: Minimum clearances assigned to the geometry axes.

[3]: Minimum clearance assigned to a linear machine axis for a
non-linear transformation, if no geometry axis can be uniquely
assigned.

[4]: Minimum clearance assigned to a rotary machine axis for a
non-linear transformation, if no geometry axis can be uniquely
assigned. Only for special transformations, if SW limits are to be
monitored.

_MAXDIST Array [0] - [2] for return value. Incremental path in all three
geometry axes without violating the defined minimum clearance of
an axis limit in the machine axes involved.

If the traverse path is not restricted, the content of this return
parameter is the same as the content of _MOVDIST.

_BASE_SYS FALSE or parameters not stated:

In evaluating the position and length data, the G code from G code
group 13 (G70, G71, G700, G710; inch/metric) is evaluated. If G70
is active and the basic system is metric (or G71 active and inch),
the WCS system variables $AA_IW[X] and $AA_MW[X]) are provided in
the basic system and must, if necessary, be recalculated using the
CALCPOSI function.

TRUE:

In evaluation of the position and length data, the basic system of
the control is always used depending on the value of the active G
code of group 13.

_TESTLIM Limitations to be checked (binary coded):

1: Monitoring software limits

2: Monitoring working area limitations

3: Monitoring activated protection zones

4: Monitoring pre-activated protection zones

Combinations by adding values. Default: 15; check all.

Example
The example in the figure shows X software limits and working area limitations. In addition,
three protection zones are defined: the two channel-specific protection zones C2 and C4,
and the N3 NCK protection zone C2 is a circular, active, tool-related protection zone with
2 mm radius. C4 is a square, pre-activated, and workpiece-related protection zone with side
length 10 mm and N3 is a rectangular, active protection zone with side lengths 10 mm and
15 mm. In the following NC, initially the protection zones and the operating range limits are
defined as indicated, and the CALCPOSI function is then called with various parameters.
The events of each CALCPOSI call are summarized in the table at the end of the example.

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limits

 Job planning
4-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

N10 def real _STARTPOS[3]

N20 def real _MOVDIST[3]

N30 def real _DLIMIT[5]

N40 def real _MAXDIST[3]

N50 def int _SB

N60 def int _STATUS

N70 cprotdef(2, true, 0)

N80 g17 g1 x–y0

N90 g3 i2 x2

N100 i–x–

N110 execute(_SB)

;Tool-related protection zone

N120 cprotdef(4, false, 0)

N130 g17 g1 x0 y15

N140 x10

N150 y25

N160 x0

N170 y15

N180 execute(_SB)

;workpiece-related protection zone

N190 nprotdef(3, false, 0)

N200 g17 g1 x10 y5

N210 x25

N220 y15

;workpiece-elated protection zone

 Protection zones
 4.3 Checking for protection zone violation, working area limitation and software limits

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 4-11

N230 x10

N240 y5

N250 execute(_SB)

N260 cprot(2,2,0,0,0)

N270 cprot(4,1,0,0,0)

N280 nprot(3,2,0,0,0)

;activate/deactivate
;protection zones

N290 g25 XX=–YY=–

N300 g26 xx= 20 yy= 21

N310 _STARTPOS[0] = 0.

N320 _STARTPOS[1] = 0.

N330 _STARTPOS[2] = 0.

;define working area limitations

N340 _MOVDIST[0] = 35.

N350 _MOVDIST[1] = 20.

N360 _MOVDIST[2] = 0.

N370 _DLIMIT[0] = 0.

N380 _DLIMIT[1] = 0.

N390 _DLIMIT[2] = 0.

N400 _DLIMIT[3] = 0.

N410 _DLIMIT[4] = 0.

; various function calls

N420 _STATUS = calcposi(_STARTPOS,_MOVDIST,_DLIMIT,_MAXDIST)

N430 _STATUS = calcposi(_STARTPOS,_MOVDIST,_DLIMIT,_MAXDIST,,3)

N440 _STATUS = calcposi(_STARTPOS,_MOVDIST,_DLIMIT,_MAXDIST,,1)

N450 _STARTPOS[0] = 5.

N460 _STARTPOS[1] = 17.

N470 _STARTPOS[2] = 0.

;other starting point

N480 _MOVDIST[0] = 0.

N490 _MOVDIST[1] =–.

N500 _MOVDIST[2] = 0.

;other destination

; various function calls

N510 _STATUS = calcposi(_STARTPOS,_MOVDIST,_DLIMIT,_MAXDIST,,14)

N520 _STATUS = calcposi(_STARTPOS,_MOVDIST,_DLIMIT,_MAXDIST,,6)

N530 _DLIMIT[1] = 2.

N540 _STATUS = calcposi(_STARTPOS,_MOVDIST,_DLIMIT,_MAXDIST,,6)

N550 _STARTPOS[0] = 27.

N560 _STARTPOS[1] = 17.1

N570 _STARTPOS[2] = 0.

N580 _MOVDIST[0] =–.

N590 _MOVDIST[1] = 0.

N600 _MOVDIST[2] = 0.

N610 _DLIMIT[3] = 2.

N620 _STATUS = calcposi(_STARTPOS,_MOVDIST,_DLIMIT,_MAXDIST,,12)

N630 _STARTPOS[0] = 0.

N640 _STARTPOS[1] = 0.

N650 _STARTPOS[2] = 0.

N660 _MOVDIST[0] = 0.

N670 _MOVDIST[1] = 30.

N680 _MOVDIST[2] = 0.

N690 trans x10

N700 arot z45

N710 _STATUS = calcposi(_STARTPOS,_MOVDIST,_DLIMIT,_MAXDIST)

N720 M30

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limits

 Job planning
4-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Results of the tests in the example:

Block no.
N...

_STATUS _MAXDIST
[0] (= X)

_MAXDIST
[1] (= Y)

Comments

420 3123 8.040 4.594 Protection zone N3 violated.
430 1122 20.000 11.429 No protection zone monitoring, working

area limitation violated.
440 1121 30.000 17.143 Now only monitoring of the software

limits active.
510 4213 0.000 0.000 Start point violates protection zone C4.
520 0000 0.000 –.000 Pre-activated protection zone C4 not

monitored. Defined path can be
traversed completely.

540 2222 0.000 –.000 Because _DLIMIT[1]=2, the traverse
path is restricted by the working area
limitation.

620 4223 –.000 0.000 Distance from C4 in total 4 mm due to
C2 and _DLIMIT[3]. Distance C2 – N3 of
0.1 mm does not lead to limitation of the
traverse path.

710 1221 0.000 21.213 Frame with translation and rotation
active. The permissible traversal path in
_MOVDIST applies in the translated and
rotated coordinate system (WCS).

Special cases and further details
All path data are always entered as radii even if for a facing axis with active G code
"DIAMON". If the part of one of the involved axes cannot be traversed completely, the paths
of the other axes will also be reduced accordingly in the _MAXDIST return value so that the
resulting end point lies on the specified path.
It is permissible that no software limits, operating range limits or protection zones are defined
for one or more of the axes involved. All limits are only monitored if the axes involved are
referenced. Any involved rotary axes are monitored only if they are not modulo axes.
As in the normal traversing operation, the monitoring of the software limits and the operating
range limits depends on the active settings (interface signals for selecting the software limits
1 or software limits 2, GWALIMON/WALIMOF, setting data for the specific activation of the
operating range limits and for the specification whether or not the radius of the active tool is
to be considered for the monitoring of the operating range limits).

 Protection zones
 4.3 Checking for protection zone violation, working area limitation and software limits

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 4-13

For certain kinematic transformations (e.g. TRANSMIT), the position of the machine axes
cannot be determined uniquely from the positions in the workpiece coordinate system (WCS)
(non-uniqueness). In the normal traversing operation, the uniqueness normally results from
the previous history and the condition that a continuous movement in the WCS must
correspond to a continuous movement in the machine axes. When monitoring the software
limits using the CALCPOSI function, the current machine position is therefore used to
resolve non-unique determinability in such cases. If necessary, a STOPRE must be
programmed in front of CALCPOSI to input valid machine axis positions to the function.
It is not guaranteed that the separation to the protection zones specified in _DLIMIT[3] can
always be maintained for a movement on the specified traversal path. Therefore if the end
point returned in _MOVDIST is lengthened by this distance, no protection zone is violated,
even though the straight line may pass extremely close to a protection zone.

 Note
You will find details on working area limitations in the
/PG/ Fundamentals Programming Guide,
on the software limits in
/FB1/ Function Manual, Basic Functions; Axis Monitoring, Protection Zones (A3).

Protection zones
4.3 Checking for protection zone violation, working area limitation and software limits

 Job planning
4-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-1

Special Motion Commands 5
5.1 5.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN)

Function
The machine data can be used to enter for two axes a maximum of 60 (0 to 59) positions for
each in the position tables.

Programming
CAC (n)
or
CIC (n)
or
CACP (n)
or
CACN (n)

Parameters

CAC (n) Approach absolute coded position

CIC (n) Approach coded position incrementally by n spaces in plus
direction (+) or in minus direction (–)

CDC (n) Approach coded position via shortest possible route (rotary axes
only)

CACP (n) Approach coded position absolutely in positive direction (rotary
axes only)

CACN (n) Approach coded position absolutely in negative direction (rotary
axes only)

(n) Position numbers 1, 2, ... max. 60 positions for each axis

Special Motion Commands
5.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN)

 Job planning
5-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: positioning table for linear axis and rotary axis

 Note
If an axis is situated between two positions, it does not traverse in response to an
incremental position command with CIC (...). It is always advisable to program the first travel
command with an absolute position value.

Example 2

N10 FA[B]= 300 ;Feed for positioning axis B

N20 POS[B]= CAC (10) ;Approach coded position 10 (absolutely)

N30 POS[B]= CIC (-4) ;Travel 4 spaces back from the current position

 Special Motion Commands
 5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-3

5.2 5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT,
BTAN)

Function
The spline interpolation function can be used to link series of points along smooth curves.
Splines can be applied, for example, to create curves using a sequence of digitized points.
There are several types of spline with different characteristics, each producing different
interpolation effects. In addition to selecting the spline type, the user can also manipulate a
range of different parameters. Several attempts are normally required to obtain the desired
pattern.

In programming a spline, you link a series of points along a curve. You can select one of
three spline types:
• A spline (akima spline)
• B spline (non-uniform, rational basis spline, NURBS)
• C spline (cubic spline)

Programming
ASPLINE X Y Z A B C
or
BSPLINE X Y Z A B C
or
CSPLINE X Y Z A B C

Special Motion Commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN)

 Job planning
5-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

ASPLINE The Akima spline passes as tangent through the intermediate
points.

BSPLINE The B spline does not pass directly through the control points
but only near them. The programmed positions are not
interpolation points but only control points.

CSPLINE Cubic spline with transitions to the interpolation points both
tangentially and in terms of curvature.

A, B and C splines are modally active and belong to the group of motion commands.
The tool radius offset may be used.
Collision monitoring is carried out in the projection in the plane.

 Note
Parameters for A-SPLINE and C-SPLINE
For the Akima spline (A spline) and the Cubic spline (C spline), restrictions for the transition
behavior at the start and the end of the spline curve can be programmed.
These restrictions for the transition behavior are divided into two groups with statements
each with three commands as follows:

Start of spline curve:

BAUTO No command input; start is determined by the position of the
first point

BNAT Zero curvature

BTAN Tangential transition to preceding block (initial setting)

End of spline curve:

EAUTO No command input; end is determined by the position of the
last point

ENAT Zero curvature

ETAN Tangential transition to next block (initial setting)

 Special Motion Commands
 5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-5

 Note
Parameters for B-SPLINE
The programmed restrictions (see A- or C-spline) do not have any affect on the B-spline. The
B spline is always tangential to the check polygon at its start and end points.

Point weight:

PW = n The weight details can be programmed as a so-called point-
weight (PW) for each interpolation point.

Value range:

<= n <= 3 in increments of 0.0001

Effect:

n > 1 The check point exerts more "force" on the curve.

n < 1 The check point exerts less "force" on the curve.

Spline degree:

SD = 2 A third degree polygon is used as standard, but a second
degree polygon is also possible.

Distance between nodes:

PL = value The distances between nodes are suitably calculated
internally. The control can also machine predefined node
distances that are specified in the so-called parameter-
interval-length (PL).

Value Value range as for path dimension

Special Motion Commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN)

 Job planning
5-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: B spline

All weights 1 Different weights Check polygon
N10 G1 X0 Y0 F300 G64 N10 G1 X0 Y0 F300 G64 N10 G1 X0 Y0 F300 G64
N20 BSPLINE N20 BSPLINE N20 ;omitted
N30 X10 Y20 N30 X10 Y20 PW=2 N30 X10 Y20
N40 X20 Y40 N40 X20 Y40 N40 X20 Y40
N50 X30 Y30 N50 X30 Y30 PW=0.5 N50 X30 Y30
N60 X40 Y45 N60 X40 Y45 N60 X40 Y45
N70 X50 Y0 N70 X50 Y0 N70 X50 Y0

 Special Motion Commands
 5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-7

Example: C spline, zero curvature at start and end

N10 G1 X0 Y0 F300

N15 X10

N20 BNAT ENAT ;C spline, zero curvature at start and end

N30 CSPLINE X20 Y10

N40 X30

N50 X40 Y5

N60 X50 Y15

N70 X55 Y7

N80 X60 Y20

N90 X65 Y20

N100 X70 Y0

N110 X80 Y10

N120 X90 Y0

N130 M30

Special Motion Commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN)

 Job planning
5-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

A-Spline
The A spline (Akima spline) passes exactly through the intermediate points. While it
produces virtually no undesirable oscillations, it does not create a continuous curve in the
interpolation points. The akima spline is local, i.e. a change to an interpolation point affects
only up to six adjacent points. The primary application for this spline type is therefore the
interpolation of digitized points. A polynomial of third degree is used for interpolation.

B spline
With a B spline, the programmed positions are not intermediate points, but merely check
points of the spline, i.e. the curve is "drawn towards" the points, but does not pass directly
through them. The lines linking the points form the check polygon of the spline. B splines are
the optimum means for defining tool paths on sculptured surfaces. Their primary purpose is
to act as the interface to CAD systems. A third degree B spline does not produce any
oscillations in spite of its continuously curved transitions.

 Special Motion Commands
 5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-9

C spline
In contrast to the akima spine, the cubic spline is continuously curved in the intermediate
points. It tends to have unexpected fluctuations however. It can be used in cases where the
interpolation points lie along an analytically calculated curve. C splines use third degree
polynomials.
The spline is not local, i.e. changes to an interpolation point can influence a large number of
blocks (with gradually decreasing effect).

Special Motion Commands
5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN)

 Job planning
5-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Comparison of three spline types with identical interpolation points:
A spline (akima spline)
B spline (Bezier spline)
C spline (cubic spline)

Settings for splines
The G codes ASPLINE, BSPLINE and CSPLINE link block endpoints with splines. For this
purpose, a series of blocks (endpoints) must be simultaneously calculated. The buffer size
for calculations is ten blocks as standard. Not all block information is a spline endpoint.
However, the control requires a certain number of spline endpoint blocks from ten blocks.
These are for:

A spline: At least 4 blocks out of every 10 must be spline blocks. These do not include comment blocks and

parameter calculations.
B spline: At least 6 blocks out of every 10 must be spline blocks. These do not include comment blocks and

parameter calculations.
C spline: From each 10 blocks at least the contents of machine data $MC_CUBIC_SPLINE_BLOCKS+1 must be

spline blocks (also in standard case 9).
The number of points must be entered in machine data $MC_CUBIC_SPLINE_BLOCKS (standard value 8)
which are used for calculating the spline segment.

 Note
An alarm is output if the tolerated value is exceeded and likewise when one of the axes
involved in the spline is programmed as a positioning axis.

 Special Motion Commands
 5.3 Spline grouping (SPLINEPATH)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-11

5.3 5.3 Spline grouping (SPLINEPATH)

Function
The SPLINEPATH command is used to select the axes to be interpolated in the spline
grouping. Up to eight path axes can be involved in a spline interpolation grouping. The
SPLINEPATH statement defines which axes are to be involved in the spline.

Programming
SPLINEPATH(n,X,Y,Z,…)
The instruction is programmed in a separate block. If SPLINEPATH is not explicitly
programmed, then the first three axes in the channel are traversed as the spline grouping.

Parameters

SPLINEPATH Define spline grouping

n= 1 Fixed point

X,Y,Z,… Path axes details

Example: spline grouping with three path axes

Special Motion Commands
5.4 Compressor (COMPOF/ON, COMPCURV, COMPCAD)

 Job planning
5-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

N10 G1 X10 Y20 Z30 A40 B50 F350

N11 SPLINEPATH(1,X,Y,Z) ;Spline grouping

N13 CSPLINE BAUTO EAUTO X20 Y30 Z40 A50 B60 ;C spline

N14 X30 Y40 Z50 A60 B70

…

;Interpolation points

N100 G1 X… Y… ;Deselection of spline
;interpolation

5.4 5.4 Compressor (COMPOF/ON, COMPCURV, COMPCAD)

Function
With G code COMPON block transitions are only constant in speed, while acceleration of the
participating axes can be in jumps at block transitions. This can increase oscillation on the
machine.
With G code COMPCURV, the block transitions are with constant acceleration. This ensures
both smooth velocity and acceleration of all axes at block transitions. The COMPCAD G
code can be used to selected another compression that can be optimized with regard to
surface quality and velocity.
Machine manufacturer
The compressor functions can be configured and thus dependent on machine data settings.

Programming
COMPON
or
COMPOF
or
COMPCURV
or
COMPCAD
Operating conditions for programmed NC blocks
This compression operation can only be executed on linear blocks (G1). It is interrupted by
any other type of NC instruction, e.g., an auxiliary function output, but not by parameter
calculations. Only those blocks containing nothing more than the block number, G1, axis
addresses, feed and comments are compressed. All other blocks are executed unchanged
(no compression). Variables may not be used.

 Special Motion Commands
 5.4 Compressor (COMPOF/ON, COMPCURV, COMPCAD)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-13

Parameters

COMPON/ /

COMPOF

Compressor on, continuous in the velocity

Compressor OFF

COMPCURV Compressor on, with constant curvature
polynomial (continuous acceleration)

COMPCAD Compressor on, optimized surface quality
(velocity-optimized)

Example COMPON

N10 COMPON ;or COMPCURV, compressor ON

N11 G1 X0.37 Y2.9 F600 ;G1 must be programmed before the
;end point and feed

N12 X16.87 Y–.698

N13 X16.865 Y–.72

N14 X16.91 Y–.799…

N1037 COMPOF

…

;Compressor OFF

 Note
All blocks are compressed for which a simple syntax is sufficient, e.g.,
N19 X0.103 Y0. Z0.
N20 X0.102 Y-0.018
N21 X0.097 Y-0.036
N22 X0.089 Y-0.052
N23 X0.078 Y-0.067
Traverse blocks with extended addresses such as C=100 or A=AC(100) are also
compressed.

Special Motion Commands
5.4 Compressor (COMPOF/ON, COMPCURV, COMPCAD)

 Job planning
5-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example COMPCAD

G00 X30 Y6 Z40

G1 F10000 G642

SOFT

COMPCAD ;Compressor interface optimization ON

STOPFIFO

N24050 Z32.499

N24051 X41.365 Z32.500

N24052 X43.115 Z32.497

N24053 X43.365 Z32.477

N24054 X43.556 Z32.449

N24055 X43.818 Z32.387

N24056 X44.076 Z32.300

...

COMPOF ;Compressor OFF

G00 Z50

M30

Requirements
Machine manufacturer
Three sets of machine data are provided for the compressor function:
• $MC_COMPRESS_BLOCK_PATH_LIMIT

A maximum path length is set. All the blocks along this path are suitable for compression.
Longer blocks are not compressed.

• $MA_COMPRESS_POS_TOL
A tolerance can be set for each axis. This value specifies the maximum deviation of the
generated spline curve from the programmed end points. The higher the values, the more
blocks can be compressed.

• $MC_COMPRESS_VELO_TOL
The maximum permissible path feed deviation with active compressor can be preset in
conjunction with FLIN and FCUB.

COMPCAD
• $MN_MM_EXT_PROG_BUFFER_SIZE should be large, e.g., 100 (KB).
• $MC_COMPRESS_BLOCK_PATH_LIMIT must be significantly increased in value, e.g.,

50 (mm).
• $MC_MM_NUM_BLOCKS_IN_PREP must be >= 60, to allow machining of much more

than 10 points.
• FLIN and FCUB cannot be used.
Recommended for large block lengths and optimum velocity:
• $MC_MM_MAX_AXISPOLY_PER_BLOCK = 5

$MC_MM_PATH_VELO_SEGMENTS = 5
$MC_MM_ARCLENGTH_SEGMENTS = 10

 Special Motion Commands
 5.4 Compressor (COMPOF/ON, COMPCURV, COMPCAD)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-15

Description
CAD/CAM systems normally produce linear blocks, which meet the configured accuracy
specifications. In the case of complex contours, a large volume of data and short path
sections can result. The short path sections restrict the processing rate.
The compressor allows a certain number (max. 10) of short path sections to be combined in
a single path section.
The modal G code COMPON or COMPCURV can be used to activate an "NC block
compressor". This function collects a series of linear blocks during linear interpolation (the
number is limited to 10) and approximates them within a tolerance specified in machine data
via a 3rd-degree (COMPON) or 5th-degree (COMPCURV) polynomial. One traversing block
is processed by the NC instead of a large number of small blocks.

COMPCAD
COMPCAD is processor and memory-intensive. It should only be used if surface quality
enhancement measures cannot be incorporated in the CAD/CAM program. Features:
• COMPCAD produces polynomial blocks with a continuous acceleration.
• With adjacent paths, deviations head in the same direction.
• A limit angle can be defined with setting data $SC_CRIT_SPLINE_ANGLE; COMPCAD

will leave the corners from this angle.
• The number of blocks to be compressed is not limited to 10.
• COMPCAD eliminates poor surface transitions. In doing so, however, the tolerances are

largely adhered to but the corner limit angle is ignored.
• The rounding function G642 can also be used.
COMPON, COMPCURV and COMPCAD extensions
The compressors COMPON, COMPCURV and COMPCAD are extended in a way that even
NC programs for which orientation was programmed via directional vectors, can be
compressed respecting a specifiable tolerance.

Special Motion Commands
5.5 Polynomial interpolation (POLY, POLYPATH)

 Job planning
5-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Orientation transformation TRAORI
The "Compressor for orientation" function requires the availability of the Orientation
transformation option. The restrictions mentioned above under "Conditions of usage" have
been relieved to allow position values via parameter settings now also.
NC block structure in general:

N10 G1 X=<...> Y=<...> Z=<...>
A=<...>
 B=<...> F=<...> ; Comment

;Axis positions as parameter expressions with
< ... > parameter expression, e.g., X=R1*(R2+R3)

Activation
You can activate "Compressor for orientations" via one of the following commands:
COMPON, COMPCURV (COMPCAD not possible).
The compressors can be used with active orientation transformation (TRAORI) as well as on
• 5-axis machines and on
• 6-axis machines on which, in addition to tool orientation, the rotation of the tool can also

be programmed
See Transformations, "Orientation compression" for more detailed information about the use
of compressors on 5- and 6-axis machines.
References: /FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformation (F2).

5.5 5.5 Polynomial interpolation (POLY, POLYPATH)

Function
Polynomial interpolation (POLY) is not spline interpolation in the true sense. Its main
purpose is to act as an interface for programming externally generated spline curves where
the spline sections can be programmed directly.
This mode of interpolation relieves the NC of the task of calculating polynomial coefficients.
It can be applied optimally in cases where the coefficients are supplied directly by a CAD
system or postprocessor.

Programming
POLY PO[X]=(xe,a2,a3) PO[Y]=(ye,b2,b3) PO[Z]=(ze,c2,c3) PL=n polynomial of
the 3rd degree
or expansion to polynomials of the 5th degree and new polynomial syntax
POLY X=PO(xe,a2,a3,a4,a5) Y=PO(ye,b2,b3,b4,b5) Z=PO(ze,c2,c3,c4,c5) PL=n
POLYPATH ("AXES", VECT")

 Special Motion Commands
 5.5 Polynomial interpolation (POLY, POLYPATH)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-17

Parameters

POLY Activation of polynomial interpolation
with a block containing POLY

POLYPATH Polynomial interpolation can be selected
for both the AXIS or VECT axis groups

PO [axis identifier/variable]=(…,…,…) End points and polynomial coefficients

X, Y, Z Axis identifier

xe, ye, ze Specification of end position for
relevant axis; value range as for path
dimension

a2, a3, a4, a5 The coefficients a2, a3, a4, and a5 are
written with their value; Value range as
for path dimension. The last coefficient
in each case can be omitted if it equals
zero.

PL Length of parameter interval over which
the polynomials are defined (definition
range of function f(p)). The interval
always starts at 0. p can be set to
values between 0 and PL. Theoretical
value range for
PL: 0,0001 … 99 999,9999. The PL value
applies to the block that contains it.
PL=1 is applied if no PL value is
programmed.

Activate/deactivate POLY
Polynomial interpolation belongs to the first G group along with G0, G1, G2, G3, A spline,
B spline and C spline. If it is active, there is no need to program the polynomial syntax: Axes
that are programmed with their name and end point only are traversed linearly to their end
point. If all axes are programmed in this manner, the control system responds as if G1 were
programmed.
Polynomial interpolation is deactivated by another command in the G group (e.g. G0, G1).
Polynomial coefficient
The PO value (PO[]=) or ...=PO(...) specifies all polynomial coefficients for an axis.
Several values, separated by commas, are specified according to the degree of the
polynomial. Different polynomial degrees can be programmed for different axes within one
block.
New polynomial syntax with PO: The previous syntax remains valid.
Subroutine call POLYPATH
With POLYPATH the polynomial interpolation can be specified selectively for the following
axis groups:
• POLYPATH ("AXES")

All path axes and special axes.
• POLYPATH ("VECT") orientation axes

(with orientation transformation).
As standard, the programmed polynomials are interpreted as polynomial for both axis
groups.
Examples:
POLYPATH ("VECT")
Only the orientation axes are selected for the polynomial interpolation; all other axes are
traversed linearly.

Special Motion Commands
5.5 Polynomial interpolation (POLY, POLYPATH)

 Job planning
5-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

POLPATH ()
Deactivates the polynomial interpolation for all axes

Example

N10 G1 X… Y… Z… F600

N11 POLY PO[X]=(1,2.5,0.7) ->
-> PO[Y]=(0.3,1,3.2) PL=1.5

;Polynomial interpolation ON

N12 PO[X]=(0,2.5,1.7) PO[Y]=(2.3,1.7) PL=3

…

N20 M8 H126 …

N25 X70 PO[Y]=(9.3,1,7.67) PL=5 ;Mixed settings for axes

N27 PO[X]=(10.2.5) PO[Y]=(2.3) ;No PL value programmed; PL=1 applies

N30 G1 X… Y… Z. ;Polynomial interpolation OFF

…

Example of applicable polynomial syntax with PO

Polynomial syntax used previously remains
valid

;New polynomial syntax (SW 6 and higher)

PO[axis identifier]=(.. , ..) ;Axis identifier=PO(.. , ..)

PO[PHI]=(.. , ..) ;PHI=PO(.. , ..)

PO[PSI]=(.. , ..) ;PSI=PO(.. , ..)

PO[THT]=(.. , ..) ;THT=PO(.. , ..)

PO[]=(.. , ..) ;PO(.. , ..)

PO[variable]=IC(.. , ..) ;variable=PO IC(.. , ..)

Example of a curve in the X/Y plane

 Special Motion Commands
 5.5 Polynomial interpolation (POLY, POLYPATH)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-19

N9 X0 Y0 G90 F100

N10 POLY PO[Y]=(2) PO[X]=(4,0.25) PL=4

Description
The control system is capable of traveling curves (paths) in which each selected path axis
follows a function (polynomial, max. 3rd degree) or (polynomial, max. 5th degree)
The equation used to express the polynomial function is generally as follows:
f(p)= a0 + a1p + a2p2 + a3p3
or
f(p)= a0 + a1p + a2p2 + a3p3 + a4p4 + a5p5
Key:
an: Constant coefficients
p: Parameters

Special Motion Commands
5.5 Polynomial interpolation (POLY, POLYPATH)

 Job planning
5-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

By assigning concrete values to these coefficients, it is possible to generate a wide variety of
curve shapes such as line, parabola and power functions.
For setting the coefficients a2 = a3 = 0 or a2 = a3 = a4 = a5 = 0 yields, for example, a straight
line with:
f(p) = a0 + a1p
The following settings apply:
a0 = axis position at the end of the preceding block
a1 = difference between axis position at the end of the definition range (PL) and the start
position
It is possible to program polynomials without the POLY G code being active. In this case,
however, the programmed polynomials are not interpolated; instead the respective
programmed endpoint of each axis is approached linearly (G1). The polynomial interpolation
is then activated by programming POLY.
Also, if G code POLY is active, with the predefined subroutine POLYPATH (...), you can
select which axes are to be interpolated with polynomial.

Special features of the denominator polynomial
Command PO[]=(…) can be used to program a common denominator polynomial for the
geometry axes (without specification of axes names), i.e. the motion of the geometry axes is
then interpolated as the quotient of two polynomials.
With this programming option, it is possible to represent forms such as conics (circle, ellipse,
parabola, hyperbola) exactly.
Example:

POLY G90 X10 Y0 F100 ;Geometry axes traverse

linearly to position X10, Y0

PO[X]=(0,–) PO[Y]=(10) PO[]=(2,1) ;Geometry axes traverse along
quadrant to X0, Y10

 Special Motion Commands
 5.5 Polynomial interpolation (POLY, POLYPATH)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-21

The constant coefficient (a0) of the denominator polynomial is always assumed to be 1, the
specified end point is not dependent on G90/G91.
The result obtained from the above example is as follows:
X(p)=10(1)/(1+p2) and Y(p)=20p/(1+p2) where 0<=p<=1
As a result of the programmed start points, end points, coefficient a2 and PL=1, the
intermediate values are as follows:
Numerator (X)=10+0*p–p2
Numerator (Y)=0+20*p+0*p2
Denominator = 1+2*p+1*p2

An alarm is output if a denominator polynomial with zeros is programmed within the interval
[0,PL] when polynomial interpolation is active. Denominator polynomials have no effect on
the motion of special axes.

 Note
Tool radius compensation can be activated with G41, G42 in conjunction with polynomial
interpolation and can be applied in the same way as in linear or circular interpolation modes.

Special Motion Commands
5.6 Settable path reference (SPATH, UPATH)

 Job planning
5-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

5.6 5.6 Settable path reference (SPATH, UPATH)

Function
During polynomial interpolation the user may require two different relationships between the
velocity-determining FGROUP axes and the other path axes: The latter are to be controlled
• either synchronized with the path of the FGROUP axes
• or synchronized with the curve parameter.
Therefore, for the axes not contained in FGROUP there are two ways to follow the path:
1. Either they travel synchronized with path S (SPATH)
2. or synchronized with the curve parameter U of FGROUP axes (UPATH).
Both types of path interpolation are used in different applications and can be switched via
G codes SPATH and UPATH.

Programming
SPATH
or
UPATH

Parameters

SPATH Path reference for FGROUP axes is arc length

UPATH Path reference for FGROUP axes is curve parameter

FGROUP Definition of axes with path feed

SPATH, UPATH
One of the two G codes (SPATH, UPATH) can be used to select and program the
required behavior.
The commands are modal. If SPATH is active, the axes are traversed synchronized with the
path; if UPATH is active, traversal is synchronized with the curve parameter.
UPATH and SPATH also determine the relationship of the F word polynomial
(FPOLY, FCUB, FLIN) with the path movement.
FGROUP activation
The path reference for the axes that are not contained in FGROUP is set via the two
language commands SPATH and UPATH contained in the 45th G code group.

 Special Motion Commands
 5.6 Settable path reference (SPATH, UPATH)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-23

Example 1
The example below shows a square with 20 mm side lengths and corners rounded with
G643. The maximum deviations from the exact contour are specified by the machine data
MD 33100: COMPRESS_POS_TOL[...] when a contour is smoothed with G643.

N10 G1 X… Y… Z… F500

N20 G643 ;Block-internal corner rounding with
;G643

N30 XO Y0

N40 X20 Y0 ;mm edge length for axes

N50 X20 Y20

N60 X0 Y20

N70 X0 Y0

N100 M30

Example 2
The following example shows the difference between both types of motion control. Both
times the default setting FGROUP(X,Y,Z) is active.

N10 G1 X0 A0 F1000 SPATH

N20 POLY PO[X]=(10, 10) A10

or

N10 G1 X0 F1000 UPATH

N20 POLY PO[X]=(10, 10) A10

In block N20, path S of the FGROUP axes is dependent on the square of curve parameter U.
Therefore, different positions arise for synchronized axis A along the path of X, according to
whether SPATH or UPATH is active:

Special Motion Commands
5.7 Measurements with touch trigger probe (MEAS, MEAW)

 Job planning
5-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Restrictions
The path reference set is of no importance with
• linear and circular interpolation,
• in thread blocks and
• if all path axes are contained in FGROUP.

Description
During polynomial interpolation - and thus the polynomial interpolation is always understood
• in the narrow sense (POLY),
• all spline interpolation types (ASPLINE, BSPLINE, CSPLINE) and
• linear interpolation with compressor (COMPON, COMPCURV)
- are the positions of all path axes i specified by the polynomials pi(U). Curve parameter U
moves from 0 to 1 within an NC block, therefore it is standardized.
The axes to which the programmed path feed is to relate can be selected from the path axes
by means of language command FGROUP. However, during polynomial interpolation, an
interpolation with constant velocity on path S of these axes usually means a non constant
change of curve parameter U.

Control behavior for reset and machine/option data
After reset, MD 20150: GCODE_RESET_VALUES [44] makes certain G codes effective
(45th G code group).
The initial state for the type of the smoothing is specified with MD 20150:
GCODE_RESET_VALUES [9] (10th G code group).
The G code group value active after Reset is determined via machine data MD 20150:
GCODE_RESET_VALUES [44]. In order to maintain compatibility with existing installations,
SPATH is set as default value.
The axial machine dataMD 33100: COMPRESS_POS_TOL have an extended meaning: They
contain the tolerances for the compressor function and for rounding with G642.

5.7 5.7 Measurements with touch trigger probe (MEAS, MEAW)

Function
The positions coinciding with the switching edge of the probe are acquired for all axes
programmed in the NC block and written for each specific axis to the appropriate memory
cell. Maximum two probes exist.

 Special Motion Commands
 5.7 Measurements with touch trigger probe (MEAS, MEAW)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-25

Read measurement result
The measurement result is available for the axes acquired with probes in the following
variables:
• Under $AA_MM[axis] in the machine coordinate system
• Under $AA_MW[axis] in the workpiece coordinate system
No internal preprocessing stop is generated when these variables are read.
A preprocessing stop must be programmed with STOPRE at the appropriate position in the
program. The system will otherwise read false values.

Programming
Programming measuring blocks, MEAS, MEAW
When command MEAS is programmed in conjunction with an interpolation mode, actual
positions on the workpiece are approached and measured values recorded simultaneously.
The distance-to-go between the actual and setpoint positions is deleted.
The MEAW function is employed in the case of special measuring tasks where a programmed
position must always be approached. MEAS and MEAW are non-modal commands.

MEAS=±1
MEAS=±2

G... X... Y... Z...
G... X... Y... Z...

(+1/+2 measurement with deletion of
distance-to-go and rising edge)
(–/– measurement with deletion of
distance-to-go and falling edge)

MEAW=±1
MEAW=±2

G... X... Y... Z...
G... X... Y... Z...

(+1/+2 measurement without deletion
of distance-to-go and rising edge)
(–/– measurement without deletion of
distance-to-go and falling edge)

Special Motion Commands
5.7 Measurements with touch trigger probe (MEAS, MEAW)

 Job planning
5-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

MEAS=±1 Measurement with probe 1 at measuring input 1

MEAS=±2* Measurement with probe 2 at measuring input 2

MEAW=±1 Measurement with probe 1 at measuring input 1

MEAW=±2* Measurement with probe 2 at measuring input 2

G... Interpolation type, e.g., G0, G1, G2 or G3

X... Y... Z... End point in Cartesian coordinates

*Max. of two inputs depending on configuration level

Example for programming measuring blocks
MEAS and MEAW are programmed in a block with motion commands. The feeds and
interpolation types (G0, G1, ...) must be selected to suit the measuring task in hand;
this also applies to the number of axes.
N10 MEAS=1 G1 F1000 X100 Y730 Z40
Measurement block with probe at first measuring input and linear interpolation.
A preprocessing stop is automatically generated.

Description
Measuring job status
Status variable $AC_MEA[n] (n= number of probe) can be scanned if the switching state of
the touch-trigger probe needs to be evaluated in the program:
0 Measuring job not satisfied
1 Measuring job completed successfully (probe has switched)

 Note
If the probe is deflected during program execution, this variable is set to 1. At the beginning
of a measurement block, the variable is automatically set to correspond to the starting state
of the probe.

Sensor
The positions of all path and positioning axes (maximum number of axes depends on control
configuration) in the block that have moved are recorded. In the case of MEAS, the motion is
braked in a defined manner after the probe has switched.

 Note
If a GEO axis is programmed in a measuring block, then the measured values are stored for
all current GEO axes.
If an axis that participates in a transformation is programmed in a measurement block, the
measured values for all axes that participate in this transformation are recorded.

 Special Motion Commands
 5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-27

5.8 5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

Function
Several probes and several measuring systems can be used for the axial measuring.
When MEASA, MEAWA is programmed, up to four measured values are acquired for the
programmed axis in each measuring run and stored in system variables in accordance with
the trigger event.
Continuous measuring operations can be executed with MEAC. In this case, the
measurement results are stored in FIFO variables. The maximum number of measured
values per measuring run is also 4 with MEAC:
• Under $AA_MM1 to 4[axes] in the machine coordinate system
• Under $AA_MM1 to 4[axes] in the workpiece coordinate system

Programming
MEASA and MEAWA act blockwise and can be programmed in a block. If MEASA/MEAWA is
programmed with MEAS/MEAW in the same block, an error message is output.
MEASA[axis]=(mode, TE1,…, TE 4)
or
MEAWA[axis]=(mode, TE1,…, TE 4)
or
MEAC[axis]=(mode, measurement memory,TE1,…, TE 4)

Special Motion Commands
5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

 Job planning
5-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

MEASA Measurement with deletion of distance-to-go

MEAWA Measurement without deletion of distance-to-go

MEAC Continuous measurement without deleting distance-to-go

Axis Name of channel axis used for measurement

Mode Two-digit setting for operating mode consisting of

Measuring mode (ones decade) and

0: Mode 0: Cancel measuring job

1: Mode 1: Up to 4 different trigger events can be activated
concurrently. Trigger events

2: Mode 2: Up to 4 trigger events can be activated consecutively

3: Mode 3: Up to 4 trigger events can be activated consecutively

but no monitoring of trigger event 1

on start (alarms 21700/21703 are suppressed)

Note: Mode 3 not possible with MEAC

Measuring system (tens' decade)

0 or no setting: active measuring system

1: Measuring system 1

2: Measuring system 2

3: Both measuring systems

TE 1…4 Trigger event

1: rising edge, probe 1

-1: falling edge, probe 1

2: rising edge, probe 2

-2: falling edge, probe 2

Measurement
memory

Number of FIFO (circulating storage)

Example of measuring with delete distance-to-go in mode 1
(evaluation in chronological sequence)
a) with 1 measuring system

...

N100 MEASA[X] = (1,1,-1) G01 X100 F100 ;Measurement in mode 1 with active
;measuring system. Wait for measuring
;signal with rising/falling edge from
;probe 1 on travel path to X = 100.

N110 STOPRE ;Preprocessing stop

N120 IF $AC_MEA[1] == FALSE gotof END ;Check success of measurement.

N130 R10 = $AA_MM1[X] ;Store measured value acquired on
;first programmed trigger event
;(rising edge)

N140 R11 = $AA_MM2[X] ;Store measured value acquired on
;second programmed trigger event
;(falling edge)

N150 END:

 Special Motion Commands
 5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-29

Example of measuring with delete distance-to-go in mode 1
b) with 2 measuring systems

...

N200 MEASA[X] = (31,1-1) G01 X100 F100 ;Measurement in mode 1 with both
;measuring systems. Wait for measuring
;signal with rising/falling edge from
;probe 1 on travel path to X = 100.

N210 STOPRE ;Preprocessing stop

N220 IF $AC_MEA[1] == FALSE gotof END ;Check success of measurement.

N230 R10 = $AA_MM1[X] ;Save measured value of the
;measuring system 1 for rising edge.

N240 R11 = $AA_MM2[X] ;Save measured value of the
;measuring system 2 for rising edge.

N250 R12 = $AA_MM3[X] ;Save measured value of the
;measuring system 1 for falling edge.

N260 R13 = $AA_MM4[X] ;Save measured value of the
;measuring system 2 for falling edge.

N270 END:

Example of measuring with delete distance-to-go in mode 2
(evaluation in programmed sequence)

...

N100 MEASA[X] = (2,1,-1,2,-2) G01 X100 F100 ;Measurement in mode 2 with active
;measuring system. Wait for measuring
;signal in the following order:
;Rising edge of probe 1,
;falling edge of probe 1,
;rising edge of probe 2,
;falling edge of probe 2,
;on travel path to X = 100.

N110 STOPRE ;Preprocessing stop

N120 IF $AC_MEA[1] == FALSE gotof ;Check success of measurement
;with probe 1

PROBE2

N130 R10 = $AA_MM1[X] ;Store measured value acquired on
;first programmed trigger event
;(rising edge probe 1).

N140 R11 = $AA_MM2[X] ;Store measured value acquired on
;second programmed trigger event
;(rising edge probe 1).

N150 PROBE2:

N160 IF $AC_MEA[2] == FALSE gotof END ;Check success of measurement
;with probe 2

N170 R12 = $AA_MM3[X] ;Store measured value acquired on
;third programmed trigger event
;(rising edge probe 2).

N180 R13 = $AA_MM4[X] ;Store measured value acquired on
;fourth programmed trigger event
;(rising edge probe 2).

N190 END:

Special Motion Commands
5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

 Job planning
5-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of continuous measuring in mode 1
(evaluation in chronological sequence)
a) Measurement of up to 100 measured values

...

N110 DEF REAL MEASVALUE[100]

N120 DEF INT loop = 0

N130 MEAC [X] = (1,1,-1) G01 X1000 F100

;Measure in mode 1 with active
;measuring system, store measured
;values under $AC_FIFO1, wait for
;measuring signal with falling edge
;from probe 1 on travel path to
;X = 1000.

N135 STOPRE

N140 MEAC[X] = (0) ;Terminate measurement when
;axis position is reached.

N150 R1 = $AC_FIFO1[4] ;Store number of accumulated measured
;values in parameter R1.

N160 FOR loop = 0 TO R1-1

N170 MEASVALUE[loop] = $AC_FIFO1[0] ;Read measured values from $AC_FIFO1
;and store.

N180 ENDFOR

Example of continuous measuring in mode 1
(evaluation in chronological sequence)
b) Measuring with deletion of distance-to-go after 10 measured values

...

N10 WHEN $AC_FIFO1[4]>=10 DO
 MEAC[x]=(0) DELDTG (x)

;Delete distance to go

N20 MEAC[x]=(1,1,1,-1) G01 X100 F500

N30 MEAC [X]=(0)

N40 R1 = $AC_FIFO1[4] ;Number of measured values

...

Description
The measurements can be programmed in the parts program or from a synchronized action
(see "Motion-synchronous action" section). Please note that only one measuring job can be
active at any given time for each axis.

 Special Motion Commands
 5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-31

 Note
The feed must be adjusted to suit the measuring task in hand.
In the case of MEASA and MEAWA, the correctness of results can be guaranteed only at feed
rates with which no more than one trigger event of the same type and no more than four
trigger events occur in each position controller cycle.
In the case of continuous measurement with MEAC, the ratio between the interpolation cycle
and position control cycle must not exceed 8 : 1.

Trigger events
A trigger event comprises the number of the probe and the trigger criterion (rising or falling
edge) of the measuring signal.
Up to four trigger events of the addressed probe can be processed for each measurement,
i.e., up to two probes with two measuring signal edges each. The processing sequence and
the maximum number of trigger events depend on the selected mode.

 Note
The same trigger event is only permitted to be programmed once in a measuring job (only
applies to mode 1)!

Operating mode
The first digit in the mode setting selects the desired measuring system. If only one
measuring system is installed, but a second programmed, the installed system is
automatically selected.
With the second digit, i.e., the measurement mode, the measuring process is adapted to the
capabilities of the connected control system:
• Mode 1: Trigger events are evaluated in the chronological sequence in which they occur.

When this mode is selected, only one trigger event can be programmed for six-axis
modules. If more than one trigger event is specified, the mode selection is switched
automatically to mode 2 (without message).

• Mode 2: Trigger events are evaluated in the programmed sequence.
• Mode 3: Trigger events are evaluated in the programmed sequence, however no

monitoring of trigger event 1 at START.

 Note
No more than two trigger events can be programmed if two measuring systems are in
use.

Special Motion Commands
5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

 Job planning
5-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Measurement with and without delete distance-to-go, MEASA, MEAWA
When command MEASA is programmed, the distance-to-go is not deleted until all required
measured values have been recorded.
The MEAWA function is employed in the case of special measuring tasks where a
programmed position must always be approached.

• MEASA cannot be programmed in synchronized actions. As an alternative, MEAWA plus the
deletion of distance-to-go can be programmed as a synchronized action.

• If the measuring job with MEAWA is started from the synchronized actions, the measured
values will only be available in machine coordinates.

Measurement results for MEASA, MEAWA
The results of measurements are available under the following system variables:
• In machine coordinate system:

$AA_MM1[axis] Measured value of programmed measuring system on trigger

event 1

$AA_MM4[axis] Measured value of programmed measuring system on trigger

event 4

 Special Motion Commands
 5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-33

• In workpiece coordinate system:

$AA_WM1[axis] Measured value of programmed measuring system on trigger
event 1

$AA_WM4[axis] Measured value of programmed measuring system on trigger

event 4

 Note
No internal preprocessing stop is generated when these variables are read. A preprocessing
stop must be programmed with STOPRE ("List of Instructions" section) at the appropriate
position in the program. False values will otherwise be read in.
If axial measurement is to be started for a geometry axis, the same measuring job must be
programmed explicitly for all remaining geometry axes. The same applies to axes involved in
a transformation.

Example:
N10 MEASA[Z]=(1,1) MEASA[Y]=(1,1) MEASA[X]=(1,1) G0 Z100;
or
N10 MEASA[Z]=(1,1) POS[Z]=100

Measurement job with two measuring systems
If a measuring job is executed by two measuring systems, each of the two possible trigger
events of both measuring systems of the relevant axis is acquired. The assignment of the
reserved variables is therefore preset:

$AA_MM1[axis] or $AA_MW1[axis] Measured value for measuring

system 1 for trigger event 1
$AA_MM2[axis] or $AA_MW2[axis] Measured value for measuring

system 2 for trigger event 1
$AA_MM3[axis] or $AA_MW3[axis] Measured value for measuring

system 1 for trigger event 2
$AA_MM4[axis] or $AA_MW4[axis] Measured value for measuring

system 2 for trigger event 2

Probe status can be read via $A_PROBE[n]
n=probe
1==Probe deflected
0==Probe not deflected

Special Motion Commands
5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

 Job planning
5-34 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Measuring job status for MEASA, MEAWA
If the probe switching state needs to be evaluated in the program, then the measuring job
status can be interrogated via $AC_MEA[n], with n = number of probe. Once all the trigger
events of probe "n" that are programmed in a block have occurred, this variable switches to
the "1" stage. Its value is otherwise 0.

 Note
If measuring is started from synchronized actions, $AC_MEA is not updated. In this case, new
PLC status signals DB(31-48) DBB62 bit 3 or the equivalent variable $AA_MEAACT["Axis"]
must be interrogated.
Meaning:
$AA_MEAACT==1: Measurement active
$AA_MEAACT==0: Measurement not active

References:
/FB2/ Function Manual, Extended Functions; Measurements (M5).

Continuous measurement MEAC
The measured values for MEAC are available in the machine coordinate system and stored in
the programmed FIFO[n] memory (circulating memory). If two probes are configured for the
measurement, the measured values of the second probe are stored separately in the
FIFO[n+1] memory configured especially for this purpose (defined in machine data).
The FIFO memory is a circulating memory in which measured values are written to
$AC_FIFO variables according to the circulation principle, see section "Motion Synchronous
Actions"..

 Note
FIFO contents can be read only once from the circulating storage. If these measured data
are to be used multiply, they must be buffered in user data.
If the number of measured values for the FIFO memory exceeds the maximum value defined
in machine data, the measurement is automatically terminated.
An endless measuring process can be implemented by reading out measured values
cyclically. In this case, data must be read out at the same frequency as new measured
values are read in.

 Special Motion Commands
 5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-35

Recognized programming errors
The following programming errors are detected and indicated appropriately:
• If MEASA/MEAWA is programmed with MEAS/MEAW in the same block.

Example:
N01 MEAS=1 MEASA[X]=(1,1) G01 F100 POS[X]=100

• MEASA/MEAWA with number of parameters <2 or >5
Example:
N01 MEAWA[X]=(1) G01 F100 POS[X]=100

• MEASA/MEAWA with trigger event not equal to 1/ -1/ 2/ -2
Example:
N01 MEASA[B]=(1,1,3) B100

• MEASA/MEAWA with invalid mode
Example:
N01 MEAWA[B]=(4,1) B100

• MEASA/MEAWA with trigger event programmed twice
Example:
N01 MEASA[B]=(1,1,-1,2,-1) B100

• MEASA/MEAWA and missing GEO axis
Example:
N01 MEASA[X]=(1,1) MESA[Y]=(1,1) G01 X50 Y50 Z50 F100 ;GEO axis
X/Y/Z

• Inconsistent measuring job with GEO axes
Example:
N01 MEASA[X]=(1,1) MEASA[Y]=(1,1) MEASA[Z]=(1,1,2)
G01 X50 Y50 Z50 F100

Special Motion Commands
5.9 Special functions for OEM users (OEMIPO1, OEMIPO2, G810 to G829)

 Job planning
5-36 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

5.9 5.9 Special functions for OEM users (OEMIPO1, OEMIPO2, G810 to
G829)

Function
OEM addresses
The meaning of OEM addresses is determined by the OEM user. Their functionality is
incorporated by means of compile cycles. Five OEM addresses are reserved. The address
identifiers are settable. OEM addresses can be programmed in any block.

Parameters
Reserved G groups
Group 1 with OEMIPO1, OEMIPO2
The OEM user can define two additional names of G functions OEMIPO1, OEMIPO2. Their
functionality is incorporated by means of compile cycles and is reserved for the OEM user.
• Group 31 with G810 to G819
• Group 32 with G820 to G829
Two G groups with ten OEM G functions each are reserved for OEM users. These allow the
functions incorporated by an OEM user to be accessed for external applications.
Functions and subroutines
OEM users can also set up predefined functions and subroutines with parameter transfer.

5.10 5.10 Feed reduction with corner deceleration (FENDNORM, G62, G621)

Function
With automatic corner deceleration the feed rate is reduced according to a bell curve before
reaching the corner. It is also possible to parameterize the extent of the tool behavior
relevant to machining via setting data. These are:
• Start and end of feed rate reduction
• Override with which the feed rate is reduced
• Detection of a relevant corner
Relevant corners are those whose inside angle is less than the corner parameterized in the
setting data.

 Special Motion Commands
 5.10 Feed reduction with corner deceleration (FENDNORM, G62, G621)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-37

Default value FENDNORM deactivates the function of the automatic corner override.

 Note
This function is not part of the standard scope of SINUMERIK and must be activated for the
relevant software versions.

References:
/FBA/ Functional description ISO Dialects.

Programming
FENDNORM
G62 G41
or
G621

Parameters

FENDNORM Automatic corner deceleration OFF

G62 Corner deceleration at inside corners
when tool radius offset is active

G621 Corner deceleration at all corners
when tool radius offset is active

G62 only applies to inside corners with
• active tool radius offset G41, G42 and
• active continuous-path control mode G64, G641
The corner is approached at a reduced feed rate resulting from:
F * (override for feed rate reduction) * feed rate override
The maximum possible feed rate reduction is attained at the precise point where the tool is
to change directions at the corner, with reference to the center path.
G621 applies analogously with G62 at each corner, of the axes defined by FGROUP.

Special Motion Commands
5.11 Programmed end-of-motion criterion
(FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)

 Job planning
5-38 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

5.11 5.11 Programmed end-of-motion criterion
(FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)

Function
Similar to the block change criterion for continuous-path interpolation (G601, G602 and
G603), the end-of-motion criterion can be programmed in a parts program for single axis
interpolation or in synchronized action for the command/PLC.
The end-of-motion criterion set will affect how quickly or slowly parts program blocks and
technology cycle blocks with single-axis movements are completed. The same applies for
PLC via FC15/16/18.

Programming
FINEA[Axis]
or
COARSEA[Axis]
or
IPOENDA[Axis]
or
IPOBRKA(axis,[, [value as percentage]]) More than one value can be specified
or
ADISPOSA(axis, [Int][, [Real]]) More than one value can be specified

Parameters

FINEA Motion end when "Exact stop FINE" reached

COARSEA Motion end when "Exact stop COARSE" reached

IPOENDA Motion end when "Interpolator stop" reached

IPOBRKA Block change in braking ramp possible (SW 6.2 and higher)

ADISPOSA Size of tolerance window for end-of-motion criterion (SW 6.4
and higher)

Axis Channel axis name (X, Y,)

Value as percentage When relative to the braking ramp the block change should be
as %

Int Mode 0: Tolerance window not active

Mode 1: Tolerance window with respect to set position

Mode 2: Tolerance window with respect to actual position

Real Size of tolerance window. This value is entered synchronized
with the main run in the setting data 43610: ADISPOSA_VALUE

 Special Motion Commands
 5.11 Programmed end-of-motion criterion
(FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-39

Example of end-of-motion on reaching the interpolator stop

...

N110 G01 POS[X]=100 FA[X]=1000 ACC[X]=90 IPOENDA[X]

 Traversing to position X100 when input 1 is active, with a path velocity
of 1000 rpm, an acceleration value of 90% and end-of-motion on reaching
the interpolator stop

...

N120 EVERY $A_IN[1] DO POS[X]=50 FA[X]=2000 ACC[X]=140 IPOENDA[X]

 Traversing to position X50 when input 1 is active, with a path velocity of
2000 rpm, an acceleration value of 140% and end-of-motion on reaching the
interpolator stop

...

Example for block change condition "Braking ramp" in the parts program:

 ;Default effective

N40 POS[X]=100

 ;Block change occurs when X-axis reaches position 100 and fine exact stop

N20 IPOBRKA(X,100) ;Activate block change criterion braking ramp

N30 POS[X]=200 ;Block change occurs as soon as X-axis starts to brake

N40 POS[X]=250

 ;The x-axis does not brake at position 200 but continues to
;position 250, the block change occurs as soon as the
;X-axis starts to brake

N50 POS[X]=0 ;The X-axis brakes and moves back to position 0
;The block change occurs at position 0 and fine exact stop

N60 X10 F100

N70 M30

...

Example for the braking ramp in synchronous actions block change condition

In the technology
cycle:

FINEA ;End of motion criterion fine exact stop

POS[X]=100 ;Technology cycle block change occurs when X-axis
;has reached position 100 and fine exact stop

IPOBRKA(X,100) ;Activate block change criterion braking ramp

POS[X]=100 ;POS[X]=100; technology cycle block change occurs,
;as soon as the X-axis starts to brake

POS[X]=250 ;The X-axis does not brake at position 200 but continues
;to position 250, as soon as the X-axis starts to brake
;the block change in the technology cycle occurs

POS[X]=250 ;The X-axis brakes and moves back to position 0
;The block change occurs at position 0 and fine exact stop

M17

Special Motion Commands
5.11 Programmed end-of-motion criterion
(FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)

 Job planning
5-40 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Description
$AA_MOTEND system variable
The set end-of-motion criterion can be scanned by system variable $AA_MOTEND[axis]

$AA_MOTEND[Axis] = 1 End-of-motion with "Exact stop fine"
$AA_MOTEND[Axis] = 2 End-of-motion with "Exact stop coarse"
$AA_MOTEND[Axis] = 3 End-of-motion with "IPO–Stop"
$AA_MOTEND[Axis] = 4 Block change criterion braking ramp of

axis motion
$AA_MOTEND[Axis] = 5 Block change in braking ramp with

tolerance window relative to "set
position"

$AA_MOTEND[Axis] = 6 Block change in braking ramp with
tolerance window relative to "actual
position"

 Note
The last programmed value is retained after RESET.
References:
/FB1/ Function Manual Basic Functions; Feedrates (V1).

Block change criterion in braking ramp
The percentage value is entered in SD 43600: IPOBRAKE_BLOCK_EXCHANGE. If no value
is specified, the current value of this setting data is effective. The range is adjustable from
0% to 100%.
Additional tolerance window for IPOBRKA
An additional block change criterion tolerance window can be selected as well as the existing
block change criterion in the braking ramp. Release will only occur when the axis
• as before has reached the specified % value of its braking ramp and
• its current actual or set position is no further than a tolerance from the end of the axis in

the block.
For more information on the block change criterion of the positioning axes, please refer to:
References:
/FB2/ Function Manual, Extended Functions; Positioning Axes (P2).
/PG/ Fundamentals Programming Guide; "Feed Control and Spindle Motion".

 Special Motion Commands
 5.12 Programmable servo parameter set (SCPARA)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 5-41

5.12 5.12 Programmable servo parameter set (SCPARA)

Function
Using SCPARA, it is possible to program the parameter block (consisting of MDs) in the
parts program and in synchronized actions (previously only via PLC).
DB3n DBB9 bit3
To ensure no conflicts occur between PLC and NC, an additional bit is defined on the
PLC–>NCK interface:
DB3n DBB9 bit3 "Parameter set selection by SCPARA disabled".
If parameter set selection via SCPARA is disabled, there is no error message if the latter is
programmed nevertheless.

Programming
SCPARA[Axis]= value

Parameters

SCPARA Define parameter block

Axis Channel axis name (X, Y, ...)

Value Desired parameter block (1<= value <=6)

 Note
The current parameter set can be scanned by system variable $AA_SCPAR[axis].
For G33, G331 and G332, the most suitable parameter block is selected by the control.
If the servo parameter set has to be changed in both a parts program or a synchronized
action and on the PLC, the PLC user program must be extended.

References:
/FB1/ Function Manual Basic Functions; Feedrates (V1), "Feedrate Impact" section.

Example

...

N110 SCPARA[X]= 3 ;The 3rd parameter block is selected for axis X.

...

Special Motion Commands
5.12 Programmable servo parameter set (SCPARA)

 Job planning
5-42 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-1

Frames 6
6.1 6.1 Coordinate transformation via frame variables

Function
In addition to the programming options already described in the Programming Guide
"Fundamentals", you can also define coordinate systems with predefined frame variables.

The following coordinate systems are defined:
MCS: Machine coordinate system
BCS: Basic coordinate system
BZS: Basic origin system
SZS: Settable zero system
WCS: Workpiece coordinate system
What is a predefined frame variable?
Predefined frame variables are keywords whose use and effect are already defined in the
control language and that can be processed in the NC program.

Frames
6.1 Coordinate transformation via frame variables

 Job planning
6-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Possible frame variable:
• Basic frame (basic offset)
• Settable frames
• Programmable frame

Value assignments and reading the actual values
Frame variable/frame relationship
A coordinate transformation can be activated by assigning the value of a frame to a frame
variable.
Example: $P_PFRAME=CTRANS(X,10)
Frame variable:
$P_PFRAME means: current programmable frame.
Frame:
CTRANS(X,10) means: programmable zero offset of X axis by 10 mm.

Reading the actual values
The current actual values of the coordinate system can be read out via predefined variables
in the parts program:
$AA_IM[axis]: Read actual value in MCS
$AA_IB[axis]: Read actual value in BCS
$AA_IBN[axis]: Read actual value in BOS
$AA_IEN[axis]: Read actual value in SZS
$AA_IW[axis]: Read actual value in WCS

 Frames
 6.1 Coordinate transformation via frame variables

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-3

6.1.1 Predefined frame variable ($P_BFRAME, $P_IFRAME, $P_PFRAME,
$P_ACTFRAME)

$P_BFRAME
Current basic frame variable that establishes the reference between the basic coordinate
system (BCS) and the basic origin system (BOS).
For the basic frame described via $P_UBFR to be immediately active in the program, either
• you have to program a G500, G54...G599, or
• you have to describe $P_BFRAME with $P_UBFR

Frames
6.1 Coordinate transformation via frame variables

 Job planning
6-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

$P_IFRAME
Current, settable frame variable that establishes the reference between the basic origin
system (BOS) and the settable zero system (SZS).
• $P_IFRAME corresponds to $P_UIFR[$P_IFRNUM]
• After G54 is programmed, for example, $P_IFRAME contains the translation, rotation,

scaling and mirroring defined by G54.

 Frames
 6.1 Coordinate transformation via frame variables

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-5

$P_PFRAME
Current, programmable frame variable that establishes the reference between the settable
zero system (SZS) and the workpiece coordinate system (WCS).
$P_PFRAME contains the resulting frame, that results
• from the programming of TRANS/ATRANS, ROT/AROT, SCALE/ASCALE,

MIRROR/AMIRROR or
• from the assignment of CTRANS, CROT, CMIRROR, CSCALE to the programmed

FRAME

Frames
6.1 Coordinate transformation via frame variables

 Job planning
6-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

$P_ACTFRAME
Current, resulting complete frame that results from chaining
• the current basic frame variable $P_BFRAME,
• the currently settable frame variable $P_IFRAME with system frames and
• the currently programmable frame variable $P_IFRAME with system frames.
System frames, see Section "Frames that Act in the Channel"
$P_ACTFRAME describes the currently valid workpiece zero.

 Frames
 6.1 Coordinate transformation via frame variables

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-7

If $P_IFRAME, $P_BFRAME or $P_PFRAME are changed, $P_ACTFRAME is recalculated.
$P_ACTFRAME corresponds to $P_BFRAME:$P_IFRAME:$P_PFRAME

Basic frame and settable frame are effective after Reset if MD 20110 RESET_MODE_MASK
is set as follows:
Bit0=1, bit14=1 --> $P_UBFR (basic frame) acts
Bit0=1, bit5=1 --> $P_UIFR [$P_UIFRNUM](settable frame) acts

Predefined settable frames $P_UBFR
The basic frame is programmed with $P_UBFR, but it is not simultaneously active in the
parts program. The basic frame programmed with $P_UBFR is included in the calculation if
• Reset was activated and bits 0 and 14 are set in MD RESET_MODE_MASK and
• the statements G500,G54...G599 were executed.

Frames
6.1 Coordinate transformation via frame variables

 Job planning
6-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Predefined settable frames $P_UIFR[n]
The predefined frame variable $P_UIFR[n] can be used to read or write the settable zero
offsets G54 to G599 from the parts program.
These variables produce a one-dimensional array of type FRAME called $P_UIFR[n].

Assignment to G commands
As standard, five settable frames $P_UIFR[0]... $P_UIFR[4] or five equivalent G
commands – G500 and G54 to G57 , can be saved using their address values.
$P_IFRAME=$P_UIFR[0] corresponds to G500
$P_IFRAME=$P_UIFR[1] corresponds to G54
$P_IFRAME=$P_UIFR[2] corresponds to G55
$P_IFRAME=$P_UIFR[3] corresponds to G56
$P_IFRAME=$P_UIFR[4] corresponds to G57
You can change the number of frames with machine data:
$P_IFRAME=$P_UIFR[5] corresponds to G505
...
$P_IFRAME=$P_UIFR[99] corresponds to G599

 Note
This allows you to generate up to 100 coordinate systems, which can be called up globally in
different programs, for example, as zero point for various fixtures.

Caution
Frame variables must be programmed in a separate NC block in the NC program.
Exception: programming of a settable frame with G54, G55, ...

 Frames
 6.2 Frame variables / assigning values to frames

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-9

6.2 6.2 Frame variables / assigning values to frames

6.2.1 Assigning direct values (axis value, angle, scale)

Function
You can directly assign values to frames or frame variables in the NC program.

Programming
$P_PFRAME=CTRANS (X, axis value, Y, axis value, Z, axis value, …)
or
$P_PFRAME=CROT (X, angle, Y, angle, Z, angle, …)
or
$P_UIFR[..]=CROT (X, angle, Y, angle, Z, angle, …)
or
$P_PFRAME=CSCALE (X, scale, Y, scale, Z, scale, …)
or
$P_PFRAME=CMIRROR (X, Y, Z)
Programming $P_BFRAME is carried out analog to $P_PFRAME.

Parameters

CTRANS Translation of specified axes

CROT Rotation around specified axes

CSCALE Scale change on specified axes

CMIRROR Direction reversal on specified axis

X Y Z Offset value in the direction of the
specified geometry axis

Axis value Assigning the axis value of the offset

Angle Assigning the angle of rotation around the specified axes

Scale Changing the scale

Frames
6.2 Frame variables / assigning values to frames

 Job planning
6-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example
Translation, rotation and mirroring are activated by value assignment to the current
programmable frame.

N10 $P_PFRAME=CTRANS(X,10,Y,20,Z,5):CROT(Z,45):CMIRROR(Y)

Frame-red components are pre-assigned other values
With CROT, pre-assign all three UIFR components with values
$P_UIFR[5] = CROT(X, 0, Y, 0, Z, 0)
N100 $P_UIFR[5, y, rt]=0
N100 $P_UIFR[5, x, rt]=0
N100 $P_UIFR[5, z, rt]=0

 Frames
 6.2 Frame variables / assigning values to frames

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-11

Description
You can program several arithmetic rules in succession.
Example:
$P_PFRAME=CTRANS(…):CROT(…):CSCALE…
Please note that the commands must be connected by the colon chain operator: (...):(...).
This causes the commands firstly to be linked and secondly to be executed additively in the
programmed sequence.

 Note
The values programmed with the above commands are assigned to the frames and stored.
The values are not activated until they are assigned to the frame of an active frame variable
$P_BFRAME or $P_PFRAME.

Frames
6.2 Frame variables / assigning values to frames

 Job planning
6-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

6.2.2 Reading and changing frame components (TR, FI, RT, SC, MI)

Function
This feature allows you to access individual data of a frame, e.g., a specific offset value or
angle of rotation. You can modify these values or assign them to another variable.

Programming

R10=$P_UIFR[$P_UIFNUM, X, RT]
]

Assign the angle of rotation RT around the X axis
from the currently valid settable zero offset
$P_UIFRNUM to the variable R10.

R12=$P_UIFR[25, Z, TR] Assign the offset value TR in Z from the data
record of set frame no. 25 to the variable R12.

R15=$P_PFRAME[Y, TR] Assign the offset value TR in Y of the current
programmable frame to the variable R15.

$P_PFRAME[X, TR]=25 Modify the offset value TR in X of the current
programmable frame. X25 applies immediately.

Parameters

$P_UIFRNUM This command automatically establishes the reference to
the currently valid settable zero offset.

P_UIFR[n, …, …] Specify the frame number n to access the settable frame
no. n.

TR

FI

RT

SC

MI

X Y Z

Specify the component to be read or modified:

TR Translation,

FI Translation Fine,

RT Rotation,

SC Scale scale change,

MI mirroring.

The corresponding axis X, Y, Z is also specified
(see examples).

Value range for RT rotation

Rotation around 1st geometry
axis:

-180° to +180°

Rotation around 2nd geometry
axis:

-89.999° to +90°

Rotation around 3rd geometry
axis:

-180° to +180°

 Frames
 6.2 Frame variables / assigning values to frames

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-13

Description
Calling frame
By specifying the system variable $P_UIFRNUM you can access the current zero offset set
with $P_UIFR or G54, G55, ...
($P_UIFRNUM contains the number of the currently set frame).
All other stored settable $P_UIFR frames are called up by specifying the appropriate number
$P_UIFR[n].
For predefined frame variables and user-defined frames, specify the name, e.g.,
$P_IFRAME.
Calling data
The axis name and the frame component of the value you want to access or modify are
written in square brackets, e.g., [X, RT] or [Z, MI].

6.2.3 Linking complete frames

Function
A complete frame can be assigned to another frame or frames can be chained to each other
in the NC program.
Frame chaining is suitable for the description of several workpieces, arranged on a pallet,
which are to be machined in the same process.

The frame components can only contain intermediate values for the description of pallet
tasks. These are chained to generate various workpiece zeroes.

Frames
6.2 Frame variables / assigning values to frames

 Job planning
6-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
Assigning frames

DEF FRAME SETTING1
SETTING1=CTRANS(X,10)
$P_PFRAME=SETTING1

DEF FRAME SETTING4
SETTING4=$P_PFRAME
$P_PFRAME=SETTING4

Assign the values of the user frame
SETTING1 to the current programmable
frame.

The current programmable frame is
stored temporarily and can be
recalled.

Frame chains
The frames are chained in the programmed sequence. The frame components (translations,
rotations, etc.) are executed additively in succession.

$P_IFRAME=$P_UIFR[15]:$P_UIFR[16]

$P_UIFR[3]=$P_UIFR[4]:$P_UIFR[5]

$P_UIFR[15] contains, for example,
data for zero offsets. The data of
$P_UIFR[16], e.g., data for rotations,
are subsequently processed additively.
The settable frame 3 is created by
chaining the settable frames 4 and 5.

 Note
The frames must be linked with each other using the concatenation colon : .

 Frames
 6.2 Frame variables / assigning values to frames

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-15

6.2.4 Defining new frames (DEF FRAME)

Function
In addition to the predefined settable frames described above, you also have the option of
creating new frames. This is achieved by creating variables of type FRAME to which you can
assign a name of your choice.
You can use the functions CTRANS, CROT, CSCALE and CMIRROR to assign values to
your frames in the NC program.

Programming
DEF FRAME PALETTE1
or
PALETTE1=CTRANS(…):CROT(…)…

Parameters

DEF FRAME Creating new frames

PALETTE1 Name of the new frame

=CTRANS(...):
CROT(...)...

Assigning values to the possible functions

6.2.5 Specifying frame rotations (ROT, ROTS, TOFRAME, TOROT, PAROT)

Function
Frame rotations can be used to define application-specific orientations in the area.

Parameters

ROT Individual rotations for all geometry axes.

ROTS, AROTS, CROTS Rotation by specifying a solid angle (max. 2);
see description in /FB1/ K2: Coordinate systems.

TOFRAME Rotation by frame "TOFRAME", with Z axis pointing in the
tool direction.

TOROT Rotation by frame "TOROT", which only overwrites the
rotation component of frames that have already been
programmed.

PAROT Workpiece-oriented frame rotation. The rotation component
is determined by the rotation component of an oriented
toolholder.

Frames
6.3 Coarse and fine offsets (CFINE; CTRANS)

 Job planning
6-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

6.3 6.3 Coarse and fine offsets (CFINE; CTRANS)

Function
Fine offset
A fine offset of the basic frames and of all other settable frames can be programmed with
command CFINE (X, ..,Y, ...).
Fine offset can only take place if MD 18600: MM_FRAME_FINE_TRANS=1.
Coarse offset
The coarse offset is defined with CTRANS(...).

Coarse and fine offset add up to the total offset.

 Frames
 6.3 Coarse and fine offsets (CFINE; CTRANS)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-17

Programming

$P_UBFR=CTRANS(x, 10) : CFINE(x, 0.1)
: CROT(x, 45) ;Chaining of offset,

;fine offset and rotation
$P_UIFR[1]=CFINE(x, 0.5 y, 1.0, z,
0.1) ;The complete frame will be

;overwritten with CFINE
;including the coarse offset

Access to the individual components of the fine offset is achieved through component
specification FI (Translation Fine).

DEF REAL FINEX ;Definition of the FINEX variable
FINEX=$P_UIFR[$P_UIFNUM, x, FI] ;Fetching the fine offset

;using the FINEX variable
FINEX=$P_UIFR[3, x, FI]$P ;Fetching the fine offset

;of the X axis in the 3rd frame
;using the FINEX variable

Parameters

CFINE(x, value, y, value, z, value) Fine offset for multiple axes. Additive
offset (translation).

CTRANS(x, value, y, value, z, value) Coarse offset for multiple axes. Absolute
offset (translation).

x y z Zero shift of the axes (max. 8)

Value Translation part

Machine manufacturer
With MD18600: MM_FRAME_FINE_TRANS is used to configure the fine offset for the
following variants:
0:
The fine offset cannot be entered or programmed. G58 and G59 are not possible.
1:
Fine offset for settable frames, basic frames, programmable frames, G58 and G59 can be
entered/programmed.

Description
A fine offset changed with the HMI operation does not apply until after activation of the
corresponding frame, i.e. activation via G500, G54...G599. Once activated, a fine offset of a
frame remains active the whole time the frame is active.
The programmable frame has no fine offset. If the programmable frame is assigned a frame
with fine offset, then the total offset is established by adding the coarse and the fine offset.
When reading the programmable frame the fine offset is always zero.

Frames
6.4 DRF offset

 Job planning
6-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

6.4 6.4 DRF offset

Offset using the handwheel, DRF
In addition to all the translations described in this section, you can also define zero offsets
with the handwheel (DRF offset).
In the basic coordinate system, DRF offset affects geometry axes and special axes:

However, a handwheel assignment must be made for the machine axis (e.g., via "Activate
handwheel" NC/PLC interface signals), to which the geometry axis and special axis can be
mapped. You will find more information in the appropriate Operator's Guide.

Clear DRF offset, DRFOF
DRFOF clears the handwheel offset for all axes assigned to the channel. DRFOF is
programmed in a separate NC block.

 Frames
 6.5 External zero offset

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-19

6.5 6.5 External zero offset

Function
This is another way of moving the zero point between the basic and workpiece coordinate
system.
Only linear translations can be programmed with the external zero offset.

Programming
The $AA_ETRANS offset values are programmed by assigning the axis-specific system
variables.
Assigning offset value
$AA_ETRANS[axis]=RI
RI is the arithmetic variable of type REAL that contains the new value.
The external offset is generally set by the PLC and not specified in the parts program.

 Note
The value entered in the parts program only becomes active when the corresponding signal
is enabled at the VDI interface (NCU-PLC interface).

Frames
6.6 Preset offset (PRESETON)

 Job planning
6-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

6.6 6.6 Preset offset (PRESETON)

Function
In special applications, it can be necessary to assign a new programmed actual value to one
or more axes at the current position (stationary).

Caution
The reference point becomes invalid with the function PRESETON. You should therefore
only use this function for axes which do not require a reference point. If the original system is
to be restored, the reference point must be approached with G74 – see the "File and
Program Management" section.

Programming
PRESETON(axis, value, ...)

Parameters

PRESETON Preset actual value memory

Axis Machine axis parameter

Value New actual value to apply to the specified axis

 Note
Preset mode with synchronized actions should only be implemented with the keyword
"WHEN" or "EVERY".

 Frames
 6.7 Deactivating frames (DRFOF, G53, G153, and SUPA)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-21

Example
The actual values are assigned to the machine coordinate system – the values refer to the
machine axes.
N10 G0 A760
N20 PRESETON(A1,60)
Axis A travels to position 760. At position 760, machine axis A1 is assigned the new actual
value 60. From this point, positioning is performed in the new actual value system.

6.7 6.7 Deactivating frames (DRFOF, G53, G153, and SUPA)

Function
The programmable frames are cleared by assigning a "zero frame"
(without axis specification) to the programmable frame.

Programming
DRFOF
or
G53
or
G153
or
SUPA

Parameters

DRFOF Deactivate (clear) the handwheel offsets (DRF)

G53 Non-modal deactivation of programmable and all settable
frames

G153 Non-modal deactivation of programmable frames, basic
frames and all settable frames

SUPA Non-modal deactivation of all programmable frames,
basic frames, all settable frames and handwheel offsets
(DRF)

Example of the assignment of a zero frame
$P_PFRAME=TRANS()
$P_PFRAME=ROT()
$P_PFRAME=SCALE()
$P_PFRAME=MIRROR()

Frames
6.8 Frame calculation from three measuring points in space (MEAFRAME)

 Job planning
6-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

6.8 6.8 Frame calculation from three measuring points in space (MEAFRAME)

Function
MEAFRAME is an extension of the 840D language used for supporting measuring cycles.
The function MEAFRAME calculates the frame from three ideal and the corresponding
measured points.
When a workpiece is positioned for machining, its position relative to the Cartesian machine
coordinate system is generally both shifted and rotated referring to its ideal position. For
exact machining or measuring either a costly physical adjustment of the part is required or
the motions defined in the parts program must be changed.
A frame can be defined by sampling three points in space whose ideal positions are known.
A touch-trigger probe or optical sensor is used for sampling that touches special holes
precisely fixed on the supporting plate or probe balls.

Programming
MEAFRAME IDEAL_POINT,MEAS_POINT,FIT_QUALITY)

Parameters

MEAFRAME Frame calculation of three measured points in space

IDEAL_POINT Array of real data containing the three coordinates of the ideal
points

MEAS_POINT Array of real data containing the three coordinates of the measured
points

FIT_QUALITY REAL variable,

-1:

-2:

-4:

Positive
value:

returning the following information:

The ideal points are almost on a straight line:
The frame could not be calculated. The returned frame
variable contains a neutral frame.

The measuring points are almost on a straight line:
The frame could not be calculated. The returned frame
variable contains a neutral frame.

The calculation of the rotation matrix failed for a
different reason.

Sum of distortions (distances between the points),
that are required to transform the measured triangle
into a triangle that is congruent to the ideal
triangle.

 Frames
 6.8 Frame calculation from three measuring points in space (MEAFRAME)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-23

 Note

Quality of the measurement
In order to map the measured coordinates onto the ideal coordinates using a rotation and a
translation, the triangle formed by the measured points must be congruent to the ideal
triangle. This is achieved by means of a compensation algorithm that minimizes the sum of
squared deviations needed to reshape the measured triangle into the ideal triangle.
Since the effective distortion can be used to judge the quality of the measurement,
MEAFRAME returns it as an additional variable.

 Note
The frame created by MEAFRAME can be transformed by the ADDFRAME function into another
frame in the frame chain.
Example: chaining of frames "concatenation with ADDFRAME".
Further information for the parameters for ADDFRAME(FRAME, STRING) see
/FB1/ Function Manual Basic Functions; Axes, Coordinate Systems, Frames (K2),
"FRAME Chaining".

Example
; parts program 1
;
DEF FRAME CORR_FRAME
;
;Setting measuring points
DEF REAL IDEAL_POINT[3,3] = SET(10.0,0.0,0.0, 0.0,10.0,0.0,
0.0,0.0,10.0)
DEF REAL MEAS_POINT[3,3] = SET
(10.1,0.2,-0.2, -0.2,10.2,0.1, -0.2,0.2, ,9); for test
DEF REAL FIT_QUALITY = 0
;
DEF REAL ROT_FRAME_LIMIT = 5 ;permits max. 5 degree rotation
;of the parts position
DEF REAL FIT_QUALITY_LIMIT = 3 ;permits max. 3 mm offset between
;the ideal and the measured triangle
DEF REAL SHOW_MCS_POS1[3]
DEF REAL SHOW_MCS_POS2[3]
DEF REAL SHOW_MCS_POS3[3]
;===
;
N100 G01 G90 F5000
N110 X0 Y0 Z0
;

Frames
6.8 Frame calculation from three measuring points in space (MEAFRAME)

 Job planning
6-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

N200 CORR_FRAME=MEAFRAME(IDEAL_POINT,MEAS_POINT,FIT_QUALITY)
;
N230 IF FIT_QUALITY < 0
SETAL(65000)
GOTOF NO_FRAME
ENDIF
,
N240 IF FIT_QUALITY > FIT_QUALITY_LIMIT
SETAL(65010)
GOTOF NO_FRAME
ENDIF
;
N250 IF CORR_FRAME[X,RT] > ROT_FRAME_LIMIT ;limitation of the 1st RPY
;angle
SETAL(65020)
GOTOF NO_FRAME
ENDIF
;
N260 IF CORR_FRAME[Y,RT] > ROT_FRAME_LIMIT ;limitation of the 2nd
;RPY
;angle
SETAL(65021)
GOTOF NO_FRAME
ENDIF
;
N270 IF CORR_FRAME[Z,RT] > ROT_FRAME_LIMIT ;limitation of the 3rd RPY
;angle
SETAL(65022)
GOTOF NO_FRAME
ENDIF
;
N300 $P_IFRAME=CORR_FRAME ;activate the probe frame via a settable frame
;
;check the frame by positioning the geometry axes at the ideal points
;
N400 X=IDEAL_POINT[0,0] Y=IDEAL_POINT[0,1] Z=IDEAL_POINT[0,2]
N410 SHOW_MCS_POS1[0]=$AA_IM[X]
N410 SHOW_MCS_POS1[1]=$AA_IM[X]
N430 SHOW_MCS_POS1[2]=$AA_IM[Z]
;
N500 X=IDEAL_POINT[1,0] Y=IDEAL_POINT[1,1] Z=IDEAL_POINT[1,2]
N510 SHOW_MCS_POS2[0]=$AA_IM[X]
N520 SHOW_MCS_POS2[1]=$AA_IM[Y]
N530 SHOW_MCS_POS2[2]=$AA_IM[Z]
;

 Frames
 6.8 Frame calculation from three measuring points in space (MEAFRAME)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-25

N600 X=IDEAL_POINT[2,0] Y=IDEAL_POINT[2,1] Z=IDEAL_POINT[2,2]
N610 SHOW_MCS_POS3[0]=$AA_IM[X]
N620 SHOW_MCS_POS3[1]=$AA_IM[Y]
N630 SHOW_MCS_POS3[2]=$AA_IM[Z]
;
N700 G500 ;Deactivate settable frame, because zero frame preset (no value set)
;
NO_FRAME:
M0
M30

Example of concatenating frames
Chaining of MEAFRAME for offsets
The MEAFRAME() function provides an offset frame. If this offset frame is concatenated
with a set frame $P_UIFR[1] that was active when the function was called, e.g., G54,
one receives a settable frame for further conversions for the procedure or machining.
Concatenation with ADDFRAME
If you want this offset frame in the frame chain to apply at a different position or if other
frames are active before the settable frame, the ADDFRAME() function can be used for
chaining into one of the channel basic frames or a system frame.
The following must not be active in the frames:
• Mirroring with MIRROR
• Scaling with SCALE
The input parameters for the setpoints and actual values are the workpiece coordinates.
These coordinates must always be specified
• metrically or in inches (G71/G70) and
• with reference to the radius (DIAMOF)
in the basic system of the controller.

Frames
6.9 NCU global frames

 Job planning
6-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

6.9 6.9 NCU global frames

Function
Only one set of NCU global frames is used for all channels on each NCU. NCU global
frames can be read and written from all channels. The NCU global frames are activated in
the respective channel.
Channel axes and machine axes with offsets can be scaled and mirrored by means of global
frames.
Geometrical relationships and frame chains
With global frames there is no geometrical relationship between the axes. It is therefore not
possible to perform rotations or program geometry axis identifiers.
• Rotations cannot be used on global frames. The programming of a rotation is denied with

alarm: "18310 Channel %1 Block %2 Frame: rotation not allowed" is displayed.
• It is possible to chain global frames and channel-specific frames. The resulting frame

contains all frame components including the rotations for all axes. The assignment of a
frame with rotation components to a global frame is denied with alarm "Frame: rotation
not allowed".

NCU-global frames
NCU-global basic frames $P_NCBFR[n]
Up to eight NCU-global basic frames can be configured:
Channel-specific basic frames can also be available.
Global frames can be read and written from all channels of an NCU. When writing global
frames, the user must ensure channel coordination. This can be achieved using wait
markers (WAITMC) for example.
Machine manufacturer
The number of global basic frames is configured using machine data, see
/FB1/ Function Manual Basic Functions; Axes, Coordinate Systems, Frames (K2).
NCU-global settable frames $P_UIFR[n]
All settable frames G500, G54...G599 can be configured NCU globally or channel-
specifically.
Machine manufacturer
All settable frames can be reconfigured as global frames with the aid of machine data
$MN_MM_NUM_GLOBAL_USER_FRAMES.
Channel axis identifiers and machine axis identifiers can be used as axis identifiers in frame
program commands. Programming of geometry identifiers is rejected with an alarm.

 Frames
 6.9 NCU global frames

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-27

6.9.1 Channel-specific frames ($P_CHBFR, $P_UBFR)

Function
Settable frames or basic frames can be read and written by an operator action or from the
PLC:
• via the parts program, or
• via the operator panel interface.

The fine offset can also be used for global frames. Suppression of global frames also takes
place, as is the case with channel-specific frames, via G53, G153, SUPA and G500.
Machine manufacturer
The number of basic frames can be configured in the channel via MD 28081
MM_NUM_BASE_FRAMES. The standard configuration is designed for at least one basic
frame per channel. A maximum of eight basic frames are supported per channel. In addition
to the eight basic frames, there can also be eight NCU-global basic frames in the channel.

Channel-specific frames
$P_CHBFR[n]
System variable $P_CHBFR[n] can be used to read and write the basic frames. When a
basic frame is written, the chained total basic frame is not activated until the execution of a
G500, G54...G599 instruction. The variable is used primarily for storing write operations to
the basic frame on HMI or PLC. These frame variables are saved by the data backup.
First basic frame in the channel
The basic frame with field device 0 is not activated simultaneously when writing to the
predefined $P_UBFR variable, but rather activation only takes place on execution of a
G500, G54...G599 instruction. The variable can also be read and written in the program.
$P_UBFR
$P_UBFR is identical to $P_CHBFR[0]. One basic frame always exists in the channel by
default, so that the system variable is compatible with older versions. If there is no channel-
specific basic frame, an alarm is issued at read/write: "Frame: instruction not permissible".

Frames
6.9 NCU global frames

 Job planning
6-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

6.9.2 Frames active in the channel

Function
Frames active in the channel are entered from the parts program via the associated system
variables of these frames. System frames also belong here. The current system frame can
be read and written via these system variables in the parts program.

Frames active in the channel
Overview

Current system frames For:
$P_PARTFRAME TCARR and PAROT
$P_SETFRAME PRESET and scratching
$P_EXTFRAME External zero offset
$P_NCBFRAME[n] Current NCU-global basic frames
$P_CHBFRAME[n] Current channel basic frames
$P_BFRAME Current first basic frame in the channel
$P_ACTBFRAME Complete basic frame
$P_CHBFRMASK and $P_NCBFRMASK Complete basic frame
$P_IFRAME Current settable frame
Current system frames For:
$P_TOOLFRAME TOROT and TOFRAME
$P_WPFRAME Workpiece reference points
$P_TRAFRAME Transformations
$P_PFRAME Current programmable frame
Current system frame For:
$P_CYCFRAME cycles
P_ACTFRAME Current total frame
FRAME chaining The current frame consists of the total

basic frame

$P_NCBFRAME[n] Current NCU-global basic frames
System variable $P_NCBFRAME[n] can be used to read and write the current global basic
frame field elements. The resulting total basic frame is calculated by means of the write
process in the channel.
The modified frame is activated only in the channel in which the frame was programmed. If
the frame is to be modified for all channels of an NCU, $P_NCBFR[n] and
$P_NCBFRAME[n] must be written simultaneously. The other channels must then activate
the frame, e.g., with G54. Whenever a basic frame is written, the complete basic frame is
calculated again.

 Frames
 6.9 NCU global frames

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-29

$P_CHBFRAME[n] Current channel basic frames
System variable $P_CHBFRAME[n] can be used to read and write the current channel basic
frame field elements. The resulting complete basic frame is calculated in the channel as a
result of the write operation. Whenever a basic frame is written, the complete basic frame is
calculated again.
$P_BFRAME Current first basic frame in the channel
The predefined frame variable $P_BFRAME can be used to read and write the current basic
frame with the field device of 0, which is valid in the channel, in the parts program. The
written basic frame is immediately included in the calculation.
$P_UBFR is identical to $P_CHBFR[0]. The system variable always has a valid default
value. If there is no channel-specific basic frame, an alarm is issued at read/write:
"Frame: instruction not permissible".
$P_ACTBFRAME Complete basic frame
The $P_ACTFRAME variable determines the chained complete basic frame. The variable is
read-only.
$P_ACTFRAME corresponds to
$P_NCBFRAME[0] : ... : $P_NCBFRAME[n] : $P_CHBFRAME[0] : ... :
$P_CHBFRAME[n].

$P_CHBFRMASK and $P_NCBFRMASK complete basic frame
The system variables $P_CHBFRMASK and $P_NCBFRMASK can be used to select, which
basic frames to include in the calculation of the "complete" basic frame. The variables can
only be programmed in the program and read via the operator panel interface. The value of
the variable is interpreted as bit mask and determines which basic frame field element of
$P_ACTFRAME is included in the calculation.

Frames
6.9 NCU global frames

 Job planning
6-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

$P_CHBFRMASK can be used to define which channel-specific basic frames are included,
and $P_NCBFRMASK can be used to define which NCU-global basic frames are included in
the calculation.
When the variables are programmed, the total basic frame and the total frame are calculated
again. After a reset and in the default setting, the value of
$P_CHBFRMASK = $MC_CHBFRAME_RESET_MASK and
$P_NCBFRMASK = $MC_CHBFRAME_RESET_MASK.
e.g.,
$P_NCBFRMASK = 'H81' ;$P_NCBFRAME[0] : $P_NCBFRAME[7]
$P_CHBFRMASK = 'H11' ;$P_CHBFRAME[0] : $P_CHBFRAME[4]
$P_IFRAME Current settable frame
The predefined frame variable $P_IFRAME can be used to read and write the current
settable frame, which is valid in the channel, in the parts program. The written settable frame
is immediately included in the calculation.
In the case of NCU-global settable frames, the modified frame acts only in the channel in
which the frame was programmed. If the frame is to be modified for all channels of an NCU,
$P_UIFR[n] and $P_IFRAME must be written simultaneously. The other channels must
then activate the corresponding frame, e.g., with G54.
$P_PFRAME Current programmable frame
$P_PFRAME is the programmed frame that results from the programming of
TRANS/ATRANS, G58/G59, ROT/AROT, SCALE/ASCALE, MIRROR/AMIRROR or from the
assignment of CTRANS, CROT, CMIRROR, CSCALE to the programmed FRAME.
Current, programmable frame variable that establishes the reference between the settable
• zero system (SZS) and the
• workpiece coordinate system (WCS)
.
P_ACTFRAME Current complete frame
The resulting current complete frame $P_ACTFRAME is now a chain of all basic frames, the
current settable frame and the programmable frame. The current frame is always updated
whenever a frame component is changed.
$P_ACTFRAME corresponds to
$P_PARTFRAME : $P_SETFRAME : $P_EXTFRAME : $P_ACTBFRAME : $P_IFRAME :
$P_TOOLFRAME : $P_WPFRAME : $P_TRAFRAME : $P_PFRAME : $P_CYCFRAME

 Frames
 6.9 NCU global frames

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 6-31

Frames
6.9 NCU global frames

 Job planning
6-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Frame chaining
The current frame consists of the total basic frame, the settable frame, the system frame,
and the programmable frame according to the current total frame mentioned above.

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-1

Transformations 7
7.1 7.1 General programming of transformation types

General function
You can choose to program transformation types with suitable parameters in order to adapt
the control to various machine kinematics. These parameters can be used to declare both
the orientation of the tool in space and the orientation movements of the rotary axes
accordingly for the selected transformation.
In three-, four-, and five-axis transformations, the programmed positional data always relates
to the tip of the tool, which is tracked orthogonally to the machined surface in space. The
Cartesian coordinates are converted from the basic coordinate system to the machine
coordinate system and relate to the geometry axes. These describe the operating point.
Virtual rotary axes describe the orientations of the tool in space and are programmed with
TRAORI.
In the case of kinematic transformation, positions can be programmed in the Cartesian
coordinate system. The control maps the Cartesian coordinate system traversing
movements programmed with TRANSMIT, TRACYL and TRAANG to the traversing
movements of the real machine axes.

Programming
Three, four and five axis transformations (TRAORI)
The orientation transformation declared is activated with the TRAORI command and the
three possible parameters for transformation number, orientation vector and rotary axis
offsets.
TRAORI(transformation number, orientation vector, rotary axis
offsets)
Kinematic transformations
TRANSMIT(transformation number) declared transformations are examples of
kinematic transformation.
TRACYL(working diameter, transformation number)
TRAANG(angle of offset axis, transformation number)
Deactivate active transformation
TRAFOOF can be used to deactivate the currently active transformation.

Transformations
7.1 General programming of transformation types

 Job planning
7-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Orientation transformation
Three, four and five axis transformations (TRAORI)
For the optimum machining of surfaces configured in space in the working area of the
machine, machine tools require other axes in addition to the three linear axes X, Y and Z.
The additional axes describe the orientation in space and are called orientation axes in
subsequent sections. They are available as rotary axes on four types of machine with
varying kinematics.
1. Two-axis swivel head, e.g., cardanic tool head with one rotary axis parallel to a linear axis

on a fixed tool table.
2. Two-axis rotary table, e.g., fixed swivel head with tool table, which can rotate about two

axes.
3. Single-axis swivel head and single-axis rotary table, e.g., one rotatable swivel head with

rotated tool for tool table, which can rotate about one axis.
4. Two-axis swivel head and single-axis rotary table, e.g., on tool table, which can rotate

about one axis, and one rotatable swivel head with tool, which can rotate about itself.
3- and 4-axis transformations are special types of 5-axis transformation and are programmed
in the same way as 5-axis transformations.
The functional scope of "generic 3-/4-/5-/6-axis transformation" is suitable both for
transformations for orthogonal rotary axes and transformations for the universal milling head
and, like all other orientation transformations, can also be activated for these four machine
types with TRAORI. In generic 5-/6-axis transformation, tool orientation has an additional
third degree of freedom, whereby the tool can be rotated about its own axis relative to the
tool direction so that it can be directed as required in space.
References: /FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

Initial tool orientation setting regardless of kinematics
ORIRESET
If an orientation transformation is active using TRAORI, then ORIRESET can be used to
specify the initial settings of up to 3 orientation axes with the optional parameters A, B, C.
The order in which the programmed parameters are assigned to the round axes depends on
the orientation axis order defined by the transformation. Programming ORIRESET(A, B, C)
results in the orientation axes moving in linear and synchronous motion from their current
position to the specified initial setting position.

 Transformations
 7.1 General programming of transformation types

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-3

Kinematic transformations
TRANSMIT and TRACYL
For milling on turning machines, either
1. Face machining in the turning clamp with TRANSMIT or
2. Machining of grooves with any path on cylindrical bodies with TRACYL
can be programmed for the transformation declared.
TRAANG
If the option of setting the infeed axis for inclined infeed is required (for grinding technology,
for example), TRAANG can be used to program a configurable angle for the transformation
declared.
Cartesian PTP travel
Kinematic transformation also includes the so-called "Cartesian PTP travel" for which up to
8 different articulated joint positions STAT= can be programmed. Although the positions are
programmed in a Cartesian coordinate system, the movement of the machine occurs in the
machine coordinates.
References:
/FB2/ Description of Functions Extended Functions; Kinematic Transformation (M1)

Chained transformations
Two transformations can be switched one after the other. For the second transformation
chained here, the motion parts for the axes are taken from the first transformation.
The first transformation can be:
• orientation transformation TRAORI
• polar transformation TRANSMIT
• cylinder transformation TRACYL
• inclined axis transformation TRAANG
The second transformation must be a TRAANG type transformation for an inclined axis.

Transformations
7.1 General programming of transformation types

 Job planning
7-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.1.1 Orientation movements for transformations

Travel movements and orientation movements
The traversing movements of the programmed orientations are determined primarily by the
type of machine. For three-, four-, and five-axis type transformations with TRAORI, the rotary
axes or pivoting linear axes describe the orientation movements of the tool.
Changes in the position of the rotary axes involved in the orientation transformation will
induce compensating movements on the remaining machine axes. The position of the tool tip
remains unchanged.
Orientation movements of the tool can be programmed using the rotary axis identifiers A…,
B…, C… of the virtual axes as appropriate for the application either by entering Euler or RPY
angles or directional or surface normal vectors, normalized vectors for the rotary axis of a
taper or for intermediate orientation on the peripheral surface of a taper.
In the case of kinematic transformation with TRANSMIT, TRACYL and TRAANG, the control
maps the programmed Cartesian coordinate system traversing movements to the traversing
movements of the real machine axes.

Machine kinematics for three, four and five axis transformation (TRAORI)
Either the tool or the tool table can be rotatable with up to two rotary axes. A combination of
swivel head and rotary table (single-axis in each case) is also possible.

 Transformations
 7.1 General programming of transformation types

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-5

Machine type Programming of orientation
Three-axis transformation
machine types 1 and 2

Programming of tool orientation only in the plane, which is
vertical to the rotary axis. There are
two translatory axes (linear axes) and
one axis of rotation (rotary axis).

Four-axis transformation
machine types 1 and 2

Programming of tool orientation only in the plane, which is
vertical to the rotary axis. There are
three translatory axes (linear axes) and
one axis of rotation (rotary axis).

Five-axis transformation
machine types 3
Single-axis swivel head
and single-axis rotary table

Programming of orientation transformation. Kinematics with
three linear axes and two orthogonal rotary axes.
The rotary axes are parallel to two of the three linear axes.
The first rotary axis is moved by two Cartesian linear axes. It
rotates the third linear axis with the tool. The second rotary
axis rotates the workpiece.

Generic 5/6-axis transformations

Machine type Programming of orientation transformation
Generic five/six-axis
transformation machine
types 4
Two-axis swivel head with
tool which rotates around
itself and single-axis rotary
table

Programming of orientation transformation. Kinematics with
three linear axes and three orthogonal rotary axes.
The rotary axes are parallel to two of the three linear axes.
The first rotary axis is moved by two Cartesian linear axes. It
rotates the third linear axis with the tool. The second rotary
axis rotates the workpiece. The basic tool orientation can also
be programmed with additional rotation of the tool around
itself with the THETA rotary angle.

When calling "generic three-, four-, and five/six-axis transformation", the basic orientation of
the tool can also be transferred. The restrictions in respect of the directions of the rotary
axes no longer apply. If the rotary axes are not exactly vertical to one another or existing
rotary axes are not exactly parallel with the linear axes, "generic five-/six-axis transformation"
can provide better results in respect of tool orientation.

Kinematic transformations TRANSMIT, TRACYL and TRAANG
For milling on turning machines or an axis that can be set for inclined infeed during grinding,
the following axis arrangements apply by default in accordance with the transformation
declared:

TRANMIT Activation of polar transformation
Face machining in the
turning clamp

A rotary axis
An infeed axis vertical to the axis of rotation
A longitudinal axis parallel to the axis of rotation

Transformations
7.1 General programming of transformation types

 Job planning
7-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

TRACYL Activation of the cylinder surface transformation
Machining of grooves with
any path on cylindrical
bodies

A rotary axis
An infeed axis vertical to the axis of rotation
A longitudinal axis parallel to the axis of rotation

TRAANG Activation of the inclined axis transformation
Machining with an oblique
infeed axis

A rotary axis
An infeed axis with parameterizable angle
A longitudinal axis parallel to the axis of rotation

Cartesian PTP travel
The machine moves in machine coordinates and is programmed with:

TRAORI Activation of transformation
PTP Point-to-point motion Approach position in Cartesian coordinate system (MCS)
CP Path motion of Cartesian axes in (BCS)
STAT Position of the articulated joints is dependent on the

transformation
TU The angle at which the axes traverse on the shortest path

PTP transversal with generic 5/6-axis transformation
The machine is moved using machine coordinates and the tool orientation, where the
movements can be programmed both using round axis positions and using Euler and/or RPY
angle vectors irrespective of the kinematics or the direction vectors.
Round axis interpolation, vector interpolation with large circle interpolation or interpolation of
the orientation vector on a peripheral surface of a taper are possible in such cases.

Example: Three- to five-axis transformation on a universal milling head
The machine tool has at least five axes:
• Three translatory axes for movements in straight lines, which move the operating point to

any position in the working area.
• Two rotary swivel axes arranged at a configurable angle (usually 45 degrees) allow the

tool to swivel to positions in space that are limited to a half sphere in a 45-degree
configuration.

 Transformations
 7.1 General programming of transformation types

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-7

7.1.2 Overview of orientation transformation TRAORI

Programming types available in conjunction with TRAORI

Machine type Programming with active transformation TRAORI
Machine types 1, 2, or 3
two-axis swivel head or
two-axis rotary table or a
combination of single-axis
swivel head and single-
axis rotary table.

The axis sequence of the orientation axes and the orientation
direction of the tool can either be configured on a
machine-specific basis using machine data
depending on the machine kinematics or on a
workpiece-specific basis with programmable orientation
independently of the machine kinematics.
The directions of rotation of the orientation axes in the
reference system are programmed with:
- ORIMKS reference system = machine coordinate system
- ORIWKS reference system = workpiece coordinate system
The default setting is ORIWKS.
Programming of orientation axes with:
A, B, C of machine axis position directly
A2, B2, C2 angular programming of virtual axes with
- ORIEULER using Euler angle (default)
- ORIRPY using RPY angle
- ORIVIRT1 using virtual orientation axes 1st definition
- ORIVIRT2 using virtual orientation axes 2nd definition
with differentiation of interpolation type:
Linear interpolation
- ORIAXES of orientation axes or machine axes
Large-radius circular interpolation (interpolation of orientation
vector)
- ORIVECT of orientation axes
Programming of orientation axes by entering
A3, B3, C3 of vector components (direction/surface normal)
Programming of resulting tool orientation
A4, B4, C4 of surface normal vector at start of block
A5, B5, C5 of surface normal vector at end of block
LEAD angle for tool orientation
TILT angle for tool orientation
Interpolation of orientation vector on the peripheral surface of
a taper
Changes in orientation on the peripheral surface of a taper
located anywhere in space by means of interpolation:
- ORIPLANE in the plane (large-radius circular interpolation)
- ORICONCW on the peripheral surface of a taper clockwise
- ORICONCCW on the peripheral surface of a taper counter-
clockwise
A6, B6, C6 direction vectors (rotary axis of taper)
-OICONIO interpolation on the peripheral surface of a taper
with:
A7, B7, C7 intermediate vectors (initial and ultimate
orientation)

Transformations
7.1 General programming of transformation types

 Job planning
7-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Machine type Programming with active transformation TRAORI
or
- ORICONTO on the peripheral surface of a taper, tangential
transition
Changes in orientation in relation to a path with
- ORICURVE specification of the movement of two contact
points using
PO[XH]=(xe, x2, x3, x4, x5) orientation polynomials up to the
fifth degree
PO[YH]=(ye, y2, y3, y4, y5) orientation polynomials up to the
fifth degree
PO[ZH]=(ze, z2, z3, z4, z5) orientation polynomials up to the
fifth degree
- ORIPATHS smoothing of orientation characteristic with
A8, B8, C8 reorientation phase of tool corresponding to:
direction and path length of tool during retraction movement

Machine types 1 and 3

Other machine types with
additional tool rotation
around itself require a 3rd
round axis

Orientation transformation,
e.g. generic 6-axis
transformation. Rotations
of orientation vector.

Programming of rotations for tool orientation with
LEAD angle, angle relative to surface normal vector
PO[PHI] programming of a polynomial up to the fifth degree
TILT angle rotation about path tangent (Z direction)
PO[PSI] programming of a polynomial up to the fifth degree
THETA angle of rotation (rotation about tool direction in Z)
THETA= value reached at end of block
THETA=AC(...) absolute non-modal switching to dimensions
THETA=IC(...) non-modal switching to chain dimensions
THETA=Θe interpolate programmed angle G90/G91
PO[THT]=(..) programming of a polynomial up to the fifth
degree
programming of the rotation vector
- ORIROTA rotation, absolute
- ORIROTR relative rotation vector
- ORIROTT tangential rotation vector

Orientation relative to the
path for orientation
changes relative to the
path or rotation of the
rotary vector tangentially to
the path

Changes in orientation relative to the path with
- ORIPATH tool orientation relative to the path
- ORIPATHS also in the event of a blip in the orientation
characteristic
programming of rotation vector
- ORIROTC tangential rotation vector, rotation to path tangent

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-9

7.2 7.2 Three, four and five axis transformation (TRAORI)

7.2.1 General relationships of universal tool head

Function
To obtain optimum cutting conditions when machining surfaces with a three-dimensional
curve, it must be possible to vary the setting angle of the tool.

The machine design to achieve this is stored in the axis data.

5-Axis Transformation
Cardanic tool head
Three linear axes (X, Y, Z) and two orientation axes (C, A) define the setting angle and the
operating point of the tool here. One of the two orientation axes is created as an inclined
axis, in our example A' - in many cases, placed at 45°.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

In the examples shown here, you can see the arrangements as illustrated by the
CA machine kinematics with the Cardanic tool head!
Machine manufacturer
The axis sequence of the orientation axes and the orientation direction of the tool can be set
up using the machine data as appropriate for the machine kinematics.

In this example, A' lies below the angle φ to the X axis.

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-11

The following possible relations are generally valid:

A' lies below the angle φ to the X axis
B' lies below the angle φ to the Y axis
C' lies below the angle φ to the Z axis

Angle φ can be configured in the range 0° to +89° using machine data.
With swiveling linear axis
This is an arrangement with a moving workpiece and a moving tool. The kinematics consists
of three linear axes (X, Y, Z) and two orthogonally arranged rotary axes. The first rotary axis
is moved, for example, over a compound slide of two linear axes, the tool standing parallel to
the third linear axis. The second rotary axis turns the workpiece. The third linear axis (swivel
axis) lies in the compound slide plane.

The axis sequence of the rotary axes and the orientation direction of the tool can be set up
using the machine data as appropriate for the machine kinematics.
There are the following possible relationships:

Axes: Axis sequences:
1. Rotary axis A A B B C C
2. Rotary axis B C A C A B
Swiveled linear axis Z Y Z X Y X

For more detailed information about configurable axis sequences for the orientation direction
of the tool, see
References: /FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformations (F2),
Universal Milling Head section, "Parameter Setting".

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.2.2 Three, four and five axis transformation (TRAORI)

Function
The user can configure two or three translatory axes and one rotary axis. The
transformations assume that the rotary axis is orthogonal on the orientation plane.
Orientation of the tool is possible only in the plane perpendicular to the rotary axis. The
transformation supports machine types with movable tool and movable workpiece.
Three- and four-axis transformations are configured and programmed in the same way as
five-axis transformations.
References:
/FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformations (F2)

Programming
TRAORI(n)
or
TRAORI(n,X,Y,Z,A,B)
or
TRAFOOF

Parameter

TRAORI Activates the first specified orientation transformation

TRAORI(n) Activates the orientation transformation specified by n

n The number of the transformation (n = 1 or 2), TRAORI(1)
corresponds to orientation transformation on

X,Y,Z Component of orientation vector to which tool points

A,B Programmable offset for the rotary axes

TRAFOOF Deactivate transformation

Tool orientation
Depending on the orientation direction selected for the tool, the active working plane (G17,
G18, G19) must be set in the NC program in such a way that tool length offset works in the
direction of tool orientation.

 Note
When the transformation is enabled, the positional data (X, Y, Z) always relates to the tip of
the tool. Changing the position of the rotary axes involved in the transformation causes so
many compensating movements of the remaining machine axes that the position of the tool
tip is unchanged.

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-13

Orientation transformation always points from the tool tip to the tool adapter.

Example of generic transformations
The basic orientation of the tool is indicated as follows:
TRAORI(1,0,0,1) Z direction
TRAORI(1,0,1,0) Y direction
TRAORI(1,0,1,1) Y/Z direction (corresponds to the position -45°)
Offset for orientation axes
When orientation transformation is activated an additional offset can be programmed directly
for the orientation axes.
Parameters can be omitted if the correct sequence is used in programming.
Example
TRAORI(, , , ,A,B) if only a single offset is to be entered.
As an alternative to direct programming, the additional offset for orientation axes can also be
transferred automatically from the zero offset currently active. Transfer is configured in the
machine data.

7.2.3 Variants of orientation programming and initial setting (OTIRESET)

Orientation programming of tool orientation with TRAORI
In conjunction with a programmable TRAORI orientation transformation, in addition to the
linear axes X, Y, Z, the round axis identifiers A.., B..., C... can also be used to program axis
positions or virtual axes with angles or vector components. Various types of interpolation are
possible for orientation and machine axes. Regardless of which PO[angle] orientation
polynomials and PO[axis] axis polynomials are currently active, a number of different types
of polynomial can be programmed. These include G1, G2, G3, CIP or POLY.
Changes in tool orientation can even be programmed using orientation vectors in some
cases. In such cases, the ultimate orientation of each block can be set either by means of
direct programming of the vector or by programming the rotary axis positions.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 Note
Variants of orientation programming for three- to five-axis transformation
In respect of three- to five-axis transformation, the following variants:
1. A, B, C direct entry of machine axis positions
2. A2, B2, C2 angular programming of virtual axes using Euler angle or RPY angle
3. A3 ,B3, C3 entry of vector components
4. LEAD, TILT entry of lead and tilt angles relative to the path and surface
5. A4, B4, C4 and A5, B5, C5 surface normal vector at start of block and end of block
6. A6, B6, C6 and A7, B7, C7 interpolation of orientation vector on a peripheral surface of a
taper
7. A8, B8, C8 reorientation of tool, direction and path length of retracting movement
are mutually exclusive.
If an attempt is made to program mixed values, alarm messages are output.

Initial tool orientation setting ORIRESET
By programming ORIRESET (A, B, C), the orientation axes are moved in linear and
synchronous motion from their current position to the specified initial setting position.
If an initial setting position is not programmed for an axis, a defined position from the
associated machine data $MC_TRAFO5_ROT_AX_OFFSET_1/2 is used. Any active frames
of round axles which may be present are ignored.

 Note
Only if an orientation transformation is active with TRAORI(...), can an initial setting for the
tool orientation regardless of kinematics be programmed without alarm 14101 using
ORIRESET(...).

Examples

1. Example of machine kinematics CA (channel axis names C, A)

ORIRESET(90, 45) ;C at 90 degrees, A at 45 degrees

ORIRESET(, 30) ;C at $MC_TRAFO5_ROT_AX_OFFSET_1/2[0], A at 30 degrees

ORIRESET() ;C at $MC_TRAFO5_ROT_AX_OFFSET_1/2[0],

 ;A at $MC_TRAFO5_ROT_AX_OFFSET_1/2[1]

2. Example of machine kinematics CAC (channel axis names C, A, B)

ORIRESET(90, 45, 90) ;C at 90 degrees, A at 45 degrees, B at 90 degrees

ORIRESET() ;C at $MC_TRAFO5_ROT_AX_OFFSET_1/2[0],

 ;A at $MC_TRAFO5_ROT_AX_OFFSET_1/2[1],

 ;B at $MC_TRAFO5_ROT_AX_OFFSET_1/2[2]

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-15

Programming LEAD, TILT and THETA rotations
In respect of three- to five-axis transformation, tool orientation rotations are programmed with
the LEAD and TILT angles.
In respect of a transformation with third rotary axis, additional programming settings for C2
(rotations of the orientation vector) are permitted for both orientation with vector components
and with entry of the LEAD, TILT angles.
With an additional third rotary axis, the rotation of the tool about itself can be programmed
with the THETA rotary angle.

7.2.4 Programming of the tool orientation (A..., B..., C..., LEAD, TILT)

Function
The following options are available when programming tool orientation:
1. Direct programming the motion of rotary axes. The change of orientation always occurs in

the basic or machine coordinate system. The orientation axes are traversed as
synchronized axes.

2. Programming in Euler or RPY angles in accordance with angle definition using A2, B2,
C2

3. Programming of the direction vector using A3, B3, C3. The direction vector points from
the tool tip toward the tool adapter.

4. Programming the surface normal vector at the start of the block with A4, B4, C4 and at
the end of the block with A5, B5, C5 (face milling).

5. Programming using lead angle LEAD and tilt angle TILT
6. Programming of rotary axis of taper as normalized vector using A6, B6, C6 or of

intermediate orientation on the peripheral surface of a taper using A7, B7, C7,
see "Orientation programming along the peripheral surface of a taper (ORIPLANE,
ORICONxx)".

7. Programming of reorientation, direction and path length of tool during retraction
movement using A8, B8, C8,
see "Smoothing the orientation characteristic (ORIPATHS A8=, B8=, C8=)"

 Note
In all cases, orientation programming is only permissible if an orientation transformation is
active.
Advantage: These programs can be transferred to any machine kinematics.

Definition of tool orientation via G code

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 Note
Machine manufacturer
Machine data can be used to switch between Euler or RPY angles. If the machine data is set
accordingly, changeovers are possible both depending on the active G code of group 50 and
irrespective of this. The following setting options can be selected:
1. If both machine data for defining the orientation axes and defining the orientation angle

are set to zero via G code:
The angles programmed using A2, B2, C2 are dependent on machine data The angle
definition of orientation programming is either interpreted as Euler or RPY angles.

2. If the machine data for defining the orientation axes is set to one via G code, the
changeover is
dependent on the active G code of group 50:
The angles programmed using A2, B2, C2 are interpreted in accordance with the
active G codes ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2, ORIAXPOS and
ORIPY2. The values programmed with the orientation axes are also interpreted as
orientation angles in accordance with the active G code of group 50.

3. If the machine data for defining the orientation angle is set to one via G code and the
machine data for defining the orientation axes is set to zero via G code, the changeover
is
not dependent on the active G code of group 50:
The angles programmed using A2, B2, C2 are interpreted in accordance with one of
the active G codes ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2 ORIAXPOS and
ORIPY2. The values programmed with the orientation axes are always interpreted as
round axis positions irrespective of the active G code of group 50.

Programming

G1 X Y Z A B C Programming of rotary axis motion
G1 X Y Z A2= B2= C2= Programming in Euler angles
G1 X Y Z A3== B3== C3== Programming of directional vector
G1 X Y Z A4== B4== C4== Programming the surface normal vector at block

start
G1 X Y Z A5== B5== C5== Programming the surface normal vector at end of

block
LEAD= Lead angle for programming tool orientation
TILT= Tilt angle for programming tool orientation

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-17

Parameters

G.... Details of the rotary axis motion

X Y Z Details of the linear axes

A B C Details of the machine axis positions of the
rotary axes

A2 B2 C2 Angle programming (Euler or RPY angle) of
virtual axes or orientation axes

A3 B3 C3 Details of the direction vector components

A4 B4 C4 Details, for example, for the face milling,
the component of the surface normal vector at
block start

A5 B5 C5 Details, for example, for the face milling,
the component of the surface normal vector at
block end

LEAD Angle relative to the surface normal vector in
the plane put up by the path tangent and the
surface normal vector

TILT Angle in the plane, perpendicular to the path
tangent relative to the surface normal vector

Example: Comparison without and with 5-axis transformation

Description
5-axis programs are usually generated by CAD/CAM systems and not entered at the control.
So the following explanations are directed mainly at programmers of postprocessors.
The type of orientation programming is defined in G code group 50:
ORIEULER via Euler angle
ORIRPY via RPY angle (rotation sequence ZYX)

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

ORIVIRT1 via virtual orientation axes (definition 1)
ORIVIRT2 via virtual orientation axes (definition 2)
ORIAXPOS via virtual orientation axes with round axis positions
ORIPY2 via RPY angle (rotation sequence XYZ)
Machine manufacturer
The machine manufacturer can use machine data to define various variants. Please refer to
the machine manufacturer's instructions.

Programming in Euler angles ORIEULER
The values programmed during orientation programming with A2, B2, C2 are interpreted
as Euler angles (in degrees).
The orientation vector results from turning a vector in the Z direction firstly with A2 around
the Z axis, then with B2 around the new X axis and lastly with C2 around the new Z axis.

In this case the value of C2 (rotation around the new Z axis) is meaningless and does not
have to be programmed.

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-19

Programming in RPY angles ORIRPY
The values programmed with A2, B2, C2 for orientation programming are interpreted as
an RPY angle (in degrees).

 Note
In contrast to Euler angle programming, all three values here have an effect on the
orientation vector.

Machine manufacturer
When defining angles with orientation angles via RPY angle, for the orientation axes
$MC_ORI_DEF_WITH_G_CODE = 0
The orientation vector results from turning a vector in the Z direction firstly with C2 around
the Z axis, then with B2 around the new Y axis and lastly with A2 around the new X axis.

By defining the orientation axes via G code, if the machine data
$MC_ORI_DEF_WITH_G_CODE = 1, then:
The orientation vector results from turning a vector in the Z direction firstly with A2 around
the Z axis, then with B2 around the new X axis and lastly with C2 around the new Z axis.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming of directional vector
The components of the direction vector are programmed with A3, B3, C3. The vector
points towards the tool adapter; the length of the vector is of no significance.
Vector components that have not been programmed are set equal to zero.

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-21

Programming the tool orientation with LEAD= and TILT=
The resultant tool orientation is determined from:
• Path tangent
• Surface normal vector

at the start of the block A4, B4, C4 and at the end of the block A5, B6, C5
• Lead angle LEAD

in the plane defined by the path tangent and surface normal vector
• Tilt angle TILT at the end of the block

vertical to the path tangent and relative to the surface normal vector
Behavior at inside corners (for 3D-tool compensation)
If the block is shortened at an inside corner, the resulting tool orientation is also achieved at
the end of the block.
Definition of tool orientation with LEAD= and TILT=

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.2.5 Face milling (3D-milling A4, B4, C4, A5, B5, C5)

Function
Face milling is used to machine curved surfaces of any kind.

For this type of 3D milling, you require line-by-line definition of 3D paths on the workpiece
surface.
The tool shape and dimensions are taken into account in the calculations, which are
normally performed in CAM. The fully calculated NC blocks are then read into the control via
postprocessors.

Programming the path curvature
Surface description
The path curvature is described by surface normal vectors with the following components:
A4, B4, C4 Start vector at block start
A5, B5, C5 End vector at block end
If a block only contains the start vector, the surface normal vector will remain constant
throughout the block. If a block only contains the end vector, interpolation will run from the
end value of the previous block via large-radius circular interpolation to the programmed end
value.
If both start and end vectors are programmed, interpolation runs between the two directions,
also via large-radius circular interpolation. This allows continuously smooth paths to be
created.

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-23

Regardless of the active G17 to G19 level, in the initial setting, surface normal vectors point
in the Z direction.
The length of a vector is meaningless.
Vector components that have not been programmed are set to zero.
With active ORIWKS (see "Reference of the orientation axes (ORIWKS, ORIMKS)") , the
surface normal vectors relate to the active frame and rotate when the frame rotates.
Machine manufacturer
The surface normal vector must be perpendicular to the path tangent, within a limit value set
via machine data, otherwise an alarm will be output.

7.2.6 Orientation axis reference (ORIWKS, ORIMKS)

Function
For orientation programming in the workpiece coordinate system using
• Euler or RPY angle or
• orientation vector
the motion of the rotary motion can be set using ORIMKS/ORIWKS.
Machine manufacturer
Machine data $MC_ORI_IPO_WITH_G_CODE specifies the active interpolation mode:
ORIMKS/ORIWKS
or
ORIMACHAX/ORIVIRTAX.

Programming
N.. ORIMKS=
or
N.. ORIWKS=

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

ORIMKS Rotation in the machine coordinate system

ORIWKS Rotation in the workpiece coordinate system

 Note
ORIWKS is the basic setting. In the case of a 5-axis program, if it is not immediately obvious
on which machine it is to run, always choose ORIWKS. Which movements the machine
actually executes depend on the machine kinematics.

With ORIMKS you can program actual machine movements, for example, to avoid collisions
with devices, etc.

Description
With ORIMKS, the movement executed by the tool depends on the machine kinematics. In
the case of a change in orientation of a tool tip at a fixed point in space, linear interpolation
takes place between the rotary axis positions.
With ORIWKS, the movement executed by the tool does not depend on the machine
kinematics. With an orientation change with a fixed tool tip, the tool moves in the plane set
up by the start and end vectors.

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-25

Singular positions

 Note
ORIWKS
Orientation movements in the singular setting area of the 5-axis machine require vast
movements of the machine axes. (For example, with a rotary swivel head with C as the
rotary axis and A as the swivel axis, all positions with A = 0 are singular.)

Machine manufacturer
To avoid overloading the machine axes, the velocity control vastly reduces the tool path
velocity near the singular positions.
With machine data
$MC_TRAFO5_NON_POLE_LIMIT
$MC_TRAFO5_POLE_LIMIT
the transformation can be parameterized in such a way that orientation movements close to
the pole are put through the pole and rapid machining is possible.
Singular positions are handled only with the MD $MC_TRAFO5_POLE_LIMIT.
References:
/FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformation (F2),
"Singular Points and How to Deal with Them" section.

7.2.7 Programming the orientation axes (ORIAXES, ORIVECT, ORIEULER, ORIRPY)

Function
The orientation axes function describes the orientation of the tool in space and is achieved
by programming the offset for the rotary axes. An additional, third degree of freedom can be
achieved by also rotating the tool about itself. In this case, the tool is oriented in space via a
third rotary axis for which 6-axis transformation is required. The rotation of the tool about
itself is defined using the THETA angle of rotation in accordance with the type of
interpolation of the rotation vectors (see "Rotations of the tool orientation (ORIROTA/TR/TT,
ORIROTC, THETA)").

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
Axis identifiers A2, B2 and C2 are used to program the orientation axes.

N... ORIAXES or ORIVECT
N... G1 X Y Z A B C
or
N... ORIPLANE
or
N ... ORIEULER or ORIRPY and/or
ORIRPY2
N... G1 X Y Z A2= B2= C2=
or
N... ORIVIRT1 or ORIVIRT2
N... G1 X Y Z A3= B3= C3=

Linear or large-radius circular
interpolation
or
orientation interpolation of the plane
or
Orientation angle Euler/RPY angle
Angle programming of virtual axes
or
virtual orientation axes definition 1 or 2
direction vector programming

Other rotary axis offsets of the orientation axes can be programmed for orientation changes
along the peripheral surface of a taper in space; see "Orientation programming along the
peripheral surface of a taper (ORIPLANE, ORICONxx)".

Parameters

ORIAXES Linear interpolation of machine or orientation axes

ORIVECT Large-radius circular interpolation (identical to
ORIPLANE)

ORIMKS

ORIWKS

Rotation in the machine coordinate system

Rotation in the workpiece coordinate system

Description, see the Rotations of the tool orientation
section

A= B= C= Programming the machine axis position

ORIEULER Orientation programming via Euler angle

ORIRPY Orientation programming via RPY angle. The rotation
sequence is XYZ and:
A2 is the rotation angle around X
B2 is the rotation angle around Y
C2 is the rotation angle around Z

ORIRPY2 Orientation programming via RPY angle. The rotation
sequence is ZYX and:
A2 is the rotation angle around Z
B2 is the rotation angle around Y
C2 is the rotation angle around X

A2= B2= C2= Angle programming of virtual axes

ORIVIRT1

ORIVIRT2

Orientation programming using virtual orientation axes

(definition 1), definition according to MD
$MC_ORIAX_TURN_TAB_1

(definition 2), definition according to MD
$MC_ORIAX_TURN_TAB_2

A3= B3= C3= Direction vector programming of direction axis

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-27

Description
Machine manufacturer
MD $MC_ORI_DEF_WITH_G_CODE specifies how the programmed angles A2, B2, C2 are
defined:
The definition is made using MD $MC_ORIENTATION_IS_EULER (standard) or the
definition is made using G group 50 (ORIEULER, ORIRPY, ORIVIRT1, ORIVIRT2).
MD $MC_ORI_IPO_WITH_G_CODE specifies which interpolation mode is active:
ORIWKS/ORIMKS or ORIAXES/ORIVECT.
JOG mode
Interpolation for orientation angles in this mode of operation is always linear. During
continuous and incremental traversal via the traversing keys, only one orientation axis can
be traversed. Orientation axes can be traversed simultaneously using the handwheels.
For manual travel of the orientation axes, the channel-specific feed override switch or the
rapid traverse override switch work at rapid traverse override.
A separate velocity setting is possible with the following machine data:
$MC_JOG_VELO_RAPID_GEO
$MC_JOG_VELO_GEO
$MC_JOG_VELO_RAPID_ORI
$MC_JOG_VELO_ORI
The Cartesian manual travel function can be used in JOG operation for
SINUMERIK 840D power line and 840D solution line with "Handling transformation package"
and
Sinumerik 810D power line to set the translation of geometric axes in the MCS, WCS and
TCS reference systems independently of each other.
References
/FB2/ Description of Functions Extended Functions; Kinematic Transformation (M1)

7.2.8 Orientation programming along the peripheral surface of a taper (ORIPLANE,
ORICONxx)

Function
With extended orientation it is possible to execute a change in orientation along the
peripheral surface of a taper in space. The orientation vector is interpolated on the peripheral
surface of a taper using the ORICONxx modal command. The end orientation can be
programmed with ORIPLANE for interpolation on a plane. The start orientation is usually
defined by the previous blocks.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
The end orientation is either defined by specifying the angle programming in the Euler or
RPY angle using A2, B2, C2 or by programming the rotary axis positions using A, B, C.
Further programming details are needed for orientation axes along the peripheral surface of
a taper:
• Rotary axis of taper as a vector with A6, B6, C6
• Opening angle PSI with identifier NUT
• Intermediate orientation outside of the taper with A7, B7, C7

 Note
Programming direction vector A6, B6, C6 for the rotary axis of the taper
The programming of an end orientation is not absolutely necessary. If no end orientation
is specified, a full outside taper with 360 degrees is interpolated.
Programming the opening angle of the taper with NUT=angle
An end orientation must be specified.
A complete outside taper with 360 degrees cannot be interpolated in this way.
Programming the intermediate orientation A7, B7, C7 on the outside of the taper
An end orientation must be specified. The change in orientation and the direction of
rotation is defined uniquely by the three vectors Start orientation, End orientation and
Intermediate orientation. All three vectors must be different. If the programmed
intermediate orientation is parallel to the start or end orientation, a linear large-radius
circular interpolation of the orientation is executed in the plane that is defined by the start
and end vector.

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-29

Extended orientation interpolation on the peripheral surface of a taper
N... ORICONCW or ORICONCCW
N... A6= B6= C6= A3= B3= C3=
or
N... ORICONTO
N... G1 X Y Z A6= B6= C6=
or
N... ORICONIO
N... G1 X Y Z A7= B7= C7=
N... PO[PHI]=(a2, a3, a4, a5)
N... PO[PSI]=(b2, b3, b4, b5)

Interpolation on the outside of a taper
with
direction vector in the
clockwise/counterclockwise direction of
the taper and end orientation or
tangential transition and
specification of end orientation
or
specification of end orientation and
intermediate orientation on the outside of
the taper with
polynomials for angle of rotation and
polynomials for opening angle

Parameters

ORIPLANE Interpolation in the plane (large-radius circular
interpolation)

ORICONCW Interpolation on the peripheral surface of a taper in
the clockwise direction

ORICONCCW Interpolation on the peripheral surface of a taper in
the counterclockwise direction

ORICONTO Interpolation on the peripheral surface of a taper with
tangential transition

A6= B6= C6= Programming of a rotary axis of the taper (normalized
vector)

NUT=angle Opening angle of taper in degrees

NUT=+179 Traverse angle smaller than or equal to 180 degrees

NUT=-181 Traverse angle greater than or equal to 180 degrees

ORICONIO Interpolation on the peripheral surface of a taper

A7= B7= C7= Intermediate orientation (programming as normalized
vector)

PHI Angle of rotation of the orientation about the direction
axis of the taper

PSI Opening angle of the taper

Possible polynomials
PO[PHI]=(a2, a3, a4, a5)
PO[PSI]=(b2, b3, b4, b5)

Apart from the different angles, polynomials can also be
programmed up to the 5th degree

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of different changes to orientation

…

N10 G1 X0 Y0 F5000

N20 TRAORI(1) ;Orientation transformation ON

N30 ORIVECT ;Interpolate tool orientation as a vector

… ;Tool orientation in the plane

N40 ORIPLANE ;Select large-radius circular interpolation

N50 A3=0 B3=0 C3=1

N60 A3=0 B3=1 C3=1 ;Orientation in the Y/Z plane is rotated about
;45 degrees; at the end of block, the
;orientation (0, 1/√2, 1/√2) is reached.

… ;Orientation programming on outside of the
;taper

N70 ORICONCW ;Orientation vector is interpolated in the
;clockwise direction on the outside of the
;taper with the

N80 A6=0 B6=0 C6=1 A3=0 B3=0 C3=1 ;direction (0,0,1) to orientation
;(1/√2, 0, 1/√2)
;the angle of rotation is 270 degrees.

N90 A6=0 B6=0 C6=1 ;The tool orientation goes through a full
;revolution on the outside of the same taper.

Description
If changes of orientation along the peripheral surface of a taper anywhere in space are to be
described, the vector about which the tool orientation is to be rotated must be known. The
start and end orientation must also be specified. The start orientation results from the
previous block and the end orientation has to be programmed or defined via other
conditions.
Programming in the ORIPLANE plane corresponds to ORIVECT
The programming of large-radius circular interpolation together with angle polynomials
corresponds to the linear and polynomial interpolation of contours. The tool orientation is
interpolated in a plane that is defined by the start and end orientation. If additional
polynomials are programmed, the orientation vector can also be tilted out of the plane.
Programming of circles in a plane G2/G3, CIP and CT
The extended orientation corresponds to the interpolation of circles in a plane. For the
corresponding programming options for circles with centers or radii such as G2/G3, circle via
intermediate point CIP and tangential circles CT, see
References: Programming Manual Fundamentals, "Programming motion commands".

 Transformations
 7.2 Three, four and five axis transformation (TRAORI)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-31

Orientation programming
Interpolation of the orientation vector on the peripheral surface of a taper ORICONxx
Four different types of interpolation from G-code group 51 can be selected for interpolating
orientations on the peripheral surface of a taper:
1. Interpolation on the outside of a taper in the clockwise direction ORICONCW with

specification of end orientation and taper direction, or opening angle. The direction vector
is programmed with identifiers A6, B6, C6 and the opening angle of the taper with
identifier NUT= value range in interval 0 degrees to 180 degrees.

2. Interpolation on the outside of a taper in the counterclockwise direction ORICONCCW with
specification of end orientation and taper direction, or opening angle. The direction vector
is programmed with identifiers A6, B6, C6 and the opening angle of the taper with
identifier NUT= value range in interval 0 degrees to 180 degrees.

3. Interpolation on the outside of a taper ORICONIO with specification of end orientation and
an intermediate orientation, which is programmed with identifiers A7, B7, C7.

4. Interpolation on the outside of a taper ORICONTO with tangential transition and
specification of end orientation. The direction vector is programmed with identifiers A6,
B6, C6.

7.2.9 Specification of orientation for two contact points
(ORICURVE, PO[XH]=, PO[YH]=, PO[ZH]=)

Function
Programming the change in orientation using the second curve in space ORICURVE
Another way to program changes in orientation, besides using the tool tip along a curve in
space, is to program the motion of a second contact point of the tool using ORICURVE. In
this way, changes in tool orientation can be defined uniquely, as when programming the tool
vector itself.
Machine manufacturer
Please refer to the machine manufacturer's notes on axis identifiers that can be set via
machine data for programming the second orientation path of the tool.

Programming
This type of interpolation can be used to program points (using G1) or polynomials (using
POLY) for the two curves in space. Circles and involutes are not permitted. It is also possible
to activate a spline interpolation with BSPLINE. Other types of splines (ASPLINE and
CSPLINE) and the activation of a compressor using COMPON, COMPCURV or COMPCAD
are not permissible.
The motion of the two contact points of the tool can be predefined up to the 5th degree when
programming the orientation polynomials for coordinates.

Transformations
7.2 Three, four and five axis transformation (TRAORI)

 Job planning
7-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Extended orientation interpolation with additional curve in space and polynomials for
coordinates
N... ORICURVE
N... PO[XH]=(xe, x2, x3, x4, x5)
N... PO[YH]=(ye, y2, y3, y4, y5)
N... PO[ZH]=(ze, z2, z3, z4, z5)

Specification of the motion of the second
contact point of the tool and additional
polynomials of the coordinates in
question

Parameters

ORICURVE Interpolation of the orientation specifying a movement
between two contact points of the tool

XH YH ZH Identifiers of the coordinates of the second contact
point of the tool of the additional contour as a curve
in space

Possible polynomials
PO[XH]=(xe, x2, x3, x4,
x5) PO[YH]=(ye, y2, y3,
y4, y5) PO[ZH]=(ze, z2,
z3, z4, z5)

Apart from using the appropriate end points, the curves
in space can also be programmed using polynomials.

xe, ye, ze End points of the curve in space

xi, yi, zi Coefficients of the polynomials up to the 5th degree

 Note
Identifiers XH YH ZH for programming a second orientation path
The identifiers must be selected such that no conflict arises with the other identifiers or linear
axes
X Y Z axes
and rotary axes such as
A2 B2 C2 Euler angle or RPY angle
A3 B3 C3 direction vectors
A4 B4 C4 or A5 B5 C5 surface normal vectors
A6 B6 C6 rotation vectors or A7 B7 C7 intermediate point coordinates
or other interpolation parameters.

 Transformations
 7.3 Orientation polynomials (PO[angle], PO[coordinate])

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-33

7.3 7.3 Orientation polynomials (PO[angle], PO[coordinate])

Function
Irrespective of the polynomial interpolation from G-code group 1 that is currently active, two
different types of orientation polynomial can be programmed up to the 5th degree for a 3-axis
to 5-axis transformation.
1. Polynomials for angles: lead angle LEAD, tilt angle TILT

in relation to the plane that is defined by the start and end orientation.
2. Polynomials for coordinates: XH, YH, ZH of the second curve in space for the tool

orientation of a reference point on the tool.
With a 6-axis transformation, the rotation of rotation vector THT can be programmed with
polynomials up to the 5th degree for rotations of the tool itself, in addition to the tool
orientation.

Programming
Type 1 orientation polynomials for angles

N… PO[PHI]=(a2, a3, a4, a5)
or
N… PO[PSI]=(b2, b3, b4, b5)

3-axis to 5-axis transformation

3-axis to 5-axis transformation

Type 2 orientation polynomials for coordinates

N… PO[XH]=(xe, x2, x3, x4, x5)
N… PO[YH]=(ye, y2, y3, y4, y5)
N… PO[ZH]=(ze, z2, z3, z4, z5)

Identifiers for the coordinates of the second
orientation path for tool orientation

In both cases, with 6-axis transformations, a polynomial can also be programmed for the
rotation using

N… PO[THT]=(c2, c3, c4, c5)
or
N… PO[THT]=(d2, d3, d4, d5)

Interpolation of the rotation relative to the
path
Interpolation absolute, relative and
tangential to the change of orientation

of the orientation vector. This is possible if the transformation supports a rotation vector with
an offset that can be programmed and interpolated using the THETA angle of rotation.

Transformations
7.3 Orientation polynomials (PO[angle], PO[coordinate])

 Job planning
7-34 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

PO[PHI] Angle in the plane between start and end orientation

PO[PSI] Angle describing the tilt of the orientation from the
plane between start and end orientation

PO[THT] Angle of rotation created by rotating the rotation
vector of one of the G codes of group 54 that is
programmed using THETA

PHI Lead angle LEAD

PSI Tilt angle TILT

THETA Rotation about the tool direction in Z

PO[XH] X coordinate of the reference point on the tool

PO[YH] Y coordinate of the reference point on the tool

PO[ZH] Z coordinate of the reference point on the tool

Description
Orientation polynomials cannot be programmed:
• If ASPLINE, BSPLINE, CSPLINE spline interpolations are active.

Type 1 polynomials for orientation angles are possible for every type of interpolation
except spline interpolation, that is, linear interpolation with rapid traverse G00 or with
feedrate G01
with polynomial interpolation using POLY and
circular/involute interpolation G02, G03, CIP, CT, INVCW and INCCCW.
However, type 2 polynomials for orientation coordinates are only possible if
linear interpolation with rapid traverse G00 or with feedrate G01 or
polynomial interpolation with POLY is active.

• If the orientation is interpolated using ORIAXES axis interpolation. In this case,
polynomials can be programmed directly with PO[A] and PO[B] for orientation
axes A and B.

Type 1 orientation polynomials with ORIVECT, ORIPLANE and ORICONxx
Only type 1 orientation polynomials are possible for large-radius circular interpolation and
interpolation outside of the taper with ORIVECT, ORIPLANE and ORICONxx.
Type 2 orientation polynomials with ORICURVE
If interpolation with the additional curve in space ORICURVE is active, the Cartesian
components of the orientation vector are interpolated and only type 2 orientation polynomials
are possible.

 Transformations
 7.4 Rotations of the tool orientation (ORIROTA, ORIROTR/TT, ORIROTC, THETA)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-35

7.4 7.4 Rotations of the tool orientation (ORIROTA, ORIROTR/TT, ORIROTC,
THETA)

Function
If you also want to be able to change the orientation of the tools on machine types with
movable tools, program each block with end orientation. Depending on the machine
kinematics you can either program the orientation direction of the orientation axes or the
direction of rotation of orientation vector THETA. Different interpolation types can be
programmed for these rotation vectors:
• ORIROTA: Angle of rotation to an absolute direction of rotation.
• ORIROTR: Angle of rotation relative to the plane between the start and end orientation.
• ORIROTT: Angle of rotation relative to the change in the orientation vector.
• ORIROTC: Tangential angle of rotation to the path tangent.

Programming
Only if interpolation type ORIROTA is active can the angle of rotation or rotation vector be
programmed in all four modes as follows:
1. Directly as rotary axis positions A, B, C
2. Euler angles (in degrees) with A2, B2, C2
3. RPY angles (in degrees) with A2, B2, C2
4. Direction vector via A3, B3, C3 (angle of rotation using THETA=value)
If ORIROTR or ORIROTT is active, the angle of rotation can only be programmed directly with
THETA.
A rotation can also be programmed in a separate block without an orientation change taking
place. In this case, ORIROTR and ORIROTT are irrelevant. In this case, the angle of rotation
is always interpreted with reference to the absolute direction (ORIROTA).

N... ORIROTA
or
N... ORIROTR
or
N... ORIROTT
or
N... ORIROTC

Define the interpolation of the rotation vector

N... A3= B3= C3= THETA=value Define the rotation of the orientation vector
N... PO[THT]=(d2, d3, d4, d5) Interpolate angle of rotation with a 5th order

polynomial

Transformations
7.4 Rotations of the tool orientation (ORIROTA, ORIROTR/TT, ORIROTC, THETA)

 Job planning
7-36 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

ORIROTA Angle of rotation to an absolute direction of rotation.

ORIROTR Angle of rotation relative to the plane between the start and
end orientation.

ORIROTT Angle of rotation as a tangential rotation vector to the
change of orientation

ORIROTC Angle of rotation as a tangential rotation vector to the path
tangent

THETA Rotation of the orientation vector

THETA=value Angle of rotation in degrees reached by the end of the block.

THETA=Θe Angle of rotation with end angle Θe of rotation vector
THETA=AC(...) Non-modal switchover to absolute dimensions

THETA=AC(...) Non-modal switchover to incremental dimensions

Θe End angle of rotational vector both absolute with G90 and
relative with G91 (incremental dimensioning) is active

PO[THT]=(....) Polynomial for angle of rotation

Example of rotations of orientations

N10 TRAORI

N20 G1 X0 Y0 Z0 F5000

N30 A3=0 B3=0 C3=1 THETA=0

N40 A3=1 B3=0 C3=0 THETA=90

N50 A3=0 B3=1 C3=0 PO[THT]=(180,90)

N60 A3=0 B3=1 C3=0 THETA=IC(-90)

N70 ORIROTT

N80 A3=1 B3=0 C3=0 THETA=30

;Activate orientation transformation

;Tool orientation

;In Z direction with angle of rotation 0

;In X direction and rotation about 90 degrees

;Orientation

;In Y direction and rotation about
;180 degrees

;Remains constant and rotation to 90 degrees

;Angle of rotation relative to change of
;orientation

;Rotation vector in angle 30 degrees to
;X/Y plane

When interpolating block
N40, the angle of rotation from initial value of 0 degrees to final value of 90 degrees is
interpolated linearly. In block N50, the angle of rotation changes from 90 degrees to 180
degrees, according to parabola θ(u) = +90u2. In N60, a rotation can also be executed
without a change in orientation taking place.
With N80, the tool orientation is rotated from the Y direction toward the X direction. The
change in orientation takes place in the X/Y plane and the rotation vector describes an angle
of 30 degrees to this plane.

Description
ORIROTA
The angle of rotation THETA is interpolated with reference to an absolute direction in space.
The basic direction of rotation is defined in the machine data.
ORIROTR
The angle of rotation THETA is interpreted relative to the plane defined by the start and end
orientation.

 Transformations
 7.5 Orientations relative to the path

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-37

ORIROTT
The angle of rotation THETA is interpreted relative to the change in orientation. For THETA=0
the rotation vector is interpolated tangentially to the change in orientation and only differs
from ORIROTR if at least one polynomial has been programmed for "tilt angle PSI" for the
orientation. The result is a change in orientation that is not executed in the plane. An
additional angle of rotation THETA can then be used to interpolate the rotation vector such
that it always produces a specific value referred to the change in orientation.
ORIROTC
The rotation vector is interpolated relative to the path tangent with an offset that can be
programmed using the THETA angle. A polynomial PO[THT]=(c2, c3, c4, c5) up to
the 5th degree can also be programmed for the offset angle.

7.5 7.5 Orientations relative to the path

7.5.1 Orientation types relative to the path

Function
By using this expanded function, relative orientation is not only achieved at the end of the
block, but across the entire trajectory. The orientation achieved in the previous block is
transferred to the programmed end orientation using large-radius circular interpolation. There
are basically two ways of programming the desired orientation relative to the path:
1. Like the tool rotation, the tool orientation is interpolated relative to the path using

ORIPATH, ORPATHTS.
2. The orientation vector is programmed and interpolated in the usual manner. The rotation

of the orientation vector is initiated relative to the path tangent using ORIROTC.

Programming
The type of interpolation of the orientation and the rotation of the tool is programmed using:

N... ORIPATH Orientation relative to the path
N... ORIPATHS Orientation relative to the path with smoothing of

orientation characteristic
N... ORIROTC Interpolation of the rotation vector relative to the

path

An orientation blip caused by a corner on the trajectory can be smoothed using ORIPATHS.
The direction and path length of the retracting movement is programmed via the vector using
the components A8=X, B8=Y C8=Z.

Transformations
7.5 Orientations relative to the path

 Job planning
7-38 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

ORIPATH/ORIPATHS can be used to program various references to the path tangent via the
three angles
• LEAD= Specification of lead angle relative to the path and surface
• TILT= Specification of tilt angle relative to the path and surface
• THETA= Angle of rotation
for the entire trajectory. Polynomials up to the 5th degree can be programmed in addition to
the THETA angle of rotation using PO[THT]=(...).

 Note
Machine manufacturer
Please refer to the machine manufacturer's instructions. Other settings can be made for
orientations relative to the path via configurable machine and setting data. For more detailed
information, please refer to
References:
/FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformation (F2),
"Orientation" section

Parameters
Various settings can be made for the interpolation of angles LEAD and TILT via machine
data:
• The tool-orientation reference programmed using LEAD and TILT is retained for the

entire block.
• Lead angle LEAD: rotation about the direction vertical to the tangent and normal vector

TILT: rotation of the orientation about the normal vector.
• Lead angle LEAD: rotation about the direction vertical to the tangent and normal vector

Tilt angle TILT: rotation of the orientation in the direction of the path tangent.
• Angle of rotation THETA: rotation of the tool about itself with an additional third rotary axis

acting as an orientation axis in 6-axis transformation.

 Note
Orientation relative to the path not permitted in conjunction with OSC, OSS, OSSE, OSD
and OST
Orientation interpolation relative to the path, that is ORIPATH or ORIPATHS and ORIOTC,
cannot be programmed in conjunction with orientation characteristic smoothing with a
G code from group 34. OSOF has to be active for this.

 Transformations
 7.5 Orientations relative to the path

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-39

7.5.2 Rotation of the tool orientation relative to the path
(ORIPATH, ORIPATHS, angle of rotation)

Function
With a 6-axis transformation, the tool can be rotated about itself with a third rotary axis to
orientate the tool as desired in space. With a rotation of the tool orientation relative to the
path using ORIPATH or ORIPATHS, the additional rotation can be programmed via the
THETA angle of rotation. Alternatively, the LEAD and TILT angles can be programmed using
a vector, which is located in the plane vertical to the tool direction.
Machine manufacturer
Please refer to the machine manufacturer's instructions. The interpolation of the LEAD and
TILT angles can be set differently using machine data.

Programming
Rotation of tool orientation and tool
The type of tool orientation relative to the path is activated using ORIPATH or ORIPATHS.

N... ORIPATH Activate type of orientation relative to the path
N... ORIPATHS Activate type of orientation relative to the path

with smoothing of the orientation characteristic
Activating the three angles that can be rotated:
N... LEAD= Angle for the programmed orientation relative to

the surface normal vector
N... TILT= Angle for the programmed orientation in the

plane, vertical to the path tangent relative to the
surface normal vector

N... THETA= Angle of rotation relative to the change of
orientation in the tool direction of the third rotary
axis

The values of the angles at the end of block are programmed using LEAD=value,
TILT=value or THETA=value. In addition to the constant angles, polynomials can be
programmed for all three angles up to the 5th degree.

N... PO[PHI]=(a2, a3, a4, a5)
or
N... PO[PSI]=(b2, b3, b4, b5)
or
N... PO[THT]=(d2, d3, d4, d5)

Polynomial for the LEAD angle

Polynomial for the TILT angle

Polynomial for the THETA angle of
rotation

The higher polynomial coefficients, which are zero, can be omitted when programming.
Example: PO[PHI]=a2 results in a parabola for the LEAD angle.

Transformations
7.5 Orientations relative to the path

 Job planning
7-40 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters
Tool orientation relative to the path

ORIPATH Tool orientation relative to the path

ORIPATHS Tool orientation relative to the path; blip in
orientation characteristic is smoothed

LEAD Angle relative to the surface normal vector in the plane
that is defined by the path tangent and the surface
normal vector

TILT Rotation of orientation in the Z direction or rotation
about the path tangent

THETA Rotation about the tool direction toward Z

PO[PHI] Orientation polynomial for the LEAD angle

PO[PSI] Orientation polynomial for the TILT angle

PO[THT] (Orientation polynomial for the THETA angle of rotation

 Note
Angle of rotation THETA
A 6-axis transformation is required to rotate a tool with a third rotary axis that acts as an
orientation axis about itself.

 Transformations
 7.5 Orientations relative to the path

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-41

7.5.3 Interpolation of the tool rotation relative to the path (ORIROTC, THETA)

Function
Interpolation with rotation vectors
The rotation vector of the tool rotation, programmed with ORIROTC, relative to the path
tangent can also be interpolated with an offset that can be programmed using the THETA
angle of rotation. A polynomial can, therefore, be programmed up to the 5th degree for the
offset angle using PO[THT].

Programming

N... ORIROTC Initiate the rotation of the tool
relative to the path tangent

N... A3= B3= C3= THETA=value Define the rotation of the
orientation vector

N... A3= B3= C3= PO[THT]=(c2, c3, c4, c5) Interpolate offset angle with
polynomial up to 5th degree

A rotation can also be programmed in a separate block without an orientation change taking
place.

Parameters
Interpolation of the rotation of tool relative to the path in 6-axis transformation

ORIROTC Initiate tangential rotation vector relative to path

tangent

THETA=value Angle of rotation in degrees reached by the end of the
block

THETA=θe Angle of rotation with end angle Θe of rotation vector
THETA=AC(...) Non-modal switchover to absolute dimensions

THETA=IC(…) Non-modal switchover to incremental dimensions

PO[THT]=(c2, c3, c4, c5) Interpolate offset angle with polynomial of 5th degree

 Note
Interpolation of the rotation vector ORIROTC
Initiating rotation of the tool relative to the path tangent in the opposite direction to the tool
orientation, is only possible with a 6-axis transformation.
With active ORIROTC
Rotation vector ORIROTA cannot be programmed. If programming is undertaken,
ALARM 14128 "Absolute programming of tool rotation with active ORIROTC" is output.

Transformations
7.5 Orientations relative to the path

 Job planning
7-42 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Orientation direction of the tool for 3-axis to 5-axis transformation
The orientation direction of the tool can be programmed via Euler angles, RPY angles or
direction vectors as with 3-axis to 5-axis transformations. Orientation changes of the tool in
space can also be achieved by programming the large-radius circular interpolation
ORIVECT, linear interpolation of the orientation axes ORIAXES, all interpolations on the
peripheral surface of a taper ORICONxx, and interpolation in addition to the curve in space
with two contact points of the tool ORICURVE.

G.... Details of the rotary axis motion

X Y Z Details of the linear axes

ORIAXES Linear interpolation of machine or orientation axes

ORIVECT Large-radius circular interpolation (identical to
ORIPLANE)

ORIMKS

ORIWKS

Rotation in the machine coordinate system

Rotation in the workpiece coordinate system

Description, see the Rotations of the tool orientation
section

A= B= C= Programming the machine axis position

ORIEULER Orientation programming via Euler angle

ORIRPY Orientation programming via RPY angle

A2= B2= C2= Angle programming of virtual axes

ORIVIRT1

ORIVIRT2

Orientation programming using virtual orientation axes

(definition 1), definition according to
MD $MC_ORIAX_TURN_TAB_1

(definition 2), definition according to
MD $MC_ORIAX_TURN_TAB_2

A3= B3= C3= Direction vector programming of direction axis

ORIPLANE Interpolation in the plane (large-radius circular
interpolation)

ORICONCW Interpolation on the peripheral surface of a taper in the
clockwise direction

ORICONCCW Interpolation on the peripheral surface of a taper in the
counterclockwise direction

ORICONTO Interpolation on the peripheral surface of a taper with
tangential transition

A6= B6= C6= Programming of a rotary axis of the taper (normalized
vector)

NUT=angle Opening angle of taper in degrees

NUT=+179 Traverse angle smaller than or equal to 180 degrees

NUT=-181 Traverse angle greater than or equal to 180 degrees

ORICONIO Interpolation on the peripheral surface of a taper

A7= B7= C7= Intermediate orientation (programming as normalized
vector)

ORICURVE

XH YH ZH, e.g., with
polynomials PO[XH]=(xe,
x2, x3, x4, x5)

Interpolation of the orientation specifying a movement
between two contact points of the tool. In addition to
the end points, additional curve polynomials can also be
programmed.

 Note
If the tool orientation with active ORIAXES is interpolated via the orientation axes, the angle
of rotation is only initiated relative to the path at the end of block.

 Transformations
 7.5 Orientations relative to the path

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-43

7.5.4 Smoothing of orientation characteristic (ORIPATHS A8=, B8=, C8=)

Function
Changes of orientation that take place with constant acceleration on the contour can cause
unwanted interruptions to the path motions, particularly at the corner of a contour. The
resulting blip in the orientation characteristic can be smoothed by inserting a separate
intermediate block. If ORIPATHS is active during reorientation, the change in orientation
occurs at a constant acceleration. The tool can be retracted in this phase.
Machine manufacturer
Please refer to the machine manufacturer's notes on any predefined machine and setting
data used to activate this function.
Machine data can be used to set how the retracting vector is interpreted:
1. In the TCS, the Z coordinate is defined by the tool direction.
2. In the WCS, the Z coordinate is defined by the active plane.
For more detailed information about the "Orientation relative to the path" function, please
refer to
References: /FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformation (F2)

Programming
Further programming details are needed at the corner of the contour for constant tool
orientations relative to the path as a whole. The direction and path length of this motion is
programmed via the vector using the components A8=X, B8=Y C8=Z.

N... ORIPATHS A8=X B8=Y C8=Z

Parameters

ORIPATHS Tool orientation relative to the path; blip in
orientation characteristic is smoothed

A8= B8= C8= Vector components for direction and path length

X, Y, Z Retracting movement in tool direction

 Note
Programming direction vectors A8, B8, C8
If the length of this vector is exactly zero, no retracting movement is executed.
ORIPATHS
Tool orientation relative to the path is activated using ORIPATHS. The orientation is
otherwise transferred from the start orientation to the end orientation by means of linear
large-radius circular interpolation.

Transformations
7.6 Compression of the orientation COMPON (A..., B..., C..., THETA)

 Job planning
7-44 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.6 7.6 Compression of the orientation COMPON (A..., B..., C..., THETA)

Function
NC programs in which the orientation is programmed by means of direction vectors can be
compressed if kept within specified limits. The compressor can only be used for orientations
in conjunction with an orientation transformation.
Machine manufacturer
The orientation movement is only compressed if large-radius circular interpolation is active
and depends, therefore, on the G code for orientation interpolation. This can be set via
machine data, as can the maximum path length and a permissible tolerance for each axis or
for the path feedrate for the compressor function. Please refer to the machine manufacturer's
instructions.

Programming
NC block structure in general
The blocks to be compressed may only contain a block number, linear interpolation G1, axis
addresses, feedrate, and a comment and their program syntax is, therefore, as follows:

N... G1 X=... Y=... Z=... A=... B=...
F=... ;Comment

The position values can be entered directly, e.g., X90, or indirectly via parameter settings
X=R1*(R2+R3).
With active orientation transformation TRAORI
The tool orientation can be programmed independently of the kinematics.
On a machine with 3-axis to 5-axis transformation, the following applies:

N... TRAORI
A3=... B3=... C3=...
A2=... B2=... C2=...

;Direction vector
;Euler angle or RPY angle

 Transformations
 7.6 Compression of the orientation COMPON (A..., B..., C..., THETA)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-45

On a machine with 6-axis transformation , the rotation of the tool can be programmed in
addition to the tool orientation.

N... X... Y... Z... A3=... B3=... C3=... THETA=... F=... or
N... X... Y... Z... A2=... B2=... C2=... THETA=... F=...

If the tool orientation is specified via rotary axis positions, e.g., as:

N... X... Y... Z... A=... B=... THETA=... F=...
the compression is interpreted differently, depending on whether large-radius circular
interpolation is performed or not. If large-radius circular interpolation is not performed, the
compressed orientation change is represented by axial polynomials for the rotary axes.

Parameters
The parameter assignments that previously applied to the compressor can also be used for
rotary axis positions.

TRAORI Activate orientation transformation

COMPON Compressor ON

G1 Linear interpolation

X= Y= Z= Linear axis addresses

A= B= C= Rotary axis positions; direct programming

A2= B2= C2= Rotary axis addresses in Euler angles or RPY angles

A3= B3= C3= Rotary axis addresses as direction vectors

THETA Rotation of the orientation vector

F Path feedrate

For more detailed information about programming the THETA=... angle of rotation, please
see "Rotations of the tool orientation (ORIROTA/TR/TT, ORIROTC, THETA)".

 Note
Compression only with active large-radius circular interpolation
This is the case when the tool orientation changes in the plane that is defined by the start
and end orientation. The conditions that apply to large-radius circular interpolation must be
set via machine data.
1st machine data: G code for orientation interpolation = FALSE
ORIWKS is active and orientation is programmed as a vector with A3, B3, C3 or A2, B2, C2.
2nd machine data: G code for orientation interpolation = TRUE
ORIVECT or ORIPLANE is active. The tool orientation can be programmed either as a
direction vector or with rotary axis positions. If one of the ORICONxx or ORICURVE G codes
is active or if polynomials are programmed for the orientation angle (PO[PHI] and PO[PSI]),
large-radius circular interpolation is not performed, i.e., blocks of this type are not
compressed.

Transformations
7.6 Compression of the orientation COMPON (A..., B..., C..., THETA)

 Job planning
7-46 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: "Compressor for orientations"
In the example program below, a circle approached by a polygon definition is compressed.
The tool orientation moves on the outside of the taper at the same time. Although the
programmed orientation changes are executed one after the other, but in an unsteady way,
the compressor generates a smooth motion of the orientation.

DEF INT NUMBER = 60

DEF REAL RADIUS = 20

DEF INT COUNTER

DEF REAL ANGLE

N10 G1 X0 Y0 F5000 G64

$SC_COMPRESS_CONTUR_TOL = 0.05

$SC_COMPRESS_ORI_TOL = 5

;Maximum deviations of the contour:
;0.05 mm

;Maximum deviations of the orientation:
;5 degrees

TRAORI

COMPCURV

N100 X0 Y0 A3=0 B3==1

N110 FOR COUNTER = 0 TO NUMBER

N120 ANGLE= 360 * COUNTER/NUMBER

N130 X=RADIUS*COS(ANGLE)Y=RADIUS*

 SIN(ANGLE) A3=SIN(ANGLE)

 B3=(ANGLE) C3=1

N140 ENDFOR

...

;The movement describes a circle
;generated from polygons.

;While the orientation moves on a taper
;around the Z axis with an opening angle
;of 45 degrees.

 Transformations
 7.6 Compression of the orientation COMPON (A..., B..., C..., THETA)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-47

Description
Accuracy
You can only compress NC blocks if you allow the contour to deviate from the programmed
contour. You can set the maximum deviation as a compressor tolerance in the setting data.
The higher the tolerances, the more blocks can be compressed.
Axis accuracy
For each axis, the compressor creates a spline curve, which deviates from the programmed
end points of each axis by no more than the tolerance set with the axial machine data.
Contour accuracy
The maximum geometrical contour deviations (geometry axes) and the tool orientation are
monitored. This is achieved using the setting data for:
1. Maximum tolerance for the contour
2. Maximum angular displacement for the tool orientation
3. Maximum angular displacement for the angle of rotation THEATA of the tool

(only available on 6-axis machines)
You can use the channel-specific MD 20482 COMPRESSOR_MODE to set tolerance
specifications:
0: Axis accuracy: Axial tolerances for all axes (geometry axes and orientation axes)
1: Contour accuracy: Specification of the contour tolerance (1.), tolerance for the orientation
using axial tolerances (a.)
2: Specification of the maximum angular displacement for tool orientation (2.), tolerance for
the contour using axial tolerances (a.)
3: Specification of the contour tolerance with (1.) and specification of the maximum angular
displacement for tool orientation with (2.)
It is only possible to specify a maximum angular displacement for tool orientation if an
orientation transformation (TRAORI) is active.

Transformations
7.7 Online tool length compensation (TOFFON, TOFFOF)

 Job planning
7-48 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.7 7.7 Online tool length compensation (TOFFON, TOFFOF)

Function
Use the system variable $AA_TOFF[] to overlay the effective tool lengths in accordance with
the three tool directions three-dimensionally in real time.
The three geometry axis identifiers are used as the index. This defines the number of active
directions of compensation by the geometry axes active at the same time.
All offsets can be active at the same time.
The online tool length offset function can be used for:
• orientation transformation TRAORI
• orientable toolholder TCARR
Machine manufacturer
Online tool length offset is an option, which must be enabled in advance. This function is
only practical in conjunction with an active orientation transformation or an active orientable
toolholder.

Programming
N.. TRAORI
N.. TOFFON(X,25)
N.. WHEN TRUE DO $AA_TOFF[tool direction] in synchronized actions
For more information about programming online tool length offset in motion-synchronous
actions, see "Actions in synchronized actions".

Parameters

TOFFON Tool Offset ON (activate online tool length offset)

When activating, an offset value can be specified for the relevant
direction of compensation and this is immediately recovered.

TOFFOF Tool Offset ON (reset online tool length offset)

The relevant offset values are reset and a preprocessing stop is
initiated.

X, Y, Z Direction of compensation for the offset value indicated for TOFFON

 Transformations
 7.7 Online tool length compensation (TOFFON, TOFFOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-49

Example of tool length offset selection

MD 21190: TOFF_MODE =1

MD 21194: TOFF_VELO[0] =1000

MD 21196: TOFF_VELO[1] =1000

MD 21194: TOFF_VELO[2] =1000

MD 21196: TOFF_ACCEL[0] =1

MD 21196: TOFF_ACCEL[1] =1

MD 21196: TOFF_ACCEL[2] =1

;Absolute values are approached

N5 DEF REAL XOFFSET

N10 TRAORI(1) ;Transformation ON

N20 TOFFON(Z) ;Activation of online tool length offset
;for the Z tool direction

N30 WHEN TRUE DO $AA_TOFF[Z] = 10
G4 F5

;For the Z tool direction, a tool
;length offset of 10 is interpolated

...

N100 XOFFSET = $AA_TOFF_VAL[X]
N120 TOFFON(X, -XOFFSET)
G4 F5

;Assign current offset in X direction
;for the X tool direction, the tool
;length offset will be returned to 0 again

Example of tool length offset deselection

N10 TRAORI(1) ;Transformation ON

N20 TOFFON(X) ;Activating the Z tool direction

N30 WHEN TRUE DO $AA_TOFF[X] = 10
G4 F5

;For the X tool direction, a tool
;length offset of 10 is interpolated

...

N80 TOFFOF(X) ;Positional offset of the X tool direction
;is deleted: …$AA_TOFF[X] = 0
;No axis is traversed;
;to the current position in WCS, the
;positional offset is added in accordance
;with the current orientation

Transformations
7.7 Online tool length compensation (TOFFON, TOFFOF)

 Job planning
7-50 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Description
Block preparation
During block preparation in preprocessing, the current tool length offset active in the main
run is also taken into consideration. To allow extensive use to be made of the maximum
permissible axis velocity, it is necessary to stop block preparation with a STOPRE
preprocessing stop while a tool offset is set up.
The tool offset is always known at the time of run-in when the tool length offsets are not
changed after program start or if more blocks have been processed after changing the tool
length offsets than the IPO buffer can accommodate between run-in and main run.
Variable $AA_TOFF_PREP_DIFF
The dimension for the difference between the currently active compensation in the
interpolator and the compensation that was active at the time of block preparation can be
polled in the variable $AA_TOFF_PREP_DIFF[].
Adjusting machine data and setting data
The following machine data is available for online tool length offset:
• MD 20610: ADD_MOVE_ACCEL_RESERVE acceleration margin for overlaid motion
• MD 21190: TOFF_MODE: content of system variable $AA_TOFF[] is recovered or

integrated as an absolute value
• MD 21194: TOFF_VELO velocity of online tool length offset.
• MD 21196: TOFF_ACCEL acceleration of online tool length offset.
• Setting data for presetting limit values

SD 42970: TOFF_LIMIT upper limit of tool length offset value.
References: /FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformations (F2).

 Transformations
 7.8 Kinematic transformation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-51

7.8 7.8 Kinematic transformation

7.8.1 Milling on turned parts (TRANSMIT)

Function
The TRANSMIT function enables the following:
• Face machining on turned parts in the turning clamp (drill-holes, contours).
• A cartesian coordinate system can be used to program these machining operations.
• The control maps the programmed traversing movements of the Cartesian coordinate

system onto the traversing movements of the real machine axes (standard situation):
– Rotary axis
– Infeed axis perpendicular to rotary axis
– Longitudinal axis parallel to rotary axis
– The linear axes are positioned perpendicular to one another.

• A tool center offset relative to the turning center is permitted.
• The velocity control makes allowance for the limits defined for the rotations.

Transformations
7.8 Kinematic transformation

 Job planning
7-52 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

TRANSMIT transformation types
The TRANSMIT machining operations have two parameterizable forms:
• TRANSMIT in the standard case with (TRAFO_TYPE_n = 256)
• TRANSMIT with additional Y linear axis (TRAFO_TYPE_n = 257)
The extended transformation type 257 can be used, for example, to compensate clamping
compensations of a tool with real Y axis.

Programming
TRANSMIT or TRANSMIT(n)
or
TRAFOOF
Rotary axis
The rotary axis cannot be programmed because it is occupied by a geometry axis and
cannot thus be programmed directly as a channel axis.

Parameters

TRANSMIT Activates the first declared TRANSMIT function. This function
is also designated as polar transformation.

TRANSMIT(n) Activates the nth declared TRANSMIT function; n can be up to 2
(TRANSMIT(1) is the same as TRANSMIT).

TRAFOOF Deactivates an active transformation.

OFFN Offset contour normal: Distance of the face machining from the
programmed reference contour.

 Note
An active TRANSMIT transformation is likewise deactivated if one of the other
transformations is activated in the relevant channel (e.g., TRACYL, TRAANG, TRAORI).

 Transformations
 7.8 Kinematic transformation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-53

Example

N10 T1 D1 G54 G17 G90 F5000 G94 ;Tool selection

N20 G0 X20 Z10 SPOS=45 ;Approach start position

N30 TRANSMIT ;Activate TRANSMIT function

N40 ROT RPL=–45

N50 ATRANS X–2 Y10

;Set frame

N60 G1 X10 Y–10 G41 OFFN=1

N70 X–10

N80 Y10

N90 X10

N100 Y–10

;Square roughing; allowance 1 mm

N110 G0 Z20 G40 OFFN=0

N120 T2 D1 X15 Y–15

N130 Z10 G41

;Change tool

N140 G1 X10 Y–10

N150 X–10

N160 Y10

N170 X10

N180 Y–10

;Square finishing

N190 Z20 G40

N200 TRANS

N210 TRAFOOF

;Deselect frame

N220 G0 X20 Z10 SPOS=45 ;Approach start position

N230 M30

Transformations
7.8 Kinematic transformation

 Job planning
7-54 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Description
Pole
There are two ways of passing through the pole:
• Traversal along linear axis
• Traverse to the pole, rotate the rotary axis at the pole and traveling away from the pole
Make the selection using MD 24911 and 24951.
TRANSMIT with additional Y linear axis (transformation type 257):
This transformation variant of the polar transformation makes use of the redundancy for a
machine with another linear axis in order to perform an improved tool compensation. The
following conditions then apply to the second linear axis:
• A smaller working area and
• The second linear axis should not be used for the retraction of the parts program.
Certain machine data settings are assumed for the parts program and the assignment of the
corresponding axes in the BCS or MCS, see
References
/FB2/ Function Manual Extended Functions; Kinematic Transformations (M1)

 Transformations
 7.8 Kinematic transformation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-55

7.8.2 Cylinder surface transformation (TRACYL)

Function
The TRACYL cylinder surface transformation function can be used to:
Machine
• longitudinal grooves on cylindrical bodies,
• Transverse grooves on cylindrical objects,
• grooves with any path on cylindrical bodies.
The path of the grooves is programmed with reference to the unwrapped, level surface of the
cylinder.

TRACYL transformation types
There are three forms of cylinder surface coordinate transformation:
• TRACYL without groove wall offset (TRAFO_TYPE_n=512)
• TRACYL with groove wall offset: (TRAFO_TYPE_n=513)
• TRACYL with additional linear axis and groove wall offset: (TRAFO_TYPE_n=514)

The groove wall offset is parameterized with TRACYL using the third parameter.

Transformations
7.8 Kinematic transformation

 Job planning
7-56 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

For cylinder peripheral curve transformation with groove side compensation, the axis used
for compensation should be positioned at zero (y=0), so that the groove centric to the
programmed groove center line is finished.
Axis utilization
The following axes cannot be used as a positioning axis or a reciprocating axis:
• The geometry axis in the peripheral direction of the cylinder peripheral surface (Y axis)
• The additional linear axis for groove side compensation (Z axis).

Programming
TRACYL(d) or TRACYL(d, n) or
for transformation type 514
TRACYL(d, n, groove side offset)
or
TRAFOOF
Rotary axis
The rotary axis cannot be programmed because it is occupied by a geometry axis and
cannot thus be programmed directly as a channel axis.

Parameters

TRACYL(d) Activates the first TRACYL function specified in the
channel machine data. d is the parameter for the working
diameter.

TRACYL (d, n) Activates the n-th TRACYL function specified in the channel
machine data. The maximum for n is 2, TRACYL(d,1)
corresponds to TRACYL(d).

d Value for the working diameter. The working diameter is
double the distance between the tool tip and the turning
center. This diameter must always be specified and be
larger than 1.

n Optional 2nd parameter for the TRACYL data block 1
(preselected) or 2.

Slot side compensation Optional 3rd parameter whose value for TRACYL is
preselected using the mode for machine data.

Value range:
0: Transformation type 514 without groove wall offset as
previous
1: Transformation type 514 with groove wall offset

TRAFOOF Transformation OFF (BCS and MCS are once again identical).

OFFN Offset contour normal: Distance of the groove side from the
programmed reference contour.

 Note
An active TRACYL transformation is likewise deactivated if one of the other transformations
is activated in the relevant channel (e.g., TRANSMIT, TRAANG, TRAORI).

 Transformations
 7.8 Kinematic transformation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-57

Example of the definition of a tool
The following example is suitable for testing the parameterization of the TRACYL cylinder
transformation:

Tool parameters
Number (DP)

Meaning Remarks

$TC_DP1[1,1]=120 Tool type Milling tool
$TC_DP2[1,1]=0 Tool point direction only for turning tools

Geometry Length offset
$TC_DP3[1,1]=8. Length offset vector Calculation acc. to type
$TC_DP4[1,1]=9. and plane
$TC_DP5[1,1]=7.

Geometry Radius
$TC_DP6[1,1]=6. Radius Tool radius
$TC_DP7[1,1]=0 Slot width b for slotting saw,

rounding radius for milling tools

$TC_DP8[1,1]=0 Projection k For slotting saw only
$TC_DP9[1,1]=0
$TC_DP10[1,1]=0
$TC_DP11[1,1]=0 Angle for taper milling tools

Wear Tool length and radius
compensation

$TC_DP12[1,1]=0 Remaining parameters to
$TC_DP24=0

Base dimensions/ adapter

Transformations
7.8 Kinematic transformation

 Job planning
7-58 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of making a hook-shaped groove:

Activate cylinder surface transformation

N10 T1 D1 G54 G90 F5000 G94 ;Tool selection, clamping compensation

N20 SPOS=0

N30 G0 X25 Y0 Z105 CC=200

;Approach start position

N40 TRACYL (40) ;Enable cylinder peripheral curve
;transformation

N50 G19 ;Plane selection

Making a hook-shaped groove

N60 G1 X20 ;Infeed tool to groove base

N70 OFFN=12 ;Define 12 mm groove side spacing
;relative to groove center line

N80 G1 Z100 G42 ;Approach right side of groove

N90 G1 Z50 ;Groove cut parallel to cylinder axis

N100 G1 Y10 ;Groove cut parallel to circumference

N110 OFFN=4 G42 ;Approach left side of the groove;
;define 4 mm groove side spacing
;relative to the groove center line

N120 G1 Y70 ;Groove cut parallel to circumference

N130 G1 Z100 ;Groove cut parallel to cylinder axis

N140 G1 Z105 G40 ;Retract from groove wall

N150 G1 X25 ;Move clear

N160 TRAFOOF

N170 G0 X25 Y0 Z105 CC=200 ;Approach start position

N180 M30

 Transformations
 7.8 Kinematic transformation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-59

Description
Without groove wall offset (transformation type 512):
The control transforms the programmed traversing movements of the cylinder coordinate
system to the traversing movements of the real machine axes:
• Rotary axis
• Infeed axis perpendicular to rotary axis
• Longitudinal axis parallel to rotary axis
The linear axes are positioned perpendicular to one another. The infeed axis cuts the rotary
axis.

With groove wall offset (transformation type 513):
Kinematics as above, but an additional longitudinal axis parallel to the peripheral direction
The linear axes are positioned perpendicular to one another.

Transformations
7.8 Kinematic transformation

 Job planning
7-60 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

The velocity control makes allowance for the limits defined for the rotations.

Groove traversing-section
In the case of axis configuration 1, longitudinal grooves along the rotary axis are subject to
parallel limits only if the groove width corresponds exactly to the tool radius.
Grooves in parallel to the periphery (transverse grooves) are not parallel at the beginning
and end.

 Transformations
 7.8 Kinematic transformation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-61

With additional linear axis and groove wall offset (transformation type 514):
On a machine with a second linear axis, this transformation variant makes use of
redundancy in order to perform improved tool compensation. The following conditions then
apply to the second linear axis:
• a smaller working area and
• the second linear axis should not be used for the travel through the parts program.
Certain machine data settings are assumed for the parts program and the assignment of the
corresponding axes in the BCS or MCS, see
References
/FB2/ Function Manual Extended Functions; Kinematic Transformations (M1)

Offset contour normal OFFN (transformation type 513)
To mill grooves with TRACYL, the following is programmed:
• groove center line in the part program,
• half the groove width programmed using OFFN.
To avoid damage to the groove side OFFN acts only when the tool radius compensation is
active. Furthermore, OFFN should also be >= the tool radius to avoid damage occurring to
the opposite side of the groove.

Transformations
7.8 Kinematic transformation

 Job planning
7-62 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

A parts program for milling a groove generally comprises the following steps:
1. Selecting a tool
2. Select TRACYL
3. Select suitable coordinate offset (frame)
4. Position
5. Program OFFN
6. Select TRC
7. Approach block (position TRC and approach groove side)
8. Groove center line contour
9. Deselect TRC
10. Retraction block (retract TRC and move away from groove side)
11. Position

12. TRAFOOF
13. Re-select original coordinate shift (frame)
Special features
• TRC selection:

TRC is not programmed in relation to the groove side, but relative to the programmed
groove center line. To prevent the tool traveling to the left of the groove side, G42 is
entered (instead of G41). You avoid this if in OFFN, the groove width is entered with a
negative sign.

• OFFN acts differently with TRACYL than it does without TRACYL. As, even without
TRACYL, OFFN is included when TRC is active, OFFN should be reset to zero after
TRAFOOF.

• It is possible to change OFFN within a parts program. This could be used to shift the
groove center line from the center (see diagram).

• Guiding grooves:
TRACYL does not create the same groove for guiding grooves as it would be with a tool
with the diameter producing the width of the groove. It is basically not possible to create
the same groove side geometry with a smaller cylindrical tool as it is with a larger one.
TRACYL minimizes the error. To avoid problems of accuracy, the tool radius should only
be slightly smaller than half the groove width.

 Note
OFFN and TRC
With TRAFO_TYPE_n = 512, the value is effective under OFFN as an allowance for TRC.
With TRAFO_TYPE_n = 513, half the groove width is programmed in OFFN. The contour
is retracted with OFFN-TRC.

 Transformations
 7.8 Kinematic transformation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-63

7.8.3 Inclined axis (TRAANG)

Function
The inclined axis function is intended for grinding technology and facilitates the following
performance:
• Machining with an oblique infeed axis
• A Cartesian coordinate system can be used for programming purposes.
• The control maps the programmed traversing movements of the Cartesian coordinate

system onto the traversing movements of the real machine axes (standard situation):
Inclined infeed axis.

Programming
TRAANG(α) or TRAANG(α, n)
or
TRAFOOF

Transformations
7.8 Kinematic transformation

 Job planning
7-64 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

TRAANG() or
TRAANG(,n)

Activate transformation with the
parameterization of the previous
selection.

TRAANG(α) Activates the first specified inclined
axis transformation

TRAANG(α,n) Activates the nth agreed inclined axis
transformation. The maximum value of n is
2. TRAANG(α,1) corresponds to TRAANG(α).

α Angle of the inclined axis

Permissible values for α are:
-90 degrees < α < + 90 degrees

TRAFOOF Transformation off

n Number of agreed transformations

Angle α omitted or zero
If α (angle) is omitted (e.g., TRAANG(), TRAANG(, n)), the transformation is activated with
the parameterization of the previous selection. On the first selection, the default settings
according to the machine data apply.
An angle α = 0 (e.g., TRAANG(0), TRAANG(0,n)) is a valid parameter setting and is no
longer equivalent to the omission of the parameter, as in the case of older versions.

Example

 Transformations
 7.8 Kinematic transformation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-65

N10 G0 G90 Z0 MU=10 G54 F5000 ->

-> G18 G64 T1 D1

;Tool selection,
;clamping compensation,

;Plane selection

N20 TRAANG(45) ;Enable inclined axis transformation

N30 G0 Z10 X5 ;Approach start position

N40 WAITP(Z) ;Enable axis for reciprocation

N50 OSP[Z]=10 OSP2[Z]=5 OST1[Z]=–2 ->

-> OST2[Z]=–2 FA[Z]=5000

N60 OS[Z]=1

N70 POS[X]=4.5 FA[X]=50

N80 OS[Z]=0

;Reciprocation, until dimension
;reached

;(for reciprocation, see
"Reciprocation" chapter)

N90 WAITP(Z) ;Enable reciprocating axes as
;positioning axes

N100 TRAFOOF ;Deactivate transformation

N110 G0 Z10 MU=10 ;Move clear

N120 M30

-> program in a single block

Description
The following machining operations are possible:
1. Longitudinal grinding
2. Face grinding
3. Grinding of a specific contour
4. Oblique plunge-cut grinding.

Transformations
7.8 Kinematic transformation

 Job planning
7-66 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Machine manufacturer
The following settings are defined in machine data:
• The angle between a machine axis and the oblique axis,
• The position of the zero point of the tool relative to the origin of the coordinate system

specified by the "inclined axis" function,
• The speed reserve held ready on the parallel axis for the compensating movement,
• The axis acceleration reserve held ready on the parallel axis for the compensating

movement.
Axis configuration
To program in the Cartesian coordinate system, it is necessary to inform the control of the
correlation between this coordinate system and the actually existing machine axes
(MU, MZ):
• Assignment of names to geometry axes
• Assignment of geometry axes to channel axes

– general situation (inclined axis not active)
– inclined axis active

• Assignment of channel axes to machine axis numbers
• Identification of spindles
• Allocation of machine axis names.
Apart from "inclined axis active", the procedure corresponds to the procedure for normal axis
configuration.

7.8.4 Inclined axis programming (G05, G07)

Function
In Jog mode, the movement of the grinding wheel can either be cartesian or in the direction
of the inclined axis (the display stays cartesian). All that moves is the real U axis, the Z axis
display is updated.
In jog–mode, REPOS–offsets must be traversed using Cartesian coordinates.
In jog–mode with active
"PTP–travel", the Cartesian operating range limit is monitored for overtravel and the relevant
axis is braked beforehand. If "PTP travel" is not active, the axis can be traversed right up to
the operating range limit.
References
/FB2/ Description of Functions Extended Functions; Kinematic Transformation (M1)

 Transformations
 7.8 Kinematic transformation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-67

Programming
G07
G05
The commands G07/G05 are used to make it easier to program the inclined axes. Positions
can be programmed and displayed in the Cartesian coordinate system. Tool compensation
and zero offset are included in Cartesian coordinates. After the angle for the inclined axis is
programmed in the NC program, the starting position can be approached (G07) and then the
oblique plunge-cutting (G05) performed.

Parameters

G07 Approach starting position

G05 Activates oblique plunge-cutting

Example

N.. ;Program angle for inclined axis

N20 G07 X70 Z40 F4000 ;Approach starting position

N30 G05 X70 F100 ;Oblique plunge-cutting

N40 ...

Transformations
7.9 Cartesian PTP travel

 Job planning
7-68 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.9 7.9 Cartesian PTP travel

Function
This function can be used to program a position in a cartesian coordinate system, however,
the movement of the machine occurs in the machine coordinates. The function can be used,
for example, when changing the position of the articulated joint, if the movement runs
through a singularity.

 Note
The function can only be used meaningfully in conjunction with an active transformation.
Furthermore, "PTP travel" is only permissible in conjunction with G0 and G1.

Programming
N... TRAORI
N... STAT='B10' TU='B100' PTP
N... CP
PTP transversal with generic 5/6-axis transformation
If point-to-point transversal is activated in the machine coordinate system (ORIMKS) during
an active generic 5/6-axis transformation with PTP, tool orientation can be programmed both
with round axis positions
N... G1 X Y Z A B C
as well as with Euler and/or RPY angle vectors irrespective of the kinematics
N... ORIEULER or ORIRPY
N... G1 X Y Z A2 B2 C2
or the direction vectors
N... G1 X Y Z A3 B3 C3
are programmed. Both round axis interpolation, vector interpolation with large circle
interpolation ORIVECT or interpolation of the orientation vector on a peripheral surface of a
taper ORICONxx may be active.
Non-uniqueness of orientation with vectors
When programming the orientation with vectors, there is non-uniqueness in the round axis
positions available. The round axis positions to be approached can be selected by
programming STAT = <...>. If
STAT = 0 is programmed (this is equivalent to the standard setting),
the positions which are at the shortest distance from the start positions are approached. If
STAT = 1 is programmed,
the positions which are at a greater distance from the start positions are approached.

 Transformations
 7.9 Cartesian PTP travel

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-69

Parameters
The PTP and CP commands act in a modal manner. CP is the default setting.
If modal applies when programming the STAT value, TU programming is = <...> non-modal.
Another difference is that programming a STAT value only has an effect during vector
interpolation, while programming TU is also evaluated during active round axis interpolation.

PTP point to point (point to point motion)

The movement is executed as a synchronized axis movement; the slowest
axis involved in the movement is the dominating axis for the velocity.

CP continuous path (path motion)

The movement is executed as Cartesian path motion.

STAT= Position of the articulated joints; this value is dependent on the
transformation.

TU= TURN information acts blockwise. This makes it possible to clearly
approach axis angles between -360 degrees and +360 degrees.

Example

N10 G0 X0 Y-30 Z60 A-30 F10000 ;Initial setting

→ Elbow up
N20 TRAORI(1) ;Transformation ON

N30 X1000 Y0 Z400 A0

N40 X1000 Z500 A0 STAT='B10' TU='B100' PTP ;Reorientation without transformation

→ Elbow down
N50 X1200 Z400 CP ;Transformation active again

N60 X1000 Z500 A20

N70 M30

Transformations
7.9 Cartesian PTP travel

 Job planning
7-70 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example PTP transversal at generic 5-axis transformation
Assumption: This is based on a right-angled CA kinematics.

TRAORI ;Transformation CA kinematics ON

PTP ;Activate PTP traversal

N10 A3 = 0 B3 = 0 C3 = 1 ;Round axis positions C = 0 A = 0

N20 A3 = 1 B3 = 0 C3 = 1 ;Round axis positions C = 90 A = 45

N30 A3 = 1 B3 = 0 C3 = 0 ;Round axis positions C = 90 A = 90

N40 A3 = 1 B3 = 0 C3 = 1 STAT = 1 ;Round axis positions C = 270 A = -45

Select clear approach position of round axis position:
In block N40, by programming STAT = 1, the round axes then travel the long route from
their starting point (C=90, A=90) to the end point (C=270, A=–45), rather than the case would
be if STAT = 0 where they would travel the shortest route to the end point (C=90, A=45).

Description
The commands PTP and CP effect the changeover between Cartesian traversal and
traversing the machine axes.
PTP transversal with generic 5/6-axis transformation
During PTP transversal, unlike 5/6–axis transformation, the TCP generally does not remain
stationary if only the orientation changes. The transformed end positions of all transformation
axes (3 linear axes and up to 3 round axes) are approached in linear fashion without the
transformation still actually being active.
The PTP transversal is deactivated by programming the modal G code CP.
The various transformations are included in the document:
/FB3/ Function Manual Special Functions; Handling Transformation Package (TE4).
Programming the position (STAT=)
A machine position is not uniquely determined just by positional data with Cartesian
coordinates and the orientation of the tool. Depending on the kinematics involved, there can
be as many as eight different and crucial articulated joint positions. These are specific to the
transformation. To be able to uniquely convert a Cartesian position into the axis angle, the
position of the articulated joints must be specified with the command STAT=. The "STAT"
command contains a bit for each of the possible positions as a binary value.
For information about the setting bits to be programmed for "STAT", see:
/FB2/ Description of Functions Extended Functions; Kinematic Transformation (M1),
"Cartesian PTP travel" section.
Programming the axis angle (TU=)
To be able to clearly approach axis angles < ± 360 degrees, this information must be
programmed using the command "TU=".
The axes traverse by the shortest path:
• when no TU is programmed for a position,
• with axes that have a traversing range > ±360 degrees.

 Transformations
 7.9 Cartesian PTP travel

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-71

Example:
The target position shown in the diagram can be approached in the negative or positive
direction. The direction is programmed under address A1.
A1=225°, TU=Bit 0, → positive direction
A1=−135°, TU=Bit 1, → negative direction

Example of evaluation of TU for generic 5/6-axis transformation and target positions
Variable TU contains a bit, which indicates the traversing direction for every axis involved in
the transformation. The assignment of TU bits matches the channel axis view of the round
axes. The TU information is only evaluated for the up to 3 possible round axes which are
included in the transformation:
Bit0: Axis 1, TU bit = 0 : 0 degrees <= round axis angle < 360 degrees
Bit1: Axis 2, TU bit = 1 : –360 degrees < round axis angle < 0 degrees
The start position of a round axis is C = 0. By programming C = 270, the round axis travels to
the following target positions:
C = 270: TU bit 0, positive direction of rotation
C = –90: TU bit 1, negative direction of rotation

Further behavior
Mode change
The "Cartesian PTP travel" function is only useful in the AUTO and MDA modes of
operation. When changing the mode to JOG, the current setting is retained.
When the G code PTP is set, the axes will traverse in MCS. When the G code CP is set, the
axes will traverse in WCS.
Power On/RESET
After a power ON or after a RESET, the setting is dependent on the machine data
$MC_GCODE_REST_VALUES[48]. The default traversal mode setting is "CP".
REPOS
If the function "Cartesian PTP travel" was set during the interruption block, PTP can also be
used for repositioning.

Transformations
7.9 Cartesian PTP travel

 Job planning
7-72 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Overlaid movements
DRF offset or external zero offset are only possible to a limited extent in Cartesian PTP
travel. When changing from PTP to CP movement, there must be no overrides in the BCS.
Smoothing between CP and PTP motion
A programmable transition rounding between the blocks is possible with G641.
The size of the rounding area is the path in mm or inch, from which or to which the block
transition is to be rounded. The size must be specified as follows:
• for G0 blocks with ADISPOS
• for all the other motion commands with ADIS.
The path calculation corresponds to considering of the F addresses for non-G0 blocks. The
feed is kept to the axes specified in FGROUP(..).
Feed calculation
For CP blocks, the Cartesian axes of the basic coordinate system are used for the
calculation.
For PTP blocks, the corresponding axes of the machine coordinate system are used for the
calculation.

7.9.1 PTP for TRANSMIT

Function
PTP for TRANSMIT can be used to approach G0 and G1 blocks time-optimized. Rather than
traversing the axes of the Basic Coordinate System linearly (CP), the machine axes are
traversed linearly (PTP). The effect is that the machine axis motion near the pole causes the
block end point to be reached much faster.
The parts program is still written in the Cartesian workpiece coordinate system and all
coordinate offsets, rotations and frame programming settings remain valid. The simulation on
HMI, is also displayed in the Cartesian Workpiece coordinate system.

Programming
N... TRANSMIT
N... PTPG0
N... G0 ...
...
N... G1 ...

 Transformations
 7.9 Cartesian PTP travel

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-73

Parameters

TRANSMIT Activates the first declared TRANSMIT function

(see section "Milling on turned parts: TRANSMIT")

PTPG0 Point to Point G0 (point-to-point motion automatic at each G0 block and
then set CP again)

Because STAT and TU are modal, the most recently programmed value
always acts.

PTP point to point (point to point motion)

For TRANSMIT, PTP means that in the Cartesian spirals will be retracted
to Archimedean spirals either about the pole or from the pole. The
resulting tool motions run significantly different as for CP and are
represented in the associated programming examples.

STAT= Resolving the non-uniqueness with regard to the pole.

TU= TU is not relevant for PTP with TRANSMIT

Example of circumnavigation of the pole with PTP and TRANSMIT

N001 G0 X30 Z0 F10000 T1 D1 G90 ;Initial setting absolute
;dimension

N002 SPOS=0

N003 TRANSMIT ;TRANSMIT transformation

N010 PTPG0 ;Automatic for each G0 block
;PTP and then CP again

N020 G0 X30 Y20

N030 X-30 Y-20

N120 G1 X30 Y20

N110 X30 Y0

M30

Transformations
7.9 Cartesian PTP travel

 Job planning
7-74 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of the retraction from the pole with PTP and TRANSMIT

N070 X20 Y2

10

10

20

20-10-20-30

-10

-20

-30

N060 X0 Y0

N050 X10 Y0

PTP

CP
30

30

N001 G0 X90 Z0 F10000 T1 D1 G90 ;Initial setting

N002 SPOS=0

N003 TRANSMIT ;TRANSMIT transformation

N010 PTPG0 ;Automatic for each G0 block
;PTP and then CP again

N020 G0 X90 Y60

N030 X-90 Y-60

N040 X-30 Y-20

N050 X10 Y0

N060 X0 Y0

N070 X-20 Y2

N170 G1 X0 Y0

N160 X10 Y0

N150 X-30 Y-20

M30

Description
PTP and PTPG0
PTPG0 is considered for all transformations that can process PTP. PTPG0 is not relevant
is all other cases.
G0 blocks are processed in CP mode.
The selection of PTP or PTPG0 is performed in the parts program or by the deselection of
CP in the machine data $MC_GCODE_RESET_VALUES[48].

 Transformations
 7.9 Cartesian PTP travel

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-75

Caution
Restrictions
With regard to tool motions and collision, a number of restrictions and certain function
exclusions apply, such as:
no tool radius compensation (TRC) may be active with PTP.
With PTPG0 , for active tool radius compensation (TRC), is traversed by CP.
PTP does not permit smooth approach and retraction (SAR).
With PTPG0, CP traversal is used for smooth approach and retraction (SAR).
PTP does not permit cutting cycles (CONTPRON, CONTDCON).
With PTPG0 cutting cycles (CONTPRON, CONTDCON) are traversed by CP.
Chamfer (CHF, CHR) and rounding (RND, RNDM) are ignored.
Compressor is not compatible with PTP and will automatically be deselected in PTP
blocks.
An axis superimposing in the interpolation may not change during the PTP section.
If G643 is specified, an automatic switch to G642 is made after smoothing with axial
accuracy.
For active PTP, the transformation axes cannot be simultaneously positioning axes.
References:
/FB2/ Function Manual Extended Functions; Kinematic Transformation (M1),
"Cartesian PTP travel" section

PTP for TRACON:
PTP can also be used with TRACON, provided the first chained transformation supports
PTP.
Meaning of STAT= and TU= for TRANSMIT
If a rotary axis is to turn by 180 degrees or the contour for CP passes through the pole,
rotary axes depending on the machine data $MC_TRANSMIT_POLE_SIDE_FIX_1/2 [48]
can be turned by -/+ 180 degrees and traversed in clockwise or counter-clockwise direction.
It can also be set whether traversal is to go through the pole or whether rotation around the
pole is to be performed.

Transformations
7.10 Constraints when selecting a transformation

 Job planning
7-76 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.10 7.10 Constraints when selecting a transformation

Function
Transformations can be selected via a parts program or MDA. Please note:
• No intermediate movement block is inserted (chamfer/radii).
• Spline block sequences must be excluded; if not, a message is displayed.
• Fine tool compensation must be deselected (FTOCOF); if not a message is displayed.
• Tool radius compensation must be deselected (G40); if not a message is displayed.
• An activated tool length offset is included in the transformation by the control.
• The control deselects the current frame active before the transformation.
• The control deselects an active operating range limit for axes affected by the

transformation (corresponds to WALIMOF).
• Protection zone monitoring is deselected.
• Continuous path control and rounding are interrupted.
• All the axes specified in the machine data must be synchronized relative to a block.
• Axes that are exchanged are exchanged back; if not, a message is displayed.
• A message is output for dependent axes.
Tool change
Tools may only be changed when the tool radius compensation function is deselected.
A change in tool length offset and tool radius compensation selection/deselection must not
be programmed in the same block.
Frame change
All statements, which refer exclusively to the base coordinate system, are permissible
(FRAME, tool radius compensation). However, a frame change with G91 (incremental
dimension) – unlike with an inactive transformation – is not handled separately. The
increment to be traveled is evaluated in the workpiece coordinate system of the new frame –
regardless of which frame was effective in the previous block.
Exceptions
Axes affected by the transformation cannot be used
• as a preset axis (alarm),
• for approaching a checkpoint (alarm),
• for referencing (alarm).

 Transformations
 7.11 Deselect transformation (TRAFOOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-77

7.11 7.11 Deselect transformation (TRAFOOF)

Function
The TRAFOOF command disables all the active transformations and frames.

 Note
Frames required after this must be activated by renewed programming.
Please note:
The same restrictions as for selection are applicable to deselecting the transformation (see
section "Constraints when selecting a transformation").

Programming
TRAFOOF

Parameters

TRAFOOF Disables all the active transformations/frames

Transformations
7.12 Chained transformations (TRACON, TRAFOOF)

 Job planning
7-78 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.12 7.12 Chained transformations (TRACON, TRAFOOF)

Function
Two transformations can be chained so that the motion components for the axes from the
first transformation are used as input data for the chained second transformation. The motion
parts from the second transformation act on the machine axes.
The chain may include two transformations.

 Note
A tool is always assigned to the first transformation in a chain. The subsequent
transformation then behaves as if the active tool length were zero. Only the basic tool
lengths set in the machine data (_BASE_TOOL_) are valid for the first transformation in the
chain.

Machine manufacturer
Take note of information provided by the machine manufacturer on any transformations
predefined by the machine data.
Transformations and chained transformations are options. The current catalog always
provides information about the availability of specific transformations in the chain in specific
controls.
Applications
• Grinding contours that are programmed as a side line of a cylinder (TRACYL) using an

inclined grinding wheel, e.g., tool grinding.
• Finish cutting of a contour that is not round and was generated with TRANSMIT using

inclined grinding wheel.

Programming

TRACON(trf, par) This activates a chained transformation.
TRAFOOF

 Transformations
 7.12 Chained transformations (TRACON, TRAFOOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-79

Parameters

TRACON This activates the chained transformation. If another transformation was
previously activated, it is implicitly disabled by means of TRACON().

TRAFOOF The most recently activated (chained) transformation will be disabled.

trf Number of the chained transformation:
0 or 1 for first/single chained transformation.
If nothing is programmed here, then this has the same meaning as
specifying value 0 or 1, i.e., the first/single transformation is
activated.
2 for the second chained transformation. (Values not equal to 0 - 2
generate an error alarm).

par One or more parameters separated by a comma for the transformations in
the chain expecting parameters, for example, the angle of the inclined
axis. If parameters are not set, the defaults or the parameters last used
take effect. Commas must be used to ensure that the specified parameters
are evaluated in the sequence in which they are expected, if default
settings are to be effective for previous parameters. In particular, a
comma is required before at least one parameter, even though it is not
necessary to specify trf. For example: TRACON(, 3.7).

Requirements
The second transformation must be "Inclined axis" (TRAANG). The first transformation can
be:
• Orientation transformations (TRAORI), including universal milling head
• TRANSMIT
• TRACYL
• TRAANG
It is a condition of using the activate command for a chained transformation that the
individual transformations to be chained and the chained transformation to be activated are
defined by the machine data.
The supplementary conditions and special cases indicated in the individual transformation
descriptions are also applicable for use in chained transformations.
Information on configuring the machine data of the transformations can be found in:
/FB2/ Function Manual Extended Functions; Kinematic Transformations (M1) and
 /FB3/ Function Manual, Special Functions; 3- to 5-Axis Transformations (F2).

Transformations
7.13 Replaceable geometry axes (GEOAX)

 Job planning
7-80 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

7.13 7.13 Replaceable geometry axes (GEOAX)

Function
The "Replaceable geometry axes" function allows the geometry axis grouping configured via
machine data to be modified from the parts program. Here any geometry axis can be
replaced by a channel axis defined as a synchronous special axis.

Programming
GEOAX(n,channel axis,n,channel axis,…)
or
GEOAX()

Parameters

GEOAX(n,channel axis,n,channel axis,…) Switch the geometry axes.

GEOAX() Call the basic configuration of the
geometry axes.

n Number of the geometry axis (n=1, 2 or 3)
to be assigned to another channel axis.

n=0: remove the specified channel axis
from the geometry axis grouping without
replacement.

channel axis Name of the channel axis to be accepted
into the geometry axis grouping.

 Transformations
 7.13 Replaceable geometry axes (GEOAX)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-81

Example: two geometry axes changing over alternately
A tool carriage can be traversed over channel axes X1, Y1, Z1, Z2. In the parts program,
axes Z1 and Z2 should be used alternately as geometry axis Z. GEOAX is used in the parts
program to switch between the axes.

After activation, the connection X1, Y1, Z1 is effective (adjustable via MD).

N100 GEOAX (3,Z2)

N110 G1

;Channel axis Z2 functions as the Z axis

N120 GEOAX (3,Z1) ;Channel axis Z1 functions as the Z axis

Transformations
7.13 Replaceable geometry axes (GEOAX)

 Job planning
7-82 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example: geometry axis configurations for 6 channel axes
A machine has six channel axes called XX, YY, ZZ, U ,V ,W. The basic setting of the
geometry axis configuration via the machine data is:
Channel axis XX = 1st geometry axis (X axis)
Channel axis YY = 2nd geometry axis (Y axis)
Channel axis ZZ = 3rd geometry axis (Z axis)

N10 GEOAX() ;The basic configuration of the geometry axes is effective.
N20 G0 X0 Y0 Z0 U0 V0 W0 ;All the axes in rapid traverse to position 0.
N30 GEOAX(1,U,2,V,3,W) ;Channel axis U becomes the first (X), V the second (Y), W the third

;geometry axis (Z).
N40 GEOAX(1,XX,3,ZZ) ;Channel axis XX becomes the first (X), ZZ the third geometry axis (Z).

;Channel axis V stays as the second geometry axis (Y).
N50 G17 G2 X20 I10 F1000 ;Full circle in the X, Y plane. Channel axes XX and V traverse
N60 GEOAX(2,W) ;Channel axis W becomes the second geometry axis (Y).
N80 G17 G2 X20 I10 F1000 ;Full circle in the X, Y plane. Channel axes XX and W traverse.
N90 GEOAX() ;Reset to initial state
N100 GEOAX(1,U,2,V,3,W) ;Channel axis U becomes the first (X), V the second (Y), W the third

;geometry axis (Z).
N110 G1 X10 Y10 Z10 XX=25 ;Channel axes U, V, W each traverse to position 10, XX as the special

;axis traverses to position 25.
N120 GEOAX(0,V) ;V is removed from the geometry axis grouping.

;U and W are still the first (X) and third geometry axis (Z).
;The second geometry axis (Y) remains unassigned.

N130 GEOAX(1,U,2,V,3,W) ;Channel axis U stays the first (X), V becomes the second (Y),
;W stays the third geometry axis (Z).

N140 GEOAX(3,V) ;V becomes the third geometry axis (Z), which overwrites W and thus
;removes it from the geometry axis grouping. The second geometry
;axis (Y) is still unassigned.

 Transformations
 7.13 Replaceable geometry axes (GEOAX)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 7-83

Prerequisites and restrictions
1. It is not possible to switch the geometry axes over during:

– an active transformation,
– an active spline interpolation,
– active tool radius compensation (see PG Fundamentals, section "Tool compensation")
– active fine tool compensation (see PG Fundamentals, section "Tool compensation")

2. If the geometry axis and the channel axis have the same name, it is not possible to
change the particular geometry axis.

3. None of the axes involved in the switchover can be involved in an action that might
persist beyond the block limits, as is the case, for example, with positioning axes of type
A or with following axes.

4. The GEOAX command can only be used to replace geometry axes that already existed at
power ON (i.e. no newly defined ones).

5. Using GEOAX for axis replacement while preparing the contour table (CONTPRON,
CONTDCON) produces an alarm.

Description
Geometry axis number
In the command GEOAX(n,channel axis...) the number n designates the geometry
axis to which the subsequently specified channel axis is to be assigned.
Geometry axis numbers 1 to 3 (X, Y, Z axis) are permissible for loading a channel axis.
n = 0 removes an assigned channel axis from the geometry axis grouping without
reassigning the geometry axis.
After the transition, an axis replaced by switching in the geometry axis grouping is
programmable as a special axis via its channel name.
Switching over the geometry axes deletes all the frames, protection zones and operating
range limits.
Polar coordinates
As with a change of plane (G17-G19), replacing geometry axes with GEOAX sets the modal
polar coordinates to the value 0.
DRF, NPV
Any existing handwheel offset (DRF) or an external zero offset, will stay active after the
switchover.

Transformations
7.13 Replaceable geometry axes (GEOAX)

 Job planning
7-84 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Exchange axis positions
It is also possible to change positions within the geometry axis grouping by reassigning the
axis numbers to already assigned channel axes.

N... GEOAX (1, XX, 2, YY, 3, ZZ)

N... GEOAX (1, U, 2, V, 3, W)

;Channel axis XX is the first, YY the
;second and ZZ the third geometry axis,

;Channel axis U is the first, V the
;second and W the third geometry axis.

Deactivating switchover
The command GEOAX() calls the basic configuration of the geometry axis grouping.
After POWER ON and when switching over to reference point approach mode, the basic
configuration is reset automatically.
Transition and tool length compensation
An active tool length compensation is also effective after the transition. However, for the
newly adopted or repositioned geometry axes, it counts as not retracted. So accordingly, at
the first motion command for these geometry axes, the resultant travel path comprises the
sum of the tool length compensation and the programmed travel path.
Geometry axes that retain their position in the axis grouping during a switchover, also keep
their status with regard to tool length compensation.
Geometry axis configuration and transformation change
The geometry axis configuration applicable in an active transformation (defined via the
machine data) cannot be modified by using the "switchable geometry axes" function.
If it is necessary to change the geometry axis configuration in connection with
transformations, this is only possible via an additional transformation.
A geometry axis configuration modified via GEOAX is deleted by activating a transformation.
If the machine data settings for the transformation and for switching over the geometry axes
contradict one another, the settings in the transformation take precedence.
Example:
A transformation is active. According to the machine data, the transformation should be
retained during a RESET, however, at the same time, a RESET should produce the basic
configuration of the geometry axes. In this case, the geometry axis configuration is retained
as specified by the transformation.

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-1

Tool offsets 8
8.1 8.1 Offset memory

Function
Structure of the offset memory
Every data field can be invoked with a T and D number (except "Flat D No."); in addition to
the geometrical data for the tool, it contains other information such as the tool type.
Flat D number structure
The "Flat D No. structure" is used if tool management takes place outside the NCK. In this
case, the D numbers are created with the corresponding tool compensation blocks without
assignment to tools.
T can continue to be programmed in the parts program. However, this T has no reference to
the programmed D number.
Machine manufacturer
User cutting edge data can be configured via machine data. Please refer to the machine
manufacturer's instructions.

Parameters

 Note
Individual values in the offset memory
The individual values of the offset memories P1 to P25 can be read from and written
to the program via system variable. All other parameters are reserved.
The tool parameters
$TC_DP6 to $TC_DP8, $TC_DP10 and $TC_DP11 as well as $TC_DP15 to $TC_DP17,
$TC_DP19 and $TC_DP20 have another meaning depending on tool type.
1Also applies to milling tools for 3D face milling
2Tool type for slotting saw
3Reserved: Is not used by SINUMERIK 840/810D

Tool offsets
8.1 Offset memory

 Job planning
8-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Tool parameter
number (DP)

Meaning of system variables Comment

$TC_DP1 Tool type For overview see list
$TC_DP2 Tool point direction Only for turning tools
Geometry Length compensation
$TC_DP3 Length 1 Allocation to
$TC_DP4 Length 2 Type and level
$TC_DP5 Length 3
Geometry Radius
$TC_DP61
$TC_DP62

Radius 1 / length 1
diameter d

Milling/turning/grinding tool
Slotting saw

$TC_DP71
$TC_DP72

Length 2 / corner radius, tapered milling tool
Slot width b corner radius

Milling tools
slotting saw

$TC_DP81
$TC_DP82

Rounding radius 1 for milling tools
projecting length k

Milling tools
slotting saw

$TC_DP91.3 Rounding radius 2 Reserved
$TC_DP101 Angle 1 face end of tool Tapered milling tools
$TC_DP111 Angle 2 tool longitudinal axis Tapered milling tools
Wear Tool length and radius compensation
$TC_DP12 Length 1
$TC_DP13 Length 2
$TC_DP14 Length 3
$TC_DP151
$TC_DP152

Radius 1 / length 1
diameter d

Milling/turning/grinding tool
slotting saw

$TC_DP161
 $TC_DP163

Length 2 / corner radius, tapered milling tool,
slot width b corner radius

Milling tools
slotting saw

$TC_DP171

$TC_DP172
Rounding radius 1 for milling tools
projecting length k

Milling / 3D face milling
slotting saw

$TC_DP181.3 Rounding radius 2 Reserved
$TC_DP191 Angle 1 face end of tool Tapered milling tools
$TC_DP201 Angle 2 tool longitudinal axis Tapered milling tools
Base dimensions/
adapter

Length offsets

$TC_DP21 Length 1
$TC_DP22 Length 2
$TC_DP23 Length 3
Technology
$TC_DP24 Clearance angle only for turning tools
$TC_DP25 Reserved

Comments
Several entries exist for the geometric variables (e.g. length 1 or radius). These are added
together to produce a value (e.g. total length 1, total radius) which is then used for the
calculations.
Offset values not required must be assigned the value zero.

 Tool offsets
 8.1 Offset memory

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-3

Tool parameters $TC-DP1 to $TC-DP23 with contour tools

 Note
The tool parameters not listed in the table, such as $TC_DP7, are not evaluated, i.e. their
content is meaningless.

Tool parameter number
(DP)

Meaning Cutting Dn Comment

$TC_DP1 Tool type 400 ... 599
$TC_DP2 Length of cutting edge
Geometry Length compensation
$TC_DP3 Length 1
$TC_DP4 Length 2
$TC_DP5 Length 3
Geometry Radius
$TC_DP6 Radius
Geometry Limit angle
$TC_DP10 minimum limit angle
$TC_DP11 maximum limit angle
Wear Tool length and radius

compensation

$TC_DP12 Wear length 1
$TC_DP13 Wear length 2
$TC_DP14 Wear length 3
$TC_DP15 Wear radius
Wear Limit angle
$TC_DP19 Wear min. limit angle
$TC_DP20 Wear max. limit angle
Tool base dimension/
adapter

Tool length offsets

$TC_DP21 Length 1
$TC_DP22 Length 2
$TC_DP23 Length 3

Basic value and wear value
The resultant values are each a total of the basic value and wear value (e.g. $TC_DP6 +
$TC_DP15 for the radius). The basic measurement ($TC_DP21 – $TC_DP23) is also added
to the tool length of the first cutting edge. All the other parameters, which may also impact on
effective tool length for a standard tool, also affect this tool length (adapter, orientational
toolholder, setting data).
Limit angles 1 and 2
Limit angles 1 and 2 each relate to the vector of the cutting edge center point to the cutting
edge reference point and are counted clockwise.

Tool offsets
8.2 Language commands for tool management

 Job planning
8-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

8.2 8.2 Language commands for tool management

Function
The tool management can be used to change and update the tool data. You can use
predefined functions to perform the following tasks in the NC program:
• Create and fetch tools with names.
• Create a new tool or delete an existing tool.
• Assign a required T number to a tool with known name.
• Update the unit number monitoring data.
• Read the T number of the tool preselected for the spindle.

Programming
T="DRILL" or T="123 tools with name"
or
Return parameter=NEWT("WZ", DUPLO_NR)
or
DELT("MYTOOL",DUPLO_NR)
or
Return parameter=GETT("MYTOOL", DUPLO_NO)
or
SETSPIECE(x,y)
or
GETSELT (x)

Parameters

T="MYTOOL" Select tool with name

NEWT ("WZ",DUPLO_NR) Create new tool, duplo number optional

DELT ("WZ",DUPLO_NR) Delete tool, duplo number optional

GETT ("WZ",DUPLO_NR) Determine T number

SETPIECE(x,y) Set piece number

GETSELT (x) Read preselected tool number (T No.)

"WZ" Tool identifier

DUPLO_NO Number of workpieces

x, y Spindle number, entry optional

 Tool offsets
 8.2 Language commands for tool management

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-5

Example of the NEWT function
With the NEWT function you can create a new tool with name in the NC program. The
function automatically returns the T number created, which can subsequently be used to
address the tool.
If no duplo number is specified, this is generated automatically by the tool manager.

DEF INT DUPLO_NO

DEF INT T_NO

DUPLO_NO = 7

T_NO=NEWT("DRILL", DUPLO_NO) ;Create new "DRILL" tool with duplo number 7.
;The created T number will be stored in T_NO.

Example of the DELT function
The DELT function can be used to delete a tool without referring to the T number.

Example of the GETT function
The GETT function returns the T number required to set the tool data for a tool known only
by its name.
If several tools with the specified name exist, the T number of the first possible tool is
returned.
Return parameter = –1: the tool name or duplo number cannot be assigned to a tool.

T="DRILL"

R10=GETT("DRILL", DUPLO_NO) ;Return T number for DRILL with
;duplo number = DUPLO_NO

The "DRILL" must first be declared with NEWT or $TC_TP1[].

$TC_DP1[GETT("DRILL", DUPLO_NO),1]=100 ;Write a tool parameter
;(system variable) with tool name

Example of the SETPIECE function
This function is used to update the piece number monitoring data. The function counts all of
the tool edges which have been changed since the last activation of SETPIECE for the stated
spindle number.
SETPIECE(x,y)

x ;Number of completed workpieces

Y ;y spindle number, 0 stands for
;master spindle (default setting)

Tool offsets
8.2 Language commands for tool management

 Job planning
8-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of the GETSELT function
This function returns the T number of the tool preselected for the spindle. This function
allows access to the tool offset data before M6 and thus establishes main run
synchronization slightly earlier.

Example of tool change using tool management
T1:
Tool preselection; i.e. the tool magazine can be put in tool position parallel to the machining.
M6:
Changing to a preselected tool (depending on default setting in the machine data it may also
be programmed without M6).

T1 M6 ;Load tool 1

D1 ;Select tool length compensation

G1 X10 … ;Machining with T1

T="DRILL" ;Preselect drill

D2 Y20 … ;Change cutting edge T1

X10 … ;Machining with T1

M6 ;Load tool drill

SETPIECE(4) ;Number of completed workpieces

D1 G1 X10 … ;Machining with drill

 Note
The complete list of all variables for the tool management are contained in
References:
/PGA1/ List of System Variables.

 Tool offsets
 8.3 Online tool compensation (PUTFTOCF, PUTFTOC, FTOCON, FTOCOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-7

8.3 8.3 Online tool compensation (PUTFTOCF, PUTFTOC, FTOCON,
FTOCOF)

Function
The function makes immediate allowance for tool offsets resulting from machining by means
of online tool length offset (e.g., CD dressing: The grinding wheel is dressed parallel to
machining). The tool length offset can be changed from the machining channel or a parallel
channel (dresser channel).

 Note
Online tool offset can be applied only to grinding tools.

Tool offsets
8.3 Online tool compensation (PUTFTOCF, PUTFTOC, FTOCON, FTOCOF)

 Job planning
8-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
FCTDEF(Polynomial_no., LLimit, ULimit,a0,a1,a2,a3)
or
PUTFTOCF(Polynomial_No., Ref_value, Length1_2_3, Channel, Spindle)
or
PUTFTOC(Value, Length1_2_3, Channel, Spindle)
or
FTOCON
or
FTOCOF

Parameters

PUTFTOCF Write online tool offset continuously

FCTDEF Define parameters for PUTFTOCF function

PUTFTOC Write online tool offset discretely

FTOCON Activation of online tool offset

FTOCOF Deactivation of online tool offset

Polynomial_No. Values 1 to 3: up to 3 polynomials are possible at one time;
polynomial up to 3rd order

Ref_value Reference value from which the offset is derived

Length1_2_3 Wear parameter into which the tool offset value is added

Channel Number of channel in which the tool offset is activated;
specified only if the channel is different to the present one

Spindle Number of the spindle on which the online tool offset acts;
only needs to be specified for inactive grinding wheels

LLimit Upper limit value

ULimit Lower limit value

a0,a1,a2,a3 Coefficients of polynomial function

Value Value added in the wear parameter

 Tool offsets
 8.3 Online tool compensation (PUTFTOCF, PUTFTOC, FTOCON, FTOCOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-9

Example
On a surface grinding machine with the following parameters, the grinding wheel is to be
dressed by the amount 0.05 after the start of the grinding movement at X100. The dressing
amount is to be active with write online offset continuously.
Y: Infeed axis for grinding wheel
V: Infeed axis for dressing roller
Machine: Channel 1 with axes X, Z, Y
Dressing: Channel 2 with axis V

Machining program in channel 1:

%_N_MACH_MPF

…

N110 G1 G18 F10 G90 ;Initial setting

N120 T1 D1 ;Select current tool

N130 S100 M3 X100 ;Spindle ON, traverse against starting
;position

N140 INIT (2, "DRESS", "S") ;Select dressing program on channel 2

N150 START (2) ;Start dressing program on channel 2

N160 X200 ;Traverse against target position

N170 FTOCON ;Activate online offset

N… G1 X100 ;Further machining

N… M30

Tool offsets
8.3 Online tool compensation (PUTFTOCF, PUTFTOC, FTOCON, FTOCOF)

 Job planning
8-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Dressing program in channel 2:

%_N_DRESS_MPF

…

N40 FCTDEF (1, –1000, 1000, –$AA_IW[V],
1)

;Define function: Straight

N50 PUTFTOCF (1, $AA_IW[V], 3, 1) ;Write online offset continuously:
;Length 3 of the current grinding wheel
;is derived from the movement of the
;V axis and corrected in channel 1.

N60 V–0.05 G1 F0.01 G91 ;Infeed movement for dressing, PUTFTOCF
;is only effective in this block

…

N… M30

Dressing program, modal:

%_N_DRESS_MPF

FCTDEF(1,-1000,1000,-$AA_IW[V],1) ;Define function:

ID=1 DO FTOC(1,$AA_IW[V],3,1) ;Select online tool offset:
;Actual value of the V axis is the input
;value for polynomial 1; the result is
;added length 3 of the active grinding
;wheel in channel 1 as the offset value.

WAITM(1,1,2) ;Synchronization with machining channel

G1 V-0.05 F0.01, G91 ;Infeed movement to dress wheel

G1 V-0.05 F0.02

...

CANCEL(1) ;Deselect online offset

...

 Tool offsets
 8.3 Online tool compensation (PUTFTOCF, PUTFTOC, FTOCON, FTOCOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-11

Description
General information about online TO
Depending on the timing of the dressing process, the following functions are used to write
the online tool offsets:
• Continuous write, non-modal: PUTFTOCF
• Continuous write, modal: ID=1 DO FTOC (see section synchronized actions)
• Discrete write: PUTFTOC
In the case of a continuous write (for each interpolation pulse) following activation of the
evaluation function each change is calculated additively in the wear memory in order to
prevent setpoint jumps. In both cases: The online tool offset can act on each spindle and
lengths 1, 2 or 3 of the wear parameters.
The assignment of the lengths to the geometry axes is made with reference to the current
plane.
The assignment of the spindle to the tool is made using the tool data for GWPSON or TMON
provided it does not concern the active grinding wheel (see the "Fundamentals"
programming manual). An offset is always applied for the wear parameters for the current
tool side or for the left-hand tool side on inactive tools.

 Note
Where the offset is identical for several tool sides, the values should be transferred
automatically to the second tool side by means of a chaining rule (see Operator's Guide for
description).
If online offsets are defined for a machining channel, you cannot change the wear values for
the current tool on this channel from the machining program or by means of an operator
action.
The online tool offset is also applied with respect to the constant grinding wheel peripheral
speed (GWPS) in addition to tool monitoring (TMON).

PUTFTOCF = Continuous write
The dressing process is performed at the same time as machining: Dress across complete
grinding wheel width with dresser roll or dresser diamond from one side of a grinding wheel
to the other.
Machining and dressing can be performed on different channels. If no channel is
programmed, the offset takes effect in the active channel.
PUTFTOCF(Polynomial_No., Ref_value, Length1_2_3, Channel, Spindle)
Tool offset is changed continuously on the machining channel according to a polynomial
function of the first, second or third order, which must have been defined previously with
FCTDEF. The offset, e.g. changing actual value, is derived from the "Reference value"
variable. If a spindle number is not programmed, the offset applies to the active tool.

Tool offsets
8.3 Online tool compensation (PUTFTOCF, PUTFTOC, FTOCON, FTOCOF)

 Job planning
8-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Set parameters for FCTDEF function
The parameters are defined in a separate block:
FCTDEF(Polynomial_no., LLimit, ULimit,a0,a1,a2,a3)
The polynomial can be a 1st, 2nd or 3rd order polynomial. The limit identifies the limit values
(LLimit = lower limit, ULimit = upper limit).
Example: Straight line (y = a0 + a1x) with gradient 1
FCTDEF(1, -1000, 1000, -$AA_IW[X], 1)

Write online offset discretely: PUTFTOC
This command can be used to write an offset value once. The offset is activated immediately
on the target channel.
Application of PUTFTOC: The grinding wheel is dressed from a parallel channel, but not at
the same time as machining.
PUTFTOC(Value, Length1_2_3, Channel, Spindle)
The online tool offset for the specified length 1, 2 or 3 is changed by the specified value, i.e.
the value is added to the wear parameter.
Include online tool offset: FTOCON, FTOCOF
The target channel can only receive online tool offsets when FTOCON is active.
• FTOCON must be written in the channel on which the offset is to be activated. With

FTOCOF, the offset is no longer applied, however the complete value written with
PUTFTOC is corrected in the tool edge-specific offset data.

• FTOCOF is always the reset setting.
• PUTFTOCF always acts non-modally, i.e. in the subsequent traversing block.
• The online tool offset can also be selected modally with FTOC. Please refer to Section

"Motion-synchronized actions" for more information.

 Tool offsets
 8.4 Keep tool radius compensation constant (CUTCONON)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-13

8.4 8.4 Keep tool radius compensation constant (CUTCONON)

Function
The "Keep tool radius compensation constant" function is used to suppress the tool radius
compensation for a number of blocks, whereby a difference between the programmed and
the actual tool center path traveled set up by the tool radius compensation in the previous
blocks is retained as the offset. It can be an advantage to use this method when several
traversing blocks are required during line milling in the reversal points, but the contours
produced by the tool radius compensation (follow strategies) are not wanted. It can be used
independently of the type of tool radius compensation (21/2D, 3D face milling, 3D
circumferential milling).

Programming
CUTCONON
CUTCONOF

Parameters

CUTCONON Activate the tool radius compensation constant function

CUTCONOF Deactivate the constant function (default setting)

Example

N10 ;Definition of tool d1

N20 $TC_DP1[1,1] = 110 ;Type

N30 $TC_DP6[1,1]= 10. ;Radius

N40

N50 X0 Y0 Z0 G1 G17 T1 D1 F10000

N60

N70 X20 G42 NORM

N80 X30

N90 Y20

N100 X10 CUTCONON ;Activate compensation suppression

N110 Y30 KONT ;Insert bypass circle if necessary on
;deactivation of contour suppression

N120 X-10 CUTCONOF

N130 Y20 NORM ;No bypass circle on deactivation of TRC

N140 X0 Y0 G40

N150 M30

Tool offsets
8.4 Keep tool radius compensation constant (CUTCONON)

 Job planning
8-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Description
Tool radius compensation is normally active before the compensation suppression and is still
active when the compensation suppression is deactivated again. In the last traversing block
before CUTCONON, the offset point in the block end point is approached. All following blocks
in which offset suppression is active are traversed without offset. However, they are offset by
the vector from the end point of the last offset block to its offset point. These blocks can have
any type of interpolation (linear, circular, polynomial).
The deactivation block of the offset suppression, i.e. the block that contains CUTCONOF, is
offset normally; it starts in the offset point of the start point. One linear block is inserted
between the end point of the previous block, i.e. the last programmed traversing block with
active CUTCONON, and this point.
Circular blocks for which the circle plane is perpendicular to the offset plane (vertical circles),
are treated as though they had CUTCONON programmed. This implicit activation of the offset
suppression is automatically canceled in the first traversing block that contains a traversing
motion in the offset plane and is not such a circle. Vertical circle in this sense can only occur
during circumferential milling.

 Tool offsets
 8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-15

8.5 8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

8.5.1 Activate 3D tool offsets (CUT3DC, CUT3DF, CUT3DFS, CUT3DFF)

Function
Tool orientation change is taken into account in tool radius compensation for cylindrical tools.
The same programming commands apply to 3D tool radius compensation as to 2D tool
radius compensation. With G41/G42, the left/right-hand compensation is specified in the
direction of movement. The approach behavior is always NORM. 3D tool radius
compensation is only active when five-axis transformation is selected.
3D tool radius compensation is also called 5D tool radius compensation, because in this
case 5 degrees of freedom are available for the orientation of the tool in space.

Difference between 2 1/2 D and 3D tool radius compensation
In 3D tool radius compensation tool orientation can be changed.
2 1/2 D tool radius compensation assumes the use of a tool with constant orientation.

Tool offsets
8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

 Job planning
8-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
CUT3DC
or
CUT3DFS
or
CUT3DFF
or
CUT3DF
The commands are modal and are in the same group as CUT2D and CUT2DF. The command
is not deselected until the next movement in the current plane is performed. This always
applies to G40 and is independent of the CUT command.
Intermediate blocks are permitted with 3D tool radius compensation. The definitions of the 2
1/2D tool radius compensation apply.

Parameters

CUT3DC Activation of 3D radius offset for circumferential milling

CUT3DFS 3D tool offset for face milling with constant orientation.
The tool orientation is determined by G17-G19 and is not
influenced by frames.

CUT3DFF 3D tool offset for face milling with constant orientation.
The tool orientation is the direction defined by G17-G19 and,
in some case, rotated by a frame.

CUT3DF 3D tool offset for face milling with orientation change (only
with active 5-axes transformation).

G40 X Y Z To deactivate: Linear block G0/G1 with geometry axes

ISD=value Insertion depth

G450/G451 and DISC
A circle block is always inserted at outside corners. G450/G451 have no effect.
The command DISC is not evaluated.

Example

N10 A0 B0 X0 Y0 Z0 F5000

N20 T1 D1 ;Invoke tool call, call tool offset values

N30 TRAORI(1) ;Transformation selection

N40 CUT3DC ;3D tool radius compensation selection

N50 G42 X10 Y10 ;Tool radius compensation selection

N60 X60

N70 …

 Tool offsets
 8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-17

8.5.2 3D tool radius compensation: peripheral milling, face milling

Peripheral milling
The type of milling used here is implemented by defining a path (guide line) and the
corresponding orientation. In this type of machining, the shape of the tool on the path is not
relevant. The only decisive factor is the radius at the tool contact point.

 Note
The 3D TRC function is limited to cylindrical tools.

Tool offsets
8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

 Job planning
8-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Face milling
For this type of 3D milling, you require line-by-line definition of 3D paths on the workpiece
surface. The tool shape and dimensions are taken into account in the calculations that are
normally performed in CAM. In addition to the NC blocks, the postprocessor writes the tool
orientations (when five-axis transformation is active) and the G code for the desired 3D tool
offset into the parts program. This feature offers the machine operator the option of using
slightly smaller tools than that used to calculate the NC paths.

Example:
NC blocks have been calculated with a 10 mm mill. In this case, the workpiece could also be
machined with a mill diameter of 9.9 mm, although this would result in a different surface
profile.

 Tool offsets
 8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-19

8.5.3 Tool types/tool change with changed dimensions (G40, G41, G42)

Function
Mill shapes, tool data
The table below gives an overview of the tool shapes, which may be used in face milling
operations, as well as tool data limit values. The shape of the tool shaft is not taken into
consideration - the tools 120 and 156 are identical in their effect.

If a different type number is used in the NC program than the one listed in the table, the
system automatically uses tool type 110 die-sinking cutter. An alarm is output if the tool data
limit values are violated.

Parameters

Cutter type Type No. R r a
Cylindrical die mill 110 >0 X X
Ball end mill 111 >0 >R X
End mill, angle head cutter 120, 130 >0 X X
End mill, angle head cutter with corner
rounding

121, 131 >r >0 X

Bevel cutter 155 >0 X >0
Bevel cutter with corner rounding 156 >0 >0 >0
Tapered die-sinking cutter 157 >0 X >0

Tool offsets
8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

 Job planning
8-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Tool data Tool parameters X = is not evaluated
Tool dimensions Geometry Wear
R $TC_DP6 $TC_DP15 R = shank radius (tool radius)
r $TC_DP7 $TC_DP16 r = corner radius
a $TC_DP11 $TC_DP20 a = angle between tool longitudinal axes

and upper end of torus surface
Tool length offset
The tool tip is the reference point for length offset
(intersection longitudinal axis/surface).
3D tool offset, tool change
A new tool with changed dimensions (R, r, a) or a different form may only be specified with
the programming of G41 or G42 (transition G40 to G41 or G42, reprogramming of G41
G42). This rule does not apply to any other tool data, e.g., tool lengths, so that tools to which
such data apply can be fitted without reprogramming G41 or G42 .

 Tool offsets
 8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-21

8.5.4 Compensation on the path, path curvature, and insertion depth ISD and
tool status (CUT3DC)

Function
Compensation on path
With respect to face milling, it is advisable to examine what happens when the contact point
"jumps" on the tool surface as shown in the example on the right where a convex surface is
being machined with a vertically positioned tool. The application shown in the example
should be regarded as a borderline case.

This borderline case is monitored by the control that detects abrupt changes in the
machining point on the basis of angular approach motions between the tool and normal
surface vectors. The control inserts linear blocks at these positions so that the motion can be
executed.
These linear blocks are calculated on the basis of permissible angular ranges for the side
angle stored in the machine data. The system outputs an alarm if the limit values stored in
the machine data are violated.
Path curvature
Path curvature is not monitored. In such cases, it is also advisable to use only tools of a type
that do not violate the contour.

Tool offsets
8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

 Job planning
8-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
Insertion depth (ISD)
ISD is only evaluated when 3D tool radius compensation is active.
Program command ISD (insertion depth) is used to program the tool insertion depth for
peripheral milling operations. This makes it possible to change the position of the machining
point on the outer surface of the tool.
3D tool compensation circumference milling
CUT3DC

Parameters

CUT3DC Activate 3D tool offset for circumferential milling, e.g.,
for pocket milling with oblique side walls.

ISD ISD defines the distance between cutter tip FS and cutter
construction point FH.

Point FH is obtained by projecting the programmed machining point onto the tool axis.

 Tool offsets
 8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-23

Description
Pocket milling with inclined side walls for circumferential milling with CUT3DC
In this 3D tool radius compensation, a deviation of the mill radius is compensated by infeed
toward the normals of the surface to be machined. The plane in which the face end of the
mill is located remains unchanged if the insertion depth ISD has remained the same. For
example, a mill with a smaller radius than a standard tool would not reach the pocket base,
which is also the limitation surface. For automatic tool infeed, this limitation surface must be
known to the control, see section "3D circumferential milling with limitation surfaces".
For more information on collision monitoring, see
Literature: /PG/ Programming Manual Fundamentals, "Tool Offsets" section.

8.5.5 Inside corners/outside corners and intersection procedure (G450/G451)

Function
Inside corners/outside corners
Inside and outside corners are handled separately. The terms inner corner and outer corner
are dependent on the tool orientation.
When the orientation changes at a corner, for example, the corner type may change while
machining is in progress. Whenever this occurs, the machining operation is aborted with an
error message.

Tool offsets
8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

 Job planning
8-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
G450
or
G451

Parameters

G450 Transition circle (tool travels round workpiece corners on a
circular path).

G451 Intersection of equidistant paths (tool backs off from the
workpiece corner).

Description
Intersection procedure for 3D compensation
With 3D circumferential milling, G code G450/G451 is now evaluated at the outside corners;
this means that the intersection of the offset curves can be approached. Up to SW 4 a circle
was always inserted at the outside corners. The intersection procedure is especially
advantageous for 3D programs typically generated by CAD. These often consist of short
straight blocks (to approximate smooth curves), where the transitions between adjacent
blocks are almost tangential.
Up to now, with tool radius compensation on the outside of the contour, circles were
generally inserted to circumnavigate the outside corners. These blocks can be very short
with almost tangential transitions, resulting in undesired drops in velocity.
In these cases, as with 2 ½ D radius compensation, both of the curves involved are
lengthened and the intersection of both lengthened curves is approached.
The intersection is determined by extending the offset curves of the two participating blocks
and defining the intersection of the two blocks at the corner in the plane perpendicular to the
tool orientation. If there is no such intersection, the corner is handled as previously, that is, a
circle is inserted.
References:
Further information for the intersection procedure /FB/ W5, 3D Tool Radius Compensation

 Tool offsets
 8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-25

8.5.6 3D circumferential milling with limitation surfaces general use

Function
Adaptations of 3D circumferential milling to the conditions for CAD programs
NC programs generated by CAD systems usually approximate the center path of a standard
tool with a large number of short linear blocks. To ensure that the blocks of many part
contours generated in this way map the original contour as precisely as possible, it is
necessary to make certain changes in the parts program.
Suitable measures must be taken to replace important information that would be required for
optimum correction but is not longer available. Here are some typical compensation methods
for critical transitions either
• directly in the parts program or
• while determining the real contour, e.g. by tool infeed.

Applications
In addition to the typical application case for which instead of the standard tool, a real tool
describes the center-point path, cylindrical tools with 3D tool compensation are also
described. In this case the programmed path refers to the contour on the machining surface.
The associated limitation surface is tool-independent. Like with conventional tool radius
compensation, the entire radius if used to calculate the perpendicular offset to the limitation
surface.

Tool offsets
8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

 Job planning
8-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

8.5.7 Consideration of a limitation surface (CUT3DCC, CUT3DCCD)

Function
3D circumferential milling with real tools
In 3D circumferential milling with a continuous or constant change in tool orientation, the tool
center point path is frequently programmed for a defined standard tool. Because in practice
suitable standard tools are often not available, a tool that does not deviate too much from a
standard tool can be used.
CUT3DCCD takes account of a limitation surface for a real differential tool that the
programmed standard tool would define. The NC program defines the center-point path of a
standard tool.
CUT3DCC with the use of cylindrical tools takes account of a limitation surface that the
programmed standard tool would have reached. The NC program defines the contour on the
machining surface.

Programming
CUT3DCCD
or
CUT3DCC

Parameters

CUT3DCCD Activation of 3D tool offset for the
circumferential milling with limitation surfaces
with a differential tool on the tool center point
path:
infeed to the limitation surface.

CUT3DCC Activation of the 3D tool offset for
circumferential milling with limitation surfaces
with 3D radius compensation:
contour on the machining surface.

 Note
Tool radius compensation with G41, G42
If tool radius compensation with G41, G42 is programmed when CUT3DCCD or CUT3DCC is
active, the option "orientation transformation" must also be active.

Standard tools with corner rounding
Corner rounding with a standard tool is defined by the tool parameter $TC_DP7. Tool
parameter $TC_DP16 describes the deviation of the corner rounding of the real tool
compared with the standard tool.

 Tool offsets
 8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-27

Example
Tool dimensions of a toroidal miller with reduced radius as compared with the standard tool.

Tool type R = shank radius r = corner radius
Standard tool with corner rounding R = $TC_TP6 r = $TC_TP7
Real tool with corner rounding:
Tool types 121 and 131 toroidal miller
(end mill)

R’ = $TC_TP6 + $TC_TP15 +
OFFN

r’ = $TC_TP7 + $TC_TP6

In this example
tool type ($TC_DP1) is evaluated.

either
or

$TC_TP15 + OFFN
$TC_TP16 negative.

Only cutter types with cylindrical shank
are permitted (cylinder or end mill) and
toroidal miller (type 121 and 131) and
in the limit case of the cylindrical die
mill (type 110).

For these approved cutter types, the corner radius r is
identical to the shank radius R. All other permitted tool
types are interpreted as cylindrical cutters and the
dimensions specified for the corner rounding are not
evaluated.

All tool types of the numbers 1 –399
with the exception of the numbers 111
and 155 to 157 are permitted.

Tool offsets
8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

 Job planning
8-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Description
Tool center point path with infeed up to the limitation surface CUT3DCCD
If a tool with a smaller radius than the suitable standard tool is used machining is continued
with a milling cutter that is infed in the longitudinal direction until it reaches the bottom of the
pocket. The tool removes as much material from the corner formed by the surface of
limitation and the machined surface as possible. This a combined method of machining
using circumferential and face milling. By analogy, if the tool has a larger radius it is infed in
the opposite direction.

Unlike all other tool compensations of G code group 22, tool parameter $TC_DP6 specified
for CUT3DCCD does not affect the tool radius and the resulting compensation.
The compensation is the sum of
• the wear value of the tool radius (tool parameter $TC_DP15)
and a
• programmed tool offset OFFN.
The generated program does not specify whether the surface to be machined is right or left
of the path. It is therefore assumed that the radius is a positive value and the wear value of
the original tool a negative value. A negative wear value always describes a tool with a
reduced diameter.
Using cylindrical tools
If cylindrical tools are used, infeed is only necessary if the machining surface and the surface
of limitation form an acute angle (less than 90 degrees). If a toroidal miller is used (cylinder
with rounded corners) tool infeed in the longitudinal direction is required for both acute and
obtuse angles.

 Tool offsets
 8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-29

3D radius compensation with CUT3DCC, contour on the machining surface
If CUT3DCC is active with a toroidal miller the programmed path refers to a fictitious
cylindrical mill with the same diameter. The resulting path reference point is shown in the
following figure for a toroidal miller.

The angle between the machining and limitation surface may change from an acute to an
obtuse angle and vice versa even within the same block.
The tool actually used may be either larger or smaller than the standard tool. But the
resulting corner radius must not be negative and the sign in front of the resulting tool radius
must not change.
In CUT3DCC the NC parts program refers to the contour on the machining surface. As with
conventional tool radius compensation, the total radius, which is totaled from
• the tool radius (tool parameter $TC_DP6)
• the wear value (tool parameter $TC_DP15)
and a
• programmed tool offset OFFN.
is used. The position of the limitation surface is determined by the difference between the
two values
• standard tool dimensions and
• tool radius (tool parameter $TC_DP6).

Tool offsets
8.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, OSD, OST)

 Job planning
8-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

8.6 8.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, OSD, OST)

Function
The term tool orientation describes the geometric alignment of the tool in space. The tool
orientation on a 5-axis machine tool can be set by means of program commands.

Orientation rounding movements activated with OSD and OST are formed differently
depending on the type of interpolation for tool orientation.
If vector interpolation is active, the smoothed orientation characteristic is also interpolated
using vector interpolation. On the other hand, if round axis interpolation is active, the
orientation is smoothed directly using round axis movements.

 Tool offsets
 8.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, OSD, OST)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-31

Programming
A change in tool orientation can be programmed by:
• Direct programming of round axes A, B, C (round axis interpolation)
• Euler or RPY angle
• Direction vector (vector interpolation by specifying A3 or B3 or C3)
• LEAD/TILT (face milling)
The reference coordinate system is either the machine coordinate system (ORIMKS) or the
current workpiece coordinate system (ORIWKS).

Parameters

ORIC Orientation and path movement in parallel

ORID Orientation and path movement consecutively

OSOF No orientation smoothing

OSC Orientation constantly

OSS Orientation smoothing only at beginning of block

OSSE Orientation smoothing at beginning and end of block

ORIS Speed of the orientation change for activated
orientation smoothing in degrees per mm; applies to OSS
and OSSE

OSD Rounding of orientation by specifying rounding length
with SD $SC_ORI_SMOOTH_DIST.

OST Rounding of orientation by specifying angle tolerance
in degrees for vector interpolation with
SD $SC_ORI_SMOOTH_TOL. With round axis interpolation,
the specified tolerance is assumed to be the maximum
variance of the orientation axes.

Tool offsets
8.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, OSD, OST)

 Job planning
8-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

ORIC example
If two or more blocks with orientation changes are programmed between the traversing
blocks N10 and N20 (e.g., A2= B2= C2=) and ORIC is active, the inserted circle block
is divided according to the size of the angle changes on these intermediate blocks.

ORIC

N8 A2=… B2=… C2=…

N10 X… Y… Z…

N12 C2=… B2=…

N14 C2=… B2=…

;The circle block inserted at the external corner
;is divided among N12 and N14 in accordance with
;the change in orientation. The circular movement
;and the orientation change are executed in
;parallel.

N20 X =…Y=… Z=… G1 F200

 Tool offsets
 8.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, OSD, OST)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-33

ORID example
If ORID is active, all the blocks between the two traversing blocks are executed at the end of
the first traversing block. The circle block with constant orientation is executed immediately
before the second traversing block.

ORID

N8 A2=… B2=… C2=…

N10 X… Y… Z…

N12 A2=… B2=… C2=… ;The N12 and N14 blocks are executed at the end
;of N10. The circle block is then executed with
;the current orientation.

N14 M20 ;Auxiliary functions, etc.

N20 X… Y… Z…

 Note
The method by which the orientation is changed at an outer corner is determined by the
program command that is active in the first traversing block of an outer corner.
Without change in orientation:If the orientation is not changed at the block boundary, the
cross-section of the tool is a circle, which touches both of the contours.

Tool offsets
8.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, OSD, OST)

 Job planning
8-34 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example for the change in orientation at an inner corner

ORIC

N10 X …Y… Z… G1 F500

N12 X …Y… Z… A2=… B2=…, C2=…

N15 X Y Z A2 B2 C2

 Tool offsets
 8.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, OSD, OST)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-35

Behavior at outer corners
A circle block with the radius of the cutter is always inserted at an outside corner.
The program commands ORIC or ORID can be used to define whether changes in
orientation programmed between blocks N1 and N2 are executed before the beginning of the
inserted circle block or at the same time.

If an orientation change is required at outside corners, this can be performed either at the
same time as interpolation or separately together with the path movement.
With ORID, the inserted blocks are executed initially without a path movement. The circle
block generating the corner is inserted immediately before the second of the two traversing
blocks.
If several orientation blocks are inserted at an external corner and ORIC is selected, the
circular movement is divided among the individual inserted blocks according to the values of
the orientation changes.

Rounding orientation with OSD and OST
When rounding with G642, the maximum variance for the contour axes and orientation axes
cannot vary greatly. The smaller tolerance of the two determines smoothing the shape
• the rounding movement or angle tolerance,
• the orientation characteristics
to a relatively severe extent without having to accept larger contour variances.
By activating OSD and OST, very small variances to the orientation characteristics can be
smoothed with a specified rounding length and angle tolerance without serious “large”
contour variances.

Tool offsets
8.7 Free assignment of D numbers, cutting edge numbers

 Job planning
8-36 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 Note
Unlike the process of rounding the contour (and orientation characteristics) with G642, when
rounding the orientation with OSD and/or OST, a separate block is not formed, instead the
rounding movement is added directly to the programmed original blocks.
With OSD and/or OST, block transitions cannot be rounded if there is a change in the type of
interpolation for tool orientation (vector –> round axis, round axis –> vector). These block
transitions can if necessary be rounded with the standard rounding functions G641, G642
and G643.

8.7 8.7 Free assignment of D numbers, cutting edge numbers

8.7.1 Free assignment of D numbers, cutting edge numbers (CE address)

Function
The D numbers can be used as contour numbers. You can also address the number of the
cutting edge via the address CE. You can use the system variable $TC_DPCE to describe
the cutting edge number.
Default: compensation no. == tool edge no.
References:
/FB1/Function Manual Basic Functions; Tool Offset (W1).
Machine manufacturer
The maximum number of D numbers (cutting edge numbers) and maximum number of
cutting edges per tool are defined via the machine data. The following commands only make
sense when the maximum number of cutting edges (MD 18105) is greater than the number
of cutting edges per tool (MD 18106). See machine manufacturer's specifications.

 Note
Besides the relative D number, you can also assign D numbers as 'flat' or 'absolute'
D numbers (-32000) without assigning a reference to a T number
(inside the function 'flat D number structure').

 Tool offsets
 8.7 Free assignment of D numbers, cutting edge numbers

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-37

8.7.2 Checking D numbers (CHKDNO)

Function
CKKDNO checks whether the available D numbers assigned are unique. The D numbers of
all tools defined within a TO unit may not occur more than once. No allowance is made for
replacement tools.

Programming
state=CHKDNO(Tno1,Tno2,Dno)

Parameters

state TRUE: The D numbers are assigned uniquely to the
checked areas.

FALSE: There was a D number collision or the
parameters are invalid. Tno1, Tno2 and Dno return
the parameters that caused the collision. These
data can now be evaluated in the parts program.

CHKDNO (Tno1,Tno2) All D numbers of the part specified are checked.

CHKDNO(Tno1) All D numbers of Tno1 are checked against all
other tools.

CHKDNO All D numbers of all tools are checked against
all other tools.

Tool offsets
8.7 Free assignment of D numbers, cutting edge numbers

 Job planning
8-38 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

8.7.3 Renaming D numbers (GETDNO, SETDNO)

Function
You must assign unique D numbers. Two different cutting edges of a tool must not have the
same D number.
GETDNO
This command returns the D number of a particular cutting edge (ce) of a tool with tool
number t. If no D number exists for the entered parameters, d=0 will be set. If the D number
is invalid, a value greater than 32000 is returned.
SETDNO
This command assigns the value d of the D number to a cutting edge ce of tool t. The result
of this statement is returned via state (TRUE or FALSE). If there is no data block for the
specified parameter, the value FALSE is returned. Syntax errors generate an alarm. The
D number cannot be set explicitly to 0.

Programming
d = GETDNO (t,ce)
state = SETDNO (t,ce,d)

Parameters

d D number of the tool edge

t T number of the tool

ce Cutting edge number (CE number) of the tool

state Indicates whether the command could be executed
(TRUE or FALSE).

Example for renaming a D number
$TC_DP2[1.2]=120
$TC_DP3[1,2] = 5.5
$TC_DPCE[1,2] = 3; cutting edge number CE
...
N10 def int DNoOld, DNoNew = 17
N20 DNoOld = GETDNO(1,3)
N30 SETDNO(1,3,DNoNew)
The new D value 17 is then assigned to cutting edge CE=3. Now the data for the cutting
edge are addressed via D number 17; both via the system variables and in the programming
with the NC address.

 Tool offsets
 8.7 Free assignment of D numbers, cutting edge numbers

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-39

8.7.4 Deriving the T number from the specified D number (GETACTTD)

Function
For an absolute D number, GETACTTD determines the associated T number. There is not
check for uniqueness. If several D numbers within a TO unit are the same, the T number of
the first tool found in the search is returned. This command is not suitable for use with 'flat'
D numbers, because the value 1 is always returned in this case (no T numbers in database).

Programming
status = GETACTTD (Tnr, Dnr)

Parameters

Dno D number for which the T number shall be
searched.

Tno T number found

status 0: The T number has been found. Tno contains the
value of the T number.

-1: No T number exists for the specified
D number; Tno=0.

-2: The D number is not absolute. Tno contains
the value of the first tool found that contains
the D number with the value Dno.

-5: The Function has not been executed for some
other reason.

8.7.5 Invalidate D numbers (DZERO)

Function
This command is used for support during retooling. Offset data sets tagged with this
command are no longer verified by the CHKDNO language command. These data sets can
be accessed again by setting the D number again with SETDNO.

Programming
DZERO

Parameters

DZERO Marks all D number of the TO unit as invalid

Tool offsets
8.8 Tool holder kinematics

 Job planning
8-40 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

8.8 8.8 Tool holder kinematics

Function
The toolholder kinematics with a maximum of two rotary axes v1 or v2 are defined using the
17 system variables $TC_CARR1[m] to $TC_CARR17[m]. The description of the
toolholder consists of:
• the vectoral distance from the first rotary axis of the toolholder I1, the vectoral distance

from the first rotary axis to the second rotary axis I2, the vectoral distance from the
second rotary axis to the reference point of the tool I3.

• the direction vectors of both rotary axes V1, V2.
• the rotational angles α1, α2 at the two axes. The rotation angles are counted in viewing

direction of the rotary axis vectors, positive, in clockwise direction of rotation.

For machines with resolved kinematics (both the tool and the part can rotate), the system
variables have been extended with the entries
• $TC_CARR18[m] to $TC_CARR23[m].

Parameters

Function of the system variables for orientable toolholders
Designation x component y component y component
l1 Offset vector $TC_CARR1[m] $TC_CARR2[m] $TC_CARR3[m]
l2 offset vector $TC_CARR4[m] $TC_CARR5[m] $TC_CARR6[m]
v1 rotary axis $TC_CARR7[m] $TC_CARR8[m] $TC_CARR9[m]
v2 rotary axis $TC_CARR10[m] $TC_CARR11[m] $TC_CARR12[m]

 Tool offsets
 8.8 Tool holder kinematics

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-41

Function of the system variables for orientable toolholders
α1 angle of
rotation
α2 angle of
rotation

$TC_CARR13[m]
$TC_CARR14[m]

l3 offset vector $TC_CARR15[m] $TC_CARR16[m] $TC_CARR17[m]

Extensions of the system variables for orientable toolholders
Designation x component y component y component
l4 offset vector $TC_CARR18[m] $TC_CARR19[m] $TC_CARR20[m]
Axis identifier
rotary axis v1
rotary axis v2

Axis identifier of the rotary axes v1 and v2 (initialized with zero)
$TC_CARR21[m]
$TC_CARR22[m]
$TC_CARR23[m]
Kinematics type T -> Kinematics type P -> Kinematics type M

Kinematic type
Tool
Part
Mixed mode

Only the tool can rotate
(default).

Only the part can rotate Part and tool can rotate

Offset of the
rotary axis v1
rotary axis v2

Angle in degrees of the rotary axes v1 and v2 on assuming the initial setting
$TC_CARR24[m]
$TC_CARR25[m]

Angle offset of
the rotary axis v1
rotary axis v2

Offset of the Hirth tooth system in degrees for rotary axes v1 and v2
$TC_CARR26[m]
$TC_CARR27[m]

Angle increment
v1 rotary axis
v2 rotary axis

Offset of the Hirth tooth system in degrees for rotary axes v1 and v2
$TC_CARR28[m]
$TC_CARR29[m]

Min. position
rotary axis v1
rotary axis v2

Software limit for the minimum position of the rotary axes v1 and v2
$TC_CARR30[m]
$TC_CARR31[m]

Max. position
rotary axis v1
rotary axis v2

Software limits for the maximum position of the rotary axes v1 and v2
$TC_CARR32[m]
$TC_CARR33[m]

Toolholder name A toolholder can be given a name instead of a number. $TC_CARR34[m]
Intended use in user measuring cycles $TC_CARR35[m]
$TC_CARR36[m]
$TC_CARR37[m]

User:
axis name 1
axis name 2
identifier
Position

$TC_CARR38[m] $TC_CARR39[m] $TC_CARR40[m]

Fine
offset

Parameters that can be added to the values
 in the basic parameters.

l1 offset vector $TC_CARR41[m] $TC_CARR42[m] $TC_CARR43[m]
l2 offset vector $TC_CARR44[m] $TC_CARR45[m] $TC_CARR46[m]
l3 offset vector $TC_CARR55[m] $TC_CARR56[m] $TC_CARR57[m]
l4 offset vector $TC_CARR58[m] $TC_CARR59[m] $TC_CARR60[m]
v1 rotary axis $TC_CARR64[m]
v2 rotary axis $TC_CARR65[m]

Tool offsets
8.8 Tool holder kinematics

 Job planning
8-42 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 Note
Explanations of parameters
"m" specifies the number of the toolholder to be programmed.
$TC_CARR47 to $TC_CARR54 and $TC_CARR61 to $TC_CARR63 are not defined and
produce an alarm if read or write access is attempted.
The start/endpoints of the distance vectors on the axes can be freely selected. The rotation
angles α1, α2 about the two axes are defined in the initial state of the toolholder by 0°. In
this way, the kinematics of a toolholder can be programmed for any number of possibilities.
Toolholders with only one or no rotary axis at all can be described by setting the direction
vectors of one or both rotary axes to zero.
With a toolholder without rotary axis the distance vectors act as additional tool offsets whose
components cannot be affected by a change of machining plane (G17 to G19).

Parameter extensions
Rotary axis parameters $TC_CARR24 to $TC_CARR33
The system variables have been extended by the entries $TC_CARR24[m] to
$TC_CARR33[m] and described as follows:

The offset of the
rotary axes v1, v2

Changing the position of the rotary axis v1 or v2 for the initial setting of the
oriented toolholder.

The angle
offset/angle
increment of the
rotary axes v1, v2

The offset or the angle increment of the Hirth tooth system of the rotary axes
v1 and v2. Programmed or calculated angle is rounded up to the next value
that results from phi = s + n * d when n is an integer.

The minimum and
maximum position of
the rotary axes v1, v2

The minimum and maximum position of the rotary axis limit angle (software
limit) of the rotary axes v1 and v2.

User parameters $TC_CARR34 to $TC_CARR40

User contain parameters that are freely available to the user and, up to software
version 6.4, were not further interpreted in the NCK or have no meaning.

Fine offset parameters $TC_CARR41 to $TC_CARR65

Fine offset contain fine offset parameters that can be added to the values in the basic
parameters. The fine offset value assigned to a basic parameter is obtained
when the value 40 is added to the parameter number.

 Tool offsets
 8.8 Tool holder kinematics

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 8-43

Example
The toolholder used in the following example can be fully described by a rotation around the
Y axis.

N10 $TC_CARR8[1]=1 ;Definition of the Y components of the
;first rotary axis of toolholder 1

N20 $TC_DP1[1,1] = 120 ;Definition of an end mill

N30 $TC_DP3[1,1]=20 ;Definition of an end mill with
;length 20 mm

N40 $TC_DP6[1,1]=5 ;Definition of an end mill with
;radius 5 mm

N50 ROT Y37 ;Frame definition with 37° rotation around
;the Y axis

N60 X0 Y0 Z0 F10000 ;Approach start position

N70 G42 CUT2DF TCOFR TCARR=1 T1 D1 X10 ;Set radius compensation, tool length
;offset in rotated frame,
;select toolholder 1, tool 1

N80 X40 ;Execute machining under a 37° rotation

N90 Y40

N100 X0

N110 Y0

N120 M30

Requirements
A toolholder can only orientate a tool in all possible directions in space if
• two rotary axes V1 and V2 are present.
• the rotary axes are mutually orthogonal.

Tool offsets
8.8 Tool holder kinematics

 Job planning
8-44 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

• the tool longitudinal axis is perpendicular to the second rotary axis V2.
In addition, the following requirement is applicable to machines for which all possible
orientations have to be settable:
• the tool longitudinal axis must be perpendicular to the first rotary axis V1.

Description
Resolved kinematics
For machines with resolved kinematics (both the tool and the part can rotate), the system
variables have been extended to include the entries $TC_CARR18[m] to $TC_CARR23[m]
are described as follows:
The rotatable tool table consisting of:
• the vectoral distance of the second rotary axis V2 to the reference point of a rotatable tool

table I4 of the third rotary axis.
The rotary axes consisting of:
• the two channel identifiers for the reference to the rotary axes V1 and V2, whose position

is accessed as required to determine the orientation of the orientable toolholder.
The type of kinematics with one of the values T, P or M:
• Kinematics type T: Only tool can rotate.
• Kinematics type P: Only part can rotate.
• Kinematics type M: Tool and part can rotate.
Clearing the toolholder data
$TC_CARR1[0] = 0 can be used to clear the data of all toolholder data blocks.
The type of kinematics $TC_CARR23[T] = T must be assigned one of the three
permissible uppercase or lowercase letter (T,P,M) and should not be deleted.
Changing the toolholder data
Each of the described values can be modified by assigning a new value in the parts
program. Any character other than T, P or M causes an alarm when you attempt to activate
the orientable toolholder.
Reading the toolholder data
Each of the described values can be read by assigning it to a variable in the parts program.
Fine offsets
A permissible fine offset value is not detected unless an orientable toolholder that contains
such a value is activated and setting data SD 42974: TOCARR_FINE_CORRECTION =
TRUE.
The maximum permissible fine offset is limited to a permissible value in the machine data.

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-1

Path traversing behavior 9
9.1 9.1 Tangential control (TANG, TANGON, TANGOF, TANGDEL)

Function
The following axis follows the path of the leading axis along the tangent. This allows
alignment of the tool parallel to the contour. The tool can be positioned relative to the tangent
with the angle programmed in the TANGON statement.

Applications
Tangential control can be used in applications such as:
• Tangential positioning of a rotatable tool during nibbling
• Follow-up of workpiece alignment for a bandsaw (s. illustration).
• Positioning of a dressing tool on a grinding wheel
• Positioning of a cutting wheel for glass or paper working
• Tangential feed of a wire for 5-axis welding.

Path traversing behavior
9.1 Tangential control (TANG, TANGON, TANGOF, TANGDEL)

 Job planning
9-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
TANG (Faxis,Laxis1,Laxis2,Coupling,CS,Opt)
or
TANGON (Faxis,Angle, Dist, Angletol)
or
TANGOF (Faxis)
or
TLIFT (Faxis)
or
TANGDEL (FAxis)
Simplified programming:
A coupling factor of 1 does not have to be programmed explicitly.
TANG(C, X, Y, 1, "B", "P") can be abbreviated to TANG(C, X, Y, , , "P"). As
before, TANG(C, X, Y, 1, "B", "S") can be written as TANG(C, X, Y).
The TLIFT(...) statement must be programmed immediately after the axis assignment with
TANG(...). Example:
TANG(C, X, Y...)
TLIFT(C)
Deactivate TLIFT
Repeat axis assignment TANG(...) without following it by TLIFT(...).

 Path traversing behavior
 9.1 Tangential control (TANG, TANGON, TANGOF, TANGDEL)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-3

TANGDEL Delete definition of a tangential follow-up
An existing user-defined tangential follow-up must be deleted if a new tangential follow-up
with the same following axis is defined in the preparation call TANG. Deletion is only possible
if the coupling with TANGOF(Faxis) is deactivated.

Parameters

TANG Preparatory statement for the definition of a tangential
follow-up; default setting: 1

TANG(C,X,Y,1,"B") means:
Rotary axis C follows geometry axes X and Y. Disable TLIFT

TANGON Activate tangential control specifying following axis and
required offset angle of the following axis and, if
necessary, rounding path, angle deviation.

TANGON(C,90) means:
C axis is the following axis. On every movement of the path
axes, it is rotated into a position at 90° to the path
tangent.

TANGOF Deactivate tangential control specifying following axis.

The following axis is specified in order to deactivate the
tangential control:
TANGOF(C)

TLIFT Insert intermediate block at contour corners

TANGDEL Delete definition of a tangential follow-up.
Example: TANGDEL (FAxis)

Faxis Following axis: additional tangential following rotary axis.

Laxis1, Laxis2 Leading axes: path axes, which determine the tangent for the
following axis.

Coupling Coupling factor: relationship between the angle change of the
tangent and the following axis.
Parameter optional; default: 1

CS Identifying letter for coordinate system
"B" = Basic coordinate system; entry is optional; default
setting "W" = Workpiece coordinate system is not available

Opt Optimization:
"S" Standard, Default

"P" automatic adaptation of the time change of the
tangential axis and the contour

Angle Offset angle of following axis

Dist Smoothing path of following axis, required with Opt "P"

Angletol Angle tolerance of following axis, (optional), evaluation
only with Opt= "P"

Opt, Dist and Angletol optimization possibility
 Opt="P" specifies that the dynamic behavior of the following axis for the speed limitation
of the leading axes and, in particular, is recommended when kinematic transformations are
used.
The parameters (Dist and Angletol) limit the error between the following axis and the
tangent of the leading axes precisely.

Path traversing behavior
9.1 Tangential control (TANG, TANGON, TANGOF, TANGDEL)

 Job planning
9-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example for plane change

N10 TANG(A, X, Y,1) ;1. definition of the tang. follow-up

N20 TANGON(A) ;Activation of the coupling

N30 X10 Y20 ;Radius

...

N80 TANGOF(A) ;Deactivate 1st coupling

N90 TANGDEL(A) ;Delete 1st definition

...

TANG(A, X, Z) ;2. definition of the tang. follow-up

TANGON(A) ;Activation of the new coupling

...

N200 M30

Example of the geometry axis switching and TANGDEL
No alarm is produced.

N10 GEOAX(2,Y1) ;Y1 is geometry axis 2

N20 TANG(A, X, Y)

N30 TANGON(A, 90)

N40 G2 F8000 X0 Y0 I0 J50

N50 TANGOF(A) ;Deactivation of follow-up with Y1

N60 TANGDEL(A) ;Delete 1st definition

N70 GEOAX(2, Y2) ;Y2 is the new geometry axis 2

N80 TANG(A, X, Y) ;2. definition of the tang. follow-up

N90 TANGON(A, 90) ;Activation of the follow-up with 2nd def.

...

 Path traversing behavior
 9.1 Tangential control (TANG, TANGON, TANGOF, TANGDEL)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-5

Example of the tangential follow-up with automatic optimization
Automatic optimization using Dist and angle tolerance

N80 G0 C0 ;Y1 is geometry axis 2

N100 F=50000

N110 G1 X1000 Y500

N120 TRAORI ;Rounding with axial tolerance

N130 G642

N171 TRANS X–Y– ;Automatic optimization of path veloc.

N180 TANG(C,X,Y, 1,,"P") ;Rounding path 5 mm,

N190 TANGON(C, 0, 5.0, 2.0) ;Angle tolerance 2 degrees

N210 G1 X1310 Y500 ;Activation of the follow-up with 2nd def.

N215 G1 X1420 Y500

N220 G3 X1500 Y580 I=AC(1420)_
 J=AC(580)

N230 G1 X1500 Y760

N240 G3 X1360 Y900 I=AC(1360)_
 J=AC(760)

N250 G1 X1000 Y900

N280 TANGOF(C)

N290 TRAFOOF

N300 M02

Defining following axis and leading axis
TANG is used to define the following and leading axes.
A coupling factor specifies the relationship between an angle change on the tangent and the
following axis. Its value is generally 1 (default).

Limit angle using the working area limitation
For path movements, which oscillate back and forth, the tangent jumps through 180° at the
turning point on the path and the orientation of the following axis changes accordingly.
This behavior is generally inappropriate: The return movement should be traversed at the
same negative offset angle as the approach movement.
This is done by limiting the working area of the following axis (G25, G26). The working area
limitation must be active at the instant of path reversal (WALIMON).
If the offset angle lies outside the working area limit, an attempt is made to return to the
permissible working area with the negative offset angle.

Path traversing behavior
9.1 Tangential control (TANG, TANGON, TANGOF, TANGDEL)

 Job planning
9-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Insert intermediate block at contour corners, TLIFT
At one corner of the contour the tangent changes and thus the setpoint position of the
following axis. The axis normally tries to compensate this step change at its maximum
possible velocity. However, this causes a deviation from the desired tangential position over
a certain distance on the contour after the corner. If such a deviation is unacceptable for
technological reasons, the instruction TLIFT can be used to force the control to stop at the
corner and to turn the following axis to the new tangent direction in an automatically
generated intermediate block.
The path axis is used for turning if the following axis has been used once as the path axis.
A maximum axis velocity of the following axis can be achieved with function
TFGREF[ax] = 0.001.
If the follow-up axis was not previously traversed as a path axis it is now traversed as a
positioning axis. The velocity is then dependent on the positioning velocity in the machine
data.
The axis is rotated at its maximum possible velocity.

Optimization possibility
Velocity jumps of the following axis caused by jumps in the leading axis contour are rounded
and smoothed with (Dist and Angletol).
The following axis is controlled with look-ahead (see diagram) to keep deviations as small as
possible.

 Path traversing behavior
 9.1 Tangential control (TANG, TANGON, TANGOF, TANGDEL)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-7

Set velocity profile of the
following axis C

Rounded velocity profile

2 * Dact

Defining the angle change
The angular change limit at which an intermediate block is automatically inserted is defined
via machine data $MA_EPS_TLIFT_TANG_STEP.

Effect on transformations
The position of the rotary axis to which follow-up control is applied can act as the input value
for a transformation.

Explicit positioning of the following axis
If an axis, which is following your lead axes, is positioned explicitly the position is added to
the programmed offset angle.
All path definitions are possible: Path and positioning axis movements.

Status of coupling
You can query the status of the coupling in the NC program with the following system
variable:
$AA_COUP_ACT[axis]
0: No coupling active
1,2,3: Tangential follow-up active

Path traversing behavior
9.2 Coupled motion (TRAILON, TRAILOF)

 Job planning
9-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

9.2 9.2 Coupled motion (TRAILON, TRAILOF)

Function
When a defined leading axis is moved, the trailing axes
(= following axes) assigned to it traverse through the distances described by the leading
axis, allowing for a coupling factor.
Together, the leading axis and following axis represent coupled axes.
Applications
• Traversal of an axis by means of a simulated axis. The leading axis is a simulated axis

and the coupled axis a real axis. In this way, the real axis can be traversed as a function
of the coupling factor.

• Two-side machining with 2 coupled axes:
1st leading axis Y, coupled axis V
2nd leading axis Z, coupled axis W

Programming
TRAILON(Faxis,Laxis,Coupling)
or
TRAILOF(Faxis,Laxis,LAxis2)
or deactivate without specification of leading axis
TRAILOF(FAxis)
TRAILON and TRAILOF act modal.

 Path traversing behavior
 9.2 Coupled motion (TRAILON, TRAILOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-9

Parameters

TRAILON Activating and defining a coupled-axis grouping

Example: V = trailing axis, Y = leading axis

TRAILON(V,Y)

TRAILOF Deactivate coupled axes

Example:V = trailing axis, Y = leading axis

TRAILOF(V,Y)

TRAILOF with 2 parameters deactivates the coupling to only 1
leading axis. If a trailing axis is assigned to 2 leading
axes, e.g. V=trailing axis and X,Y=leading axes, TRAILOF can
be called with 3 parameters to deactivate the coupling:

TRAILOF(V,X,Y)

TRAILOF(V)

Deactivate the coupling without details of leading axis. If
the trailing axis has 2 leading axes, both couplings are
deactivated.

Faxis Axis name of trailing axis

A coupled axis can also act as the leading axis for other
coupled axes. In this way, it is possible to create a range
of different coupled axis groupings.

Laxis Axis name of trailing axis

Coupling Coupling factor = Path of coupled-motion axis/path of
trailing axis

Default = 1

 Note
Coupled axis motion is always executed in the base coordinate system (BCS).
The number of coupled axis groupings which may be simultaneously activated is limited only
by the maximum possible number of combinations of axes on the machine.

Path traversing behavior
9.2 Coupled motion (TRAILON, TRAILOF)

 Job planning
9-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example
The workpiece is to be machined on two sides with the axis configuration shown in the
diagram. To do this, you create two combinations of coupled axes.

…

N100 TRAILON(V,Y) ;Activate 1st coupled axis grouping

N110 TRAILON(W,Z,–1) ;Activate 2nd combined axis pair, coupling factor negative:
;Trailing axis traverses in opposite direction to leading
;axis

N120 G0 Z10 ;Infeed Z and W axes in opposite axial directions

N130 G0 Y20 ;Infeed of Y and V axes in same axis directions

…

N200 G1 Y22 V25 F200 ;Superimpose dependent and independent movement of trailing
;axis "V"

…

TRAILOF(V,Y) ;Deactivate 1st coupled axis grouping

TRAILOF(W,Z) ;Deactivate 2nd coupled axis grouping

Coupled axis types
A coupled axis grouping can consist of any desired combinations of linear and rotary axes.
A simulated axis can also be defined as a leading axis.

Coupled-motion axes
Up to two leading axes can be assigned simultaneously to a trailing axis. The assignment is
made in different combinations of coupled axes.
A coupled axis can be programmed with the full range of available motion commands
(G0, G1, G2, G3, ...). The coupled axis not only traverses the independently defined paths,
but also those derived from its leading axes on the basis of coupling factors.

 Path traversing behavior
 9.2 Coupled motion (TRAILON, TRAILOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-11

Coupling factor
The coupling factor specifies the desired relationship between the paths of the coupled axis
and the leading axis.
Formula: Coupling factor = Path of coupled-motion axis/path of trailing axis
If a coupling factor is not programmed, then coupling factor 1 automatically applies.
The factor is entered as a fraction with decimal point (of type REAL). The input of a negative
value causes the master and coupled axes to traverse in opposition.

Acceleration and velocity
The acceleration and velocity limits of the combined axes are determined by the "weakest
axis" in the combined axis pair.

Status of coupling
You can query the status of the coupling in the NC program with the following system
variable:
$AA_COUP_ACT[axis]
0: No coupling active
8: Coupled motion active

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

9.3 9.3 Curve tables (CTAB)

9.3.1 Curve tables: general relationships

Function
The Curve tables section contains the program commands that can be used to program the
relationships between two axes (leading and following axis).
A following variable can be assigned uniquely to each master value within a defined master
value range. If the master value is outside the definition range, the behavior at the edge of
the curve table can be programmed for periodic and non-periodic curve tables.

Description
The mechanical cams are replaced by curve tables that can be used to define
• the specific curve traces in a definition range
• individual sections, known as curve segments
• the edges of the curve for periodic and non-periodic curve tables
• the curve segment positions concerned

In a defined value range of
• the associated table positions and
• the start and end values of a table segment
the corresponding slave value for a master value and similarly the master value for a slave
value can be read.
All other forms are shown and optional parameters can be assigned to the associated
program commands. The resulting possibilities to influence specific individual or several
curve tables in the corresponding memory type provide a flexible programming for further
applications. This also provides comprehensive possibilities for programming the diagnosis
of axis couplings.
Typical program examples are provided for the definition of curve tables and the access to
curve table positions .

 Path traversing behavior
 9.3 Curve tables (CTAB)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-13

9.3.2 Principal functions curve tables (CTABDEF, CTABEND, CTABDEL)

Function
You can use curve tables to program position and velocity relationships between two axes.
Curve tables are defined in a parts program.
Example of substitution of mechanical cam:
The curve table forms the basis for the axial master value coupling by creating the functional
relationship between the leading and the following value:
With appropriate programming, the control calculates a polynomial that corresponds to the
cam from the relative positions of the leading and following axes.

Programming
Modal language commands with curve tables
CTABDEF(FAxis, LAxis, n, applim, memType)
or
CTABEND ()
or
CTABDEL(), CTABDEL(, ,memType)

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters
Principal functions

CTABDEF () Define beginning of curve table.

CTABEND () Define end of curve table.

CTABDEL () Deleting all curve tables, irrespective of the memory type.

Faxis Following axis

Axis that is programmed via the curve table.

Laxis Leading axis

Axis that is programmed with the master value.

n, m Number of curve table; n < m, e.g., in CTABDEL(n, m)

The number of the curve table is unique and not dependent on
the memory type. Tables with the same number can be in the
SRAM and DRAM.

applim Identifier for table periodicity:

Table is not periodic

Table is periodic with regard to the leading axis

Table is periodic with regard to leading axis and following
axis

memType Optional specification of memory type of the NC: "DRAM" /
"SRAM"

If no parameter is programmed for this value, the standard
memory type set with MD 20905: CTAB_DEFAULT_MEMORY_TYPE is
used.

Machine manufacturer
To create curve tables the memory space must be reserved by setting the machine data.

Example of using CTABDEF and CTABEND
A program section is to be used unchanged for defining a curve table. The command for
preprocess stop STOPRE can remain and is active again immediately as soon as the
program section is not used for table definition and CTABDEF and CTABEND have been
removed:

…

CTABDEF(Y,X,1,1) ;Definition of a curve table

…

…

IF NOT ($P_CTABDEF)

STOPRE

ENDIF

…

…

CTABEND

 Path traversing behavior
 9.3 Curve tables (CTAB)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-15

Example of the definition of a curve table

N100 CTABDEF(Y,X,3,0) ;Begin of the definition of a non-periodic
;curve table with the number 3 definition
;of the curve table

N110 X0 Y0 ;1. traverse statement defines starting
;values and 1st intermediate point:
;Master value: 0; Following value: 0

N120 X20 Y0 ;2. Intermediate point: Master value: 0…20
;Following value: starting value…0

N130 X100 Y6 ;3. Intermediate point:
;Master value: 20…100; Following value: 0…6

N140 X150 Y6 ;4. Intermediate point:
;Master value: 100…150
;Following value: 6…6

N150 X180 Y0 ;5. Intermediate point:
;Master value: 150…180
;Following value: 6…0

N200 CTABEND ;End of the definition; The curve table is
;generated in its internal representation
;as a polynomial up to the 3rd order;
;The calculation of the curve definition
;depends on the modally selected
;interpolation type
;(circular, linear, spline interpolation);
;The parts program state before the
;beginning of the definition is restored.

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of the definition of a periodic curve table
Definition of a periodic curve table with number 2, master value range 0 to 360, following
axis motion from 0 to 45 and back to 0:

N10 DEF REAL DEPPOS

N20 DEF REAL GRADIENT

N30 CTABDEF(Y,X,2,1) ;Beginning of definition

N40 G1 X=0 Y=0

N50 POLY

N60 PO[X]=(45.0)

N70 PO[X]=(90.0) PO[Y]=(45.0,135.0,-90)

N80 PO[X]=(270.0)

N90 PO[X]=(315.0) PO[Y]=(0.0,-135.0,90)

N100 PO[X]=(360.0)

N110 CTABEND ;End of the definition

 ;Test of the curve by coupling Y to X

N120 G1 F1000 X0

N130 LEADON(Y,X,2)

N140 X360

N150 X0

N160 LEADOF(Y,X)

 ;Read the table function for
;master value 75.0

N170 DEPPOS=CTAB(75.0,2,GRADIENT)

 ;Positioning of the leading and the
;following axis

N180 G0 X75 Y=DEPPOS

;After activating the coupling, no
;synchronization of the following axis
;is required

N190 LEADON(Y,X,2)

N200 G1 X110 F1000

N210 LEADOF(Y,X)

N220 M30

Definition of a curve table
CTABDEF, CTABEND
A curve table represents a parts program or a section of a parts program, which is enclosed
by CTABDEF at the beginning and CTABEND at the end.
Within this parts program section, unique trailing axis positions are assigned to individual
positions of the leading axis by traverse statements and used as intermediate positions in
calculating the curve definition in the form of a polynomial up to the 5th order.

 Path traversing behavior
 9.3 Curve tables (CTAB)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-17

Starting and end value of the curve table
The starting value for the beginning of the definition range of the curve table are the first
associated axis positions specified (the first traverse statement) within the curve table
definition. The end value of the definition range of the curve table is determined in
accordance with the last traverse command.
Within the definition of the curve table, you have use of the entire NC language.
All modal statements that are made within the curve table definition are invalid when the
table definition is completed. The parts program in which the table definition is made is
therefore before and after the table definition in the same state.

 Note
The following are not permissible:
Preprocessing stop
Jumps in the leading axis movement (e.g., on changing transformations)
Traverse statement for the following axis only
Reversal of the leading axis, i.e., position of the leading axis must always be unique
CTABDEF and CTABEND statement on various program levels.

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Activating ASPLINE, BSPLINE, CSPLINE
If an ASPLINE, BSPLINE or CSPLINE is activated within a curve table
CTABDEF() ... CTABEND, at least a start point should be programmed before this spline
activation. An immediate activation after CTABDEF must be avoided as otherwise the spline
will depend on the current axis position before the curve table definition.
Example:
...
CTABDEF(Y, X, 1, 0)
X0 Y0
ASPLINE
X=5 Y=10
X10 Y40
...
CTABEND
Depending on machine data MD 20900: CTAB_ENABLE_NO_LEADMOTION, jumps in the
following axis may be tolerated if a movement is missing in the leading axis. The other
restrictions given in the notice still apply.
When creating and deleting tables you can use the definitions of the memory type of the NC.

Deleting curve tables, CTABDEL
CTABDEL can be used to delete the curve tables. Curve tables that are active in an axis
coupling cannot be deleted. If at least one curve table of a multiple delete command
CTABDEL() or CTABDEL(n, m) is active in a coupling, none of the addressed curve tables
will be deleted. The curve tables of a specific memory type can be deleted by the
specification of an optional memory type, see
"Curve table forms (CTABDEL, ... CTABUNLOCK)".

9.3.3 Curve table forms (CTABDEL, CTABNOMEM, CTABFNO, CTABID, CTABLOCK,
CTABUNLOCK)

Function
Other applications of curve tables are:
• Delete in a specific SRAM or DRAM memory type.
• Specify the number of defined and still possible curve tables in the memory type.
• Lock or remove the lock to prevent curve tables from being deleted or overwritten.
• Optional details for selections, such as the deletion of

one curve table, deletion of one curve table area, of
all curve tables in the specified memory,
and lock or unlock overwrite protection.

• Supply, return and check details for the diagnosis of axis couplings such as specific
curve table properties
Determine the number of curve tables, curve segments and curve polynomials.

 Path traversing behavior
 9.3 Curve tables (CTAB)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-19

Programming
Modal language commands with curve tables
CTABDEL(n, m, memType)
or
CTABNOMEM (memType)
or
CTABFNO(memType)
or
CTABID(n, memType)
or
CTABLOCK(n, m, memType) or CTABUNLOCK(n, m, memType)
or
CTABDEL(n) or CTABDEL(n, m)
or
CTABLOCK(n) or CTABLOCK(n, m) or CTABLOCK() or
CTABLOCK(, , memType)
or
CTABUNLOCK(n) or CTABUNLOCK(n, m) or CTABUNLOCK() or
CTABUNLOCK(, , memType)
or
CTABID(n) or CTABID(n, memType) or CTABID(p, memType)
or
CTABISLOCK(n)
or
CTABEXISTS(n)
or
CTABMEMTYP(n)
or
CTABPERIOD(n)
or
CTABSEGID(n, segType)
or
CTABSEG(memType, segType) or CTABFSEG(memType, segType) or
CTABMSEG(memType, segType)
or
CTABPOLID(n) or CTABMPOL(memType)

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters
General form in static or dynamic NC memory:

CTABDEL(n, m,
memType)

Deletion of the curve tables of the curve table range that
are stored in memType.

CTABNOMEM (memType) Number of defined curve tables.

CTABFNO(memType) Number of possible tables.

CTABID(n, memType) Outputs table number entered in memory type as the nth curve
table.

CTABLOCK(n, m,
memType)

Enable deletion and overwrite lock.

CTABUNLOCK(n, m,
memType)

Cancel deletion and overwrite lock.

CTABUNLOCK releases the tables locked with CTABLOCK. Tables,
which are involved in an active coupling, remain locked and
cannot be deleted. Lock with CTABLOCK is canceled as soon as
locking with active coupling is canceled with deactivation of
coupling. This table can therefore be deleted. It is not
necessary to call CTABUNLOCK again.

Uses of other forms Optional details for selections:

CTABDEL(n) Delete one curve table.

 Delete one curve table range.

CTABDEL(, , memType) Delete all curve tables in the specified memory.

CTABLOCK(n) Lock the delete and overwrite:

Curve table with number n.

CTABLOCK(n, m) Lock curve tables in the number range n to m.

CTABLOCK() All existing curve tables.

CTABLOCK(, , memType) All curve tables in the specified memory type.

CTABUNLOCK(n) Remove lock for the delete and overwrite: Curve table with
number n.

CTABUNLOCK(n, m) Re-enable curve tables in the number range
n to m.

CTABUNLOCK() All existing curve tables.

CTABUNLOCK(, ,
memType)

All curve tables in the specified memory type.

Uses of other forms for the diagnosis of axis couplings:

CTABID(n, memType)

CTABID(p, memType)

Outputs table number of the nth/pth curve table with memory
type memType.

CTABID(n) Outputs table number of the nth curve table with memory type
defined in MD 20905: CTAB_DEFAULT_MEMORY_TYPE specified
memory type.

CTABISLOCK(n) Returns the lock status of the curve table with number n.

CTABEXISTS(n) Checks curve table with number n.

CTABMEMTYP(n) Returns the memory in which curve table
no. n is stored.

CTABPERIOD(n) Returns the table periodicity.

CTABSEG(memType) Number of curve segments already used in the specified memory
type.

CTABSEGID(n) Number of curve segments used in curve table number n

 Path traversing behavior
 9.3 Curve tables (CTAB)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-21

CTABFSEG(memType) Number of possible curve segments.

CTABMSEG(memType) Maximum possible number of curve segments.

CTABPOLID(n) Number used by curve table number n. Curve table polynomials

CTABSEG(memTyp,
segType)

Number of type "L" or "P" curve segments used in the memory
type.

CTABFSEGID(n,
segType)

Number of type "L" or "P" curve segments used in curve table
number n

CTABFSEG(memTyp,
segType)

Number of type "L" or "P" curve segments still possible in
the memory type

CTABMSEG(memTyp,
segType)

Maximum possible number of type "L" or "P" curve segments in
the memory type

CTABFPOL(memType) Number of curve polynomials still possible in the specified
memory type

CTABMPOL(memType) Maximum possible number of curve polynomials in the specified
memory type

n, m Number of curve table; n < m, e.g., in CTABDEL(n, m)

The number of the curve table is unique and not dependent on
the memory type. It is not possible for there to be tables
with the same number in the static and dynamic NC memory.

p Entry location (in memType memory area)

memType Optional specification of NC memory type: Both the "dynamic
memory" and the "static memory" are possible

If no parameter is programmed for this value, the standard
memory type set with MD 20905: CTAB_DEFAULT_MEMORY_TYPE is
used.

segType Optional details for segment type. Possible settings are:
segType "L" linear segments
segType "P" polynomial segments

Description
Loading curve tables with "Processing from external source".
If curve tables are processed from an external source the size of the reload buffer (DRAM)
must be selected with MD 18360: MM_EXT_PROG_BUFFER_SIZE in such a way the entire
curve table definition can be stored simultaneously in the reload buffer. Otherwise parts
program processing is canceled with alarm 15150.
Repeated use of curve tables
The functional relation between the leading axis and the following axis calculated using the
curve table is retained under the table number selected beyond the end of the parts program
and power-off if the table has been saved to the static memory (SRAM).
A table that was created in the dynamic memory (DRAM) will be deleted on power-on and
may have to be regenerated.
The curve table created can be applied to any axis combinations of leading and trailing axis
and is independent of the axes used to create the curve table.
Overwriting curve tables
A curve table is overwritten as soon as its number is used in another table definition.
Exception: A curve table is either active in an axis coupling or locked with CTABLOCK().

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 Note
No warning is output when you overwrite curve tables!
With the system variable $P_CTABDEF it is possible to query from inside a parts program
whether a curve table definition is active.
The parts program section can be used as a curve table definition after excluding the
statements and therefore as a real parts program again.

9.3.4 Behavior at the edges of curve tables (CTABTSV, CTABTSP, CTABMIN,
CTABMAX)

Function
If the master value lies outside the definition range, the value at the start and the end of the
curve table can be read for a following axis.
CTABTSV can read for a following axis the value at the beginning of the curve table.
CTABTEV can read for a following axis the value at the end of the curve table.
The start and end values of a curve table do not depend on whether the table is defined with
increasing or decreasing master values. The start value is always defined by the lower
interval limit, and the end value by the upper interval limit.
The minimum and maximum values of a curve table can be defined for a whole range or a
defined interval with CTABMIN and CTABTMAX. Two limits are specified for the interval of
the master value.

Programming
Start and end value slave value for following axis:
CTABTSV(n, degrees, Faxis), CTABTEV(n, degrees, Faxis)
Start and end value master value for leading axis:
CTABTSP(n, degrees, Faxis), CTABTEP(n, degrees, Faxis)
Min and max value ranges:
CTABTMIN(n, Faxis)
or
CTABTMAX(n, Faxis)

 Path traversing behavior
 9.3 Curve tables (CTAB)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-23

Parameters

CTABTSV Read the start value of the curve table from a following
axis.

CTABTEV () Read the end value of the curve table from a following axis.

CTABTSP () Read the start value of the curve table from a leading axis.

CTABTEP () Read the end value of the curve table from a leading axis.

CTABMIN () Determine the minimum value of a curve table in the complete
area or in a defined interval.

CTABMAX () Determine the maximum value of a curve table in the complete
area or in a defined interval.

Faxis Following axis

Axis that is programmed via the curve table.

Laxis Leading axis

Axis that is programmed with the master value.

n, m Number of curve tables

Curve table numbers can be freely assigned. They are used
exclusively for the unique identification.

degrees Gradient for incline at start or end of the segment in the
curve table

Values and value range
Values of the trailing and leading axis located at the beginning and end of a curve table
CTABTSV, CTABTEV, CTABTSP, CTABTEP

R10=CTABTSV(n, degrees, Faxis). Trailing value at beginning of curve table
R10=CTABTEV(n, degrees, Faxis). Trailing value at beginning of curve table
R10=CTABTSP(n, degrees, Laxis). Master value at beginning of curve table
R10=CTABTEP(n, degrees, Laxis). Master value at end of curve table

Value range of curve table of following value CTABTMIN, CTABTMAX

R10=CTABTMIN(n, Faxis). Minimum following value of curve table
over entire interval

R10=CTABTMAX(n, Faxis). Maximum following value of curve table
over entire interval

R10=CTABTMIN(n, a, b, Faxis, Laxis) Minimum following value of curve table in
interval a…b of master value

R10=CTABTMAX(n, a, b, Faxis, Laxis) Maximum following value of curve table
in interval a…b of master value

 Note
R parameter assignments in the table definition are reset.

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of the assignments to R parameters

...

R10=5 R11=20

...

CTABDEF

G1 X=10 Y=20 F1000

R10=R11+5 ;R10=25

X=R10

CTABEND

... ;R10=5

Example of using CTABTSV, CTABTEV, CTABTSP, CTABTEP, CTABTMIN, CTABMAX
Determining the minimum and maximum value of a curve table.

N10 DEF REAL STARTVAL

N20 DEF REAL ENDVAL

N30 DEF REAL STARTPARA

N40 DEF REAL ENDPARA

N50 DEF REAL MINVAL

N60 DEF REAL MAXVAL

N70 DEF REAL GRADIENT

...

N100 CTABDEF(Y,X,1,0) ;Begin of the table definition

N110 X0 Y10 ;Start value of the 1st table segment

N120 X30 Y40 ;End value of the 1st table segment =

N130 X60 Y5 ;Start value of the 2nd table segment ...

N140 X70 Y30

N150 X80 Y20

N160 CTABEND

...

;End of table definition

N200 STARTPOS = CTABTSV(1, GRADIENT) ;Start position STARTPOS = 10,

N210 ENDPOS = CTABTEV(1, GRADIENT) ;End position ENDPOS = 20 of the table, and

N220 SRARTPARA = CTABTSP(1, GRADIENT) ;STARTPARA = 10,

N230 ENDPARA = CTABTEP(1, GRADIENT)

...

;ENDPARA = 80 read the value range of the
;following axis.

N240 MINVAL = CTABTMIN(1) ;Minimum value when Y = 5 and

N250 MAXVAL = CTABTMAX(1) ;Maximum value when Y = 40

 Path traversing behavior
 9.3 Curve tables (CTAB)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-25

Non-periodic curve table
If the master value is outside the definition range, the following value output is the upper or
lower limit.

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Periodic curve table
If the master value is outside the definition range, the master value is evaluated modulo of
the definition range and the corresponding following value is output.

 Note
CTABTSV, CTABTEV, CTABTSP, CTABTEP, CTABTMIN, CTABTMAX
The language commands can be used
• from the parts program or
• directly from synchronous actions.

The internal execution time of the function of
• CTABINV()P is dependent
• CTABTSV, CTABTEV, CTABTSP, CTABTEP,

(CTABTMIN, CTABTMAX only if no interval of the master value is specified)
is independent

of the number of table segments.

 Path traversing behavior
 9.3 Curve tables (CTAB)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-27

Read in synchronized actions
When using commands CTABINV() or CTABTMIN() and CTABTMAX() in synchronized
actions, the user must ensure that at the instant of execution
• either sufficient NC power is available or
• the number of segments in the curve table must be queried before it is called up in case it

is necessary to subdivide the table.
Additional related information about programming synchronized actions is given in chapter,
"Motion synchronous actions".

9.3.5 Access to curve table positions and table segments
(CTAB, CTABINV, CTABSSV, CTABSEV)

Function
Reading table positions, CTAB, CTABINV
With CTAB you can read the following value for a master value directly from the parts
program or from synchronized actions.
With CTABINV, you can read the master value for a following value. This assignment does
not always have to be unique. CTABINV therefore requires an approximate value for the
expected master value.

Programming
Reading the following value for a master value
CTAB(master value, n, degrees, [following axis, leading axis])
Reading the master value for a following value
CTABINV(following value, approx. master value, n, degrees,
[following axis, leading axis])
Reading the start and end values of a table segment
CTABSSV(master value, n, degrees, [Faxis]),
CTABSEV(master value, n, degrees, [Faxis])

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

CTAB Read a following value directly from a master value.

CTABINV Read the master value for a following value.

CTABSSV Read the start value of the curve segment for a following
axis.

CTABSEV Read the end value of the curve segment for a following axis.

Faxis Following axis

Axis that is programmed via the curve table.

Laxis Leading axis

Axis that is programmed with the master value.

n, m Numbers for curve tables.

Curve table numbers can be freely assigned. They are used
exclusively for the unique identification.

Degrees Gradient for incline at start or end of segment in curve
table

ApproxMasterValue The position value of the expected approximation value that
can be used to determine a unique master value.

• CTABSSV, CTABSEV
CTABSSV can be used to read the starting value of the curve segment that belongs to the
specified master value. CTABSSV can be used to read the end value of the curve segment
that belongs to the specified master value.
• Trailing or leading position derived from curve table with CTAB, CTABINV

R10 = CTAB(LV, n, degree, Faxis,
Laxis) Following value for a master value
R10=CTABINV(FV, approxLV, n, degrees,
Faxis, Laxis) Master value to a following value

• Determining the segments of the curve table by specifying a master value with
CTABSSV, CTABSEV

R10 = CTABSSV(LV, n, degrees, Faxis,
Laxis) Starting value of the following axis in

the segment belonging to the LV
R10 = CTABSEV(LV, n, degrees, Faxis,
Laxis) End value of the following axis in the

segment belonging to the LV

 Path traversing behavior
 9.3 Curve tables (CTAB)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-29

Example of the use of CTABSSV and CTABSEV
Determining the curve segment belonging to master value X = 30.

N10 DEF REAL STARTPOS

N20 DEF REAL ENDPOS

N30 DEF REAL GRADIENT

...

N100 CTABDEF(Y,X,1,0) ;Begin of the table definition

N110 X0 Y0 ;Starting position 1st table segment

N120 X20 Y10 ;End position of the 1st table segment =

N130 X40 Y40 ;Start position of the
;2nd table segment ...

N140 X60 Y10

N150 X80 Y0

N160 CTABEND

...

;End of table definition

N200 STARTPOS =
 CTABSSV(30.0, 1, GRADIENT)

;Start position Y in segment 2 = 10

... ;End position Y in segment 2 = 40

N210 ENDPOS =
 CTABSEV(30.0, 1, GRADIENT)

;Segment 2 belongs to LV X = 30.0.

Reading table positions, CTAB, CTABINV
CTABINV therefore requires an approximate value (approxLV) for the expected leading
value. CTABINV returns the leading value that is closest to the approximate value. The
approximate value can be the leading value from the previous interpolation cycle.

Path traversing behavior
9.3 Curve tables (CTAB)

 Job planning
9-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Both functions also output the gradient of the table function at the correct position to the
gradient parameter (degrees). In this way, the you can calculate the speed of the leading or
following axis at the corresponding position.

 Note
CTAB, CTABINV, CTABSSV and CTABSEV
The language commands CTAB, CTABINV, and
CTABSSV, CTABSEV can be used directly
• from the parts program or
• directly from synchronized actions
SIMATIC S7. Additional related information about programming synchronized actions is
given in chapter, "Motion synchronous actions".

The optional specification of the leading or following axis for
CTAB/CTABINV/CTABSSV/CTABSEV is important if the leading and following axes are
configured in different length units.
The language commands CTABSSV and CTABSEV are not suitable in the following cases
to query programmed segments:
1. Circles or involutes are programmed.
2. Chamfer or rounding with CHF, RND is active.
3. Corner rounding with G643 is active.
4. Compressor is, for example, active with COMPON, COMPCURV, COMPCAD.

 Path traversing behavior
 9.4 Axial leading value coupling (LEADON, LEADOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-31

9.4 9.4 Axial leading value coupling (LEADON, LEADOF)

Function
With the axial master value coupling, a leading and a following axis are moved in
synchronism. It is possible to assign the position of the following axis via a curve table or the
resulting polynomial uniquely to a position of the leading axis – simulated if necessary.

The leading axis is the axis which supplies the input values for the curve table. The following
axis is the axis, which takes the positions calculated by means of the curve table.
Actual value and setpoint coupling
The following can be used as the master value, i.e., as the output values for position
calculation of the following axis:
• Actual values of the leading axis position: Actual value coupling
• Setpoints of the leading axis position: Setpoint value coupling
The master value coupling always applies in the basic coordinate system.
For the creation of curve tables, see section "Curve tables".
For the master value coupling, see /FB/, M3, Coupled-axis motion and master value
coupling.

Path traversing behavior
9.4 Axial leading value coupling (LEADON, LEADOF)

 Job planning
9-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
LEADON(FAxis,LAxis,n)
or
LEADOF(FAxis,LAxis)
or deactivate without details of leading axis
LEADOF(FAxis)
The master value coupling can be activated and deactivated both from the parts program
and during the movement from synchronized actions, see section "Motion synchronous
actions" .

Parameters

LEADON Activate master value coupling

LEADOF Deactivate master value coupling

Faxis Following axis

Laxis Leading axis

n Curve table number

$SA_LEAD_TYPE Switching between setpoint and actual value coupling

Deactivate master value coupling, LEADOF
When you deactivate the master value coupling, the following axis becomes a normal
command axis again!
Axial master value coupling and different operating states, RESET
Depending on the setting in the machine data, the master value couplings are deactivated
with RESET.

Example of master value coupling from synchronous action
In a pressing plant, an ordinary mechanical coupling between a leading axis (stanchion
shaft) and axis of a transfer system comprising transfer axes and auxiliary axes is to be
replaced by an electronic coupling system.
It demonstrates how a mechanical transfer system is replaced by an electronic transfer
system. The coupling and decoupling processes are implemented as static synchronized
actions.
From the leading axis LV (stanchion shaft), transfer axes and auxiliary axes are controlled as
following axes that are defined via curve tables.
Following axes
X feed or master value axis
YL closing or transverse axis
ZL lifting axis
U roll feed, auxiliary axis
V guide head, auxiliary axis
W greasing, auxiliary axis

 Path traversing behavior
 9.4 Axial leading value coupling (LEADON, LEADOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-33

Actions
The actions that occur include, for example, the following synchronized actions:
• Activate coupling, LEADON(following axis, leading axis, curve table

number)
• Deactivate coupling, LEADOF(following axis, leading axis)
• Set actual value, PRESETON(axis, value)
• Set marker, $AC_MARKER[i]= value
• Coupling type: real/virtual master value
• Approaching axis positions, POS[axis]=value
Conditions
Fast digital inputs, real-time variables $AC_MARKER and position comparisons are linked
using the Boolean operator AND for evaluation as conditions.

 Note
In the following example, line change, indentation and bold type are used for the sole
purpose of improving readability of the program. To the control, everything that follows a line
number constitutes a single line.

Comment

; Defines all static synchronized actions.

; **** reset marker

N2 $AC_MARKER[0]=0 $AC_MARKER[1]=0
$AC_MARKER[2]=0 $AC_MARKER[3]=0
$AC_MARKER[4]=0 $AC_MARKER[5]=0
$AC_MARKER[6]=0 $AC_MARKER[7]=0

 ; **** E1 0=>1 coupling transfer ON

N10 IDS=1 EVERY ($A_IN[1]==1) AND
($A_IN[16]==1) AND ($AC_MARKER[0]==0)
DO LEADON(X,LV,1) LEADON(YL,LV,2)
LEADON(ZL,LV,3) $AC_MARKER[0]=1

 ; **** E1 0=>1 coupling roller feed ON

N20 IDS=11 EVERY ($A_IN[1]==1) AND
($A_IN[5]==0) AND ($AC_MARKER[5]==0)
DO LEADON(U,LV,4) PRESETON(U,0)
$AC_MARKER[5]=1

 ; **** E1 0->1 coupling guide head ON

N21 IDS=12 EVERY ($A_IN[1]==1) AND
($A_IN[5]==0) AND ($AC_MARKER[6]==0)
DO LEADON(V,LV,4) PRESETON(V,0)
$AC_MARKER[6]=1

 ; **** E1 0->1 coupling greasing ON

N22 IDS=13 EVERY ($A_IN[1]==1) AND
($A_IN[5]==0) AND ($AC_MARKER[7]==0)
DO LEADON(W,LV,4) PRESETON(W,0)
$AC_MARKER[7]=1

Path traversing behavior
9.4 Axial leading value coupling (LEADON, LEADOF)

 Job planning
9-34 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 ; **** E2 0=>1 coupling OFF

N30 IDS=3 EVERY ($A_IN[2]==1)
DO LEADOF(X,LV) LEADOF(YL,LV)
LEADOF(ZL,LV) LEADOF(U,LV) LEADOF(V,LV)
LEADOF(W,LV) $AC_MARKER[0]=0
$AC_MARKER[1]=0 $AC_MARKER[3]=0
$AC_MARKER[4]=0 $AC_MARKER[5]=0
$AC_MARKER[6]=0 $AC_MARKER[7]=0

....

N110 G04 F01

N120 M30

Description
Master value coupling requires synchronization of the leading and the following axes. This
synchronization can only be achieved if the following axis is inside the tolerance range of the
curve definition calculated from the curve table when the master value coupling is activated.
The tolerance range for the position of the following axis is defined via machine data
MD 37200: COUPLE_POS_POL_COARSE A_LEAD_TYPE.
If the following axis is not yet at the correct position when the master value coupling is
activated, the synchronization run is automatically initiated as soon as the position setpoint
value calculated for the following axis is approximately the real following axis position. During
the synchronization procedure the following axis is traversed in the direction that is defined
by the setpoint speed of the following axis (calculated from master spindle and using the
CTAB curve table).

No synchronism
If the following axis position calculated moves away from the current following axis position
when the master value coupling is activated, it is not possible to establish synchronization.

 Path traversing behavior
 9.4 Axial leading value coupling (LEADON, LEADOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-35

Actual value and setpoint coupling
Setpoint coupling provides better synchronization of the leading and following axis than
actual value coupling and is therefore set by default.

Setpoint coupling is only possible if the leading and following axis are interpolated by the
same NCU. With an external leading axis, the following axis can only be coupled to the
leading axis via the actual values.

A switchover can be programmed via setting data $SA_LEAD_TYPE
You must always switch between the actual-value and setpoint coupling when the following
axis stops. It is only possible to resynchronize after switchover when the axis is motionless.
Application
You cannot read the actual values without error during large machine vibrations. If you use
master value coupling in press transfer, it might be necessary to switchover from actual-
value coupling to setpoint coupling in the work steps with the greatest vibrations.
Master value simulation with setpoint coupling
Via machine data, you can disconnect the interpolator for the leading axis from the servo. In
this way you can generate setpoints for setpoint coupling without actually moving the leading
axis.
Master values generated from a setpoint link can be read from the following variables so that
they can be used, for example, in synchronized actions:

- $AA_LEAD_P Master value position

- $AA_LEAD_V Master value velocity

Path traversing behavior
9.4 Axial leading value coupling (LEADON, LEADOF)

 Job planning
9-36 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Create master value
As an option, master values can be generated with other self-programmed methods. The
master values generated in this way are written to and read from variables

- $AA_LEAD_SP Master value position

- $AA_LEAD_SV Master value velocity

 Before you use these variables, the setting data $SA_LEAD_TYPE = 2 must be set.

Status of coupling
You can query the status of the coupling in the NC program with the following system
variable:
$AA_COUP_ACT[[axis]]
0: No coupling active
16: Master value coupling active
Status management for synchronized actions
Switching and coupling events are managed via real-time variables:
$AC_MARKER[i] = n
managed with:
i flag number
n status value

 Path traversing behavior
 9.5 Feedrate response (FNORM, FLIN, FCUB, FPO)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-37

9.5 9.5 Feedrate response (FNORM, FLIN, FCUB, FPO)

Function
To permit flexible definition of the feed characteristic, the feed programming according to
DIN 66205 has been extended by linear and cubic characteristics.
The cubic characteristics can be programmed either directly or as interpolating splines.
These additional characteristics make it possible to program continuously smooth velocity
characteristics depending on the curvature of the workpiece to be machined.
These additional characteristics make it possible to program continuously smooth velocity
characteristics depending on the curvature of the workpiece to be machined.

Programming
F… FNORM
or
F… FLIN
or
F… FCUB
or
F=FPO(…,…,…)

Parameters

FNORM Basic setting. The feed value is specified as a function of
the traverse path of the block and is then valid as a modal
value.

FLIN Path velocity profile linear:

The feed value is approached linearly via the traverse path
from the current value at the block beginning to the block end
and is then valid as a modal value. The response can be
combined with G93 and G94.

FCUB Path velocity profile cubic:

The blockwise programmed F values (relative to the end of the
block) are connected by a spline. The spline begins and ends
tangentially with the previous and following defined feedrate
and takes effect with G93 and G94.

If the F address is missing from a block, the last F value to
be programmed is used.

F=FPO… Polynomial path velocity profile:

The F address defines the feed characteristic via a polynomial
from the current value to the block end. The end value is
valid thereafter as a modal value.

Feed optimization on curved path sections
Feed polynomial F=FPO and feed spline FCUB should always be traversed at constant
cutting rate CFC, thereby allowing a jerk-free setpoint feed profile to be generated. This
enables creation of a continuous acceleration setpoint feed profile.

Path traversing behavior
9.5 Feedrate response (FNORM, FLIN, FCUB, FPO)

 Job planning
9-38 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of various feed profiles
This example shows you the programming and graphic representation of various feed
profiles.

N1 F1000 FNORM G1 X8 G91 G64 ;Constant feed profile, incremental dimensioning

N2 F2000 X7 ;Step change in setpoint velocity

N3 F=FPO(4000, 6000, -4000) ;Feed profile via polynomial with feed 4000 at
;block end

N4 X6 ;Polynomial feed 4000 applies as modal value

N5 F3000 FLIN X5 ;Linear feed profile

N6 F2000 X8 ;Linear feed profile

N7 X5 ;Linear feed applies as modal value

N8 F1000 FNORM X5 ;Constant feed profile with abrupt change in
;acceleration rate

N9 F1400 FCUB X8 ;All subsequent, non-modally programmed F values
;are connected via splines

N10 F2200 X6

N11 F3900 X7

N12 F4600 X7

N13 F4900 X5 ;Deactivate spline profile

N14 FNORM X5

N15 X20

FNORM
The feed address F defines the path feed as a constant value according to DIN 66025.
Please refer to Programming Manual "Fundamentals" for more detailed information on this
subject.

 Path traversing behavior
 9.5 Feedrate response (FNORM, FLIN, FCUB, FPO)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-39

FLIN
The feed characteristic is approached linearly from the current feed value to the programmed
F value until the end of the block.
Example:
N30 F1400 FLIN X50

Path traversing behavior
9.5 Feedrate response (FNORM, FLIN, FCUB, FPO)

 Job planning
9-40 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

FCUB
The feed is approached according to a cubic characteristic from the current feed value to the
programmed F value until the end of the block. The control uses splines to connect all the
feed values programmed non-modally that have an active FCUB. The feed values act here
as interpolation points for calculation of the spline interpolation.
Example:
N50 F1400 FCUB X50
N60 F2000 X47
N70 F3800 X52

F=FPO(…,…,…)
The feed characteristic is programmed directly via a polynomial. The polynomial coefficients
are specified according to the same method used for polynomial interpolation.
Example:
F=FPO(endfeed, quadf, cubf)
endfeed, quadf and cubf are previously defined variables.

endfeed: Feed at block end
quadf: Quadratic polynomial coefficient
cubf: Cubic polynomial coefficient

With an active FCUB, the spline is linked tangentially to the characteristic defined via FPO at
the block beginning and block end.

 Path traversing behavior
 9.5 Feedrate response (FNORM, FLIN, FCUB, FPO)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-41

Restrictions
The functions for programming the path traversing characteristics apply regardless of the
programmed feed characteristic.
The programmed feed characteristic is always absolute regardless of G90 or G91.
Feed response FLIN and FCUB are active with
G93 and G94.
FLIN and FCUB is not active with
G95, G96/G961 and G97/G971.

Active compressor COMPON
With an active compressor COMPON the following applies when several blocks are joined to
form a spline segment:
FNORM:
The F word of the last block in the group applies to the spline segment.
FLIN:
The F word of the last block in the group applies to the spline segment.
The programmed F value applies until the end of the segment and is then approached
linearly.
FCUB:
The generated feed spline deviates from the programmed end points by an amount not
exceeding the value set in machine data $MC_COMPESS_VELO_TOL.
F=FPO(…,…,…)
These blocks are not compressed.

Path traversing behavior
9.6 Program run with preprocessing memory (STARTFIFO, STOPFIFO, STOPRE)

 Job planning
9-42 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

9.6 9.6 Program run with preprocessing memory (STARTFIFO, STOPFIFO,
STOPRE)

Function
Depending on its expansion level, the control system has a certain quantity of so-called
preprocessing memory in which prepared blocks are stored prior to program execution and
then output as high-speed block sequences while machining is in progress.
These sequences allow short paths to be traversed at a high velocity.
Provided that there is sufficient residual control time available, the preprocessing memory is
always filled.

Programming
STARTFIFO
or
STOPFIFO
or
STOPRE

Parameters

STOPFIFO Stop high-speed processing section, fill preprocessing memory,
until STARTFIFO, "Preprocessing memory full" or "End of
program" is detected.

STARTFIFO Start of high-speed processing section, in parallel to filling
the preprocessing memory

STOPRE Preprocessing stop

 Path traversing behavior
 9.6 Program run with preprocessing memory (STARTFIFO, STOPFIFO, STOPRE)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-43

 Note
STOPFIFO stops the machining until the preprocessing memory has been filled or
STARTFIFO or STOPRE is detected.

Example of marking a processing section
The high-speed processing section to be buffered in the preprocessing memory is marked at
the beginning and end with STARTFIFO or STOPFIFO respectively.
N10 STOPFIFO
N20…
N100
N110 STARTFIFO
Execution of these blocks does not begin until the preprocessing memory is full or command
STARTFIFO is detected.
Exception:
The preprocessing memory is not filled or filling is interrupted if the processing section
contains commands that require unbuffered operation (reference point approach, measuring
functions, ...).

Example of stopping preprocessing STOPRE
If STOPRE is programmed the following block is not executed until all preprocessed and
saved blocks are executed in full. The preceding block is halted in exact stop (as with G9).
Example:
N10
N30 MEAW=1 G1 F1000 X100 Y100 Z50
N40 STOPRE
The control generates an internal preprocessor stop upon access to machine status data
($SA...).
Example:

R10 = $AA_IM[X] ;Read actual value of X axis

Caution
When a tool offset or spline interpolations are active, you should not program the STOPRE
command as this will lead to interruption in contiguous block sequences.

Path traversing behavior
9.7 Conditionally interruptible program sections (DELAYFSTON, DELAYFSTOF)

 Job planning
9-44 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

9.7 9.7 Conditionally interruptible program sections (DELAYFSTON,
DELAYFSTOF)

Function
Conditionally interruptible parts program sections are called stop delay sections. No stopping
should occur and the feed should not be changed within certain program sections. This
essentially means that short program sections used, for example, to machine a thread,
should be protected from stop events. Stops do not take effect until the program section has
been completed.

Programming

N... DELAYFSTON
N... DELAYFSTOF

The commands are programmed separately in a parts program
line. DELAYFeed STop ON/OF

Both commands are only permitted in parts programs but not in synchronous actions.

Parameters

DELAYFSTON Define the beginning of a section in which "soft" stops are
delayed until the end of the stop delay section is reached.

DELAYFSTOF Define end of a stop delay section.

 Note
For machine data MD 11550: STOP_MODE_MASK Bit 0 = 0 (default) a stop delay section is
defined implicitly if G331/G332 is active and a path motion or G4 is programmed. See note
below.

Example of stop events
In a stop delay section, changes in the feedrate or feed disable are ignored. They do not
take effect until after the stop delay section.
Stop events are divided into:

"Soft" stop events
"Hard" stop events

Response: delayed
Response: immediate

 Path traversing behavior
 9.7 Conditionally interruptible program sections (DELAYFSTON, DELAYFSTOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-45

Selection of a number of stop events, which induce at least short stopping.

Event name Response interruption parameters
RESET immediate IS: DB21,… DBX7.7 and DB11, … DBX20.7
PROG_END Alarm 16954 NC prog.: M30
INTERRUPT delayed IS: FC-9 and ASUP DB10, ... DBB1
SINGLEBLOCKSTOP delayed Single block mode in the stop delay section is activated:

NC stops at the end of the first block outside the stop delay
section.
Single block already selected before the stop delay section:
NST: "NC Stop at block limit" DB21, ... DBX7.2

STOPPROG delayed IS: DB21,… DBX7.3 and DB11, … DBX20.5
PROG_STOP Alarm 16954 NC prog.: M0 and M1
WAITM Alarm 16954 NC prog.: WAITM
WAITE Alarm 16954 NC prog.: WAITE
STOP_ALARM immediate Alarm: Alarm configuration STOPBYALARM
RETREAT_MOVE_THREAD Alarm 16954 NC prog.: Alarm 16954 with LFON

(stop and fastlift in G33 not possible)
WAITMC Alarm 16954 NC prog.: WAITMC
NEWCONF_PREP_STOP Alarm 16954 NC prog.: NEWCONF
SYSTEM_SHUTDOWN immediate System shutdown with 840Di
ESR delayed Extended stop and retract
EXT_ZERO_POINT delayed External zero offset
STOPRUN Alarm 16955 OPI: PI "_N_FINDST" STOPRUN

Explanation of the responses

immediate ("hard" stop event) Stops immediately even in stop delay section.
delayed ("soft" stop event) Does not stop (even short-term) until after stop

delay section.
Alarm 16954 Program is aborted because illegal program

commands have been used in stop delay section.
Alarm 16955 Program is continued, an illegal action has taken

place in the stop delay section.
Alarm 16957 The program section (stop delay section) enclosed

by DELAYFSTON and DELAYFSTOF could not be
activated. Every stop will take effect immediately in
the section and is not subject to a delay.

For a list of other responses to stop events, see
/FB1/ Function Manual Basic Functions; Mode Group, Channel, Program Operation, (K1),
"Influencing and Impacting on Stop Events" section.

Path traversing behavior
9.7 Conditionally interruptible program sections (DELAYFSTON, DELAYFSTOF)

 Job planning
9-46 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of the nesting of stop delay sections in two program levels

N10010 DELAYFSTON() ;blocks with N10xxx program level 1

N10020 R1 = R1 + 1

N10030 G4 F1 ;stop delay section starts.

...

N10040 subroutine2

...

... ;interpretation of subroutine 2

N20010 DELAYFSTON() ;no effect, restart, 2nd level

...

N20020 DELAYFSTOF() ;no effect, end in other level

N20030 RET

N10050 DELAYFSTOF() ;end of stop delay section in same level

...

N10060 R2 = R2 + 2

N10070 G4 F1 ;stop delay section ends.
;stops now have direct effect

Program segment example
The following program block is repeated in a loop:

NC stops

Stop key

Stop key during a G88 machining

 Path traversing behavior
 9.7 Conditionally interruptible program sections (DELAYFSTON, DELAYFSTOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-47

As shown in the illustration, the user presses "Stop" in the stop delay section and the NC
starts deceleration outside the stop delay section, i.e., in block N100. That causes the NC to
stop at the beginning of N100.

...
N99 MY_LOOP:

N100 G0 Z200

N200 G0 X0 Z200

N300 DELAYFSTON()

N400 G33 Z5 K2 M3 S1000

N500 G33 Z0 X5 K3

N600 G0 X100

N700 DELAYFSTOF()

N800 GOTOB MY_LOOP

Details on SERUPRO type block searches and feeds in conjunction with G331/G332 feed
for tapping without compensating chuck, see
/FB1/ Function Manual, Basic Functions; Mode Group, Channel,
Program Operation Mode (K1)
/FB1/ Function Manual, Basic Functions; Feedrates (V1).

Advantages of the stop delay section
A program section is processed without a drop in velocity.
If the user aborts the program after a stop with RESET, the aborted program block is after
the protected section. This program block is a suitable search target for a subsequent block
search.
The following main run axes are not stopped as long as a stop delay section is in progress:
• Command axes and
• Positioning axes that travel with POSA
Parts program command G4 is permitted in a stop delay section whereas other parts
program commands that cause a temporary stop (e.g., WAITM) are not permitted.
Like a path movement, G4 activates the stop delay section and/or keeps it active.
Example: Feedrate intervention
If the override is reduced to 6% before a stop delay section, the override becomes active in
the stop delay section.
If the override is reduced from 100% to 6% in the stop delay section, the stop delay section
is completed with 100% and beyond that the program continues with 6%.
The feed disable has no effect in the stop delay section; the program does not stop until after
the stop delay section.

Overlapping/nesting:
If two stop delay sections overlap, one from the NC commands and the other from machine
data MD 11550: STOP_MODE_MASK, the largest possible stop delay section will be
generated.

Path traversing behavior
9.7 Conditionally interruptible program sections (DELAYFSTON, DELAYFSTOF)

 Job planning
9-48 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

The following features regulate the interaction between NC commands DELAYFSTON and
DELAYFSTOF with nesting and end of subroutine:
1. DELAYFSTOF is activated implicitly at the end of the subroutine in which DELAYFSTON is

called.
2. DELAYFSTON stop delay section has no effect.
3. If subroutine 1 calls subroutine 2 in a stop delay section, the whole of subroutine 2 is a

stop delay section. DELAYFSTOF in particular has no effect in subroutine 2.

 Note
REPOSA is an end of subroutine command and DELAYFSTON is always deselected.
If a "hard" stop event coincides with the "stop delay section", the entire "stop delay
section" is deselected! Thus, if any other stop occurs in this program section, it will be
stopped immediately. A new program setting (new DELAYFSTON) must be made in order
to start a new stop delay section.
If the Stop key is pressed before the stop delay section and the NCK must travel into the
stop delay section for braking, the NCK will stop in the stop delay section and the stop
delay section will remain deselected!
A stop delay section entered with an override of 0% will not be accepted!
This applies to all "soft" stop events.
STOPALL can be used to decelerate in the stop delay section. A STOPALL, however,
immediately activates all other stop events that were previously delayed.

System variables
A stop delay section can be detected in the parts program with $P_DELAYFST. If bit 0 of the
system variables is set to 1, parts program processing is now in a stop delay section.
A stop delay section can be detected in synchronized actions with $AC_DELAYFST. If bit 0 of
the system variables is set to 1, parts program processing is now in a stop delay section.

Compatibility
Default of machine data MD 11550: STOP_MODE_MASK Bit 0 = 0 triggers implicit stop delay
section during a G code group G331/G332 and when a path movement or G4 is
programmed.
Bit 0 = 1 permits a stop during a G code group G331/G332 and when a path movement or
G4 has been programmed (behavior until SW 6). The DELAYFSTON/DELAYFSTOF
commands must be used to define a stop delay section.

 Path traversing behavior
 9.8 Preventing program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-49

9.8 9.8 Preventing program position for SERUPRO (IPTRLOCK,
IPTRUNLOCK)

Function
For some complicated mechanical situations on the machine it is necessary to the stop block
search SERUPRO.
By using a programmable interruption pointer it is possible to intervene before an
untraceable point with "Search at point of interruption".
It is also possible to define untraceable sections in parts program sections that the NCK
cannot yet re-enter. When a program is aborted the NCK remembers the last processed
block that can be traced from the HMI user interface.

Programming

N... IPTRLOCK
or
N... IPTRUNLOCK

The commands are programmed separately in a parts
program line and permit a programmable interruption pointer

Parameters

IPTRLOCK Start of untraceable program section

IPTRUNLOCK End of untraceable program section

Both commands are only permitted in parts programs, but not in synchronous actions.

Example
Nesting of untraceable program sections in two program levels with implicit IPTRUNLOCK.
Implicit IPTRUNLOCK in subroutine 1 ends the untraceable section.

N10010 IPTRLOCK()

N10020 R1 = R1 + 1

N10030 G4 F1 ;hold block, the untraceable

... ;program section starts

N10040 subroutine2

... ;interpretation of subroutine 2

N20010 IPTRLOCK () ;no effect, restart

...

N20020 IPTRUNLOCK () ;no effect, end in other level

N20030 RET

...

N10060 R2 = R2 + 2

N10070 RET ;End of untraceable
;program section

N100 G4 F2 ;main program is continued

Path traversing behavior
9.8 Preventing program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)

 Job planning
9-50 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

The interruption pointer then produces an
interruption at 100 again.

Acquiring and finding untraceable sections
Non-searchable program sections are identified with language commands IPTRLOCK and
IPTRUNLOCK .
Command IPTRLOCK freezes the interruption pointer at a single block executable in the
main run (SBL1). This block will be referred to as the hold block below. If the program is
aborted after IPTRLOCK, this hold block can be searched for from the HMI user interface.

Continuing from the current block
The interruption pointer is placed on the current block with IPTRUNLOCK as the interruption
point for the following program section.
Once the search target is found a new search target can be repeated with the hold block.
An interrupt pointer edited by the user must be removed again via the HMI.

Rules for nesting:
The following features regulate the interaction between NC commands IPTRLOCK and
IPTRUNLOCK with nesting and end of subroutine:
1. IPTRLOCK is activated implicitly at the end of the subroutine in which IPTRUNLOCK is

called.
2. IPTRLOCK in an untraceable section has no effect.
3. If subroutine 1 calls subroutine 2 in an untraceable section, the whole of subroutine 2

remains untraceable. IPTRUNLOCK in particular has no effect in subroutine 2.
For more information, see
/FB1/ Function Manual, Basic Functions; Mode Group, Channel,
Program Operation Mode (K1).

System variables
An untraceable section can be detected in the parts program with $P_IPTRLOCK.

Automatic interrupt pointer
The automatic interrupt pointer automatically defines a previously defined coupling type as
untraceable. The machine data for
• electronic gearbox with EGON
• axial leading value coupling with LEADON
are used to activate the automatic interrupt pointer. If the programmed interrupt pointer and
interrupt pointer activated with automatic interrupt pointers overlap, the largest possible
untraceable section will be generated.

 Path traversing behavior
 9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-51

9.9 9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB,
RME)

Function
If you interrupt the program run and retract the tool during the machining operation because,
for example, the tool has broken or you wish to check a measurement, you can reposition at
any selected point on the contour under control by the program.
The REPOS command acts in the same way as a subroutine return jump (e.g., via M17).
Blocks programmed after the command in the interrupt routine are not executed.

For information about interrupting program runs, see also Section "Flexible NC
programming", Chapter "Interrupt routine" in this Programming Manual.

Programming
REPOSA RMI DISPR=… or REPOSA RMB or REPOSA RME or REPOSA RMN
or
REPOSL RMI DISPR=… or REPOSL RMB or REPOSL RME or REPOSL RMN
or
REPOSQ RMI DISPR=…DISR=… or REPOSQ RMBDISR=… or REPOSQ RME
DISR=… or REPOSQA DISR=…
or
REPOSH RMI DISPR=… DISR=…or REPOSH RMB DISR=… or REPOSH RME
DISR=… or
REPOSHA DISR=…

Path traversing behavior
9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

 Job planning
9-52 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters
Approach path

REPOSA Approach along line on all axes

REPOSL Approach along line

REPOSQ DISR=… Approach along quadrant with radius DISR

REPOSQA DISR=… Approach on all axes along quadrant with radius DISR

REPOSH DISR=… Approach along semi-circle with diameter DISR

REPOSHA DISR=… Approach on all axes along semi-circle with diameter DISR

Reapproach point

RMI Approach interruption point

RMI DISPR=… Entry point at distance DISPR in mm/inch in front of
interruption point

RMB Approach block start point

RME Approach end of block

RME DISPR=… Approach block end point at distance DISPR in front of end
point

RMN Approach at nearest path point

A0 B0 C0 Axes in which approach is to be made

Example of approaching along a straight line, REPOSA, REPOSL
The tool approaches the repositioning point along a straight line.
All axes are automatically traversed with command REPOSA. With REPOSL you can specify
which axes are to be moved.
Example:
REPOSL RMI DISPR=6 F400
or
REPOSA RMI DISPR=6 F400

 Path traversing behavior
 9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-53

Example of approaching in the quadrant, REPOSQ, REPOSQA
The tool approaches the repositioning point along a quadrant with a radius of DISR=…. The
control system automatically calculates the intermediate point between the start and
repositioning points.
Example:
REPOSQ RMI DISR=10 F400

Path traversing behavior
9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

 Job planning
9-54 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of approaching tool along the semi-circle, REPOSH, REPOSHA
The tool approaches the repositioning point along a semi-circle with a diameter of DISR=….
The control system automatically calculates the intermediate point between the start and
repositioning points.
Example:
REPOSH RMI DISR=20 F400

 Path traversing behavior
 9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-55

Specifying the repositioning point (not for SERUPRO approaching with RMN)
With reference to the NC block in which the program run has been interrupted, it is possible
to select one of three different repositioning points:
• RMI, interruption point
• RMB, block start point or last end point
• RME, block end point

RMI DISPR=… or RME DISPR=… allows you to select a repositioning point which sits before
the interruption point or the block end point.
DISPR=… allows you to describe the contour distance in mm/inch between the repositioning
point and the interruption before the end point. Even for high values, this point cannot be
further away than the block start point.
If no DISPR=… command is programmed, then DISPR=0 applies and with it the interruption
point (with RMI) or the block end point (with RME).

Path traversing behavior
9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

 Job planning
9-56 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

DISPR sign
The sign DISPR is evaluated. In the case of a plus sign, the behavior is as previously.
In the case of a minus sign, approach is behind the interruption point or, with RMB, behind the
block start point.
The distance between interruption point and approach point depends on the value of DISPR.
Even for higher values, this point can lie in the block end point at the maximum.
Sample application:
A sensor will recognize the approach to a clamp. An ASUP is initiated to bypass the clamp.
Afterwards, a negative DISPR is repositioned on one point behind the clamp and the
program is continued.

SERUPRO approach with RMN
If abort is forced during machining at any position, the shortest path from the abort point is
approached with SERUPRO approach and RMN so that afterward only the distance-to-go is
processed. The user starts a SERUPRO process at the interruption block and uses the
JOG keys to move in front of the problem component of the target block.

 Note
SERUPRO
For SERUPRO, RMI and RMB are identical. RMN is not limited to SERUPRO but is generally
applicable.

 Path traversing behavior
 9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-57

Approach from the nearest path point RMN
When REPOSA is interpreted, the repositioning block with RMN is not started again in full after
an interruption, but only the distance-to-go processed. The nearest path point of the
interrupted block is approached.

Status for the valid REPOS mode
The valid REPOS mode of the interrupted block can be read with synchronized actions and
variable $AC_ REPOS_PATH_MODE:
0: Approach not defined
1 RMB: Approach to beginning
2 RMI: Approach to point of interruption
3 RME: Approach to end of block
4 RMN: Approaching to next path point of the interrupted block

Path traversing behavior
9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

 Job planning
9-58 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Approaching with a new tool
The following applies if you have stopped the program run due to tool breakage:
When the new D number is programmed, the machining program is continued with modified
tool offset values at the repositioning point.
Where tool offset values have been modified, it may not be possible to reapproach the
interruption point. In such cases, the point closest to the interruption point on the new
contour is approached (possibly modified by DISPR).

 Path traversing behavior
 9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 9-59

Approach contour
The motion with which the tool is repositioned on the contour can be programmed. Enter
zero for the addresses of the axes to be traversed.
The REPOSA, REPOSQA and REPOSHA commands automatically reposition all axes.
Individual axis names need not be specified.
When the commands REPOSL, REPOSQ and REPOSH are programmed, all geometry axes are
traversed automatically, i.e. they need not be named in the command. All other axes must be
specified in the commands.
The following applies to the REPOSH and REPOSQ circular motions:
The circle is traversed in the specified working planes G17 to G19.
If you specify the third geometry axis (infeed direction) in the approach block, the
repositioning point is approached along a helix in case the tool position and programmed
position in the infeed direction do not coincide.
In the following cases, the control automatically
switches over to linear approach REPOSL:
• You have not specified a value for DISR.
• No defined approach direction is available (program interruption in a block without travel

information).
• With an approach direction that is perpendicular to the current working plane.

Path traversing behavior
9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

 Job planning
9-60 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-1

Motion synchronous actions 10
10.1 10.1 Structure, basic information

Function
Synchronized actions allow actions to be executed such that they are synchronized to
machining blocks.
The time at which the actions are executed can be defined by conditions. The conditions are
monitored in the interpolation cycle. The actions are therefore responses to real-time events,
their execution is not limited by block boundaries.
A synchronized action also contains information about its service life and about the
frequency with which the programmed main run variables are scanned and therefore about
the frequency with which the actions are started. In this way, an action can be triggered just
once or cyclically in interpolation cycles.
Possible applications:

• Optimization of runtime-critical applications (e.g. tool changing)
• Fast response to an external event
• Programming AC controls

Motion synchronous actions
10.1 Structure, basic information

 Job planning
10-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

• Setting up safety functions
•

Programming
DO action1 action2 …
KEYWORD condition DO action1 action2 …
ID=n KEYWORD condition DO action1 action2 …
IDS=n KEYWORD condition DO action1 action2 …

Command elements
Identification number ID/IDS:

ID=n Modal synchronized actions in automatic mode,

local to program; n = 1... 255

IDS=n Modal synchronized actions in each mode,

static; n = 1... 255

Without ID/IDS Non-modal synchronized actions in automatic mode

Keyword:

No keyword Execution of the action is not subject to any
condition. Cyclical execution in the IPO cycle.

WHEN, WHENEVER, FROM, EVERY, Querying frequency of the action to be started

Condition:
Main run variable.
The variables used are evaluated in the interpolation cycle. Main run variables in
synchronized actions do not trigger a preprocessing stop.
Analysis:
If main run variables occur in a part program (e.g. actual value, position of a digital input or
output etc.), preprocessing is stopped until the previous block has been executed and the
values of the main run variables obtained.
DO:
Initiation of the action
Coordination of synchronized actions/technology cycles:

CANCEL[n] Cancel synchronized actions

LOCK[n] Disable synchronized actions

UNLOCK[n] Unlock synchronized actions

RESET Reset technology cycle

Example

WHEN $AA_IW[Q1]>5 DO M172 H510 ;If the actual value of axis Q1 exceeds 5 mm,
auxiliary functions M172 and H510 are output to
the PLC interface.

 Motion synchronous actions
 10.1 Structure, basic information

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-3

10.1.1 Programming and command elements

Function
A synchronized action is programmed on its own in a separate block and triggers a machine
function as of the next executable block (e.g. traversing movement with G0, G1, G2, G3).
Synchronized actions consist of up to five command elements each with a different task:

Programming
ID=n keyword condition DO action 1 action 2 ...

Command elements

Identification number
ID/IDS

Scope of the modal synchronized actions in automatic mode or
in each operating mode.

Keyword Querying frequency none, WHEN, WHENEVER, FROM, EVERY,

Condition Gating logic for main run variables, the conditions are
checked in the interpolation cycle.

DO Perform when the action or the technology cycle is satisfied.

Action Action started if the condition is fulfilled, e.g. assign
variable.

Technology cycle A program is called as action if the condition is fulfilled.

Example

ID=1 WHENEVER $A_IN[1]==1 DO $A_OUT[1] = 1

Synchronized action
no. 1:

whenever input 1 is set then set output 1

Motion synchronous actions
10.1 Structure, basic information

 Job planning
10-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.1.2 Validity range: Identification number ID

Function
The scope of validity of a synchronized action is defined by the identification number:
• no modal ID: Non-modal synchronized actions in automatic mode
• ID=n modal synchronized actions in automatic mode at end of program
• IDS=n modal synchronized actions in each mode static, also beyond end of program
Application
• AC loops in JOG mode
• Logic operations for Safety Integrated
• Monitoring functions, responses to machine states in all modes
Sequence of execution
Synchronized actions that apply modally or statically are executed in the order of their
ID(S) numbers (in the interpolation cycle).
Non-modal synchronized actions (without ID number) are executed in the programmed
sequence after execution of the modal synchronized actions.
Machine manufacturer
Modal synchronized actions can be protected from modifications or deletions by machine
data settings.

Identification number ID
• no modal ID

The synchronized action is only active in automatic mode. It applies only to the next
executable block (block with motion statement or other machine action), is non-modal.
Example:

WHEN $A_IN[3]==TRUE DO $A_OUTA[4]=10

G1 X20 ;Executable block

• ID=n; n=1..255
The synchronized action applies modally in the following blocks and can be deactivated
by CANCEL(n) or can be overwritten by programming a new synchronized action with the
same ID. The synchronized actions active in the M30 block delay the program end. ID
synchronized actions only apply in automatic mode.
Example:

ID=2 EVERY $A_IN[1]==1 DO POS[X]=0

 Motion synchronous actions
 10.1 Structure, basic information

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-5

• IDS=n; n=1..255
The static synchronized actions act modally in all modes. They even remain active
beyond the end of the program and can be activated directly after Power On using an
ASUB.
In this way, actions can be activated that are executed regardless of the mode selected in
the NC.
Example:

IDS=1 EVERY $A_IN[1]==1 DO POS[X]=100

10.1.3 Cyclic checking of the condition

Function
A keyword is used to define cyclic checking of the condition of a synchronized action.
If no keyword is programmed, the actions of the synchronized action is performed once in
every IPO cycle.

Keywords

No keyword Execution of the action is not subject to any
condition. The action is executed cyclically in any
interpolation cycles.

WHEN The condition is scanned in each interpolation cycle
until it is fulfilled once, whereupon the associated
action is executed once.

WHENEVER The condition is checked in cycles in each
interpolation cycle. The associated action is executed
in each interpolation cycle while the condition is
fulfilled.

FROM The condition is checked in each interpolation cycle
until it is fulfilled once. The action is then
executed while the synchronous action is active, i.e.
even if the condition is no longer fulfilled.

EVERY The condition is scanned in each interpolation cycle.
The action is executed once when the condition is
fulfilled.
Edge triggering:
the action is executed again when the condition
changes from the FALSE state to the TRUE state.

Motion synchronous actions
10.1 Structure, basic information

 Job planning
10-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example
No keyword
DO $A_OUTA[1]=$AA_IN[X] ;output the actual value at the analog output
EVERY
ID=1 EVERY $AA_IM[B]>75 DO POS[U]=IC(10) FA[U]=900
; always when the actual value of axis B exceeds the value 75 in machine coordinates,
the U axis should move forwards by 10 with an axial feed.
WHENEVER

WHENEVER $AA_IM[X] > 10.5*SIN(45) DO … ;Comparison with an expression

;calculated during preprocessing

WHENEVER $AA_IM[X] > $AA_IM[X1] DO … ;Comparison with other main run
;variable

WHENEVER ($A_IN[1]==1) OR ($A_IN[3]==0) DO ... ;Two logic-gated comparisons

Condition
The condition is a logical expression which can be built up in any way using Boolean
operators. Boolean expressions should always be given in brackets.
The condition is checked in the interpolation cycle.
A G code can be given before the condition. This allows defined settings to exist for the
evaluation of the condition and the action/technology cycle to be executed, independent of
the current parts program status. It is necessary to separate the synchronized actions from
the program environment, because synchronized actions are required to execute their
actions at any time from a defined initial state as a result of fulfilled trigger conditions.

Applications
Definition of the systems of measurement for condition evaluation and action through
G codes G70, G71, G700, G710.
A G code specified for the condition is valid for the evaluation of the condition and for the
action if no separate G code is specified for the action.
Only one G code of the G code group may be programmed for each part of the condition.

 Motion synchronous actions
 10.1 Structure, basic information

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-7

Possible conditions
• Comparison of main run variables (analog/digital inputs/outputs, etc.)
• Boolean gating of comparison results
• Computation of real-time expressions
• Time/distance from beginning of block
• Distance from block end
• Measured values, measurement results
• Servo values
• Velocities, axis status

10.1.4 Actions

Function
In synchronized actions, you can program one or more actions. All actions programmed in a
block are active in the same interpolation cycle.

Command elements

DO Initiates an action or a technology cycle when the
condition is satisfied.

Action Action started if the condition is fulfilled, e.g.,
assign variable, activate axis coupling, set NCK
outputs, output M, S and H functions, specify the
programmed G code, ...

The G codes can be programmed in synchronized actions for the actions/technology cycles.
The G code may specify a different G code from the condition for all actions in the block and
technology cycles. If technology cycles are contained in the action part, the G code remains
modally active for all actions until the next G code, even after the technology cycle has been
completed.
Only one G code of the G code group (G70, G71, G700, G710) may be programmed per
action section.

Example of a synchronized action with two actions

WHEN $AA_IM[Y] >= 35.7 DO M135
$AC_PARAM=50

;If the condition is fulfilled,
;M135 is output to the PLC and the
;override is set to 50%.

Motion synchronous actions
10.2 Operators for conditions and actions

 Job planning
10-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.2 10.2 Operators for conditions and actions

Comparison
(==, <>, <, >, <=, >=)

Variables or partial expressions can be
compared in conditions. The result is
always of data type BOOL. All the usual
comparison operators are permissible.

Boolean operators
(NOT, AND, OR, XOR)

Variables, constants or comparisons can
be linked with each other with the usual
Boolean operators.

Bit-by-bit operators
(B_NOT, B_AND, B_OR, B_XOR)

The bit operators B_NOT, B_AND, B_OR,
B_XOR can be used.

Basic arithmetic operations
(+, -, *, /, DIV, MOD)

Main run variables can be linked to one
another or to constants by forms of basic
computation.

Mathematical functions
(SIN, COS, TAN, ASIN, ACOS, ABS, TRUNC,
ROUND, LN, EXP, ATAN2, POT, SQRT, CTAB,
CTABINV).

Mathematical functions cannot be applied
to variables of data type REAL.

Indexing Indexing can be undertaken using main run
expressions.

Example
• Basic arithmetic operations used together
Multiplication and division are performed before addition and subtraction and bracketing of
expressions is permissible. The operators DIV and MOD are permissible for the data type
REAL.

DO $AC_PARAM[3] = $A_INA[1]-$AA_IM[Z1] ;Subtraction of two

;Main run variables

WHENEVER $AA_IM[x2] < $AA_IM[x1]-1.9 DO $A_OUT[5] = 1

 ;Subtraction of a constant from variables

DO $AC_PARAM[3] = $INA[1]-4*SIN(45.7 $P_EP[Y])*R4

 ;Constant expression, calculated during
;preprocessing

• Mathematical functions

DO $AC_PARAM[3] = COS($AC_PARAM[1])

• Real-time expressions

ID=1 WHENEVER ($AA_IM[Y]>30) AND ($AA_IM[Y]<40)
DO $AA_OVR[S1]=80

;Selection of a position window

ID=67 DO $A_OUT[1]=$A_IN[2] XOR $AN_MARKER[1] ;Evaluate 2 Boolean signals

ID=89 DO $A_OUT[4]=$A_IN[1] OR ($AA_IM[Y]>10) ;Output of the result
;of a comparison

• Main run variable indexed

WHEN…DO $AC_PARAM[$AC_MARKER[1]] = 3

Illegal

$AC_PARAM[1] = $P_EP[$AC_MARKER]

 Motion synchronous actions
 10.3 Main run variables for synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-9

10.3 10.3 Main run variables for synchronized actions

10.3.1 General information on system variables

Function
NC data can be read and written with the help of system variables. A distinction is made
between preprocessing and main run system variables. Preprocessing variables are always
executed at the preprocessing time. Main run variables always calculate their value with
reference to the current main run status.

Syntax of system variables
System variable names always begin with a "$" sign.
Preprocessing variables:
• $M... , machine data
• $S... , setting data, protection zones
• $T... , tool management data
• $P... , programmed values, preprocessing data
• $C... , cycle variables of the ISO wrapper cycles
• $O... , options data
• R... , R parameter
Main run variables:
• $A... , current main run data
• $V... , servo data
• $R... , R parameter
a 2nd letter describes options for accessing the variable:
• N... , NCK global value (generally valid value)
• C... , channel-specific value
• A... , axis-specific value
The 2nd letter is usually only used for main run variables. Preprocessing variables, such as
$P_, are usually executed without the 2nd letter.
An underscore and the subsequent variable name, usually an English designation or
abbreviation, follow the prefix ($ followed by one or two letters).

Motion synchronous actions
10.3 Main run variables for synchronized actions

 Job planning
10-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Data types
Main run variables can feature the following data types:

INT Integer for whole values with prefix signs

REAL Real for rational counting

BOOL Boolean TRUE and FALSE

CHAR ASCII character

STRING Character string with alpha-numerical characters

AXIS Axis addresses and spindles

Preprocessing variables can also feature the following data types:

FRAME Coordinate transformations

10.3.2 Implicit type conversion

Function
During value assignments and parameter transfers, variables of different data types are
assigned or transferred.
The implicit type conversion triggers an internal type conversion of values.

Possible type conversions

To REAL INT BOOL CHAR STRING AXIS FRAME
from
REAL Yes yes* Yes1) – – – –
INT Yes Yes Yes1) – – – –
BOOL Yes Yes Yes – – – –

Explanations

* At type conversion from REAL to INT, fractional values that are >=0.5 are rounded
up, others are rounded down (cf. ROUND function).
An alarm is output if values are exceeded.

1) Value <> 0 is equivalent to TRUE; value == 0 is equivalent to FALSE

 Motion synchronous actions
 10.3 Main run variables for synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-11

Results

Type conversion from REAL or INTEGER to BOOL

Result BOOL = TRUE if the REAL or INTEGER value does not equal zero

Result BOOL = FALSE if the REAL or INTEGER value equals zero

Type conversion from BOOL to REAL or INTEGER

Result REAL TRUE if the BOOL value = TRUE (1)

Result INTEGER = TRUE if the BOOL value = TRUE (1)

Type conversion from BOOL to REAL or INTEGER

Result REAL FALSE) if the BOOL value = FALSE (0)

Result INTEGER = FALSE if the BOOL value = FALSE (0)

Examples of implicit type conversions

Type conversion from INTEGER to BOOL

$AC_MARKER[1]=561

ID=1 WHEN $A_IN[1] == TRUE DO $A_OUT[0]=$AC_MARKER[1]

Type conversion from REAL to BOOL

R401 = 100.542

WHEN $A_IN[0] == TRUE DO $A_OUT[2]=$R401

Type conversion from BOOL to INTEGER

ID=1 WHEN $A_IN[2] == TRUE DO $AC_MARKER[4] = $A_OUT[1]]

Type conversion from BOOL to REAL

R401 = 100.542

WHEN $A_IN[3] == TRUE DO $R10 = $A_OUT[3]

10.3.3 GUD variables for synchronous actions

Function
In addition to the predefined variables, the programmer can use special GUD variables in
synchronized actions. The variables are displayed on HMI in the operating area parameter
and can be used in Wizard as well as in the variable view and variable protocol.

Configurable parameter ranges
Machine manufacturer
Machine data can be used to add additional channel-specific parameter areas of AXIS,
CHAR and STRING data types to the individual GUD modules for the REAL, INT and BOOL
data types. These areas can be read and written by the parts program and using
synchronized actions.

Motion synchronous actions
10.3 Main run variables for synchronized actions

 Job planning
10-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

The parameters are available during the next control power up once the corresponding
machine data has been set.
To configure the related machine data, refer to the machine manufacturer's specifications.

Default variable

 Note
Even if no GUD definition files are active, machine data can be used to read defined new
parameters in the relevant HMI GUD module.

List of predefined variable names
Name of the Synact GUD

of data type REAL of data type INT of data type BOOL in module
SYG_RS[] SYG_IS[] SYG_BS[] SGUD module
SYG_RM[] SYG_IM[] SYG_BM[] MGUD module
SYG_RU[] SYG_IU[] SYG_BU[] UGUD module
SYG_R4[] SYG_I4[] SYG_B4[] GUD4 module
SYG_R5[] SYG_I5[] SYG_B5[] GUD5 module
SYG_R6[] SYG_I6[] SYG_B6[] GUD6 module
SYG_R7[] SYG_I7[] SYG_B7[] GUD7 module
SYG_R8[] SYG_I8[] SYG_B8[] GUD8 module
SYG_R9[] SYG_I9[] SYG_B9[] GUD9 module

List of predefined variable names
Name of the Synact GUD

of data type AXIS of data type CHAR of data type STRING in module
SYG_AS[] SYG_CS[] SYG_SS[] SGUD module
SYG_AM[] SYG_CM[] SYG_SM[] MGUD module
SYG_AU[] SYG_CU[] SYG_SU[] UGUD module
SYG_A4[] SYG_C4[] SYG_S4[] GUD4 module
SYG_A5[] SYG_C5[] SYG_S5[] GUD5 module
SYG_A6[] SYG_C6[] SYG_S6[] GUD6 module
SYG_A7[] SYG_C7[] SYG_S7[] GUD7 module
SYG_A8[] SYG_C8[] SYG_S8[] GUD8 module
SYG_A9[] SYG_C9[] SYG_S9[] GUD9 module

 Motion synchronous actions
 10.3 Main run variables for synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-13

 Note
STRING type variables in synchronized actions have a fixed length of 32 characters.

• Array size corresponding to <value> of machine data
• Predefined names in accordance with previous list of predefined variable names.
• Access via HMI in the same way as access to the GUDs created using the definition file.
• The protection level assignments which are already possible in a GUD definition file using

keywords APR and APW remain valid and only relate to the GUDs defined in these GUD
definition files.

• Deletion behavior: If the content of a particular GUD definition file is re-activated, the old
GUD data block in the memory of the active file system is deleted first. The new
parameters are also reset at the same time. This process can also be undertaken via HMI
in the Services operating area in the "Define and activate user data (GUD)" user
interface.

10.3.4 Default axis identifier (NO_AXIS)

Function
AXIS type variables or parameters which have not been initialized by a value can be
provided with defined default axis identifiers. Undefined axis variables are also initialized with
this default value.
Non-initialized valid axis names are recognized in synchronized actions by querying the
"NO_AXIS" variable. This non-initialized axis identifier is assigned the configured default axis
identifier by machine data.
Machine manufacturer
At least one valid existing axis identifier must be defined and pre-assigned using machine
data. All existing valid axis identifiers can however be pre-assigned. Please refer to the
machine manufacturer's instructions.

 Note
During definition, newly created variables are now automatically given the value saved in the
machine data for default axis names. For additional information on a definition applicable via
machine data, see:
References:
/FBSY/Description of Functions; Synchronized Actions

Motion synchronous actions
10.3 Main run variables for synchronized actions

 Job planning
10-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming

PROC UP(AXIS PAR1=NO_AXIS, AXIS PAR2=NO_AXIS)

IF PAR1 <>NO_AXIS…

Subroutine definition

PROC Subroutine definition

SR Subroutine name for recognition

PARn Parameter n

NO_AXIS Initialization of formula parameter with default axis
identifier

Example of the definition of an axis variable in the main program

DEF AXIS AXVAR

UP(, AXVAR)

10.3.5 Synchronized action marker $AC_MARKER[n]

Function
The array variable $AC_MARKER[n] can be read and written in synchronized actions. These
variables can either be saved in the memory of the active or passive file system.

Synchronized action variable: Data type INT

$AC_MARKER[n] Channel-specific marker/counter, INTEGER data type

$MC_MM_NUM_AC_MARKER Machine data for setting the number of channel-
specific markers for movement synchronized actions

n Array index of variables 0-n

Example of reading and writing marker variables

WHEN ... DO $AC_MARKER[0] = 2

WHEN ... DO $AC_MARKER[0] = 3

WHENEVER $AC_MARKER[0] == 3 DO $AC_OVR=50

 Motion synchronous actions
 10.3 Main run variables for synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-15

10.3.6 Synchronized action parameters $AC_PARAM[n]

Function
The synchronized action parameter $AC_PARAM[n] is used for calculations and as
intermediate memory in synchronized actions. These variables can either be saved in the
memory of the active or passive file system.

Synchronized action variable: Data type:REAL
These parameters exist once in each channel under the same name.

$AC_PARAM[n] Arithmetic variable for movement synchronized actions

(REAL)

$MC_MM_NUM_AC_PARAM Machine data for setting the number of parameters for
movement synchronized actions up to a maximum of
20000.

n Array index of parameter 0-n

Example of synchronized action parameter $AC_PARAM[n]

$AC_PARAM[0]=1.5

$AC_MARKER[0]=1

ID=1 WHEN $AA_IW[X]>100 DO $AC_PARAM[1]=$AA_IW[X]

ID=2 WHEN $AA_IW[X]>100 DO $AC_MARKER[1]=$AC_MARKER[2]

10.3.7 Arithmetic parameter $R[n]

Function
This static array variable is used for calculations in the parts program and synchronized
actions.

Programming
Programming in parts program:
REAL R[n]
or
REAL Rn
Programming in synchronized actions:
REAL $R[n]
or
REAL $Rn

Motion synchronous actions
10.3 Main run variables for synchronized actions

 Job planning
10-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Arithmetic parameters
Using arithmetic parameters allows for:
• storage of values that you want to retain beyond the end of program, NC reset, and

Power On
• display of stored value in the R parameter display.

Examples

WHEN $AA_IM[X]>=40.5 DO $R10=$AA_MM[Y] ;Use of R10 in synchronized actions

G01 X500 Y70 F1000

STOPRE ;Preprocessing stop

IF R10>20 ;Evaluation of the arithmetic variable

WHEN $AA_IM[X]>=40.5 DO $R10=$AA_MM[Y] ;Read access to the R parameter 10

WHEN $AA_IM[X]>=6.7 DO
$R[$AC_MARKER[1]]=30.6

;Read access to the R parameter
;whose number is contained in marker 1

SYG_AS[2]=X

SYG_IS[1]=1

WHEN $AA_IM[SGY_AS[2]]>10 DO $R3=$AA_EG_DENOM[SYG_AS[1]], SYG_AS[2]]

WHEN $AA_IM[SGY_AS[2]]>12 DO $AA_SCTRACE[SYG_AS[2]]=1

SYG_AS[1]=X

SYG_IS[0]=1

WHEN $AA_IM[SGY_AS[1]]>10 DO $R3=$$MA_POSCTRL_GAIN[SYG_IS[0]],SYG_AS[1]]

WHEN $AA_IM[SGY_AS[1]]>10 DO $R3=$$MA_POSCTRL_GAIN[SYG_AS[1]]

WHEN $AA_IM[SGY_AS[1]]>15 DO $$MA_POSCTRL_GAIN[SYG_AS[0]], SYG_AS[1]]=$R3

 Motion synchronous actions
 10.3 Main run variables for synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-17

10.3.8 Read and write NC machine and NC setting data

Function
It is also possible to read and write NC machine / setting data of synchronized actions. When
reading and writing machine data array elements, an index can be left out during
programming. If this happens in the parts program, all of the array's elements are described
with the value when reading the first array element and when writing.
In synchronized actions, only the first element is read or written in such cases.

Definition
MD, SD with
$: Read the value at the interpretation time of the synchronized actions
$$: Read the value in the main run

Read MD and SD values at the preprocessing time
They are addressed from within the synchronized action using the $ characters and
evaluated by the preprocessing time.

ID=2 WHENEVER $AA_IM[z]<$SA_OSCILL_REVERSE_POS2[Z]-6 DO $AA_OVR[X]=0

;Here, reversal range 2, assumed to remain static during operation, is addressed for
oscillation.

Read MD and SD values at the main run time
They are addressed from within the synchronized action using the $ characters and
evaluated by the main run time.

ID=1 WHENEVER $AA_IM[z]<$$SA_OSCILL_REVERSE_POS2[Z]-6 DO $AA_OVR[X]=0

;It is assumed here that the reverse position can be modified by a command during
the machining

Write MD and SD at the main run time
The currently set access authorization level must allow write access. The active states are
listed for all MD and SD in References: /LIS/, Lists (Book 1).
The MD and SD to be written must be addressed preceded by $$.

Example

ID=1 WHEN $AA_IW[X]>10 DO $$SN_SW_CAM_PLUS_POS_TAB_1[0]=20

 $$SN_SW_CAM_MINUS_POS_TAB_1[0]=30

; Alteration of switching positions of software cams. Note: The switching positions
must be changed two to three interpolation cycles before they reach their position.

Motion synchronous actions
10.3 Main run variables for synchronized actions

 Job planning
10-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.3.9 Timer-Variable $AC_Timer[n]

Function
System variable $AC_TIMER[n] permits actions to be started after defined periods of delay.

Timer variable: Data type:REAL

$AC_TIMER[n] Channel-specific timer of data type REAL

s Unit in seconds

n Index of timer variable

Setting timers
A timer variable is incremented via value assignment
$AC_TIMER[n]=value
n: Number of timer variable
Value: Start value (normally 0)
Stopping timers
Incrementation of a timer variable can be stopped by assigning a negative value
$AC_TIMER[n]= -1
Reading timers
The current timer value can be read whether the timer variable is running or has been
stopped. After a timer variable has been stopped through the assignment of -1, the current
time value remains stored and can be read.

Example
Output of an actual value via analog output
500 ms after detection of a digital input

WHEN $A_IN[1] == 1 DO $AC_TIMER[1]=0 ; Reset and start timer

WHEN $AC_TIMER[1]>=0.5 DO $A_OUTA[3]=$AA_IM[X] $AC_TIMER[1]=-1

 Motion synchronous actions
 10.3 Main run variables for synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-19

10.3.10 FIFO variable $AC_FIFO1[n] ... $AC_FIFO10[n]

Function
10 FIFO variables (circulating buffer store) are available to store associated data sequences.
Data type: REAL
Application:
• Cyclical measurement
• Pass execution
Each element can be accessed in read or write

FIFO variables
The number of available FIFO variables is programmed in machine data
MD 28260: NUM_AC_FIFO.
The number of values that can be entered in a FIFO variable is defined via machine data
MD 28264: LEN_AC_FIFO. All FIFO variables are equal in length.
The sum of all FIFO elements is only formed if bit 0 is set in MD 28266 MODE_AC_FIFO.
Indices 0 to 5 have a special significance:
n=0:While writing: New value is stored in the FIFO
While reading: the oldest element will be read and removed from the FIFO
n=1:Access to oldest stored element
n=2:Access to latest stored element
n=3:Sum of all FIFO elements
n=4:Number of elements available in FIFO.
Every element in the FIFO can be read and write-accessed. FIFO variables are reset by
resetting the number of elements, e.g. for the first FIFO variable: $AC_FIFO1[4]=0
n=5:Current write index relative to beginning of FIFO
n=6 to 6+nmax:Access to nth FIFO element:

Motion synchronous actions
10.3 Main run variables for synchronized actions

 Job planning
10-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of the circulating stack
During a production run, a conveyor belt is used to transport products of different lengths
(a, b, c, d). The conveyor belt of transport length therefore carries a varying number of
products depending on the lengths of individual products involved in the process. With a
constant speed of transport, the function for removing the products from the belt must be
adapted to the variable arrival times of the products.

DEF REAL INTV=2.5 ;Constant distance between products
;placed on the belt.

DEF REAL TOTAL=270 ;Distance between length measurement
;and removal position.

EVERY $A_IN[1]==1 DO $AC_FIFO1[4]=0 ;Reset FIFO at beginning of process.

EVERY $A_IN[2]==1 DO $AC_TIMER[0]=0 ;If a product interrupts the light
;barrier, start timing.

EVERY $A_IN[2]==0 DO $AC_FIFO1[0]=$AC_TIMER[0]*$AA_VACTM[B]

;If the light barrier is free, calculate and store in the FIFO the
 product length from the time measured and the velocity of transport.

EVERY $AC_FIFO1[3]+$AC_FIFO1[4]*ZWI>=TOTAL DO POS[Y]=-30
 $R1=$AC_FIFO1[0]

;As soon as the sum of all product lengths and intervals between products is greater
 than or equal to the length between the placement and the removal position, remove
 the product from the conveyor belt at the removal position, read the product length
 out of the FIFO.

 Motion synchronous actions
 10.3 Main run variables for synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-21

10.3.11 Information about the block types in the interpolator

Function
The following system variables are available for synchronized actions to provide information
about a block current executing in the main run:
$AC_BLOCKTYPE
$AC_BLOCKTYPEINFO
$AC_SPLITBLOCK

Block type and block type info variable

$AC_BLOCKTYPE $AC_BLOCKTYPEINFO
Value: Value:
 0 Not equal to 0 T H Z E Meaning:
Original
block

Intermediate block Trigger for intermediate block:

 1 1 0 0 0 Internally generated block, no further information

 2 2 0 0 1 Chamfer/rounding: Straight
 2 2 0 0 2 Chamfer/rounding: Circle

 3 3 0 0 1 WAB: Approach with straight line
 3 3 0 0 2 WAB: Approach with quadrant
 3 3 0 0 3 WAB: Approach with semicircle

 Tool compensation:
 4 4 0 0 1 Approach block after STOPRE
 4 4 0 0 2 Connection blocks if intersection point not found
 4 4 0 0 3 Point-type circle on inner corners

(on TRACYL only)
 4 4 0 0 4 Bypass circle (or conical cut) at outer corners
 4 4 0 0 5 Approach blocks for offset suppression
 4 4 0 0 6 Approach blocks on repeated WRC activation
 4 4 0 0 7 Block split due to excessive curvature
 4 4 0 0 8 Compensation blocks on 3D face milling (tool

vector || area vector)

Motion synchronous actions
10.3 Main run variables for synchronized actions

 Job planning
10-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

$AC_BLOCKTYPE $AC_BLOCKTYPEINFO
Value: Value:
 0 Not equal to 0 T H Z E Meaning:
Original
block

Intermediate block Trigger for intermediate block:

 Corner rounding with:
 5 5 0 0 1 G641
 5 5 0 0 2 G642
 5 5 0 0 3 G643
 5 5 0 0 4 G644

 TLIFT block with:
 6 6 0 0 1 linear movement of tangential axis and without lift

motion
 6 6 0 0 2 nonlinear movement of tangential axis

(polynomial) and without lift motion
 6 6 0 0 3 lift movement, tangential axis movement and lift

movement start simultaneously
 6 6 0 0 4 lift movement, tangential axis does not start until

certain lift position is reached.

 Path segmentation:
 7 7 0 0 1 programmed path segmentation is active without

punching or nibbling
 7 7 0 0 2 programmed path segmentation with active

punching or nibbling
 7 7 0 0 3 automatically, internally generated path

segmentation

 Compile cycles:
 8 ID application ID of the compile cycle application that generated

the block

 Note
$AC_BLOCKTYPEINFO always contains the value for the block type in the thousands digit (T)
in case there is an intermediate block. The thousands digit is not used in $AC_BLOCKTYPE
not equal to 0.
T: Thousands digit
H: Hundreds digit
Z: Tens digit
E: Units digit

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-23

$AC_SPLITBLOCK
Value: Meaning:
0 Unchanged programmed block (a block generated by the compressor is also

dealt with as a programmed block)
1 There is an internally generated block or a shortened original block
3 The last block in a chain of internally generated blocks or shortened original

blocks is available

Example of counting corner rounding blocks

$AC_MARKER[0]=0

$AC_MARKER[1]=0

$AC_MARKER[2]=0

...

;Definition of synchronized actions with which
;corner rounding blocks are counted

;All corner rounding blocks count in $AC_MARKER[0]

ID = 1 WHENEVER ($AC_TIMEC ==0) AND ($AC_BLOCKTYPE==5) DO _
 $AC_MARKER[0]= $AC_MARKER[0] + 1

...

;All corner rounding blocks generated with G641 count in $AC_MARKER[1]

ID = 2 WHENEVER ($AC_TIMEC ==0) AND ($AC_BLOCKTYPEINFO==5001) DO _
 $AC_MARKER[1]= $AC_MARKER[1] + 1

...

;All corner rounding blocks generated with G642 count in $AC_MARKER[2]

ID = 3 WHENEVER ($AC_TIMEC ==0) AND ($AC_BLOCKTYPEINFO==5002) DO _
 $AC_MARKER[2]= $AC_MARKER[2] + 1

...

10.4 10.4 Actions in synchronized actions

10.4.1 Overview

General information
Actions in synchronized actions consist of value assignments, function or parameter calls,
keywords or technology cycles.
Complex executions are possible using operators.
Synchronized actions have been continually updated in several software versions for
expressions, usable main run variable and complex conditions in synchronized actions.

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

The following applications are possible:
• Calculations of complex expressions in the IPO cycle
• Axis movements and spindle controls
• Change and evaluate online setting data from synchronized actions, such as positions,

and output times of software cams to PLC or NC peripherals
• Output of auxiliary functions to PLC
• Setting up safety functions
• Set superimposed movement, online tool offset and clearance control
• Execute actions in all operating modes
• Influence synchronized actions from PLC
• Run technology cycles
• Output of digital and analog signals
• Record performance recording of the synchronized actions at the interpolation cycle and

the computation time of the position controller for the loading report
• Diagnostic capabilities in the user interface

Applications for motion-synchronous actions
Synchronized action Description
DO $V…=
DO $A...=

assign (servo values)
assign variable (main run variable)

DO $AC…[n]=
DO $AC_MARKER[n]=
DO $AC_PARAM[n]=

Special main run variable
Read or write synchronized action marker
Read or write synchronized action parameter

DO $R[n]= Read or write arithmetic variable
DO $MD...=
DO $$SD...=

Read MD value at interpolation time
Write SD value in main run

DO $AC_TIMER[n]=Start value Timers
DO $AC_FIFO1[n] …FIFO10[n]= FIFO variables
DO $AC_BLOCKTYPE=
DO $AC_BLOCKTYPEINFO=
DO $AC_SPLITBLOCK=

Interpret the current block (main run variable)

DO M-, S and H e.g. M07 Output of M, S and H auxiliary functions
DO RDISABLE Set read-in disable
DO STOPREOF Cancel preprocessing stop
DO DELDTG Fast deletion of distance-to-go without preprocessing

stop
FTCDEF(polynomial, LL, UL , coefficient)
DO SYNFCT(polynomial, output, input)

Definition of polynomials
Activation of synchronized functions: adaptive control

DO FTOC Online tool offset
DO G70/G71/G700/G710 Specify measuring system for positioning tasks

Dimensions in inches or metric
DO POS[Axis]= / DO MOV[Axis]=
DO SPOS[Spindle]=

Start/position/stop command axes
Start/position/stop command spindles

DO MOV[Axis]=value Start/position infinite movements of a command axis

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-25

Applications for motion-synchronous actions
DO POS[Axis]= FA [Axis]= Axial feed FA
DO $A_WORAREA_PLUS_ENABLE]= Working area limitation
ID=1 ... DO POS[Axis]= FA [Axis]=
ID=2 ... DO POS[Axis]=
$AA_IM[Axis] FA [Axis]=

Position from synchronized actions

DO PRESETON(axis, value) Set actual value (preset from synchronized actions)
ID=1 EVERY $A_IN[1]=1 DO M3 S….
ID=2 EVERY $A_IN[2]=1 DO SPOS=

Start/position/stop spindles

DO TRAILON(FA, LA, coupling factor)
DO LEADON(FA, LA, NRCTAB, OVW)

activate trailing
activate leading value coupling

DO MEAWA(axis)=
DO MEAC(axis)=

Activate axial measurement
Activate continuous measurement

DO [array n, m]=SET(value, value, ...)
DO [array n, m]=REP(value, value, ...)

Initialization of array variables with lists of values
Initialization of array variables with the same values

DO SETM(flag no.)
DO CLEARM(flag no.)

Set wait markers
Delete wait markers

DO SETAL(alarm no.) Set cycle alarm (additional safety function)
DO FXS[axis]=
DO FXST[axis]=
DO FXSW[axis]=
DO FOCON[axis]=
DO FOCOF[axis]=

Select travel to fixed stop
Change clamping moment
Change monitoring window
Activate travel with limited moment/force (modal)
deactivate FOC (synchronized action acts block-related)

ID=2 EVEREY $AC_BLOCKTYPE==0 DO
$R1 = $AC_TANEB

The angle between the path tangent at the end of the
current block and the path tangent at the start of the
programmed following block

DO $AA_OVR=
DO $AC_OVR=
DO $AA_PLC_OVR
DO $AC_PLC_OVR
DO $AA_TOTAL_OVR
DO $AC_TOTAL_OVR

Axial override
Path override
of the axial override specified by the PLC
of the path override specified by the PLC
resulting axial override
resulting path override

$AN_IPO_ACT_LOAD=
$AN_IPO_MAX_LOAD=
$AN_IPO_MIN_LOAD=
$AN_IPO_LOAD_PERCENT=
$AN_SYNC_ACT_LOAD=
$AN_SYNC_MAX_LOAD=
$AN_SYNC_TO_IPO=

Current IPO computing time
Longest IPO computing time
Shortest IPO computing time
Current IPO computing time in ratio to the IPO cycle
Current computing time for synchronized action over all
channels Longest computing time for synchronized
action over all channels Percentage of the total
synchronized action

DO TECCYCLE Run technology cycle
DO LOCK(n, n, ...)
DO UNLOCK(n, n, ...)
DO RESET(n, n, ...)

Disable
Enable
RESET a technology cycle

CANCEL(n, n, ...) Delete modal synchronized actions with the designation
ID(S) in the parts program

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.2 Output of auxiliary functions

Function
Auxiliary functions are output directly in the synchronized action at the output time of the
action. The output timing defined in the machine data for auxiliary functions is not active.
The output timing is given when the condition is fulfilled.
Example:
Switch on coolant at a specific axis position:
WHEN $AA_IM[X]>=15 DO M07 POS[X]=20 FA[X]=250

Permitted key words in non-modal synchronized actions (no modal ID)
Auxiliary functions can only be programmed with the WHEN or EVERY key words.

 Note
The following auxiliary functions are not permitted in synchronized actions:
• M0, M1, M2, M17, M30: Program halt/end (M2, M17, M30 possible for technology cycle)
• M70: Spindle functions
• M functions for tool change set with M6 or via machine data
• M40, M41, M42, M43, M44, M45: Gear change

Example

WHEN $AA_IW[Q1]>5 DO M172 H510 ;If the actual value of axis Q1 exceeds 5mm,
;auxiliary functions M172 and H510 are output
;to the PLC.

10.4.3 Set read-in disable (RDISABLE)

Function
With RDISABLE further block execution is stopped in the main program if the condition is
fulfilled. Programmed synchronized motion actions are still executed, the following blocks are
still prepared.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-27

In path control mode, an exact stop is always triggered at the beginning of the block with
RDISABLE in synchronized actions, regardless of whether RDISABLE is active or not.

Example
Start the program in interpolation cycles dependent on external inputs.

...

WHENEVER $A_INA[2]<7000 DO RDISABLE ;If the voltage 7V is not reached at
;input 2, the program is stopped
;(1000= 1V).

N10 G1 X10 ;When the condition is fulfilled,
;the read-in disable is active at the
;end of N10

N20 G1 X10 Y20

...

10.4.4 Cancel preprocessing stop (STOPREOF)

Function
In the case of an explicitly programmed preprocessing stop STOPRE or a preprocessing
stop implicitly activated by an active synchronized action, STOPREOF cancels the
preprocessing stop after the next machining block as soon as the condition is fulfilled.

 Note
STOPREOF must be programmed with the keyword WHEN and non-modally (without
ID number).

Example
Fast program branch at end of block.

WHEN $AC_DTEB<5 DO STOPREOF

;Cancel the preprocess stop when distance to
;block end is less than 5mm.

G01 X100

;The preprocessing stop is canceled after
;execution of the linear interpolation.

IF $A_INA[7]>500 GOTOF MARKE1=X100 ;If the voltage 5V is exceeded at input 7,
;jump to label 1.

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.5 Delete distance-to-go (DELDTG)

Function
Delete distance-to-go can be triggered for a path and for specified axes depending on a
condition.
The possibilities are:
• Fast, prepared delete distance-to-go
• Unprepared delete distance-to-go
Prepared delete distance-to-go with DELDTG permits a fast response to the triggering event
and is therefore used for time-critical applications, e.g. if
• the time between delete distance-to-go and the start of the next block must be very short.
• the condition for delete distance-to-go will very probably be fulfilled.

 Note
The axis designation contained in brackets behind DELDTG is only valid for one
positioning axis.

Programming
Delete distance-to-go for the path
DO DELDTG
or
axial delete distance-to-go
DO DELDTG(axis1, axis2, ...)

Example of fast deletion of distance-to-go path

WHEN $A_IN[1]==1 DO DELDTG

N100 G01 X100 Y100 F1000 ; When the input is set, the movement is canceled

N110 G01 X…

IF $AA_DELT>50…

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-29

Example of fast axial deletion of distance-to-go

Cancelation of a positioning movement:

ID=1 WHEN $A_IN[1]==1 DO MOV[V]=3 FA[V]=700 ;Start axis

WHEN $A_IN[2]==1 DO DELDTG(V) ;Delete distance-to-go, the axis is stopped
;using MOV=0

Delete distance-to-go depending on the input
voltage:

WHEN $A_INA[5]>8000 DO DELDTG(X1)

;As soon as the voltage at input 5 exceeds 8V, delete distance-to-go for axis X1.
 Path motion continues.

POS[X1]=100 FA[X1]=10 G1 Z100 F1000

Description
At the end of a traversing block in which a prepared delete distance-to-go was triggered,
preprocess stop is activated implicitly.
Continuous path mode or positioning axis movements are therefore interrupted or stopped at
the end of the block with fast delete distance-to-go.

 Note
Prepared delete distance-to-go
• cannot be used with active tool radius correction.
• the action must only be programmed in non modal synchronized actions (without

ID number).

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.6 Polynomial definition (FCTDEF)

Function
FCTDEF can be used to define 3rd order polynomials in the form y=a0+a1x+a2x2+a3x3.
These polynomials are used by the online tool offset (FTOC) and the evaluation function
(SYNFCT).

Programming
FCTDEF(polynomial no.,LLIMIT,ULIMIT,a0,a1,a2,a3)

Parameter

Polynomial_No. Number of the 3rd order polynomial

LLIMIT Lower limit for function value

ULIMIT Upper limit for function value

a0,a1,a2,a3 Polynomial coefficient

These values can also be accessed via system variables

$AC_FCTLL[n] Lower limit for function value

$AC_FCTUL[n] Upper limit for function value

$AC_FCT0[n] a0

$AC_FCT1[n] a1

$AC_FCT2[n] a2

$AC_FCT3[n] a3

 Note
Writing system variables
• The system variables can be written from the parts program or from a synchronized

action. When writing from parts programs, program STOPRE to ensure that writing is
block synchronized.

• The $AC_FCTLL[n], $AC_FCTUL[n], $AC_FCT0[n] to $AC_FCTn[n] system
variables can be changed from synchronized actions

When writing form synchronized actions, the polynomial coefficients and function value limits
are active immediately.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-31

Example of a polynomial for straight section:
With upper limit 1000, lower limit -1000, ordinate section a0=$AA_IM[X] and linear
gradient 1 the polynomial is:
FCTDEF(1, -1000,1000,$AA_IM[X],1)

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of laser output control
One of the possible applications of polynomial definition is the laser output control.
Laser output control means:
Influencing the analog output in dependence on, for example, the path velocity.

$AC_FCTLL[1]=0.2 ;Definition of the polynomial
;coefficient

$AC_FCTUL[1]=0.5

$AC_FCT0[1]=0.35

$AC_FCT1[1]=1.5EX-5

STOPRE

ID=1 DO $AC_FCTUL[1]=$A_INA[2]*0.1 +0.35 ;Changing the upper limit online.

ID=2 DO SYNFCT(1,$A_OUTA[1],$AC_VACTW)

;Depending on the path velocity (stored in $AC_VACTW) the laser output control
;is controlled via analog output 1

 Note
The polynomial defined above is used with SYNFCT.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-33

10.4.7 Synchronized function (SYNFCT)

Function
SYNFCT calculates the output value of a polynomial 3 grade weighted using the input
variables. The result is in the output variables and has maximum and minimum limits.
The evaluation function is used
• in AC control (adaptive control),
• in laser output control,
• with position feed-forward

Programming
SYNFCT (Polynomial_No., main run variable output, main run variable
input)

Parameters
For the output variable, it is possible to select variables that
• with additive influencing
• with multiplicative influencing
• as a position offset or
• directly
affect the machining process.

DO SYNFCT Activation of the evaluation

function

Polynomial_No. With polynomial defined with FCTDEF
(see Subsection "Polynomial
definition").

Main run variable output Write main run variable

Main run variable input  Read main run variable

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-34 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of adaptive control (additive)
Additive influence on the programmed feedrate
A programmed feedrate is to be controlled additive using the current of the X axis (infeed
axis):
The feedrate should only vary by +/- 100 mm/min and the current fluctuates by +/-1A around
the working point of 5A.

1. Polynomial definition
Determination of the coefficients
y = f(x) = a0 + a1x + a2x2 + a3x3
a1 = -100mm/1 min A
a0 = -(-100)*5 =500
a2 = a3 = 0 (no square and cubic component)
Upper limit = 100
Lower limit = -100
This means:
FCTDEF(1,-100,100,500,-100,0,0)
2. Activate AC control
ID=1 DO SYNFCT(1,$AC_VC,$AA_LOAD[x])
;Read the current axis load (% of the max. drive current) via $AA_LOAD[x],
;calculate the path feedrate override with the polynomial defined above.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-35

Example of adaptive control (multiplicative)
Influence the programmed feedrate by multiplication
The aim is to influence the programmed feedrate by multiplication. The feedrate must not
exceed certain limits – depending on the load on the drive:
• The feedrate is to be stopped at a drive load of 80%: override = 0
• At a drive load of 30% it is possible to traverse at programmed feedrate:

override = 100%.
The feedrate can be exceeded by 20%:
Max. override = 120%.

1. Polynomial definition
Determination of the coefficients
y = f(x) = a0 + a1x + a2x2 + a3x3
a1 = -100%/(80-30)% = -2
a0 = 100 + (2*30) = 160
a2 = a3 = 0 (no square and cubic component)
Upper limit = 120
Lower limit = 0
This means:
FCTDEF(2,0,120,160,-2,0,0)
2. Activate AC control
ID=1 DO SYNFCT(2,$AC_OVR,$AA_LOAD[x])
;Read the current axis load (% of the max. drive current) via $AA_LOAD[x],
;calculate the feedrate override with the polynomial defined above.

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-36 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.8 Clearance control with limited compensation $AA_OFF_MODE

Function
The integrating calculation of the distance values is performed with boundary check
$AA_OFF_MODE = 1

 Notice
The loop gain of the overlying control loop depends on the setting for the interpolation cycle.
Remedy: Read MD for interpolation cycle and take it into account.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-37

 Note
Limitation of the speed of the overlaid interpolator using MD 32020: JOG_VELO for
IPO cycle 12 ms. Formula for speed:

V
m

mV
ms

mm
/

min
6.0/

6.0

120.0
=

Example
Subroutine: clearance control ON

%_N_AON_SPF ;Subroutine for clearance control ON

PROC AON

$AA_OFF_LIMIT[Z]=1 ;Determine limiting value

FCTDEF(1, -10, +10, 0, 0.6, 0.12) ;Polynomial definition

ID=1 DO SYNFCT(1,$AA_OFF[Z],$A_INA[3]) ;Clearance control active

ID=2 WHENEVER $AA_OFF_LIMIT[Z]<>0
 DO $AA_OVR[X] = 0

;Disable axis X when limit value is
;overshot

RET

ENDPROC

Subroutine: clearance control OFF

%_N_AOFF_SPF

PROC AOFF ;Subroutine for clearance control OFF

CANCEL(1) ;Cancel clearance control synchronized
;action

CANCEL(2) ;Cancel limit range check

RET

ENDPROC

Main program

%_N_MAIN_MPF

AON ;Clearance control ON

...

G1 X100 F1000

AOFF ;Clearance control OFF

M30

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-38 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Position offset in the basic coordinate system
With the system variable $AA_OFF[axis] on overlaid movement of each axis in the
channel is possible. It acts as a position offset in the basic coordinate system.
The position offset programmed in this way is overlaid immediately in the axis concerned,
whether the axis is being moved by the program or not.
Limit main run variable output:
It is possible to limit the absolute value to be corrected (main run variable output) to the
value stored in the setting data
SD 43350: AA_OFF_LIMIT.
Using the machine data MD 36750: AA_OFF_MODE defines the mode of overlaying
distance:
 0: Proportional evaluation
 1: Integrating evaluation
With system variable $AA_OFF_LIMIT[axis] a directional scan to see whether the offset
value is within the limits is possible. These system variables can be scanned from
synchronized actions and, when a limit value is reached, it is possible to stop the axis or set
an alarm.
 0: Offset value not in range
 1: Limit of offset value reached in the positive direction
 -1: Limit of offset value reached in the negative direction

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-39

10.4.9 Online tool offset (FTOC)

Function
FTOC permits overlaid movement for a geometry axis after a polynomial programmed with
FCTDEF depending on a reference value that might, for example, be the actual value of an
axis.
Coefficient a0 of the function definition FCTDEF() is evaluated with FTOC.
The maximum and minimum limits are determined by a0.
This means that you can also program modal, online tool offsets or clearance controls as
synchronized actions.
This function is used for the machining of a workpiece and dressing of a grinding wheel in
the same channel or in different channels (machining and dressing channel).
The supplementary conditions and specifications for dressing grinding wheels apply to FTOC
in the same way that they apply to tool offsets using PUTFTOCF. For further information,
please refer to "Tool Offsets" section.

Programming
FTOC(Polynomial_No., RV, Length1_2_3 or Radius4, channel, spindle)

Parameters

DO FTOC Perform online tool offsets

Polynomial_No. For polynomial defined with FCTDEF, see Subsection
"Polynomial definition" in this Section.

RV Main run variable for which a function value for the
specified polynomial is to be calculated.

Length1_2_3

Radius4

Length offset ($TC_DP1 to 3) or radius offset to which the
calculated function value is added.

Channel Number of the channel in which the offset is active. No
specification is made here for an offset in the active
channel. FTOCON must be activated in the target channel.

Spindle Only specified if it is not the active spindle, which is to
be compensated.

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-40 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example
In this example, we want to compensate for the length of the active grinding wheel.

%_N_DRESS_MPF

FCTDEF(1,-1000,1000,-$AA_IW[V],1) ;Define function:

ID=1 DO FTOC(1,$AA_IW[V],3,1) ;Select online tool offset:

;Actual value of the V axis is the input
;value for polynomial 1; the result is
;added length 3 of the active grinding
;wheel in channel 1 as the offset value.

WAITM(1,1,2) ;Synchronization with machining channel

G1 V-0.05 F0.01 G91 ;Infeed movement to dress wheel

G1 V-0.05 F0.02

...

CANCEL(1) ;Deselect online offset

...

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-41

10.4.10 Online tool length offset ($AA_TOFF[tool direction])

Function
Use the system variable $AA_TOFF[] to overlay the effective tool lengths in accordance with
the three tool directions three-dimensionally in real time.
The three geometry axis identifiers are used as the index. Thus, the number of active
directions of offset is determined by the geometry axes that are active at the same time.
All offsets can be active at the same time.

Programming
N.. TRAORI
N.. TOFFON(X, 25)
N.. WHEN TRUE DO $AA_TOFF[X]
N.. TOFFON(Y, 25)
N.. WHEN TRUE DO $AA_TOFF[Y]
N.. TOFFON(Z, 25)
N.. WHEN TRUE DO $AA_TOFF[Z]

Parameter

TOFFON Tool Offset ON (activate online tool length offset)

On activation, an offset value can be specified for the
relevant direction of offset and this is immediately recovered.

TOFFOF Tool Offset OF (reset online tool length offset)

The relevant offset values are reset and a preprocessing stop
is initiated.

X, Y, Z Direction of compensation for the offset value indicated for
TOFFON

$AA_TOFF[X]=value
$AA_TOFF[Y]=value
$AA_TOFF[Z]=value

Offset in X direction
Offset in Y direction
Offset in Z direction

Example of tool length offset selection

N10 TRAORI(1) ;Transformation ON

N20 TOFFON(Z) ;Activation of online tool length offset
;for the Z tool direction

N30 WHEN TRUE DO $AA_TOFF[Z] = 10
G4 F5

;For the Z tool direction, a tool
;length offset of 10 is interpolated

N40 TOFFON(X) ;Activation of online tool length offset
;for the X tool direction

N50 ID=1 DO $AA_TOFF[X] = $AA_IW[X2]
G4 F5

;For the X tool direction, an offset is
;executed subject to the position of
;axis X2

...

N100 XOFFSET = $AA_TOFF_VAL[X]
N120 TOFFON(X, -XOFFSET)
G4 F5

;Assign current offset in X direction for
;the X tool direction, the tool length
;offset will be returned to 0 again

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-42 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of tool length offset deselection

N10 TRAORI(1) ;Transformation ON

N20 TOFFON(X) ;Activation of Z tool direction

N30 WHEN TRUE DO $AA_TOFF[X] = 10
G4 F5

;For the X tool direction, a tool length
;offset of 10 is interpolated

...

N80 TOFFOF(X) ;Positional offset of the X tool direction
;is deleted: …$AA_TOFF[X] = 0
;No axis is traversed;
;to the current position in WCS, the
;positional offset is added in accordance
;with the current orientation

10.4.11 Positioning movements

Function
Axes can be positioned completely unsynchonized with respect to the parts program from
synchronized actions. Programming positioning axes from synchronized actions is advisable
for cyclic sequences or operations that are strongly dependent on events. Axes programmed
from synchronized actions are called command axes.

Programming
References:
/PG/ Programming Guide Fundamentals; "Path details" Section
/FBSY/ Function Description, Synchronized Actions; "Starting command axes"

Parameters
The measuring system for positioning tasks in synchronized actions is specified with the G
codes G70/G71/G700/G710 .
By programming the G functions in the synchronized action, the INCH/METRIC evaluation
for the synchronized action can be defined independently of the parts program context.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-43

10.4.12 Position axis (POS)

Function
Unlike programming from the parts program, the positioning axis movement has no effect on
execution of the parts program.

Programming
POS[axis]=value

Parameter

DO POS Start/position command axis

Axis Name of the axis to be traversed

Value The value to traverse by (depending on
traverse mode)

Example

ID=1 EVERY $AA_IM[B]>75 DO POS[U]=100

;Axis U is moved incrementally from the control zero by 100 (inch/mm) or
;to position 100 (inch/mm) independently of the traversing mode.

ID=1 EVERY $AA_IM[B]>75 DO POS[U]=$AA_MW[V]-$AA_IM[W]+13.5

;Axis U moved by a path calculated from main run variables.

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-44 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example
The program environment affects the positioning travel of the positioning axis
 (no G function in the action part of the synchronized action)

N100 R1=0

N110 G0 X0 Z0

N120 WAITP(X)

N130 ID=1 WHENEVER $R==1 DO POS[X]=10

N140 R1=1

N150 G71 Z10 F10 ;Z=10 mm X=10 mm

N160 G70 Z10 F10 ;Z=254 mm X=254 mm

N170 G71 Z10 F10 ;Z=10 mm X=10 mm

N180 M30

G71 in the action part of the synchronized action clearly determines the positioning travel of
the positioning axis (metric), whatever the program environment.

N100 R1=0

N110 G0 X0 Z0

N120 WAITP(X)

N130 ID=1 WHENEVER $R==1 DO G71 POS[X]=10

N140 R1=1

N150 G71 Z10 F10 ;Z=10 mm X=10 mm

N160 G70 Z10 F10 ;Z=254 mm X=10 mm (X positioned
;always to 10 mm)

N170 G71 Z10 F10 ;Z=10 mm X=10 mm

N180 M30

If you do not want the axis motion to start at the beginning of the block, the override for the
axis can be held at 0 until the appropriate time from a synchronized action.

WHENEVER $A_IN[1]==0 DO $AA_OVR[W]=0

G01 X10 Y25 F750 POS[W]=1500
FA=1000

 ;The positioning axis is halted as long as digital input 1 = 0

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-45

10.4.13 Position in specified reference range (POSRANGE)

Function
The POSRANGE() function can be used to determine whether the current interpolated
setpoint position of an axis is in a window around a specified reference position. The position
specifications can refer to coordinates systems which can be specified.
The module offset is taken into account when interrogating the actual axis position of a
module axis.

 Note
The function can only be called up from the synchronized action. If called up from the parts
program, the alarm 14091 %1 block %2 is triggered, function not permitted, index: %3 with
index 5 called up.

Programming
BOOL POSRANGE(Axis, Refpos, Winlimit,[Coord])

Parameter:

BOOL POSRANGE Current position of command axis is in window of specified
reference position.

AXIS <axis> Axis identifier of machine-, channel- or geometry axis

REAL Refpos Reference position in Coord coordinate system

REAL Winlimit Amount resulting in limit for position window

INT Coord MCS is active (option). The following are possible:
0 for MCS (machine coordinates system)
1 for BCS (basic coordinates system)
2 for SZS (settable zero system)
3 for WCS (workpiece coordinate system)

Function value
Current setpoint depending on position details in specified coordinates system

Function value TRUE

Function value: FALSE

if Refpos(Coord)
- abs(Winlimit)
≤ Actpos(Coord)
≤ Refpos(Coord) + abs(Winlimit)
otherwise

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-46 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.14 Start/stop axis (MOV)

Function
With MOV[axis]=value it is possible to start a command axis without specifying an end
position. The axis is moved in the programmed direction until another movement is set by
another motion or positioning command or until the axis is stopped with a stop command.

Programming
MOV[axis] = value

Parameters

DO MOV Start command axis motion

Axis Name of the axis to be started

Value Start command for traverse/stop motion.
The sign determines the direction of motion.

The data type for the value is INTEGER.

Value >0 (usually +1) Positive direction

Value <0 (usually -1) Negative direction

Value ==0 Stop axis motion

 Note
If an indexing axis is stopped with MOV[Axis]=0, the axis is halted at the next indexing
position.

Example

... DO MOV[U]=0 ;Axis U is stopped

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-47

10.4.15 Axis replacement (RELEASE, GET)

Function
For a tool change, the corresponding command axes can be requested as an action of a
synchronized action using GET(axis). The axis type assigned to this channel and the
interpolation right thus linked to this time can be queried using the $AA_AXCHANGE_TYPE
system variable. Different processes are possible depending on the actual status and on the
channel having the current interpolation right for this axis.
Once the tool change is complete, this command axis can then be released for the channel
as an action of a synchronized action using RELEASE(axis).
Machine manufacturer
The axis concerned must be assigned to the channel via machine data. Please refer to the
machine manufacturer's specifications.

Programming
GET(axis[,axis{,...}]) Get axis
RELEASE(axis[,axis{,...}]) Release axis

Parameter

DO RELEASE Release axis as neutral axis

DO GET Get axis for axis replacement

Axis Name of the axis to be started

Example: Program sequence for axis replacement, two channels
The Z axis has been declared in the first and second channels.
Program sequence in the first channel:

 WHEN TRUE DO RELEASE(Z) ;Z axis becomes the neutral axis

 WHENEVER($AA_TYP[Z]==1) DO
RDISABLE

;Read-in disable as long as Z axis is program
;axis

N110 G4 F0.1

 WHEN TRUE DO GET(Z) ;Z axis returns to status as NC program axis

 WHENEVER($AA_TYP[Z]<>1) DO
RDISABLE

;Read-in disable until Z axis is program axis

N120 G4 F0.1

 WHEN TRUE DO RELEASE(Z) ;Z axis becomes the neutral axis

 WHENEVER($AA_TYP[Z]==1) DO
RDISABLE

;Read-in disable as long as Z axis is program
;axis

N130 G4 F0.1

N140 START(2) ;Start the second channel

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-48 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Program sequence in the second channel:

 WHEN TRUE DO GET(Z) ;Move Z axis to second channel

 WHENEVER($AA_TYP[Z]==0) DO
RDISABLE

;Read-in disable as long as Z axis is in
;other channel

N210 G4 F0.1

 WHEN TRUE DO GET(Z) ;Z axis is NC program axis

 WHENEVER($AA_TYP[Z]<>1) DO
RDISABLE

;Read-in disable until Z axis is program axis

N220 G4 F0.1

 WHEN TRUE DO RELEASE(Z) ;Z axis in second channel is neutral axis

 WHENEVER($AA_TYP[Z]==1) DO
RDISABLE

;Read-in disable as long as Z axis is program
;axis

N230 G4 F0.1

N250 WAITM(10, 1, 2) ;Synchronize with channel 1

Program sequence in the first channel continues:

N150 WAIM(10, 1, 2) ;Synchronize with channel 2

 WHEN TRUE DO GET(Z) ;Move Z axis to this channel

 WHENEVER($AA_TYP[Z]==0) DO
RDISABLE

;Read-in disable as long as Z axis is in
;other channel

N160 G4 F0.1

N199 WAITE(2) ;Wait for end of program in channel 2

N999 M30

Example: Axis replacement in technology cycle
The U axis U ($MA_AUTO_GET_TYPE=2) has been declared in the first and second
channel and channel 1 currently has the interpolation right. The following technology cycle is
started in channel 2:

GET(U) ;Move U axis to channel

POS[U]=100 ;U axis is to be moved to position 100

The command-axis-movement line POS[U] is not executed until the U axis has been moved
to channel 2.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-49

Sequence
The axis that is requested at the time the action GET (axis) is activated can be read with
respect to axis type for an axis replacement via the system variable
($AA_AXCHANGE_TYP[<axis>]:
• 0: Axis assigned to NC program
• 1: Axis assigned to PLC or active as command axis or oscillating axis
• 2: Another channel has the interpolation right
• 3: Axis is neutral axis
• 4: Neutral axis is controlled by PLC
• 5: Another channel has the interpolation right, axis is requested for NC program
• 6: Another channel has the interpolation right, axis is requested as neutral axis
• 7: Axis active for PLC or as command or oscillating axis, axis is requested for PLC

program
• 8: Axis active for PLC or as command or oscillating axis, axis is requested as neutral axis
Boundary conditions
The axis concerned must be assigned to the channel via machine data.
An axis controlled exclusively by the PLC cannot be assigned to the NC program.
References:
/FB2/ Function Manual, Extended Functions; Positioning Axes (P2)

Using GET to request an axis from another channel
If, when the GET action is activated, another channel is authorized to write (has the
interpolation right) to the axis ($AA_AXCHANGE_TYP[<axis>] == 2), axis replacement is
used to get the axis from this channel ($AA_AXCHANGE_TYP[<axis>]==6) and assign it to
the requesting channel as soon as possible.
The axis then becomes the neutral axis ($AA_AXCHANGE_TYP[<axis>]==3).
There is no reorganize in the requesting channel.
Assignment as NC program axis with reorganize:
If an attempt to make the axis the neutral axis is already in progress when the GET action is
activated ($AA_AXCHANGE_TYP[<axis>]==6), the axis is requested for the NC program
($AA_AXCHANGE_TYP[<axis>]==5) and assigned to the NC program on the channel as
soon as possible ($AA_AXCHANGE_TYP[<axis>]==0).

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-50 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Axis already assigned to requested channel
Assignment as NC program axis with reorganize:
If the requested axis has already been assigned to the requesting channel at the point of
activation, and its status is that of a neutral axis (not controlled by the PLC)
($AA_AXCHANGE_TYP[<axis>]==3), it is assigned to the NC program
($AA_AXCHANGE_TYP[<axis>]==0).

Axis in neutral axis status controlled by the PLC
If the axis is in neutral axis status controlled by the PLC
($AA_AXCHANGE_TYP[<axis>]==4), the axis is requested as a neutral axis
($AA_AXCHANGE_TYP[<axis>] == 8). This locks the axis for automatic axis replacement
between channels in accordance with the value of bit 0 in MD 10722: AXCHANGE_MASK
(bit 0 == 0). This corresponds to ($AA_AXCHANGE_STAT[<axis>] == 1).

Axis is active as neutral command axis/oscillating axis or assigned to PLC
If the axis is active as the command axis/oscillating axis or assigned to the PLC for travel,
PLC axis == concurrent positioning axis, ($AA_AXCHANGE_TYP[<axis>]==1), the axis is
requested as a neutral axis ($AA_AXCHANGE_TYP[<axis>] == 8). This locks the axis for
automatic axis replacement between channels in accordance with the value of bit 0 in
MD 10722: AXCHANGE_MASK (bit 0 == 0). This corresponds to
($AA_AXCHANGE_STAT[<axis>] == 1).
A new GET action will request the axis for the NC program ($AA_AXCHANGE_TYP[<axis>]
changes to == 7).

Axis already assigned to NC program
If the axis is already assigned to the NC program ($AA_AXCHANGE_TYP[<axis>]==0) or if
this assignment is requested, e.g., axis replacement triggered by NC program
($AA_AXCHANGE_TYP[<axis>]==5 or $AA_AXCHANGE_TYP[<axis>] == 7), there will be
no change in state.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-51

10.4.16 Axial feed (FA)

Function
The axial feed for command axes acts modal.

Programming
FA[axis]=feedrate

Example

ID=1 EVERY $AA_IM[B]>75 DO POS[U]=100 FA[U]=990

;Define fixed feedrate value

ID=1 EVERY $AA_IM[B]>75 DO POS[U]=100 FA[U]=$AA_VACTM[W]+100

;Calculate feedrate value from main run variables

10.4.17 Software limit switch

Function
The working area limitation programmed with G25/G26 is taken into account for the
command axes depending on the setting data $SA_WORKAREA_PLUS_ENABLE.
Switching the working area limitation on and off with G functions WALIMON/WALIMOF in the
parts program has no effect on the command axes.

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-52 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.18 Axis coordination

Function
Typically, an axis is either moved from the parts program or as a positioning axis from a
synchronized action.
If the same axis is to be traversed alternately from the parts program as a path or positioning
axis and from synchronized actions, however, a coordinated transfer takes place between
both axis movements.
If a command axis is subsequently traversed from the parts program, preprocessing must be
reorganized. This, in turn, causes an interruption in the parts program processing
comparable to a preprocessing stop.

Example for traversing X axis alternately from parts program and from synchronized actions

N10 G01 X100 Y200 F1000 ;X axis programmed in parts program

…

N20 ID=1 WHEN $A_IN[1]==1 DO

POS[X]=150 FA[X]=200

;Starting positioning from the synchronized
;action if a digital input is set

…

CANCEL(1) ;Deselect synchronized action

…

N100 G01 X240 Y200 F1000

;X becomes the path axis; before motion, delay occurs because of axis transfer
;if digital input was 1 and X was positioned from the synchronized action.

Example of changing traverse command for the same axis:

ID=1 EVERY $A_IN[1]>=1 DO POS[V]=100 FA[V]=560

;Start positioning from the synchronized action if a digital input is >= 1

ID=2 EVERY $A_IN[2]>=1 DO POS[V]=$AA_IM[V] FA[V]=790

;Axis follows, 2nd input is set, i.e. end position and feed for axis V are
;continuously followed during a movement when two synchronized actions are
;simultaneously active.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-53

10.4.19 Set actual values (PRESETON)

Function
When PRESETON (axis, value) is executed, the current axis position is not changed but a
new value is assigned to it.
PRESETON from synchronized actions can be programmed for
• modulo rotary axes that have been started from the parts program and
• all command axes that have been started from a synchronized action

Programming
DO PRESETON(axis, value)

Parameters

DO PRESETON Setting actual values in synchronized actions

Axis Axis of which the control zero is to be
changed

Value The value by which the control zero is to be
changed

Restrictions for axes
PRESETON cannot be programmed for axes, which are involved in a transformation.
One and the same axis can by moved from the parts program and from a synchronized
action, only at different times. For this reason, delays can occur in the programming of an
axis from the parts program if the same axis has been program in a synchronized action first.
If the same axis is used alternately, transfer between the two axis movements is
coordinated. Parts program execution must be interrupted for that.

Example
Moving the control zero of an axis

WHEN $AA_IM[a] >= 89.5 DO PRESETON(a4,10.5)

;Offset control zero of axis a by 10.5 length units (inch or mm) in the positive
;axis direction.

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-54 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.20 Spindle motions

Function
Spindles can be positioned completely unsynchronized with respect to the parts program
from synchronized actions. This type of programming is advisable for cyclic sequences or
operations that are strongly dependent on events.
If conflicting commands are issued for a spindle via simultaneously active synchronized
actions, the most recent spindle command takes priority.

Example of starting/stopping/positioning spindles

ID=1 EVERY $A_IN[1]==1 DO M3 S1000 ;Set direction and speed of rotation

ID=2 EVERY $A_IN[2]==1 DO SPOS=270 ;Position spindle

Example of setting the direction and speed of rotation/ positioning the spindle

ID=1 EVERY $A_IN[1]==1 DO M3 S300 ;Set direction and speed of rotation

ID=2 EVERY $A_IN[2]==1 DO M4 S500 ;Specify new direction and new speed of
;rotation

ID=3 EVERY $A_IN[3]==1 DO S1000 ;Specify new speed

ID=4 EVERY ($A_IN[4]==1) AND ($A_IN[1]==0)
DO SPOS=0

;Position spindle

10.4.21 Coupled motion (TRAILON, TRAILOF)

Function
When the coupling is activated from the synchronized action, the leading axis can be in
motion. In this case the following axis is accelerated up to the set velocity. The position of
the leading axis at the time of synchronization of the velocity is the starting position for
coupled-axis motion. The functionality of coupled-axis motion is described in the Section
"Path traversing behavior".

Programming

Activate coupled-axis motion
DO TRAILON(following axis, leading axis,
coupling factor)

Deactivate coupled-axis motion
DO TRAILOF(following axis, leading axis,
leading axis 2)

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-55

Parameters

Activate unsynchronized coupled motion:

... DO TRAILON(FA, LA, Kf) with:
FA: Following axis
LA: Leading axis
Kf: Coupling factor

Deactivate unsynchronized coupled motion:

... DO TRAILOF(FA, LA, LA2)

... DO TRAILOF(FA)

with:
FA: Following axis
LA: Leading axis, optional
LA2: Leading axis 2, option

All couplings to the
following axis are
disengaged.

Example

$A_IN[1]==0 DO TRAILON(Y,V,1) ;Activate 1st combined axis pair when the digital
;input is 1

$A_IN[2]==0 DO TRAILON(Z,W,-1) ;Activate 2nd coupled axis grouping

G0 Z10 ;Infeed Z and W axes in opposite axial directions

G0 Y20 ;Infeed of Y and V axes in same axis directions

...

G1 Y22 V25 ;Superimpose dependent and independent movement of
;trailing axis "V"

...

TRAILOF (Y,V) ;Deactivate 1st coupled axis grouping

TRAILOF (Z,W) ;Deactivate 2nd coupled axis grouping

Example of conflict avoidance with TRAILOF
The coupled axis is released again for access as a channel axis by invoking the TRAILOF
function for the axis. It must be ensured that TRAILOF is executed before the channel
requests the
axis. However, this is not the case in this example
…
N50 WHEN TRUE DO TRAILOF(Y,X)
N60 Y100
…
In this case, the axis is not released early enough because the non-modal synchronized
action becomes active synchronously with N60 with TRAILOF, see section, Motion-
synchronous action, "Structure, basic information".
To avoid conflict situations the following procedure
should be followed.
…
N50 WHEN TRUE DO TRAILOF(Y,X)
N55 WAITP(Y)
N60 Y100

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-56 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.22 Leading value coupling (LEADON, LEADOF)

Function
The axial leading value coupling can be programmed in synchronized actions without
restriction. The changing of a curve table for an existing coupling without a previous
resynchronization is optionally possible only in synchronized actions.

Programming

Activate leading value coupling
DO LEADON (following axis, leading axis,
curve table no., OVW)

Deactivate leading value coupling
DO LEADOF(following axis, leading axis,
leading axis 2)

Parameters

Activate axial leading value
coupling:

...DO LEADON(FA, LA, NR, OVW) with:
FA: Following axis
LA: Leading axis
NR: Number of the stored curve table
OVW: Permit overwriting an existing coupling
with changed curve table

Deactivate axial leading value
coupling:

...DO LEADOF(FA, LA)

... DO LEADOF(FA)

with:
FA: Following axis
LA: Leading axis, optional

Shortened form without specification of
leading axis

Activate access with synchronized actions RELEASE
The axis to be coupled is released for synchronized action access by invoking the RELEASE
function for the axis.
Example:
RELEASE (XKAN)
ID=1 every SR1==1 to LEADON(CACH,XKAN,1)
OVW=0 (default value)
Without a resynchronization, no new curve table can be specified for an existing coupling.
A change of the curve table requires the previous deactivation of the existing coupling and a
reactivation with the changed curve table number. This causes a resynchronization of the
coupling.
Changing the curve table for an existing coupling using OVW=1
OVW=1 can be used to specify a new curve table to an existing coupling. No
resynchronization is performed. The following axis attempts as fast as possible to follow the
position values specified by the new curve table.

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-57

Example of on-the-fly parting
An extruded material which passes continuously through the operating area of a cutting tool
must be cut into parts of equal length.
X axis: Axis in which the extruded material moves. WCS
X1 axis: Machine axis of extruded material, MCS
Y axis: Axis in which cutting tool "tracks" the extruded material
It is assumed that the infeed and control of the cutting tool are controlled via the PLC. The
signals at the PLC interface can be evaluated to determine whether the extruded material
and cutting tool are synchronized.
Actions
Activate coupling, LEADON
Deactivate coupling, LEADOF
Set actual values, PRESETON

%_N_SCHERE1_MPF
;$PATH=/_N_WKS_DIR/_N_DEMOFBE_WPD

N100 R3=1500 ;Length of a part to be cut off

N200 R2=100000 R13=R2/300

N300 R4=100000

N400 R6=30 ;Start position Y axis

N500 R1=1 ;Start condition for conveyor axis

N600 LEADOF(Y,X) ;Delete any existing coupling

N700 CTABDEF(Y,X,1,0) ;Table definition

N800 X=30 Y=30 ;Value pairs

N900 X=R13 Y=R13

N1000 X=2*R13 Y=30

N1100 CTABEND ;End of table definition

N1200 PRESETON(X1,0) ;PRESET at beginning

N1300 Y=R6 G0 ;Start position Y axis, axis is linear

N1400 ID=1 WHENEVER $AA_IW[X]>$R3 DO PESETON(X1,0)

; PRESET after length R3, new start following parting

N1500 RELEASE(Y)

N1800 ID=6 EVERY $AA_IM[X]<10 DO LEADON(Y,X,1)

 ;Couple Y to X via table 1, for X < 10

N1900 ID=10 EVERY $AA_IM[X]>$R3-30 DO EADOF(Y,X)

 ;> 30 before traversed parting distance,
;deactivate coupling

N2000 WAITP(X)

N2100 ID=7 WHEN $R1==1 DO MOV[X]=1
FA[X]=$R4

;Set extruded material axis continuously
;in motion

N2200 M30

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-58 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.23 Measuring (MEAWA, MEAC)

Function
Compared with use in traverse blocks of the parts program, the measuring function can be
activated and deactivated as required.
For further information concerning measuring, see special motion commands "Extended
measuring function"

Programming
Axial measurement without deletion of distance-to-go
MEAWA[axis]=(mode, trigger_event_1, ..._4)
or
Continuous measurement without deleting distance-to-go
MEAC[axis]=(mode, measurement_memory, trigger_event_1, ..._4)

Parameters

DO MEAWA Activate axial measurement

DO MEAC Activate continuous measurement

Axis The name of the axis for which measurement is
taken

Mode Specification of the
tens decade
0: active measuring
system

Number of the measuring
systems (depending on
the mode)
1: 1. Measuring system
2: 2. Measuring system
3: both measuring
systems

Specification of the
units decade
0: Cancel measuring job

up to 4 trigger events
can be activated
1: concurrently
2: successively
3: as for 2, however no
monitoring of trigger
event1 at the start

Trigger_event_1 to
trigger_event_4

: rising edge, probe
-1: falling edge, probe 1 optional
2: rising edge, probe 2 optional
-2: falling edge, probe 2 optional

Measurement memory Number of the FIFO circulating storage

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-59

10.4.24 Initialization of array variables with SET, REP

Function
Array variables can be initialized or described with particular values in synchronized actions.

Programming
DO ARRAY[n,m]=SET(value1, value2, ...)
or
DO ARRAY[n,m] = REP(value)
Initialization starts at the programmed array indexes. For 2D arrays, the second index is
incremented first. This is not done with axis indices.

Value assignments of array variables
Only variables that can be described in synchronized actions are possible. Machine data
cannot therefore be initialized. Axis variables cannot be specified using the NO_AXIS value.

SET(value list) Initialization with value lists

REP (value) Initialization with the same values

Value list With the number of specified values

Value With the same value up to the end of
the array

SET(value list)
The array is described from the programmed array indices onwards using the SET
parameters. As many array elements are assigned as values are programmed. If more
values than exist in the remaining array elements are programmed, a system alarm is
triggered.
REP(value)
The array is described from the programmed array indices to the end of the array and
repeated using the REPparameters.

Example

WHEN TRUE DO SYG_IS[0]=REP(0)

WHEN TRUE DO SYG_IS[1]=SET(3,4,5)

Result:

SYG_IS[0]=0

SYG_IS[1]=3

SYG_IS[2]=4

SYG_IS[3]=5

SYG_IS[4]=0

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-60 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.25 Set/delete wait markers with SETM, CLEARM

Function
In synchronized actions, wait markers can be set or deleted for the purpose of coordinating
channels, for example.

Programming
DO SETM(MarkerNumber)
or
DO CLEARM(MarkerNumber)

Set/delete wait markers for the channel

SETM(MarkerNumber) Set wait marker for channel

CLEARM(MarkerNumber) Clear wait marker for channel

SETM
The SETM command can be written in the parts program and in the action part of a
synchronized action. It sets the marker (marker number) for the channel in which the
command is applied
CLEARM
The CLEARM command can be written in the parts program and in the action part of a
synchronized action. It deletes the marker (marker number) for the channel in which the
command is applied.

10.4.26 Error responses during SETAL cycle alarms

Function
Incorrect responses can be programmed with synchronized actions by scanning status
variables and triggering the appropriate actions.
Some possible responses to error conditions are:
• Stop axis: Override=0
• Set alarm: With SETAL it is possible to set cyclic alarms from synchronized actions.
• Set output
• All actions possible in synchronized actions

Set cycle alarm
DO SETAL(AlarmNumber)
Cycle alarm range for users: 65000 ... 69999

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-61

Example

ID=67 WHENEVER ($AA_IM[X1]-$AA_IM[X2])<4.567 DO $AA_OVR[X2]=0

;If the safety distance between axes X1 and X2 is too small, stop axis X2.

ID=67 WHENEVER ($AA_IM[X1]-$AA_IM[X2])<4.567 DO SETAL(61000)

;If the safety distance between axes X1 and X2 is too small, set an alarm.

10.4.27 Travel to fixed stop (FXS and FOCON/FOCOF)

Function
The commands for travel to fixed stop are programmed with the FXS, FXST and FXSW parts
program commands in synchronized actions / technology cycles.
The activation can be made without motion, the moment will be limited immediately. As soon
as the axis is moved via a setpoint, the limit stop monitor is activated.
Travel with limited torque/force (FOC):
This function allows torque/force to be changed at any time via synchronized actions and
can be activated modally or non-modally.

Parameters

FXS[axis] Selection only in systems with digital drives (FDD, MSD,
HLA)

FXST[axis] Modification of clamping torque FXST

FXSW[axis] Change of monitoring window FXSW

FOCON[axis] Activation of the modally effective torque/force
limitation

FOCOF[axis] Disable torque/force limitation

FOCON/FOCOF The axis is programmed in square brackets. Permitted are:
– Geometry axis identifier
– Channel axis identifier
– Machine axis identifier

 Note
A selection may only be carried out once.

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-62 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of travel to fixed stop (FXS)
Triggered by a synchronized action

Y axis:

Activate:

;Static synchronized actions

N10 IDS=1 WHENEVER (($R1==1) AND

 ($AA_FXS[y]==0)) DO
$R1=0 FXS[Y]=1 FXST[Y]=10
FA[Y]=200 POS[Y]=150

;By setting of $R1=1,

;axis Y FXS will be activated, the
;effective torque is reduced to 10% and
;an approach motion started in the
;direction of the stop

N11 IDS=2 WHENEVER ($AA_FXS[Y]==4) DO

 FXST[Y]=30

;Once the stop has been recognized

;($AA_FXS[Y]==4), the torque is reduced
;to 30%

N12 IDS=3 WHENEVER ($AA_FXS[Y]==1) DO

 FXST[Y]=$R0

;After reaching the stop

;the torque is controlled depending on
;R0

N13 IDS=4 WHENEVER (($R3==1) AND

 ($AA_FXS[Y]==1)) DO
FXS[Y]=0
FA[Y]=1000 POS[Y]=0

;Deselect depending

;on R3 and
;return

N20 FXS[Y]=0 G0 G90 X0 Y0 ;Normal program run:
;axis Y for

N30 RELEASE(Y) ;Enable motion in synchronized action

N40 G1 F1000 X100 ;Movement of another axis

N50

N60 GET(Y) ;include Y axis again in the path group

Example of activating the torque/force limitation (FOC)

N10 FOCON[X] ;Modal activation of limitation

N20 X100 Y200 FXST[X]=15 ;X travels with reduced torque (15%)

N30 FXST[X]=75 X20 ;Change the torque to 75%, X travels
;with this limited torque

N40 FOCOF[X] ;Disable torque limit

Multiple selection
If the function is called once more due to faulty programming (FXS[Axis]=1) the alarm
20092 "Travel to fixed stop still active" is initiated.
Programming code that scans $AA_FXS[] or a separate flag (here R1) in the condition will
ensure that the parts program fragment function is not activated more than once.

N10 R1=0

N20 IDS=1 WHENEVER ($R1==0 AND

$AA_IW[AX3] > 7) DO R1=1 FXST[AX1]=12

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-63

Block-related synchronized actions
By programming a block-related synchronized action, travel to fixed stop can be connected
during an approach motion.
Example:

N10 G0 G90 X0 Y0

N20 WHEN $AA_IW[X] > 17 DO FXS[X]=1 ;If X reaches a position greater than
;17 mm

N30 G1 F200 X100 Y110 ;FXS is activated

Static and block-related synchronized actions
In static and block-related synchronized actions, the same commands FXS, FXST and FXSW
can be used as in the normal parts program run. The values assigned can be resulted from a
calculation.

10.4.28 Determining the path tangent in synchronized actions

Function
The system variable $AC_TANEB (Tangent ANgle at End of Block), which can be read in
synchronized actions, calculates the angle between the path tangent at the end of the
current block and the path tangent at the start of the programmed following block.

Parameters
The tangent angle is always output positive in the range 0.0 to 180.0 degrees. If there is no
following block in the main run, the angle -180.0 degrees is output.

The system variable $AC_TANEB should not be read for blocks generated by the system
(intermediate blocks). The system variable $AC_BLOCKTYPE is used to tell whether it is a
programmed block (main block).

Example
ID=2 EVERY $AC_BLOCKTYPE==0 DO $SR1 = $AC_TANEB

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-64 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.4.29 Determining the current override

Function
The current override
(NC component) can be read and written with system variables:
$AA_OVR Axial override
$AC_OVR Path override
in synchronized actions.
The override defined by the PLC is provided for synchronized actions to read in the system
variables:
$AA_PLC_OVR Axial override
$AC_PLC_OVR Path override

The resulting override
is provided for synchronized actions to read in the system variables:
$AA_TOTAL_OVR Axial override
$AC_TOTAL_OVR Path override

The resulting override can be calculated as:
$AA_OVR * $AA_PLC_OVR or
$AC_OVR * $AC_PLC_OVR

 Motion synchronous actions
 10.4 Actions in synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-65

10.4.30 Time use evaluation of synchronized actions

Function
In a interpolation cycle, synchronized actions have to be both interpreted and motions
calculated by the NC. The system variables presented below provide synchronized actions
with information about the current time shares that synchronized actions have of the
interpolation cycle and about the computation time of the position controllers.

Motion synchronous actions
10.4 Actions in synchronized actions

 Job planning
10-66 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters
The variables only have valid values if machine data $MN_IPO_MAX_LOAD is greater than 0.
Otherwise the variables for both SINUMERIK powerline and solution line systems always
specify the net computing time during which the interrupts caused by HMI are no longer
taken into account. The net computing time results from:
• synchronized action time,
• position control time and
• remaining IPO computing time without interrupts caused by HMI

The system variables always contain the values
of the previous IPO cycle.

$AN_IPO_ACT_LOAD current IPO computing time (incl.
synchronized actions of all
channels)

$AN_IPO_MAX_LOAD longest IPO computing time (incl.
synchronized actions of all
channels)

$AN_IPO_MIN_LOAD shortest IPO computing time (incl.
synchronized actions of all
channels)

$AN_IPO_LOAD_PERCENT current IPO computing time as
percentage of IPO cycle (%)

$AN_SYNC_ACT_LOAD current computing time for
synchronized actions over all
channels

$AN_SYNC_MAX_LOAD longest computing time for
synchronized actions over all
channels

$AN_SYNC_TO_IPO percentage share that the
synchronized actions have of the
complete IPO computer time (over all
channels)

$AC_SYNC_ACT_LOAD current computing time for
synchronized actions in the channel

$AC_SYNC_MAX_LOAD longest computing time for
synchronized actions in the channel

$AC_SYNC_AVERAGE_LOAD average computing time for
synchronized actions in the channel

$AN_SERVO_ACT_LOAD current computing time of the
position controller

$AN_SERVO_MAX_LOAD longest computing time of the
position controller

$AN_SERVO_MIN_LOAD shortest computing time of the
position controller

Variable for the overload notification:
The machine data $MN_IPO_MAX_LOAD is used to set the net IPO computing time
(as % of IPO cycle) from which the system variable $AN_IPO_LOAD_LIMIT will be set to
TRUE. If the current load falls below this limit, the variable is again set to FALSE. If the
machine data is 0, the entire diagnostic function is deactivated.
The evaluation of $AN_IPO_LOAD_LIMIT allows the user to define a strategy for avoiding a
level overflow.

 Motion synchronous actions
 10.5 Technology cycles

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-67

10.5 10.5 Technology cycles

Function
As an action in synchronized actions, you can invoke programs. These must consist only of
functions that are permissible as actions in synchronized actions. Programs structured in this
way are called technology cycles.
Technology cycles are stored in the control as subroutines.
It is possible to process several technology cycles or actions in parallel in one channel.

Programming
• End of program is programmed with M02 / M17 / M30 / RET.
• All actions specified in ICYCOF can be processed in one cycle without waiting cycles

within one program level.
• Up to 8 technology cycles can be queried one after another per synchronized action.
• Technology cycles are also possible in non-modal synchronized actions.
• Both IF check structures and GOTO, GOTOF and GOTOB jump instructions can be

programmed.
Blocks with DEF and DEFINE instructions in technology cycles
• DEF and DEFINE instructions are read over into technology cycles
• these still result in alarm messages if the syntax is incorrect or incomplete
• can be read over without an alarm message without being applied themselves
• are taken into full consideration with value assignments as parts program cycles

Parameter transfer
Parameter transfer to technology cycles is possible. Both simple data types which are
transferred as formal "Call by Value" parameters and default settings which take effect when
technology cycles are called up are taken into account. These are:
• Programmed default values when no transfer parameters are programmed.
• To provide default parameters with initial values.
• Transfer non-initialized current parameters with a default value.

Sequence
Technology cycles are started as soon as their conditions have been fulfilled. Each line in a
technology cycle is processed in a separate IPO cycle. Several IPO cycles are required to
execute positioning axes. Other functions are executed in one cycle. In the technology cycle,
blocks are executed in sequence.

Motion synchronous actions
10.5 Technology cycles

 Job planning
10-68 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

If actions that are mutually exclusive are called up in the same interpolation cycle, the action
that is called up from the synchronized action with the higher ID number becomes active.

Example
Axis programs are started by setting digital inputs.

Main program: If

ID=1 EVERY $A_IN[1]==1 DO AXIS_X ;input 1 is at 1, start axis program X

ID=2 EVERY $A_IN[2]==1 DO AXIS_Y ;input 2 is at 1, start axis program Y

ID=3 EVERY $A_IN[3]==1 DO $AA_OVR[Y]=0 ;input 3 is at 1, set the override for
;axis Y to 0

ID=4 EVERY $A_IN[4]==1 DO AXIS_Z ;input 4 is at 1, start axis program Z

M30

Technology cycle AXIS_X:

$AA_OVR[Y]=0

M100

POS[X]=100 FA[X]=300

M17

Technology cycle AXIS_Y:

POS[Y]=10 FA[Y]=200

POS[Y]=-10

M17

Technology cycle AXIS_Z:

$AA_OVR[X]=0

POS[Z]=90 FA[Z]=250

POS[Z]=-90

M17

 Motion synchronous actions
 10.5 Technology cycles

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-69

Examples of different program sequences in the technology cycle

PROC CYCLE

N10 DEF REAL "value"=12.3

N15 DEFINE ABC AS G01

Both blocks are read over without alarms and without the variable and/or macro being
applied

PROC CYCLE

N10 DEF REAL

N15 DEFINE ABC G01

Both blocks still result in the NC alarm because the syntax is not written correctly.

PROC CYCLE

N10 DEF AXIS "axis1"=XX2

If axis XX2 is not known, alarm 12080 is output. Otherwise the block is overlooked without
alarms and without the variable being applied.

PROC CYCLE

N10 DEF AXIS "axis1"

N15 G01 X100 F1000

N20 DEF REAL"value1"

Block N20 always results in alarm 14500 because the DEF instruction is not permitted after
the first program line.

Motion synchronous actions
10.5 Technology cycles

 Job planning
10-70 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.5.1 Context variable ($P_TECCYCLE)

Function
The $P_TECCYCLE variable can be used to divide programs into synchronized action
programs and preprocessing programs. It is then possible to process blocks or program
sequences that are written correctly (in terms of syntax) or alternatively process them as the
parts program cycle.

Interpreting context variable
The $P_TECCYCLE system variable allows context-specific interpretation of program
sections to be controlled in technology cycles if

IF $P_TECCYCLE==TRUE Program sequence for technology cycle in

synchronized action

otherwise

ELSE Program sequence for parts program cycle

 Note
A block with incorrect or unauthorized program syntax as well as unknown value
assignments also result in an alarm message in the parts program cycle.

Example of program sequence with query of $P_TECCYCLE in the technology cycle

PROC CYCLE

N10 DEF REAL "value1" ;is read over in the technology cycle

N15 G01 X100 F1000

N20 IF $P_TECCYCLE==TRUE

N25 "Program sequence for technology cycle (without variable value1)"

N30 ELSE

N35 "Program sequence for parts program cycle (variable value1 is present)"

ENDIF

 Motion synchronous actions
 10.5 Technology cycles

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-71

10.5.2 Call by value parameters

Function
Technology cycles can be defined using call by value parameters. Simple data types such as
INT, REAL, CHAR, STRING, AXIS and BOOL can be used as parameters.

 Note
Formal parameters that are transferred to call by values cannot be arrays.
The current parameters can also consist of default parameters,
see Section "Initializing Default Parameters".

Programming

ID=1 WHEN $AA_IW[X]>50 DO TEC(IVAL, RVAL, , SVAL, AVAL)

;A default value is transferred for non-initialized current parameters.

ID=1 WHE $AA_IW[X]>50 DO TEC(IVAL, RVAL, , SYG_SS[0], AVAL)

10.5.3 Default parameter initialization

Function
Default parameters can also be provided with an initial value in the PROC instructions.

Programming
Assign default parameters in the technology cycle:

PROC TEC (INT IVAL=1, REAL RVAL=1.0, CHAR CVAL='A', STRING[10] SVAL="ABC", AXIS
AVAL=X, BOOL BVAL=TRUE)

If a current parameter consists of a default parameter, the initial value is transferred from the
PROC instruction. This applies both in the parts program and in synchronized actions.

Example

TEC (IVAL, RVAL, , SVAL, AVAL) ;the initial value applies to CVAL and BVAL

Motion synchronous actions
10.5 Technology cycles

 Job planning
10-72 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.5.4 Control processing of technology cycles (ICYCOF, ICYCON)

Function
The ICYCOF and ICYCON language commands are used to control the time processing of
technology cycles.
All blocks of a technology cycle are processed in just one interpolation cycle using ICYCOF.
All actions which require several cycles result in parallel processes with ICYCOF.
Application
With ICYCON, command axis movements can result in a delay to the processing of a
technology cycle. If this is not wanted, then all actions can be processed with ICYCOF in one
interpolation cycle without waiting times.

Programming
The following applies to the cyclic processing of technology cycles:

ICYCON Each block of a technology cycle is processed in a separate IPO

cycle following ICYCON.

ICYCOF All subsequent blocks of a technology cycle are processed in
one interpolation cycle following ICYCOF.

 Note
The two ICYCON and ICYCOF language commands are only effective within the program
level. Both commands are easily overlooked without a response in the parts program.

Example of ICYCOF processing mode

IPO cycle PROC TECHNOCYC

1. $R1=1

2.25 POS[X]=100

26. ICYCOF

26. $R1=2

26. $R2=$R1+1

26. POS[X]=110

26. $R3=3

26. RET

 Motion synchronous actions
 10.5 Technology cycles

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-73

10.5.5 Cascading technology cycles

Function
Up to 8 technology cycles can be processed switched in line. Several technology cycles can
then be programmed in one synchronized action.

Programming

ID=1 WHEN $AA_IW[X]>50 DO TEC1($R1) TEC2 TEC3(X)

Sequence of execution
The technology cycles are processed in order (in a cascade) working from left to right in
accordance with the aforementioned programming. If a cycle is to be processed in ICYCON
mode, this delays all the subsequent processing actions. An alarm aborts all subsequent
actions.

10.5.6 Technology cycles in non-modal synchronized actions

Function
Technology cycles are also possible in non-modal synchronized actions.
If the processing time of a technology cycle is longer than the processing time of the
associated block, the technology cycle is aborted when the block is changed.

 Note
A technology cycle does not prevent the block change.

Motion synchronous actions
10.5 Technology cycles

 Job planning
10-74 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.5.7 IF check structures

Function
IF check structures can be used in synchronized actions for branches in the processing
sequence of technology cycles.

Programming

IF <condition>

 $R1=1

[ELSE] ;optional

 $R1=0

ENDIF

10.5.8 Jump instructions (GOTO, GOTOF, GOTOB)

Function
Jump instructions (GOTO, GOTOF, GOTOB) are possible in technology cycles. The
specified labels must be present in the subprograms to prevent alarms from being triggered.

 Note
Labels and block numbers may only be constants.

Programming
Unconditional jumps
GOTO Label, block number
or
GOTOF Label, block number
or
GOTOB Label, block number

 Motion synchronous actions
 10.5 Technology cycles

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-75

Jump instructions and jump destinations

GOTO Firstly jump forwards and then backwards

GOTOF Jump forwards

GOTOB Jump backwards

Label: Jump marker

Block number Jump destination for this block

N100 Block number is subblock

:100 Block number is main block

10.5.9 Lock, unlock, reset (LOCK, UNLOCK, RESET)

Function
The process of a technology cycle can be locked, released again or a technology cycle reset
by modal synchronized actions / by other modal synchronized actions.

Programming

LOCK (n, n, ...) Lock synchronized actions, the active action is interrupted
UNLOCK (n, n, ...) Unlock synchronized actions
RESET (n, n, ...) Reset technology cycle
n Identification number of the synchronized action

Locking on the PLC side
Modal synchronized actions can be interlocked from the PLC with the ID numbers
n=1 ... 64. The associated condition is no longer evaluated and execution of the associated
function is locked in the NCK.
All synchronized actions can be locked indiscriminately with one signal in the PLC interface.

 Note
A programmed synchronized action is active as standard and can be protected against
overwriting/locking by a machine data setting.
It should not be possible for end users to modify synchronized actions defined by the
machine manufacturer.

Motion synchronous actions
10.5 Technology cycles

 Job planning
10-76 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example
Lock synchronized actions, LOCK

N100 ID=1 WHENEVER $A_IN[1]==1 DO M130

...

N200 ID=2 WHENEVER $A_IN[2]==1 DO LOCK(1)

Unlock synchronized actions, UNLOCK

N100 ID=1 WHENEVER $A_IN[1]==1 DO M130

...

N200 ID=2 WHENEVER $A_IN[2]==1 DO LOCK(1)

...

N250 ID=3 WHENEVER $A_IN[3]==1 DO UNLOCK(1)

Interrupt technology cycle, RESET

N100 ID=1 WHENEVER $A_IN[1]==1 DO M130

...

N200 ID=2 WHENEVER $A_IN[2]==1 DO RESET(1)

 Motion synchronous actions
 10.6 Delete synchronized action (CANCEL)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-77

10.6 10.6 Delete synchronized action (CANCEL)

Function
Modal synchronized actions with the identifier ID(S)=n can only be canceled directly from the
parts program with CANCEL.

 Note
Incomplete movements originating from a canceled synchronized action are completed as
programmed.

Programming

CANCEL(n, n, ...) Cancel synchronized action
n Identification number of the synchronized

action

Example

N100 ID=2 WHENEVER $A_IN[1]==1 DO M130

...

N200 CANCEL(2) ;Cancel synchronized action No. 2

Motion synchronous actions
10.7 Restrictions

 Job planning
10-78 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

10.7 10.7 Restrictions

Function
Boundary conditions apply for when the following events arise:
• Power on
• Mode change
• Reset
• NC Stop
• End of program
• Block search
• Program interruption by the asynchronous subroutine ASUB
• Repositioning REPOS
• Deselection with CANCEL

Events
• Power on

No synchronized actions are ever active during POWER ON. Static synchronized actions
can be activated by an asynchronized subroutine (ASUB) started by the PLC.

• Mode change
Synchronized actions activated by keyword IDS remain active after a change in operating
mode. All other synchronized actions become inactive following operating mode
changeover (e.g., axis positioning) and become active again following repositioning and a
return to automatic mode.

 Motion synchronous actions
 10.7 Restrictions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-79

• Reset
All non-modal and modal synchronized actions are ended by a NC reset. Static
synchronized actions remain active. They can start new actions. If a command axis
movement is active during RESET, this is aborted. Completed synchronized actions of the
WHEN type are not processed again after RESET.

Response following RESET

Synchronized action/
technology cycle

Modal/non-modal Static (IDS)

 Active action is aborted,
synchronized actions are canceled

Active action is aborted,
technology cycle is reset

Axis/
positioning spindle

Motion is aborted Motion is aborted

Speed-controlled
spindle

$MA_SPIND_ACTIVE_AFTER_RESET==1:
Spindle remains active

$MA_SPIND_ACTIVE_AFTER_RESET==0:
Spindle stops.

Master value coupling $MC_RESET_MODE_MASK, bit13 == 1:
Master value coupling remains active

$MC_RESET_MODE_MASK, Bit13 == 0:
Master value coupling is separated

Measuring operations Measuring operations started from
synchronized actions are aborted

Measuring operations started from
static synchronized actions are
aborted

• NC Stop
Static synchronized actions remain active for NC stop. Movements started from static
synchronized actions are not canceled. Synchronized actions that are local to the
program and belong to the active block remain active, movements started from them are
stopped.

Motion synchronous actions
10.7 Restrictions

 Job planning
10-80 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

• End of program
End of program and synchronized action do not influence one another. Current
synchronized actions are completed even after end of program. Synchronized actions
active in the M30 block remain active. If you do not want them to remain active, cancel
the synchronized action before end of program by pressing CANCEL (see preceding
section).

Response following end of program

Synchronized action/
technology cycle

Modal and non-modal actions
 are aborted

Static actions (IDS)
 remain active

Axis/
positioning spindle

M30 is delayed until the axis / spindle is
stationary.

Motion continues

Speed-controlled
spindle

End of program:
$MA_SPIND_ACTIVE_AFTER_RESET==1
:
Spindle remains active
$MA_SPIND_ACTIVE_AFTER_RESET==0
:
Spindle stops

The spindle remains active if the operating
mode changes

Spindle remains active

Master value coupling $MC_RESET_MODE_MASK, bit13 == 1:
Master value coupling remains active
$MC_RESET_MODE_MASK, Bit13 == 0:
Master value coupling is separated

A coupling started from a static
synchronized action remains
active

Measuring operations Measuring operations started from
synchronized actions are aborted

Measuring operations started
from static synchronized
actions remain active

• Block search
Synchronized actions are collected during a block search and evaluated on NC Start; the
associated actions are then started if necessary. Static synchronized actions are active
during block search. If polynomial coefficients programmed with FCTDEF are found during
a block search, they are written directly to the setting data.

• Program interruption by the asynchronous subroutine ASUB
ASUB start:
Modal and static motion-synchronous actions remain active and are also operative in the
asynchronous subprogram (ASUB).
ASUB end:
If the asynchronized subroutine is not resumed with REPOS modal and static motion-
synchronized actions that were modified in the asynchronized subroutine remain active in
the main program.

 Motion synchronous actions
 10.7 Restrictions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 10-81

• Repositioning REPOS
After repositioning REPOS, the synchronized actions that were active in the interrupted
block are reactivated. After REPOS, the modal synchronized actions changed from the
asynchronous subroutine no longer act for the machining of the remaining block.
Polynomial coefficients programmed with FCTDEF are not affected by asynchronous
subroutines and REPOS. No matter where they were programmed, they can be used at
any time in the asynchronized subroutine and in the main program after execution of
REPOS.

• Deselection with CANCEL
If an active synchronized action is deselected with CANCEL, this does not affect the active
action. Positioning motions are completed as programmed.
The CANCEL command is used to interrupt a modally or statically active synchronized
action. If a synchronized action is canceled while the positioning axis movement that was
activated from it is still active, the positioning axis movement is interrupted. If this is not
required, the axis movement can be decelerated before the CANCEL command with axial
deletion of distance-to-go:

Example of deselection with CANCEL

ID=17 EVERY $A_IN[3]==1 DO POS[X]=15 FA[X]=1500 ;Start positioning axis movement

...

WHEN ... DO DELDTG(X) ;End positioning axis movement

CANCEL(1)

Motion synchronous actions
10.7 Restrictions

 Job planning
10-82 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 11-1

Oscillation 11
11.1 11.1 Asynchronous oscillation

Function
An oscillating axis travels back and forth between two reversal points 1 and 2 at a defined
feedrate, until the oscillating motion is deactivated.
Other axes can be interpolated as desired during the oscillating motion. A continuous infeed
can be achieved via a path movement or with a positioning axis, however, there is no
relationship between the oscillating movement and the infeed movement.
Properties of asynchronized oscillation
• Asynchronous oscillation is active on an axis-specific basis beyond block limits.
• Block-oriented activation of the oscillation movement is ensured by the parts program.
• Combined interpolation of several axes and superimposing of oscillation paths are not

possible.

Programming
The following addresses allow asynchronized oscillation to be activated and controlled from
the part program.
The programmed values are entered in the corresponding setting data with block
synchronization during the main run and remain active until changed again.
Activate, deactivate oscillation: OS
OS[axis] = 1: resistor
OS[axis] = 0: switch off

Oscillation
11.1 Asynchronous oscillation

 Job planning
11-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

OSP1 [axis]=

OSP2 [axis]=

Position of reversal point 1
(oscillating: left reversal point)

Position of reversal point 2
(oscillating: right reversal point)

OST1 [axis]=

OST2 [axis]=

Stopping time at reversal points in seconds

FA[axis]= Feed for oscillating axis

OSCTRL [axis]= (Set, reset options)

OSNSC [axis]= Number of sparking-out strokes

OSE [axis]= End position

OS [axis]= 1 = activate oscillation; 0 = deactivate oscillation

Stopping times at reversal points: OST1, OST2

Hold time Movement in exact stop area at reversal point
-2 Interpolation continues without wait for exact stop
-1 Wait for exact stop coarse
0 Wait for exact stop fine
>0 Wait for exact stop fine and then wait for stopping time

The unit for the stopping time is identical to the stopping time programmed with G4.

Example of an oscillating axis that should oscillate between two reversal points
The oscillation axis Z must oscillate between 10 and 100. Approach reversal point 1 with
exact stop fine, reversal point 2 with exact stop coarse. Machining is performed with
feedrate 250 for the oscillating axis. Three sparking-out strokes must be executed at the end
of the machining operation followed by approach by oscillation axis to end position 200. The
feedrate for the infeed axis is 1, end of the infeed in X direction is at 15.

WAITP(X,Y,Z) ;Initial setting

G0 X100 Y100 Z100 ;Switch over in positioning axis
;operation

N40 WAITP(X,Z)

N50 OSP1[Z]=10 OSP2[Z]=100 ->

-> OSE[Z]=200 ->

-> OST1[Z]=0 OST2[Z]=–1 ->

-> FA[Z]=250 FA[X]=1 ->

-> OSCTRL[Z]=(4,0) ->

-> OSNSC[Z]=3 ->

N60 OS[Z]=1

;Reversal point 1, reversal point 2

;End position

;Stopping time at U1: Exact stop fine;

;Stopping time at U2: Exact stop coarse

;Feed for oscillating axis, infeed axis

;Setting options

;Three spark-out strokes

;Start oscillation

N70 WHEN $A_IN[3]==TRUE ->

-> DO DELDTG(X)

;Deletion of distance-to-go

N80 POS[X]=15 ;Starting position X axis

N90 POS[X]=50

N100 OS[Z]=0 ;Stop oscillation

M30

-> can be programmed in a single block.

 Oscillation
 11.1 Asynchronous oscillation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 11-3

Example of oscillation with online change of the reversal position
Setting data
The setting data necessary for asynchronous oscillation can be set in the parts program.
If the setting data are described directly in the program, the change takes effect during
preprocessing. A synchronized response can be achieved by means of a STOPRE
preprocessing stop.

$SA_OSCILL_REVERSE_POS1[Z]=-10

$SA_OSCILL_REVERSE_POS2[Z]=10

G0 X0 Z0

WAITP(Z)

ID=1 WHENEVER $AA_IM[Z] < $$AA_OSCILL_REVERSE_POS1[Z] DO $AA_OVR[X]=0

ID=2 WHENEVER $AA_IM[Z] < $$AA_OSCILL_REVERSE_POS2[Z] DO $AA_OVR[X]=0

 ;If the actual value of the oscillation

 ;axis has exceeded the reversal point,

 ;the infeed axis is stopped.

OS[Z]=1 FA[X]=1000 POS[X]=40 ;Switch on oscillation

OS[Z]=0 ;Switch off oscillation

M30

Description
The following apply to the oscillating axis:
• Every axis may be used as an oscillation axis.
• Several oscillation axes can be active at the same time (maximum: the number of the

positioning axes).
• Linear interpolation G1 is always active for the oscillating axis – irrespective of the

G command currently valid in the program.
The oscillating axis can
• act as an input axis for a dynamic transformation
• act as a guide axis for gantry and combined-motion axes
• be traversed

– without jerk limitation (BRISK) or
– with jerk limitation (SOFT) or
– with acceleration curve with a knee (as positioning axes).

Oscillation
11.1 Asynchronous oscillation

 Job planning
11-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Oscillation reversal points
The current offsets must be taken into account when oscillation positions are defined:
• Absolute specification
OSP1[Z]=value 1
Position of reversal point = sum of offsets + programmed value
• Relative specification
OSP1[Z]=IC(value)
Position of reversal point = reversal point 1 + programmed value
Example:
N10 OSP1[Z]=100 OSP2[Z]=110
.
.
N40 OSP1[Z]=IC(3)

 Note
WAITP (axis):
• If oscillation is to be performed with a geometry axis, you must enable this axis for

oscillation with WAITP.
• When oscillation has finished, this command is used to enter the oscillating axis as a

positioning axis again for normal use.

Oscillation with motion-synchronous actions and stop times, OST1/OST2
Once the set stop times have expired, the internal block change is executed during
oscillation (indicated by the new distances to go of the axes). The switch-off function is
tested for the block change. The deactivation function is defined according to the control
setting for the motional sequence "OSCTRL". This dynamic response can be influenced by
the feed override.
An oscillation stroke may then be executed before the sparking-out strokes are started or the
end position approached. Although it appears as if the deactivation response has changed,
this is not in However, this is not the case.

Setting feed, FA
The feedrate is the defined feedrate of the positioning axis. If no feedrate is defined, the
value stored in the machine data applies.

 Oscillation
 11.1 Asynchronous oscillation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 11-5

Defining the sequence of motions, OSCTRL
The control settings for the movement are set with enable and reset options.
OSCTRL[oscillating axis] = (set-option, reset-option)
The set options are defined as follows (the reset options deselect the settings):

Reset options
These options are deactivated (only if they have previously been activated as setting
options).

Setting options
These options are switched over. When OSE (end position) is programmed, option 4 is
implicitly activated.

Option value Meaning
0 When the oscillation is deactivated, stop at the next reversal point (default)

only possible by resetting values 1 and 2
1 When the oscillation is deactivated, stop at reversal point 1
2 When the oscillation is deactivated, stop at reversal point 2
3 When the oscillation is deactivated, do not approach reversal point if no

spark-out strokes are programmed
4 Approach end position after spark-out
8 If the oscillation movement is canceled by deletion of the distance-to-go:

then execute spark-out strokes and approach end position if appropriate
16 If the oscillation movement is canceled by deletion of the distance-to-go:

reversal position is approached as with deactivation
32 New feed is only active after the next reversal point
64 FA equal to 0, FA = 0: Path overlay is active

FA not equal to 0, FA <> 0: Speed overlay is active
128 For rotary axis DC (shortest path)
256 0=The sparking out stroke is a dual stroke.(default) 1=single stroke.

Several options are appended with plus characters.
Example:
The oscillating motion for the Z axis should stop at the reversal point 1 when switched off.
Where
• an end position is approached,
• a changed feed acts immediately and should immediately stop the axis after the deletion

of distance-to-go.
OSCTRL[Z] = (1+4,16+32+64)

Oscillation
11.2 Control oscillation via synchronized actions

 Job planning
11-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

11.2 11.2 Control oscillation via synchronized actions

Function
With this mode of oscillation, an infeed motion may only be executed at the reversal points or
within defined reversal areas.
Depending on requirements, the oscillation movement can be
• continued or
• stopped until the infeed has finished executing.

Programming
1. Define parameters for oscillation
2. Define motion-synchronous actions
3. Assign axes, define infeed

Parameters

OSP1 [OscillationAxis]= Position of reversal point 1

OSP2 [OscillationAxis]= Position of reversal point 2

OST1 [OscillationAxis]= Stopping time at reversal point 1 in seconds

OST2 [OscillationAxis]= Stopping time at reversal point 2 in seconds

FA[OscillationAxis]= Feed for oscillating axis

OSCTRL[OscillationAxis]= Set or reset options

OSNSC [OscillationAxis]= Number of sparking-out strokes

OSE[OscillationAxis]= End position

WAITP(oscillation axis) Enable axis for oscillation

Axis assignment, infeed
OSCILL[oscillation axis] = (infeed axis1, infeed axis2, infeed
axis3)
POSP[InfeedAxis] = (Endpos, Partial length, Mode)

OSCILL Assign infeed axis or axes for oscillating axis

POSP Define complete and partial infeeds (see the "File
and Program Management" chapter)

Endpos End position for the infeed axis after all partial
infeeds have been traversed.

Partial length Length of the partial infeed at reversal
point/reversal area

Mode Division of the complete infeed into partial infeeds

0 = Two residual steps of equal size (default);

1 = All partial infeeds of equal size

 Oscillation
 11.2 Control oscillation via synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 11-7

Motion-synchronous actions

WHEN… … DO when ... , do ...

WHENEVER … DO whenever ... , do ...

Example
No infeed must take place at reversal point 1. At reversal point 2, the infeed is to start at a
distance of ii2 before reversal point 2 and the oscillating axis is not to wait at the reversal
point for the end of the partial infeed. Axis Z is the oscillation axis and axis X the infeed axis.

1. Parameters for oscillation

DEF INT ii2 Define variable for reversal area 2

OSP1[Z]=10 OSP2[Z]=60 Define reversal points 1 and 2

OST1[Z]=0 OST2[Z]=0 Reversal point 1: exact stop fine

Reversal point 2: exact stop fine

FA[Z]=150 FA[X]=0.5 Oscillating axis Z feedrate, infeed axis X feedrate

OSCTRL[Z]=(2+8+16,1) Deactivate oscillating motion at reversal point 2; after
delete DTG spark-out and approach end position; after
delete DTG approach reversal position

OSNC[Z]=3 Sparking-out strokes

OSE[Z]=70 End position = 70

ii2=2 Set reversal point range

WAITP(Z) Enable oscillation for Z axis

Oscillation
11.2 Control oscillation via synchronized actions

 Job planning
11-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

2. Motion-synchronous action

WHENEVER $AA_IM[Z]<$SA_OSCILL_REVERSE_POS2[Z]DO ->
-> $AA_OVR[X]=0 $AC_MARKER[0]=0

Whenever

less than

then

and

the current position of oscillating axis Z in the MCS is

the start of reversal area 2

set the axial override of infeed axis X to 0%

set the marker with index 0 to value 0.

WHENEVER $AA_IM[Z]>=$SA_OSCILL_REVERSE_POS2[Z] DO $AA_OVR[Z]=0

Whenever

greater or equal to

then

the current position of oscillating axis Z in the MCS is

reversal position 2 is

set the axial override of oscillating axis Z to 0%.

WHENEVER $AA_DTEPW[X] == 0 DO $AC_MARKER[0]=1

Whenever

equal to

then

the distance-to-go of the part infeed

is

set the marker with index 0 to value 1.

WHENEVER $AC_MARKER[0]==1 DO $AA_OVR[X]=0 $AA_OVR[Z]=100

Whenever

equal to

then

the flag with index 0

is

set the axial override of infeed axis X to 0% in order to
inhibit premature infeed (oscillating axis Z has not yet
left reversal area 2 but infeed axis X is ready for a new
infeed)

set the axial override of oscillating axis Z to 100% (this
cancels the 2nd synchronized action).

-> must be programmed in a single block
3. Start oscillation

OSCILL[Z]=(X) POSP[X]=(5,1,1) ;Start the axes

;Assign axis X as the infeed axis for oscillating
;axis Z.

;Axis X is to travel to end position 5 in steps of 1.

M30 ;End of program

Description
1. Define oscillation parameters

The parameters for oscillation should be defined before the movement block containing
the assignment of infeed and oscillating axes and the infeed definition (see
"Asynchronized oscillation").

2. Define motion-synchronized actions
The following synchronization conditions can be defined:
Suppress infeed until the oscillating axis is located within a reversal area
(ii1, ii2) or at a reversal point (U1, U2).
Stop oscillation motion during infeed at reversal point.
Restart oscillation movement on completion of partial infeed. Define
start of next partial infeed.

3. Assign oscillating and infeed axes as well as partial and complete infeed.

 Oscillation
 11.2 Control oscillation via synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 11-9

Define oscillation parameters
Assignment of oscillating and infeed axes: OSCILL
OSCILL[oscillation axis] = (infeed axis1, infeed axis2,
infeed axis3)
The axis assignments and the start of the oscillation movement are defined with the OSCILL
command.
Up to 3 infeed axes can be assigned to an oscillating axis.

 Note
Before oscillation starts, the synchronization conditions must be defined for the behavior of
the axes.

Define infeeds: POSP
POSP[InfeedAxis] = (Endpos, Partial length, Mode)
The following are declared to the control with the POSP command:
• Complete infeed (with reference to end position)
• The length of the partial infeed at the reversal point or in the reversal area
• The partial infeed response when the end position is reached (with reference to mode)

Mode = 0 The distance-to-go to the destination point for the last two partial

infeeds is divided into two equal steps (default setting).
Mode = 1 All partial infeeds are of equal size. They are calculated from the

complete infeed.

Define motion-synchronized actions
The synchronized-motion actions listed below are used for general oscillation.
You are given example solutions for individual tasks, which you can use as modules for
creating user-specific oscillation movements

 Note
In individual cases, the synchronization conditions can be programmed differentially.

Keywords

WHEN … DO … when ... , do ...
WHENEVER … DO whenever ... , do ...

Oscillation
11.2 Control oscillation via synchronized actions

 Job planning
11-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Functions
You can implement the following functions with the language resources described in detail
below:
1. Infeed at reversal point.
2. Infeed at reversal area.
3. Infeed at both reversal points.
4. Stop oscillation movement at reversal point.
5. Restart oscillation movement.
6. Do not start partial infeed too early.
The following assumptions are made for all examples of synchronized actions presented
here:
• Reversal point 1 < reversal point 2
• Z = oscillating axis
• X = infeed axis

 Note
For more details, see the "Motion-synchronous actions" section.

Assign oscillating and infeed axes as well as partial and complete infeed
Infeed in reversal point range
The infeed motion must start within a reversal area before the reversal point is reached.
These synchronized actions inhibit the infeed movement until the oscillating axis is within the
reversal area.
The following instructions are used subject to the above assumptions:

Reversal point range 1:
WHENEVER $AA_IM[Z]>$SA_OSCILL_RESERVE_POS1[Z]+ii1 DO $AA_OVR[X] = 0

Whenever
greater than
then

the current position of oscillating axis in the MCS is
the start of reversal area 1
set the axial override of the infeed axis to 0%.

Reversal point range 2:
WHENEVER $AA_IM[Z]<$SA_OSCILL_RESERVE_POS2[Z]+ii2 DO $AA_OVR[X] = 0

Whenever
less than
then

the current position of oscillating axis in the MCS is
the start of reversal area 2
set the axial override of the infeed axis to 0%.

 Oscillation
 11.2 Control oscillation via synchronized actions

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 11-11

Infeed at reversal point
As long as the oscillation axis has not reached the reversal point, the infeed axis does not
move.
The following instructions are used subject to the above assumptions:

Reversal point range 1:
WHENEVER $AA_IM[Z]<>$SA_OSCILL_RESERVE_POS1[Z] DO $AA_OVR[X] = 0 → → $AA_OVR[Z] = 100
Whenever
greater or less than
then
and

the current position of oscillating axis Z in the MCS is
the position of reversal point 1
set the axial override of infeed axis X to 0%
set the axial override of oscillating axis Z to 100%.

Reversal point range 2:
For reversal point 2:
WHENEVER $AA_IM[Z]<>$SA_OSCILL_RESERVE_POS2[Z] DO $AA_OVR[X] = 0 → → $AA_OVR[Z] = 100
Whenever
greater or less than
then
and

the current position of oscillating axis Z in the MCS is
the position of reversal point 2
set the axial override of infeed axis X to 0%
set the axial override of oscillating axis Z to 100%.

Stop oscillation movement at the reversal point
The oscillation axis is stopped at the reversal point, the infeed motion starts at the same
time. The oscillating motion is continued when the infeed movement is complete.
At the same time, this synchronized action can be used to start the infeed movement if this
has been stopped by a previous synchronized action, which is still active.
The following instructions are used subject to the above assumptions:

Reversal point range 1:
WHENEVER $SA_IM[Z]==$SA_OSCILL_RESERVE_POS1[Z] DO $AA_OVR[X] = 0 → → $AA_OVR[Z] = 100
Whenever
equal to
then
and

the current position of oscillating axis in the MCS is
reversal position 1 is
set the axial override of the oscillation axis to 0%
set the axial override of the infeed axis to 100%.

Reversal point range 2:
WHENEVER $SA_IM[Z]==$SA_OSCILL_RESERVE_POS2[Z] DO $AA_OVR[X] = 0 → → $AA_OVR[Z] = 100
Whenever
equal to
then
and

the current position of oscillating axis in the MCS is
reversal position 2 is
set the axial override of the oscillation axis to 0%
set the axial override of the infeed axis to 100%.

Oscillation
11.2 Control oscillation via synchronized actions

 Job planning
11-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Online evaluation of reversal point
If there is a main run variable coded with $$ on the right of the comparison, then the two
variables are evaluated and compared with one another continuously in the IPO cycle.

 Note
Please refer to Section "Motion-synchronized actions" for more information.

Oscillation movement restarting
The purpose of this synchronized action is to continue the movement of the oscillation axis
on completion of the part infeed movement.
The following instructions are used subject to the above assumptions:

WHENEVER $AA_DTEPW[X]==0 DO $AA_OVR[Z]= 100
Whenever
equal to
then

the distance-to-go for the partial infeed on infeed axis X in the WCS
is zero,
Set the axial override of the oscillation axis to 100%.

Next partial infeed
When infeed is complete, a premature start of the next partial infeed must be inhibited.
A channel-specific marker ($AC_MARKER[Index]) is used for this purpose. It is enabled at
the end of the partial infeed (partial distance-to-go ≡ 0) and deleted when the axis leaves the
reversal area. The next infeed movement is then prevented by a synchronized action.
On the basis of the given assumptions, the following instructions apply for reversal point 1:

1. Set marker:
WHENEVER $AA_DTEPW[X] == 0 DO $AC_MARKER[1]=1
Whenever
equal to
then

the distance-to-go for the partial infeed on infeed axis X in the WCS
is zero,
set the marker with index 1 to 1.

2. Delete marker
WHENEVER $AA_IM[Z]<> $SA_OSCILL_RESERVE_POS1[Z] DO $AC_MARKER[1] =
0
Whenever
greater or less than
then

the current position of oscillating axis Z in the MCS is
the position of reversal point 1
set marker 1 to 0.

3. Inhibit infeed
WHENEVER $AC_MARKER[1]==1 DO $AA_OVR[X]=0
Whenever
equal to
then

marker 1 is
is
set the axial override of the infeed axis to 0%.

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 12-1

Punching and nibbling 12
12.1 12.1 Activation, deactivation

12.1.1 Punching and nibbling On or Off (SPOF, SON, PON, SONS, PONS,
PDELAYON/OF)

Function
Punching and nibbling activate, deactivate, PON/SON
The punching and nibbling functions are activated with PON and SON respectively. SPOF
terminates all functions specific to punching and nibbling operations. Modal commands PON
and SON are mutually exclusive, i.e., PON deactivates SON and vice versa.
Punching and nibbling with leader, PONS/SONS
The SONS and PONS commands also activate the punching or nibbling functions.
In contrast to SON/PON - stroke control on interpolation level - PONS and SONS control
stroke initiation on the basis of signals on servo level. This means that you can work with
higher stroke frequencies and thus with an increased punching capacity.
While signals are evaluated in the leader, all functions that cause the nibbling or punching
axes to change position are inhibited.
Example: Handwheel mode, changes to frames via PLC, measuring functions.
Punching with delay, PDELAYON/PDELAYOF
PDELAYON brings about a delay in the output of the punching stroke. The command is
modal and has a preparatory function. It is thus generally programmed before PON.
Punching continues normally after PDELAYOF.

Punching and nibbling
12.1 Activation, deactivation

 Job planning
12-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
PONS G... X... Y... Z...
or
SON G... X... Y... Z...
or
SONS G... X... Y... Z...
or
SPOF
or
PDELAYON
or
PDELAYOF
or
PUNCHACC(Smin,Amin, Smax, Amax)

Parameters

PON Punching ON

PONS Punching with leader on

SON Nibbling ON

SONS Nibbling with leader on

SPOF Punching, nibbling off

PDELAYON Punching with delay ON

PDELAYOF Punching with delay OFF

PUNCHACC Travel-dependent acceleration PUNCHACC (Smin, Amin, Smax, Amax)

"Smin" Minimum hole spacing

"Smax" Maximum hole spacing

"Amin" The initial acceleration Amin can be larger than Amax

"Amax" The final acceleration Amax can be less than Amin

Use of M commands
By using macro technology, you can also use M commands instead of language commands:

DEFINE M25 AS PON Punching ON

DEFINE M125 AS PONS Punching with leader on

DEFINE M22 AS SON Nibbling ON

DEFINE M122 AS SONS Nibbling with leader on

DEFINE M26 AS PDELAYON Punching with delay ON

DEFINE M20 AS SPOF Punching, nibbling off

DEFINE M23 AS SPOF Punching, nibbling off

 Punching and nibbling
 12.1 Activation, deactivation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 12-3

Punching and nibbling with leader, PONS/SONS
Punching and nibbling with a leader is not possible in more than one channel
simultaneously. PONS or SONS can only be activated in one channel at a time.
If PONS or SONS is activated in more than one channel at a time, alarm 2200 "Channel %1
fast punching/nibbling not possible in several channels" detects this impermissible action.
Otherwise, PONS and SONS work in exactly the same way as PON and SON.

Travel-dependent acceleration PUNCHACC
The PUNCHACC(Smin,Amin, Smax, Amax) language command defines an acceleration
curve that can define different accelerations (A) depending on the hole spacing (S).
Example for PUNCHACC(2, 50, 10, 100):
Distance between holes less than 2 mm:
Traversal acceleration is 50% of maximum acceleration.
Distance between holes from 2 mm to 10 mm:
Acceleration is increased to 100%, proportional to the spacing.
Distance between holes more than 10 mm:
Traverse at an acceleration of 100%.

Punching and nibbling
12.1 Activation, deactivation

 Job planning
12-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Initiation of the first stroke
The instant at which the first stroke is initiated after activation of the function differs
depending on whether nibbling or punching is selected:
• PON/PONS:

– All strokes – even the one in the first block after activation – are executed at the block
end.

• SON/SONS:
– The first stroke after activation of the nibbling function is executed at the start of the

block.
– Each of the following strokes is initiated at the block end.

Punching and nibbling on the spot
A stroke is initiated only if the block contains traversing information for the punching or
nibbling axes (axes in active plane).
However, if you wish to initiate a stroke at the same position, you can program one of the
punching/nibbling axes with a traversing path of 0.

 Note
Machining with rotatable tools
Use the tangential control function if you wish to position rotatable tools at a tangent to the
programmed path.

 Punching and nibbling
 12.2 Automatic path segmentation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 12-5

12.2 12.2 Automatic path segmentation

Function
Path segmentation
When punching or nibbling is active, SPP and SPN cause the total traversing distance
programmed for the path axes to be divided into a number of path sections of equal length
(equidistant path segmentation). Each path segment corresponds internally to a block.
Number of strokes
When punching is active, the first stroke is executed at the end of the first path segment. In
contrast, the first nibbling stroke is executed at the start of the first path segment. The
number of punching/nibbling strokes over the total traversing path is thus as follows:
Punching: Number of strokes = number of path segments
Nibbling: Number of strokes = number of path segments + 1
Auxiliary functions
Auxiliary functions are executed in the first of the generated blocks.

Programming
SPP=
or
SPN=

Parameters

SPP Size of path section (maximum distance between strokes); modal

SPN Number of path sections per block; non-modal

Punching and nibbling
12.2 Automatic path segmentation

 Job planning
12-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example 1
The programmed nibbling paths must be divided automatically into equidistant path
segments.

N100 G90 X130 Y75 F60 SPOF ;Position at starting point 1

N110 G91 Y125 SPP=4 SON ;Nibbling on, maximum path segment length
;for automatic path segmentation: 4 mm

N120 G90 Y250 SPOF ;Nibbling off, position at
;starting point 2

N130 X365 SON ;Nibbling on, maximum path segment length
;for automatic path segmentation: 4 mm

N140 X525 SPOF ;Nibbling off, position at
;starting point 3

N150 X210 Y75 SPP=3 SON ;Nibbling on, maximum path segment length
;for automatic path segmentation: 3 mm

N140 X525 SPOF ;Nibbling off, position at
;starting point 4

N170 G02 X-62.5 Y62.5 I J62.5 SPP=3 SON ;Nibbling on, maximum path segment length
;for automatic path segmentation: 3 mm

N180 G00 G90 Y300 SPOF ;Nibbling off

 Punching and nibbling
 12.2 Automatic path segmentation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 12-7

Example 2
Automatic path segmentation is to be used to create the individual rows of holes. The
maximum path segment length (SPP value) is specified in each case for segmentation
purposes.

N100 G90 X75 Y75 F60 PON ;Position at starting point 1;
;punching on; punch one hole

N110 G91 Y125 SPP=25 ;Maximum path segmentation length for
;automatic segmentation: 25 mm

N120 G90 X150 SPOF ;Punching off, position at
;starting point 2

N130 X375 SPP=45 PON ;Punching on, maximum path segment length
;for automatic path segmentation: 45 mm

N140 X275 Y160 SPOF ;Punching off, position at
;starting point 3

N150 X150 Y75 SPP=40 PON ;Punching on, the calculated path segment
;length of 37.79 mm is used instead of
;the 40 mm programmed as the path segment

N160 G00 Y300 SPOF ;Punching off; position

Punching and nibbling
12.2 Automatic path segmentation

 Job planning
12-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

12.2.1 Path segmentation for path axes

Length of SPP path segment
SPP is used to specify the maximum distance between strokes and thus the maximum
length of the path segments in which the total traversing distance is to be divided. The
command is deactivated with SPOF or SPP=0.
Example:
N10 SON X0 Y0
N20 SPP=2 X10
The total traversing distance of 10 mm will be divided into five path sections each of 2 mm
(SPP=2).

 Note
The path segments effected by SPP are always equidistant, i.e. all segments are equal in
length. In other words, the programmed path segment size (SPP setting) is valid only if the
quotient of the total traversing distance and the SPP value is an integer. If this is not the
case, the size of the path segment is reduced internally such as to produce an integer
quotient.

 Punching and nibbling
 12.2 Automatic path segmentation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 12-9

Example:
N10 G1 G91 SON X10 Y10
N20 SPP=3.5 X15 Y15
When the total traversing distance is 15 mm and the path segment length 3.5 mm, the
quotient is not an integer value (4.28). In this case, the SPP value is reduced down to the
next possible integer quotient. The result in this example would be a path segment length of
3 mm.

Number of SPN path segments
SPN defines the number of path segments to be generated from the total traversing distance.
The length of the segments is calculated automatically. Since SPN is non-modal, punching or
nibbling must be activated beforehand with PON or SON respectively.

SPP and SPN in the same block
If you program both the path segment length (SPP) and the number of path segments (SPN)
in the same block, then SPN applies to this block and SPP to all the following blocks. If SPP
was activated before SPN, then it takes effect again after the block with SPN.

 Note
Provided that punching/nibbling functions are available in the control, then it is possible to
program the automatic path segmentation function with SPN or SPP even independent of
this technology.

Punching and nibbling
12.2 Automatic path segmentation

 Job planning
12-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

12.2.2 Path segmentation for single axes
If single axes are defined as punching/nibbling axes in addition to path axes, then the
automatic path segmentation function can be activated for them.

Response of single axis to SPP
The programmed path segment length (SPP) basically refers to the path axes. For this
reason, the SPP value is ignored in blocks which contain a single axis motion and an SPP
value, but not a programmed path axis.
If both a single axis and a path axis are programmed in the block, then the single axis
responds according to the setting of the appropriate machine data.
1. Standard setting
The path traversed by the single axis is distributed evenly among the intermediate blocks
generated by SPP.
Example:
N10 G1 SON X10 A0
N20 SPP=3 X25 A100
As a result of the programmed distance between strokes of 3 mm, five blocks are generated
for the total traversing distance of the X axis (path axis) of 15 mm.

 Punching and nibbling
 12.2 Automatic path segmentation

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 12-11

The A axis thus rotates through 20° in every block.

2. Single axis without path segmentation
The single axis traverses the total distance in the first of the generated blocks.

3. With/without path segmentation
The response of the single axis depends on the interpolation of the path axes:

• Circular interpolation: Path segmentation
• Linear interpolation: No path segmentation

Response to SPN
The programmed number of path segments is applicable even if a path axis is not
programmed in the same block.
Requirement: The single axis is defined as a punching/nibbling axis.

Punching and nibbling
12.2 Automatic path segmentation

 Job planning
12-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-1

Additional functions 13
13.1 13.1 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING)

Function
AXNAME is used, for example, to create generally applicable cycles when the name of the
axes are not known (see also the "String functions" section).
SPI is used, for example, when axis functions are used for a spindle, e.g. the synchronized
spindle.
ISAXIS is used in universal cycles in order to ensure that a specific geometry axis exists and
thus that any following $P_AXNX call is not aborted with an error message.

Programming
AXNAME(facing axis)
or
AX[AXNAME(String)]
or
SPI(n)
or
AXTOSPI(X) or AXTOSPI(Y) or AXTOSPI(Z)
or
AXSTRING(SPI(n))
or
ISAXIS(geometry axis number)

Additional functions
13.1 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING)

 Job planning
13-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameter

AXNAME Converts an input string into axis identifiers; the input
string must contain a valid axis name.

AX Variable axis identifier

SPI Converts the spindle number into an axis identifier; the
transfer parameter must contain a valid spindle number.

n Spindle number

AXTOSPI Converts an axis identifier into an integer spindle index.
AXTOSPI corresponds to the reverse function to SPI.

X, Y, Z Axis identifier of AXIS type as variable or constant

AXSTRING The string is output with the associated spindle number.

ISAXIS Checks whether the specified geometry axis exists.

SPI extensions
The axis function SPI(n) can now also be used for reading and writing frame components,
for example, for writing frames with syntax $P_PFRAME[SPI(1),TR]=2.22. The additional
programming of the axis position using the address AX[SPI(1)] = <axis position>
can be used to traverse an axis.
AXTOSPI extension
AXTOSPI can be used to convert an axis identifier into a spindle number. If the axis identifier
cannot be converted into a spindle number, an alarm message is triggered.
Troubleshooting for AXSTRING[SPI(n)]
For the programming with AXSTRING[SPI(n)], the axis index of the axis to which the
spindle is assigned will no longer be output as spindle number, but rather the string "Sn"
will be output.
Example:
AXSTRING[SPI(2)] returns string "S2"

Example
Move the axis defined as a facing axis.

OVRA[AXNAME("Transverse axis")]=10 ;Transverse axis

AX[AXNAME("Transverse axis")]=50.2 ;Final position for transverse axis

OVRA[SPI(1)]=70 ;Override for spindle 1

IF ISAXIS(1) == FALSE GOTOF CONTINUE ;Does abscissa exist?

AX[$P_AXN1]=100 ;Move abscissa

CONTINUE:

 Additional functions
 13.2 Check scope of NC language present (STRINGIS)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-3

13.2 13.2 Check scope of NC language present (STRINGIS)

Function
The scope of NC language generated by a SINUMERIK 840D sl, including the active
GUD/macro definitions and the installed and active cycle programs, can be checked for
actual availability and their program-specific characteristics using the STRINGIS command.
For example, at the start of program interpretation, you can establish the effectiveness of
non-activated functions.
The return values are output with coding by the HMI user interface and include basic
information as well as detailed information with additional coding.

Programming
STRGINGIS(STRING name) = return value with coding
In the current configuration, the (STRING name) to be checked is always identified using
000 as not known.
100 as NC language command which cannot however be programmed.
All programmable NC language commands which are active as options or function are
identified using
2xx. Associated detailed information is explained in more detailed under the value ranges.

Parameter
Machine manufacturer
The machine manufacturer uses machine data to define how to proceed and which
NC language commands should be used.
If language commands are programmed and their functions are not active or they are not
known in the current scope, an alarm message will be issued. Please refer to the machine
manufacturer's specifications in such cases.

STRINGIS Checks the present scope of NC language and NC cycle names,

user variables, macros and label names belonging especially to
this command to establish whether these exist, are valid,
defined or active. The STRINGIS NC language command is an
integer type variable.

Especially for
STRINGIS

NC cycle names (an active cycle)

GUD variables

LUD variables

Macros

Label names

STRING name Variable identifier of the scope of NC language to be checked
and transfer parameter of recognized STRING type values.

The ISVAR language command is a subset of the STRINGIS command and can still be used
for certain checks.
For the behavior of a STRING itself, see "String functions".

Additional functions
13.2 Check scope of NC language present (STRINGIS)

 Job planning
13-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Scope of NC language
All available language commands and in particular all those not needed and active language
commands are still known for SINUMERIK powerline. The scope of language to be checked
for SINUMERIK solution line depends on the pre-configured machine data and either
includes all known / just the approved options or active functions in the current scope of
NC language.

Scope of NC language Scope of NC language includes:

G codes of all existing G code groups such as G0, G1, G2,
INVCW, POLY, ROT, KONT, SOFT, CUT2D, CDON, RMB, SPATH

DIN or NC addresses such as ADIS, RNDM, SPN, SR , MEAS

NC language functions such as predefined subprograms
TANG(Faxis1..n, Laxis1..n, coupling factor).

NC language procedures (pre-defined procedures with return
value) such as subprogram with parameter transfer GETMDACT.

NC language procedures (pre-defined procedures without return
value) such as deactivate single block suppression SBLOF.

NC key words such as ACN, ACP, AP, RP, DEFINE, SETMS

Machine data $MN general, $MA axial, $MC channel-specific as
well as all setting data $S... and options data $O... .

NC system variables $ in the parts program and synchronized
actions as well as NC computing parameters R.

Return values

Basic information

Coding:

The return value is coded. The basic information included is
sub-divided into y and existing detailed information into x.

Test result, whether the current configuration includes:

000 The NCK is not aware of the STRING name.

100 The STRING name is a language command but cannot be
programmed, i.e. this function is inactive.

2xx The STRING name is a programmable language command , i.e. this
function is active.

y00 Assignment not possible

y01 to y11 Value ranges for existing detailed information known.

400 For NC addresses which do not have xx=01 or xx=10 and are not
G code G or computing parameter R, see comments (1).

 Note
During a check with, STRINGIS should no other coding be found, then the corresponding
NC language command can be programmed and 2xx coding applies.

 Additional functions
 13.2 Check scope of NC language present (STRINGIS)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-5

2xx value ranges of the detailed information

Detailed Information Significance of the test result:

200 Interpretation not possible

201 A DIN address or NC address is defined, i.e. whether names
have recognized the address letters from this, see
comments (1)

202 G codes from the existing groups of G code have been
recognized.

203 NC language functions with return value and parameter transfer
are present.

204 NC language functions with return value and parameter transfer
are present.

205 NC key words are present.

206 General, axial or channel-specific machine data ($M...),
setting data ($S...) or option data($O...) are present.

207 User variables, such as NC system variables beginning with
$... or computing parameters beginning with R are present.

208 The cycle names have been loaded in NCK and cycle programs are
also activated, see comment (2).

209 The defined name has been recognized and activated GUD
variable found by global user variables (GUD variables).

210 The macro names along with the names defined and macros
activated in the macro definition files have been found, see
comment (3).

211 Of local user variables (LUD variables) whose name is
contained in the current program.

 Note
Comments on the individual return values
(1) Fixed, standardized addresses are recognized as DIN addresses. The following
definitions for geometry axes apply for NC addresses with adjustable identifiers:
A, B, C for specified round axes, E is reserved for extensions and
I, J, K, Q, U, V, W, X, Y, Z for specified linear axes.
The axle identifiers can be programmed with an address extension and can be written for the
test, e.g. 201 = STRINGIS("A1").
The following addresses cannot be written with an address extension for the test and always
deliver the fixed value of 400.
Example 400 = STRINGIS("D") or specification of an address expansion where
0 = STRINGIS("M02") results in 400 = STRINGIS("M").
(2) Cycle parameter names cannot be checked with STRINGIS.
(3) NC address letters G, H, L, M defined as macros are identified as macros.

Additional functions
13.2 Check scope of NC language present (STRINGIS)

 Job planning
13-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Valid NC addresses without address extension with the fixed value of 400
NC addressed D, F, G, H, R and L, M, N, O, P, S, T are valid. Then

400 D as tool correction, cutting edge number (D function)

F as feed (F function)

G is defined as G code (not the path condition in this case)

H stands for auxiliary function (H function)

R is defined as system parameter and

L stands for sub-routine call-up, M stands for additional
function, N stands for sub-block,
O is free for extensions,
P stands for number of program executions,
S stands for spindle speed (S function),
T stands for tool number (T function).

Example of programmable auxiliary function T

T is defined as auxiliary function and can always be programmed.

400 = STRINGIS("T") ;Return value without address
;extension

0 = STRINGIS("T3") ;Return value with address extension

 Additional functions
 13.2 Check scope of NC language present (STRINGIS)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-7

Examples of other checks for the programmable scope of NC language 2xx

Xis defined as axis ;Axis is a liner axis X

201 = STRINGIS("X") ;Return value of linear axis X

201 = STRINGIS("X1") ;Return value of linear axis X1

A2 is an NC address with extension ;NC address A2 with extension

201 = STRINGIS("A") ;Return value for NC address A

201 = STRINGIS("A2") ;with extended NC address A2

INVCW is a defined G code ;INVCW is G code evolvent
;interpolation (clockwise).

202 = STRINGIS("INVCW") ;Return value of known G code

GETMDACT is an NC language function ;the NC language function GETMDACT
;is present.

203 = STRINGIS("GETMDACT") ;GETMDACT is an NC language function

DEFINE is an NC key word ;the DEFINE key word exists for
;identification of macros.

205 = STRINGIS("DEFINE") ;DEFINE is present as a key word

the $MC_GCODES_RESET_VALUES is channel-
specific machine data

;the machine data
;$MC_GCODE_RESET_VALUES exists.

206 = STRINGIS("$MC_GCODE_RESET_VALUES") ;$MC_GCODE_RESET_VALUES has been
;recognized as machine data

$TC_DP3 is a system variable for the tool
length components

;NC system variable $TC_DP3 exists
;for tool length components.

207 = STRINGIS("$TC_DP3") ;$TC_DP3 recognized as system
;variable.

$TC_TP4 is a system variable for a
tool size

;NC system variable $TC_TP4 exists
;for tool size.

207 = STRINGIS("$TC_TP4") ;$TC_TP4 recognized as system
;variable.

$TC_MPP4 is a system variable for the
magazine space status

;Check magazine management for

207 = STRINGIS("$TC_MPP4") ;Magazine management is active

0 = STRINGIS("$TC_MPP4") ;Magazine management is not
;available (4)

MACHINERY_NAME is defined as GUD variable ;Global user variable is defined as
;MACHINERY_NAME.

209 = STRINGIS("MACHINERY_NAME") ;MACHINERY_NAME found as GUD

LONGMACRO is defined as macro ;Macro name is LONGMACRO

210 = STRINGIS("LONGMACRO") ;Macro identified as LONGMACRO

MYVAR is defined as LUD variable ;Local user variable has been named
;MYVAR

211 = STRINGIS("MYVAR") ;LUD variable is included in current
;program as the MYVAR name

X, Y, Z is a command not known in the NC ;X,Y,Z is an unknown language
;command and is also not a
;GUD/macro/cycle name

0 = STRINGIS("XYZ") ;STRING name X, Y, Z is not known

(4) For the system parameters of magazine management, the following characteristic applies
in particular: if the function is not active, then STRINGIS always supplies the result value of 0
regardless of the value set for machine data for configuring the scope of NC language.

Additional functions
13.3 ISVAR () function call and read machine array index

 Job planning
13-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.3 13.3 ISVAR () function call and read machine array index

Function
The ISVAR command is a function as defined in the NC language that has a
• function value of type BOOL
• transfer parameter of type STRING
The ISVAR command returns TRUE if the transfer parameter contains a variable known in
the NC (machine data, setting data, system variable, general variables such as GUDs).

Programming
ISVAR(variable identifier)
or
ISVAR (identifier, [value, value])

Parameters

Variable identifier Transfer parameter of type string can be undimensioned,
1-dimensional, or 2-dimensional.

Name of identifier Identifier with a known variable with or without an array
index as machine data, setting data, system variable, or
general variable.
Extension:

For general and channel-specific machine data, the first
element of the array will be read even when no index is
specified.

Value Function value of type BOOL

Checks
The following checks are made in accordance with the transfer parameter:
• Does the identifier exist
• Is it a 1- or 2-dimensional array
• Is an array index permitted
Only if all these checks have a positive result will TRUE be returned. If a check has a
negative result or if a syntax error has occurred, it will return FALSE. Axial variables are
accepted as an index for the axis names but not checked.
Extension: Read machine data and setting data array without index.
If there is no index for general and channel-specific machine data, alarm 12400 "channel %
1 block % 2 array % 3 element not present" is no longer output.
At least the axis index must still be programmed for axis-specific machine data. Otherwise
alarm 12400 will be issued.

 Additional functions
 13.3 ISVAR () function call and read machine array index

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-9

Example of the ISVAR function call

DEF INT VAR1

DEF BOOL IS_VAR=FALSE ;Transfer parameter is a general variable

N10 IS_VAR=ISVAR("VAR1") ;IS_VAR is TRUE in this case

DEF REAL VARARRAY[10,10]

DEF BOOL IS_VAR=FALSE ;Different syntax variations

N20 IS_VAR=ISVAR("VARARRAY[,]") ;IS_VAR is TRUE with a 2-dimensional array

N30 IS_VAR=ISVAR("VARARRAY") ;IS_VAR is TRUE, variable exists

N40 IS_VAR=ISVAR
("VARARRAY[8,11]")

;IS_VAR is FALSE, array index is not allowed

N50 IS_VAR=ISVAR("VARARRAY[8,8") ;IS_VAR is FALSE, syntax error for missing "]"

N60 IS_VAR=ISVAR("VARARRAY[,8]") ;IS_VAR is TRUE, array index is allowed

N70 IS_VAR=ISVAR("VARARRAY[8,]") ;IS_VAR is TRUE

DEF BOOL IS_VAR=FALSE ;Transfer parameter is a machine data

N100 IS_VAR=ISVAR
("$MC_GCODE_RESET_VALUES[1]"

;IS_VAR is TRUE

DEF BOOL IS_VAR=FALSE ;Transfer parameter is a system variable

N10 IS_VAR=ISVAR("$P_EP") ;IS_VAR is TRUE in this case

N10 IS_VAR=ISVAR("$P_EP[X]") ;IS_VAR is TRUE in this case

Example of reading a machine data array both with and without index
The first element will be read for
R1=$MC_EXTERN_GCODE_RESET_VALUES
as previous, this corresponds to
R1=$MC_EXTERN_GCODE_RESET_VALUES[0]
or the first element will be read
R1=$MA_POSTCTRL_GAIN[X1]
as previous, this corresponds to
R1=$MA_POSTCTRL_GAIN[0, X1]
The first element in synchronized actions is also read for
WHEN TRUE DO $R1 = $MC_EXTERN_GCODE_RESET_VALUES
as previous, this corresponds to
WHEN TRUE DO $R1 = $MC_EXTERN_GCODE_RESET_VALUES[0]
and would previously not be read with alarm 12400.
The alarm 12400 will still be issued for
R1=$MA_POSTCTRL_GAIN

Additional functions
13.4 Learn compensation characteristics (QECLRNON, QECLRNOF)

 Job planning
13-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.4 13.4 Learn compensation characteristics (QECLRNON, QECLRNOF)

Function
Quadrant error compensation (QEC) reduces contour errors that occur on reversal of the
traversing direction due to mechanical non-linearities (e.g. friction, backlash) or torsion. On
the basis of a neural network, the optimum compensation data can be adapted by the control
during a learning phase in order to determine the compensation characteristics
automatically. Learning can take place simultaneously for up to four axes.

Programming
QECLRNON
or
QECLRNOF
Activate the learning process: QECLRNON
The actual learning process is activated in the NC program with the command QECLRNON
and specification of the axes:
QECLRNON (X1, Y1, Z1, Q)
Only if this command is active are the quadrants changed.
Deactivate the learning process: QECLRNOF
When the learning movements for the desired axes are complete, the learning process is
deactivated simultaneously for all axes with QECLRNOF.

 Additional functions
 13.4 Learn compensation characteristics (QECLRNON, QECLRNOF)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-11

Parameters

QECLRNON (axis.1,…4) Activate "Learn quadrant error compensation" function

QECLRNOF Deactivate "Learn quadrant error compensation" function

QECLRN.SPF Learning cycle

QECDAT.MPF Sample NC program for assigning system variables and the
parameters for the learning cycle

QECTEST.MPF Sample NC program for circle shape test

Description
The traversing movements of the axes required for the learning process are generated with
the aid of an NC program. The learning movements are stored in the program in the form of
a learning cycle.
First teach-in
Sample NC programs contained on the disk of the standard PLC program are used to teach
the movements and assign the QEC system variables in the initial learning phase during
startup of the control:
Relearning
The learnt characteristics can be optimized with subsequent learning. The data stored in the
user memory are used as the basis for optimization. Optimization is performed by adapting
the sample NC programs to your needs.
The parameters for the learning cycle (e.g. QECLRN.SPF) might have to be changed for
"relearning".
• Set "Learn mode" = 1
• Reduce "Number of learn passes" if required
• Activate "Modular learning" if required and define area limits.

Additional functions
13.5 Synchronous spindle

 Job planning
13-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.5 13.5 Synchronous spindle

Function
Synchronous operation involves a following spindle (FS) and a leading spindle (LS), referred
to as the synchronous spindle pair. The following spindle imitates the movements of the
leading spindle when a coupling is active (synchronous operation) in accordance with the
defined functional interrelationship.
The synchronous spindle pairs for each machine can be assigned a fixed configuration by
means of channel-specific machine data or defined for specific applications via the CNC
parts program. Up to two synchronized spindle pairs can be operated simultaneously on
each NC channel.
Refer to the parts program for the following coupling actions
• defined or changed
• activated
• deactivated
• deleted
from the parts program.
In addition, depending on the software status
• it is possible to wait for the synchronism conditions
• the block change method can be changed
• either the setpoint coupling or actual value coupling type is selected or the angular offset

between master and following spindle specified
• when activating the coupling, previous programming of the following axis is transferred
• either a measured or a known synchronism variance is corrected
.

13.5.1 Synchronous spindle (COUPDEF, COUPDEL, COUPON/ONC,
COUPOF/OFS, COUPRES)

Function
The synchronous spindle function enables turning machines to perform workpiece transfer
from spindle 1 to spindle 2 on-the-fly, e.g. for final machining. This avoids downtime caused,
for example, by rechucking.
The transfer of the workpiece can be performed with:
• speed synchronism (nFS = n LS)
• position synchronism (ϕFS = ϕLS)
• position synchronism with angular offset (ϕFS = ϕLS+ ∆ϕ)

 Additional functions
 13.5 Synchronous spindle

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-13

Specification of a speed ratio SRT between the main spindle and a "tool spindle" provides the
prerequisite conditions for multi-edge machining (polygon turning).

Additional functions
13.5 Synchronous spindle

 Job planning
13-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programming
COUPDEF(FS, LS, TFS, TLS, block behavior, coupling type)
COUPON(FS, LS, POSFS)
COUPONC(FS, LS)
COUPOF(FS, LS, POSFS, POSLS)
COUPOFS(FS, LS)
COUPOFS(FS, LS, POSFS)
COUPRES (FS, LS)
COUPDEL (FS, LS)
WAITC(FS, block behavior, LS, block behavior)
The reduced specification without the main spindle is also possible for:
COUPOF(FS), COUPOFS(FS), COUPRES(FS), COUPDEL(FS)

 Note
The following spindle and main spindle must be programmed for each COUPDEF, COUPON
and COUPONC instruction so that alarm messages are not triggered.
The other coupling parameters must only be programmed when they need to be changed.
The last status remains applicable for non-specified parameters.

Parameters

COUPDEF Define/change user coupling

COUPON Activate coupling. The following spindle and main spindle are
synchronized based on the current speed

COUPONC Transfer coupling when activating with previous programming of
M3 S... or M4 S...
A difference in speed for the following spindle is transferred
immediately.

COUPOF Deactivate coupling. Block change as quickly as possible with
immediate block change: COUPOF(S2, S1)
Block change only once the
switch-off position is crossed: COUPOF(S2, S1, POSFS)
Switch-off positions: COUPOF(S2, S1, POSFS, POSLS)

COUPOFS Deactivating a coupling with stop of following spindle. Block
change as quickly as possible with immediate block change:
COUPOFS(S2, S1) Block change only once the
switch-off position is crossed: COUPOFS(S2, S1, POSFS)

COUPRES Reset coupling parameters to configured MD and SD

COUPDEL Delete user-defined coupling

WAITC Wait for synchronized run condition
(NOC are increased to IPO during block changes)

FS Designation of following spindle

 Additional functions
 13.5 Synchronous spindle

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-15

Optional parameters

LS Designation of main spindle;

Specification with spindle number: e.g. S2, S1

TFS, TLS Speed ratio parameters for FS = numerator and LS = denominator

Default setting = 1.0; specification of denominator optional

Block change
behavior:

"NOC"

"FINE"

"COARSE"

"IPOSTOP"

Block change method; Block change is implemented:

Immediately

At "Synchronism fine"

At "Synchronism coarse"

in response to IPOSTOP (e.g. after setpoint-based synchronism)
(presetting)

The block change method is modal

Coupling type

"DV"

"AV"

"VV"

Coupling type: Coupling between FS and LS

Setpoint linkage (default)

Actual value coupling

Speed coupling

The coupling type is modal.

POSFS Angle offset between leading and following spindles

POSFS, POSLS Switch-off positions of following and main spindles
"The block change is enabled once POSFS, POSLS has been
crossed"

Example of working with master and slave spindles.

 ;Leading spindle = master spindle =
;spindle 1

 ;Following spindle = spindle 2

N05 M3 S3000 M2=4 S2=500 ;Master spindle rotates at 3000 rpm
;following spindle at 500 rpm

N10 COUPDEF (S2, S1, 1, 1, "NOC",
"Dv")

;Def. of coupling, can also be configured

…

N70 SPCON ;Include master spindle in position control
;(setpoint coup.)

N75 SPCON(2) ;Include slave spindle in position control

N80 COUPON (S2, S1, 45) ;On-the-fly coupling to offset position =
;45 degrees

…

N200 FA [S2] = 100 ;Positioning speed = 100 degrees/min

N205 SPOS[2] = IC(-90) ;Traverse with 90° overlay in
;negative direction

N210 WAITC(S2, "Fine") ;Wait for "fine" synchronism

N212 G1 X… Y… F… ;Machining

…

N215 SPOS[2] = IC(180) ;Traverse with 180° overlay in
;positive direction

N220 G4 S50 ;Dwell time = 50 revolutions of master
;spindle

N225 FA [S2] = 0 ;Activate configured speed (MD)

N230 SPOS[2] = IC (-7200) ;20 rev. With configured speed in
;negative direction

…

Additional functions
13.5 Synchronous spindle

 Job planning
13-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

N350 COUPOF (S2, S1) ;Decouple on-the-fly, S=S2=3000

N355 SPOSA[2] = 0 ;Stop slave spindle at zero degrees

N360 G0 X0 Y0

N365 WAITS(2) ;Wait for spindle 2

N370 M5 ;Stop slave spindle

N375 M30

Example of programming of difference in speed

 ;Leading spindle = master spindle =
;spindle 1

 ;Following spindle = spindle 2

N01 M3 S500 ;Master spindle rotates at 500 rpm

N02 M2=3 S2=300 ;Following spindle rotates at 300 rpm

…

N10 G4 F1 ;Dwell time of master spindle

N15 COUPDEF (S2, S1, -1) ;Coupling factor with speed ratio -1:1

N20 COUPON (S2, S1) ;Activate coupling. The speed of the
;following spindle results from the speed
;of the main spindle and coupling factor

…

N26 M2=3 S2=100 ;Programming of difference in speed

Examples of transfer of a movement for difference in speed
1. Activate coupling during previous programming of following spindle with COUPON

 ;Leading spindle = master spindle =

;spindle 1

 ;Following spindle = spindle 2

N05 M3 S100 M2=3 S2=200 ;Master spindle rotates at 100 rpm
;following spindle at 200 rpm

N10 G4 F5 ;Dwell time = 5 seconds of master spindle

N15 COUPDEF (S2, S1, 1) ;Speed ratio of following spindle to
;main spindle is 1.0 (presetting)

N20 COUPON (S2, S1) ;On-the-fly coupling to main spindle

N10 G4 F5 ;Following spindle rotates at 100 rpm

2. Activate coupling during previous programming of following spindle with COUPONC

 ;Leading spindle = master spindle =

;spindle 1

 ;Following spindle = spindle 2

N05 M3 S100 M2=3 S2=200 ;Master spindle rotates at 100 rpm
;following spindle at 200 rpm

N10 G4 F5 ;Dwell time = 5 seconds of master spindle

N15 COUPDEF (S2, S1, 1) ;Speed ratio of following spindle to
;main spindle is 1.0 (presetting)

N20 COUPONC (S2, S1) ;On-the-fly coupling to main spindle and
;transfer previous speed to S2

N10 G4 F5 ;S2 rotates at 100 rpm + 200 rpm = 300 rpm

 Additional functions
 13.5 Synchronous spindle

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-17

3. Activate coupling with following spindle stationary with COUPON

 ;Leading spindle = master spindle =
;spindle 1

 ;Following spindle = spindle 2

N05 SPOS=10 SPOS[2]=20 ;Following spindle S2 in positioning mode

N15 COUPDEF (S2, S1, 1) ;Speed ratio of following spindle to
;main spindle is 1.0 (presetting)

N20 COUPON (S2, S1) ;On-the-fly coupling to main spindle

N10 G4 F1 ;Coupling is closed,
;S2 remains at 20 degrees

4. Activate coupling with following spindle stationary with COUPONC
Positioning or axis mode
If the following spindle is in positioning or axis mode before coupling, then the following
spindle behaves the same for COUPON(FS, LS) and COUPONC(FS, LS).

Define synchronized spindle pair
Fixed definition of coupling:
The leading and following spindle are defined in machine data. With this coupling, the
machine axes defined for the LS and FS cannot be changed from the NC parts program.
The coupling can nevertheless be parameterized in the NC parts program by means of
COUPDEF (on condition that no write protection is valid).
User-defined coupling:
The statement COUPDEF can be used to create new couplings and change existing ones in
the NC parts programs. If a new coupling relationship is to be defined, any existing user-
defined coupling must be deleted with COUPDEL.

Define a new coupling COUPDEF
The following paragraphs define the parameters for the predefined subroutine:
COUPDEF(FS, LS, TFS, TLS, block behavior, coupling)

Following and leading spindles, FS and LS
The axis names FS and LS are used to identify the coupling uniquely. They must be
programmed for each COUP statement. Further coupling parameters only need to be
defined if they are to be changed (modal scope).
Example:
N ... COUPDEF(S2, S1, TFS, TLS)
Meaning:
S2 = following spindle, S1 = leading spindle

Additional functions
13.5 Synchronous spindle

 Job planning
13-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Speed ratio SRT
The speed ratio is defined with parameters for FS (numerator) and LS (denominator).
Options:
• Following and leading spindle rotate at the same speed (nFS = nLS ; SRT positive
• Rotation in the same or opposite direction (SRT negative) between LS and FS
• Following and leading spindles rotate at different speeds

(nFS = SRT • nLS ;SRT ≠ 1)
Application: Polygonal turning

Example:
N ... COUPDEF (S2, S1, 1.0, 4.0)
Meaning: the following spindle S2 and the leading spindle S1 rotate at a speed ratio of 0.25.

 Note
The numerator must always be programmed. If no numerator is programmed, "1" is taken as
the default.
The speed ratio can also be changed on-the-fly, when the coupling is active.

 Additional functions
 13.5 Synchronous spindle

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-19

Block change behavior NOC, FINE, COARSE, IPOSTOP
The following options can be selected during definition of the coupling to determine when the
block change takes place:
"NOC" immediate (default)
"FINE" for "fine synchronism"
"COARSE" for "coarse synchronism"
"IPOSTOP" for IPOSTOP (i.e., after setpoint-based synchronism)
The block change response can be specified simply by writing the letters in bold print.

Type of coupling DV, AV
Options:
"DV" setpoint coupling between FS and LS (default)
"AV" actual value coupling between FS and LS

Caution
The coupling type may be changed only when the coupling is deactivated!

Activate synchronized mode COUPON, POSFS
• Fastest possible activation of coupling with any angle reference between LS and FS:

N ... COUPON(S2, S1)or
N ... COUPON(S2, S1, POSFS)or
N ... COUPON(S2)

• Activation with angular offset POSFS
Position-synchronized coupling for profiled workpieces.
POSFS refers to the 0° position of the lead spindle in the positive direction of rotation
POSFS value range: 0°… 359,999°:
COUPON(S2, S1, 30)
You can use this method to change the angle offset even when the coupling is already
active.

Position the following spindle
When the synchronized spindle coupling is active, following spindles can also be positioned
within the ±180° range independently of the motion initiated by the master spindle.

Additional functions
13.5 Synchronous spindle

 Job planning
13-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Positioning SPOS
The following spindle can be interpolated with SPOS=…. Please refer to Programming Manual
"Fundamentals" for more information about SPOS.
Example:
N30 SPOS[2]=IC(-90)

Difference in speed M3 S... or M4 S...
A difference in speed results from signed superimposition of two sources of speed and is
programmed again for the following spindle e.g. where Sn=... or Mn=3, Mn=4 in speed
control mode during an active synchronized spindle coupling. During the process, this speed
component is derived from the main spindle using the coupling factor and the following
spindle added to this with the correct prefix.

 Note
When the direction of rotation is M3 or M4, the speed S... also has to be reprogrammed
because otherwise an alarm is triggered to report missing programming.
For more information on difference in speed, see
References: /FB2/ Function Manual, Extension Functions; Synchronized Spindle (S3).

Difference in speed for COUPONC
Transfer of a movement for difference in speed
The previous programming of M3 S... or M4 S... of the following spindle is superimposed by
activating a synchronized coupling with COUPONC. The spindle speed previously
programmed into a separate block is then retained when the coupling is activated. The
difference in speed is transferred immediately.

 Note
Enabling difference in speed
The difference in speed produced is only transferred when superimposition of the movement
is also enabled. Otherwise a self-canceling alarm signals this impermissible superimposition.

Dynamic response distribution on the available motor dynamic response
The dynamic response to be limited for the main spindle must be limited by programming
such that another movement component does not restrict the dynamic response of the
following spindle to an impermissible extent e.g. as a result of the difference in speed.

 Additional functions
 13.5 Synchronous spindle

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-21

FA, ACC, OVRA, VELOLIMA: Velocity, acceleration
FA[SPI] (Sn)] or FA[Sn], ACC[SPI(Sn)] or ACC[Sn] and OVRA[SPI(n)] or
OVRA[Sn] as well as VELOLIMA[Sn] can be used to program the positioning speeds and
acceleration values for following spindles (refer to the Programming Manual, Fundamentals).
"n" stands for spindle number 1...n.
The programmable ranges of values for the dynamic response offset of the following spindle
Sn act on
• the feed for positioning axles or spindles in position mode

FA[Sn] = ... to 999 999.999 mm/min or degrees/min
• the percentage acceleration correction ACC[Sn] = 1 to 200%
• the percentage feed correction OVRA[Sn] = ... to 200%
• the speed component VELOLIMA[Sn] = percentage speed correction of maximum speed

of between 1 and 100%

 Note
Acceleration component JERKLIMA[Sn]
The jerk offset may be specified but does not impact on spindles.
For further information on configuring the dynamic response programming using machine
data, see Reference: /FB2/ Function Manual, Extension Functions; Round Axes (R2).

Programmable block change WAITC
WAITC can be used to define the block change behavior with various synchronism conditions
(coarse, fine, IPOSTOP) for continuation of the program, e.g., after changes to coupling
parameters or positioning operations. WAITC causes a delay in the insertion of new blocks
until the appropriate synchronism condition is fulfilled, thereby allowing the synchronized
state to be processed faster. If no synchronism conditions are specified, then the block
change behavior programmed/configured for the relevant coupling applies.
Examples:
N200 WAITC
Wait for synchronism conditions for all active slave spindles without specification of these
conditions.
N300 WAITC(S2, "FINE", S4, "COARSE")
Wait for the specified "Coarse" synchronism conditions for slave spindles S2 and S4.

Additional functions
13.5 Synchronous spindle

 Job planning
13-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Deactivate synchronous mode COUPOF
Three variants are possible:
• For the fast possible activation of the coupling and immediate enabling of the block

change:
COUPOF(S2, S1)or
COUPOF(S2); without specification of the main spindle

• After the deactivation positions have been crossed; the block change is not enabled until
the deactivation positions POSFS and, where appropriate, POSLS have been crossed.
Value range 0° ... 359.999°:
COUPOF(S2, S1, 150)
COUPOF(S2, S1, 150, 30)

Deactivating a coupling with stop of following spindle COUPOFS
Two versions are possible:
• For fastest possible activation of the coupling and stop without position data, and

immediate enabling of the block change:
COUPOFS(S2, S1)

• After the programmed following axis deactivation position that is relative to the machine
coordinate system has been crossed, the block change is not enabled until the
deactivation positions POSFS have been crossed.
Value range 0° ... 359.999°:
COUPOFS(S2, S1, POSFS)

Delete couplings COUPDEL
N ... COUPDEL(S2, S1)or
N ... COUPDEL(S2); without specification of the main spindle
impacts on an active synchronized spindle coupling, deactivates the coupling and deletes
the coupling data. The following spindle takes over the last speed and its behavior is the
same as that of the COUPOF(FS, LS) previously.

Reset coupling parameters, COUPRES
Statement "COUPRES" is used to
• activate the parameters stored in the machine data and setting data (permanently defined

coupling) and
• activate the presettings (user-defined coupling).
The parameters programmed with COUPDEF (including the transformation ratio) are
subsequently deleted.
N ... COUPRES(S2, S1)or
N ... COUPRES(S2); without specification of the main spindle
S2 = following spindle, S1 = leading spindle

 Additional functions
 13.5 Synchronous spindle

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-23

System variables
Current coupling status following spindle
The current coupling status of the following spindle can be read in the NC parts program with
the following axial system variable:
$AA_COUP_ACT[FS]
FS = axis name of the following spindle with spindle number, e.g., S2.
The value read has the following significance for the following spindle:
0: No coupling active
4: Synchronous spindle coupling active
Current angular offset
The setpoint of the current position offset of the FS to the LS can be read in the parts
program with the following axial system variable:
$AA_COUP_OFFS[S2]
The actual value for the current position offset can be read with:
$VA_COUP_OFFS[S2]
FS = axis name of the following spindle with spindle number, e.g., S2.

 Note
When the controller has been disabled and subsequently re-enabled during active coupling
and follow-up mode, the position offset when the controller is re-enabled is different to the
original programmed value. In this case, the new position offset can be read and, if
necessary, corrected in the NC parts program.

Additional functions
13.6 Electronic gear (EG)

 Job planning
13-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.6 13.6 Electronic gear (EG)

Function
The "Electronic gear" function allows you to control the movement of a following axis
according to linear traversing block as a function of up to five leading axes. The relationship
between each leading axis and the following axis is defined by the coupling factor.
The following axis motion part is calculated by an addition of the individual leading axis
motion parts multiplied by their respective coupling factors. When an EG axis grouping is
activated, it is possible to synchronize the following axes in relation to a defined position.
A gear group can be:
• defined,
• activated,
• deactivated,
• deleted.
The following axis movement can be optionally derived from
• Setpoints of the leading axes, as well as
• Actual values of leading axes.
Non-linear relationships between each leading axis and the following axis can also be
realized as extension using curve tables (see "Path traversing behavior" section). Electronic
gears can be cascaded, i.e., the following axis of an electronic gear can be the leading axis
for a further electronic gear.

13.6.1 Defining an electronic gear (EGDEF)

Function
An EG axis grouping is defined by specifying the following axis and a minimum of one and a
maximum of five leading axes with the respective coupling type:
EGDEF(following axis, leading axis1, coupling type1, leading axis2, coupling type 2,...).

Requirements
Preconditions for defining an EG axis grouping: A following axis must not yet be defined for
the coupled axes (if necessary, delete any existing one with EGDEL first).

 Additional functions
 13.6 Electronic gear (EG)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-25

Programming

EGDEF(C, B, 1, Z, 1, Y, 1) B, Z, Y influence C via setpoint
The coupling type does not need to be the same for all leading axes and must be
programmed separately for each individual master. The coupling factors are preset to zero
when the EG axis grouping is defined.

 Note
EGDEF triggers preprocessing stop. The gear definition with EGDEF should also be used
unaltered when one or more leading axes affect the following axis via a curve table.

Parameters

EGDEF Definition of an electronic gear

Following axis Axis that is influenced by the leading
axes

Leading axis 1, ...5 Axes that influence the following axis

Coupling type 1, ...5 Following axis is influenced by:

0: Actual value

1: Setpoint

of the respective leading axis

13.6.2 Activate electronic gear (EGON)

Function
There are three variants for the activation command.

Programming
Variant 1:
The EG axis group without synchronization-selective will be activated with:
EGON(FA, "block change mode", LA1, Z1 ,N1, LA2, Z2, N2, ..LA5,
Z5,N5)
Variant 2:
The EG axis group with synchronization-selective will be activated with:
EGONSYN(FA, "block change mode", SynPosFA,[, LAi, SynPosLAi, Zi,
Ni])
Variant 3:
The EG axis grouping is activated selectively with synchronization. The approach mode is
specified with:
EGONSYNE(FA, "Block change mode", SynPosFA, approach mode[, LAi,
SynPosLAi, Zi, Ni])

Additional functions
13.6 Electronic gear (EG)

 Job planning
13-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters
Variant 1:

FA Following axis

Block change mode The following modes can be used:

"NOC" block change takes place immediately

"FINE" block change is performed for "synchronism
fine"

"COARSE" block change is performed for "synchronism
coarse"

"IPOSTOP" block change is performed for setpoint-
based synchronism

LA1, ... LA5 Leading axes

Z1, ... Z5 Counter for coupling factor i

N1, ... N5 Denominator for coupling factor i

Coupling factor i = Counter i / Denominator i

Only the leading axes previously specified with the EGDEF command may be programmed in
the activation line. At least one leading axis must be programmed.
Variant 2:
FA Following axis

Block change mode The following modes can be used:

"NOC" block change takes place immediately

"FINE" block change is performed for "synchronism
fine"

"COARSE" block change is performed for "synchronism
coarse"

"IPOSTOP" block change is performed for setpoint-
based synchronism

[, LAi, SynPosLAi, Zi, Ni] (do not write the square brackets)

min. 1, max. 5 sequences of:

LA1, ... LA5 Leading axes

SynPosLAi Synchronized position for i-th leading axis

Z1, ... Z5 Counter for coupling factor i

N1, ... N5 Denominator for coupling factor i

Coupling factor i = Counter i / Denominator i

Only leading axes previously specified with the EGDEF command may be programmed in the
activation line. Through the programmed "Synchronized positions" for the following axis
(SynPosFA) and for the leading axes (SynPosLA), positions are defined for which the axis
grouping is interpreted as synchronous. If the electronic gear is not in the synchronized state
when the grouping is switched on, the following axis traverses to its defined synchronized
position.
Variant 3:
The parameters are the same as for variant 2 as regards:

Approach mode The following modes can be used:

"NTGT": Approach next tooth gap time-optimized

"NTGP" : Approach next tooth gap path-optimized

"ACN": Traverse rotary axis in negative direction
absolute

"ACP": Traverse rotary axis in positive direction
absolute

"DCT" Time-optimized with respect to programmed
synchronized position

"DCP" Path-optimized with respect to programmed
synchronized position

 Additional functions
 13.6 Electronic gear (EG)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-27

Variant 3 only affects modulo following axes that are coupled to modulo leading axes. Time
optimization takes account of velocity limits of the following axis.

Description
Variant 1:
The positions of the leading axes and following axis at the instant the grouping is switched
on are stored as "Synchronized positions". The "Synchronized positions" can be read with
the system variable $AA_EG_SYN.
Variant 2:
If modulo axes are contained in the coupling group, their position values are modulus-
reduced. This ensures that the next possible synchronized position is approached (so-called
relative synchronization: e.g. the next tooth gap). The synchronized position is only
approached if "Enable following axis override" interface signal DB(30 + axis number), DBX
26 bit 4 is issued for the following axis. If it is not issued, the program stops at the
EGONSYN block and self-clearing alarm 16771 is output until the above mentioned signal is
set.
Variant 3:
The tooth distance (deg.) is calculated like this: 360 * Zi/Ni. If the following axis is stopped at
the time of calling, path optimization returns responds identically to time optimization.
If the following axis is already in motion, NTGP will synchronize at the next tooth gap
irrespective of the current velocity of the following axis. If the following axis is already in
motion, NTGT will synchronize at the next tooth gap depending on the current velocity of the
following axis. The axis is also decelerated, if necessary.

Curve tables
If a curve table is used for one of the leading axes:

Ni The denominator of the coupling factor for linear coupling must be set to

0. (Denominator 0 would be illegal for linear couplings.) Nominator zero
tells the control that

Zi is the number of the curve table to use. The curve table with the specified
number must already be defined at POWER ON.

LAi The leading axis specified corresponds to the one specified for coupling
via coupling factor (linear coupling).

For more information about using curve tables and cascading and synchronizing electronic
gears, please refer to:
/FB3/ Function Manual Special Functions; Coupled Axes and ESR (M3), 'Coupled Motion
and Leading Value Coupling'.

Additional functions
13.6 Electronic gear (EG)

 Job planning
13-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Response of the Electronic gear at Power ON, RESET, mode change, block search
• No coupling is active after POWER ON.
• The status of active couplings is not affected by RESET or operating mode switchover.
• During block searches, commands for switching, deleting and defining the electronic gear

are not executed or collected, but skipped.

System variables of the electronic gear
By means of the electronic gear's system variables, the parts program can determine the
current states of an EG axis grouping and react to them if required.
The system variables for the electronic gear are listed in the Annex. They are identified with
names that begin with:
$AA_EG_ ...
or
$VA_EG_ ...

13.6.3 Deactivate electronic gear (EGOFS)

Function
There are three different ways to deactivate an active EG axis grouping.

Programming
Variant 1:

EGOFS(following axis) The electronic gear is deactivated. The

following axis is braked to a standstill.
This call triggers a preprocessing stop.

Variant 2:

EGOFS(following axis, leading axis1,
… leading axis5) This command parameter setting made

it possible to selectively remove the
influence of the individual leading axes
on the following axis' motion.

At least one leading axis must be specified. The influence of the specified leading axes on
the slave is selectively inhibited. This call triggers a preprocessing stop. If the call still
includes active leading axes, then the slave continues to operate under their influence. If the
influence of all leading axes is excluded by this method, then the following axis is braked to a
standstill.

 Additional functions
 13.6 Electronic gear (EG)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-29

Variant 3:

EGOFC(following spindle1) The electronic gear is deactivated. The
following spindle continues to traverse
at the speed/velocity that applied at the
instant of deactivation. This call triggers
a preprocessing stop.

 Note
This function is only allowed for spindles.

Deleting the definition of an electronic gear
An EG axis grouping must be switched off before its definition can be deleted.

EGDEL(following
axis) The defined coupling of the axis grouping is deleted. Additional

axis groupings can be defined by means of EGDEF until the
maximum number of simultaneously activated axis groupings is
reached. This call triggers a preprocessing stop.

13.6.4 Revolutional feedrate (G95)/electronic gear (FPR)

Function
The FPR() command can be used to specify the following axis of an electronic gear as the
axis, which determines the revolutional feedrate. Please note the following with respect to
this command:
• The feedrate is determined by the setpoint velocity of the following axis of the electronic

gear.
• The setpoint velocity is calculated from the speeds of the leading spindles and modulo

axes (which are not path axes) and from their associated coupling factors.
• Speed parts of linear or non-modulo leading axes and overlaid movement of the following

axis are not taken into account.

Additional functions
13.7 Extended stop and retract

 Job planning
13-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.7 13.7 Extended stop and retract

Function
The "Extended stop and retract" function ESR provides a means to react flexibly to selective
error sources while preventing damage to the workpiece.
Available part reactions
"Extended stop and retract" provides the following part reactions:
• "Extended stop" (drive-independent) is a defined, time-delayed stop.
• "Retract" (drive-independent)

means "escaping" from the machining plane to a safe retracted position. This means any
risk of collision between the tool and the workpiece is avoided.

• "Generator operation"(drive-independent)
Generator operation is possible in the event that the DC link power is insufficient for safe
retraction. As a separate drive operating mode, it provides the necessary power to the
drive DC link for carrying out an orderly "Stop" and "Retract" in the event of a power
outage or similar failure.

Additional extensions
• Extended stop (NC–controlled)

is a defined, time-delayed, contour-friendly shut down controlled by the NC.
• Retract" (NC-controlled)

means "escaping" from the machining plane to a safe retracted position under the control
of the NC. This means any risk of collision between the tool and the workpiece is
avoided. With gear cutting, for example, retract will cause a retraction from tooth gaps
that are currently being machined.

All reactions can be used independently from one another. For further information refer to
/FB3/ Function Manual, Special Functions; Coupled axis and ESR (M3).

Possible initiation sources
The following error sources are possible for starting "Extended stop and retract":
General sources (NC-external/global or mode group/channel-specific):
• Digital inputs (e.g. on NCU module or terminal box) or the readback digital output image

within the control ($A_IN, $A_OUT)
• Channel status $AC_STAT
• VDI signals ($A_DBB)
• Group messages of a number of alarms ($AC_ALARM_STAT)

 Additional functions
 13.7 Extended stop and retract

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-31

Axial sources
• Emergency retraction threshold of the following axis (synchronization of electronic

coupling, $VC_EG_SYNCDIFF[following axis])
• Drive: DC link warning threshold (pending undervoltage), $AA_ESR_STAT[axis]
• Drive: Generator minimum velocity threshold (no more regenerative rotation energy

available), $AA_ESR_STAT[axis].

Gating logic for the static synchronized actions: Source/reaction logic operation
The static synchronized actions' flexible gating possibilities are used to trigger specific
reactions relatively quickly according to the sources.
The operator has several options for gating all relevant sources by means of static
synchronized actions. They can selectively evaluate the source system variables as a whole
or by means of bit masks, and then make a logic operation with their desired reactions. The
static synchronous actions are effective in all operating modes.
For a detailed description of how to use synchronized actions, please see:
References: /FBSY/ Description of Functions, Synchronized Actions

Activation
Enabling functions:
$AA_ESR_ENABLE
The generator operation, stop and retract functions are enabled by setting the associated
control signal ($AA_ESR_ENABLE). This control signal can be modified by the synchronized
actions.
Function initiation (general triggering of all released axes)
$AN_ESR_TRIGGER
Generator operation "automatically" becomes active in the drive when the risk of DC link
undervoltage is detected.
Drive-independent stop and/or retract are activated when communication failure is detected
(between NC and drive) as well as when DC link undervoltage is detected in the drive
(providing they are configured and enabled).
Drive-independent stop and/or retract can also be triggered from the NC side by setting the
corresponding control signal $AN_ESR_TRIGGER (broadcast command to all drives).

Additional functions
13.7 Extended stop and retract

 Job planning
13-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.7.1 Drive-independent responses to ESR

Function
Independent drive reactions are defined axially, that is, if activated each drive processes its
stop and retract request independently. There is no interpolatory coupling of axes or coupling
adhering to the path at stop/retract, the reference to the axes is time-controlled.
During and after execution of drive-independent reactions, the respective drive no longer
follows the NC enables or NC travel commands. Power OFF/Power ON is necessary.
Alarm "26110: Drive-independent stop/retract triggered" indicates this.

Parameters
Generator operation
The generator operation is
• configured: via MD 37500: 10
• enabled: system variable $AA_ESR_ENABLE
• activated: depending on the setting of the drive machine data when the voltage in the DC

link falls below the value.
Retract (drive-independent)
The drive-independent retract is
• configured: via MD 37500: 11; time specification and retract velocity are set in MD; see

"Example: Using the drive-independent reaction" at the end of this chapter,
• enabled: system variable $AA_ESR_ENABLE
• triggered: system variable $AN_ESR_TRIGGER.
Stop (independent drive)
Independent drive stop is
• configured: via MD 37500: 12 and time specified via MD;
• enabled ($AA_ESR_ENABLE) and
• started: system variable $AN_ESR_TRIGGER.

 Additional functions
 13.7 Extended stop and retract

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-33

Example of the use of drive-independent response
Example configuration
• Axis A is to operate as generator drive,
• in the event of an error, axis X must retract by 10 mm at maximum speed, and
• axes Y and Z must stop after a 100 ms delay to give the retraction axis time to cancel the

mechanical coupling.
Example execution
1. Activate options "Ext. Stop and retract" and "Mode-independent actions"

(includes "Static synchronized actions IDS ...)".
2. Function assignment:

$MA_ESR_REACTION[X] = 11,
$MA_ESR_REACTION[Y] = 12,
$MA_ESR_REACTION[Z] = 12,
$MA_ESR_REACTION[A] = 10;

3. Drive configuration:
MD 1639: RETRACT_SPEED[X] = 400000H in pos. direction (max. speed),
= FFC00000H in neg. direction,
MD 1638: RETRACT_TIME[X] = 10ms (retraction time),
MD 1637: GEN_STOP_DELAY[Y] = 100ms,
MD 1637: GEN_STOP_DELAY[Z] = 100ms,
MD 1635: GEN_AXIS_MIN_SPEED[A] = generator min. speed (rpm).

4. Function enable (from parts program or synchronous actions) by setting the system
variables:
$AA_ESR_ENABLE[X] = 1,
$AA_ESR_ENABLE[Y] = 1,
$AA_ESR_ENABLE[Z] = 1,
$AA_ESR_ENABLE[A] = 1.

5. Accelerate generator drive to "momentum" speed (e.g. in spindle operation M03 S1000)
6. Formulate trigger condition as static synchronous action(s), e.g.:
• dependent on intervention of generator axis: IDS = 01 WHENEVER

$AA_ESR_STAT[A]>0 DO $AN_ESR_TRIGGER = 1
• and/or dependent on alarms that trigger follow-up mode (bit13=2000H): IDS = 02

WHENEVER ($AC_ALARM_STAT B_AND 'H2000'>0
DO $AN_ESR_TRIGGER = 1

• and also dependent on EG synchronized operation (if, for example, Y is defined as the
EG following axis and if the max. permissible synchronized operation deviation is to be
100 μm):
IDS = 03 WHENEVER ABS($VA_E_SYNCDIFF[Y])>0.1
DO $AN_ESR_TRIGGER = 1

Additional functions
13.7 Extended stop and retract

 Job planning
13-34 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.7.2 NC-controlled reactions to retraction

Function
NC-controlled reactions require certain initial conditions listed below as restrictions. If these
prerequisites for retraction are satisfied, fast retraction will be activated.
The retraction position POLF must be programmed in the parts program. The activate
signals must be set for the retraction movement and remain set.

Programming

POLF[geo |mach]=,= value Target position of retracting axis
POLFA(axis, type, value) Retraction position of single axes

The following abbreviated forms are
permitted:

POLFA(axis, type)
POLFA(axis, 0/1/2)type)

Abbreviated form for single axis
retraction
high-speed deactivation / activation

POLFA(axis, 0, $AA_POLFA[axis])
POLFA(axis, 0)

causes a preprocessing stop
does not cause a preprocessing stop

POLFMASK(axisname1, axisname2, ...) Axis selection for the retraction
unconnected axes

POLFMLIN(axisname1, axisname2, ...) Axis selection for the retraction
linearly connected axes

 Notice
If the type is changed when using the abbreviated forms of POLFA, the user must ensure that
either the retraction position or the retraction path are assigned a meaningful value. In
particular, the retraction position and the retraction path have to be set again after Power On.

 Additional functions
 13.7 Extended stop and retract

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-35

Parameters

geo | mach Geometry axis or channel/machine axis that retracts.

Axis Axis designations of the valid single axes.

Type Position values of the single axes of the type:

Invalidate the position value

Position value is absolute

Position value is incremental (distance)

Value Retract position, WCS is valid for geometry axis, otherwise
MCS. If the identifiers for the geo axis and channel/machine
axis are identical, retraction is carried out in the workpiece
coordinate system.

Incremental programming is permissible.

Retraction position with type=1 for single axes

Retraction position with type=2 for single axes

The value is also accepted with type=0: Only this value is
marked as invalid and has to be reprogrammed for retraction.

POLF The command POLF is modal.

POLFA If an axis is no a single axis, or if the type is missing or
type=0, the relevant alarms 26080 and 26081 are output.

POLFMASK, The POLFMASK command enables the specified axes for retraction
– without a connection between axes.

The command POLFMASK() without any axis parameter deactivates
fastlift for all axes which were retracted without any
connection between axes.

POLFMLIN, The POLFMLIN command enables the specified axes for retraction
– with a linear connection between axes.

The command POLFMLIN() without any axis parameter deactivates
fastlift for all axes which were retracted with a linear
connection between axes.

axisnamei Names of the axes that are to travel to positions defined with
POLF in case of LIFTFAST. All the axes specified must be in
the same coordinate system. Before fastlift to a fixed
position can be activated via POLFMASK or POLFMLIN, a position
must be programmed with POLF for the selected axes. No machine
data is provided for presetting the values of POLF.

During interpretation of POLFMASK or POLFMLIN, alarm 16016 is
issued if POLF has not been programmed.

 Note
If axes are enabled in succession with POLFMASK, POLFMLIN or POLFMLIN, POLFMASK, the
last definition always applies to each axis.

Additional functions
13.7 Extended stop and retract

 Job planning
13-36 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Caution
The positions programmed with POLF and the activation by POLFMASK or POLFMLIN are
deleted when the parts program is started. This means that the user must reprogram in each
part program the values for POLF and the selected axes in POLFMASK or POLFMLIN.

For more information on changing the coordinate system, the effect on modulo rotary axes,
etc. see
/FB3/ Function Manual, Special Functions; Coupled axes and ESR (M3).

Example of the extended retraction of a single axis:

MD 37500: ESR_REACTION[AX1] = 21 ;NC-controlled retraction

...

$AA_ESR_ENABLE[AX1] = 1

POLFA(AX1,1, 20.0) ;AX1 becomes the axial retraction
;position 20.0 assigned (absolutely)

$AA_ESR_TRIGGER[AX1] = 1 ;Retraction starts here.

Requirements
Retract
• the axes selected with POLFMASK or POLFMILIN,
• the axis-specific positions defined with POLF,
• the retraction positions of a single axis defined with POLFA ,
• the time window in

MD 21380: ESR_DELAY_TIME1 and
MD 21381: ESR_DELAY_TIME2,

• the trigger via system variable $AC_ESR_TRIGGER
$AA_ESR_TRIGGER for single axes,

• the agreed ESR
MD 37500: ESR_REACTION = 21

• LFPOS from the modal 46. G code group.

Enable and start NC-controlled reactions
If system variable $AC_ESR_TRIGGER = 1 is set, and if a retract axis is configured in this
channel (i.e. MD 37500: ESR_REACTION = 21) and $AA_ESR_ENABLE = 1 is set for this
axis, then LIFTFAST becomes active in this channel.
The retraction position POLF must have been programmed in the parts program. On single
axis retraction with POLFA(axis, type, value), the value must have been programmed
and the following conditions met:
• $AA_ESR_ENABLE = 1 set.

 Additional functions
 13.7 Extended stop and retract

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-37

• POLFA(axis) must be a single axis at the time of triggering.
• POLFA(type) either type=1 or type=2.
The activate signals must be set for the retraction movement and remain set.
• The retracting movement configured with LFPOS, POLF for the axes selected with

POLFMASK or POLFMLIN replaces the path motion defined for these axes in the parts
program.

• The extended retraction (i.e. LIFTFAST/LFPOS initiated through $AC_ESR_TRIGGER)
cannot be interrupted and can only be terminated prematurely via an
EMERGENCY STOP.

The maximum time available for retraction is the sum of the times MD 21380:
ESR_DELAY_TIME1 and MD 21381: ESR_DELAY_TIME2. When this time has expired,
rapid deceleration with follow-up is also initiated for the retraction axis.

Direction of withdrawal during rapid lifting and axis replacement
The frame valid at the time when the lift fast is activated is taken into consideration.

 Note
Frames with rotation also affect the direction of lift via POLF. The NC-controlled retraction is
• configured: via MD 37500: 21 and 2 times specified via MD see above;
• enabled ($AA_ESR_ENABLE) and
• started: System variable $AC_ESR_TRIGGER with $AA_ESR_TRIGGER for single axes.

During NC-controlled retraction, LIFTFAST/LFPOS is used as with thread cutting, and the
retraction axis configured in the channel is enabled for rapid lifting using system variable
$AC_ESR_TRIGGER. Retraction initiated via $AC_ESR_TRIGGER is locked to prevent
multiple retractions.
Retraction axes must always be assigned to exactly one NC channel and may not be
switched among the channels. Attempts to change a retraction axis to another channel will
be indicated by alarm 26122.
Only once this axis has been deactivated again using $AA_ESR_ENABLE[AX] = 0, can it
be changed in a new channel. Once the axis has been changed, axes can be acted upon
again with $AA_ESR_ENABLE[AX] = 1.
Neutral axes cannot undertake NC-controlled ESR.
When $AA_ESR_ENABLE[AX] = 1 and when the axis is changed in neutral, the
suppressible ShowAlarm 26121 is triggered.

Additional functions
13.7 Extended stop and retract

 Job planning
13-38 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.7.3 NC-controlled reactions to stoppage

Function
Stop
The sequence for extended stop (NC-controlled) is specified in the following machine data:
MD 21380: ESR_DELAY_TIME1 and
MD 21381: ESR_DELAY_TIME2.
This axis continues interpolating as programmed for the time duration set in MD 21380. After
the time delay specified in MD 21380 has lapsed, controlled braking is initiated by
interpolation. The maximum time available for the interpolatory controlled braking is specified
in MD 21381; after this time has lapsed, rapid deceleration with subsequent correction is
initiated.
Enable and start NC-controlled stop
The NC-controlled stop is
configured: via MD 37500: 22 and 2 times using the two MD, see above;
enabled ($AA_ESR_ENABLE) and
started: System variable $AC_ESR_TRIGGER with $AA_ESR_TRIGGER for single axes.

Example of stopping a single axis:

MD 37500: ESR_REACTION[AX1] = 22 ;NC-controlled stop

MD 21380: ESR_DELAY_TIME1[AX1] = 0.3

MD 21381: ESR_DELAY_TIME2[AX1] = 0.06

...

$AA_ESR_ENABLE[AX1] = 1

$AA_ESR_TRIGGER[AX1] = 1 ;Stopping starts here.

13.7.4 Generator operation/DC link backup

Function
By configuring drive MD and carrying out the required programming via static synchronized
actions ($AA_ESR_ENABLE), temporary DC link voltage drops can be compensated. The
time that can be bridged depends on how much energy the generator that is used as DC link
backup has stored, as well as how much energy is required to maintain the active
movements (DC link backup and monitoring for generator speed limit).
When the value falls below the DC link voltage lower limit, the axis/spindle concerned
switches from position or speed-controlled operation to generator operation. By braking the
drive (default speed setpoint = 0), regenerative feedback to the DC link takes place.
For more information, see
/FB3/ Function Manual Special Functions; Coupled Axes and ESR (M3).

 Additional functions
 13.7 Extended stop and retract

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-39

13.7.5 Drive-independent stopping

Function
The drives of a previously coupled grouping can be stopped by means of time-controlled
cutout delay with minimum deviations from each other, if this cannot be performed by the
control.
Drive-independent stop is configured and enabled via MD (delay time T1 in MD) and is
enabled by system variable $AA_ESR_ENABLE and started with $AN_ESR_TRIGGER.

Responses
The speed setpoint currently active as the error occurred will continue to be output for time
period T1. This is an attempt to maintain the motion that was active before the failure, until
the physical contact is annulled or the retraction movement initiated in other drives is
completed. This can be useful for all leading/following drives or for the drives that are
coupled or in a group.

After time T1, all axes with speed setpoint feedforward zero are stopped at the current limit,
and the pulses are deleted when zero speed is reached or when the time has expired
(+drive MD).

Additional functions
13.7 Extended stop and retract

 Job planning
13-40 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.7.6 Drive-independent retraction

Function
Axes with digital SIMODRIVE 611Digital drives can (if configured and enabled)
• when the control fails (sign-of-life failure detection),
• when the DC link voltage drops below a warning threshold,
• when triggered by system variable $AN_ESR_TRIGGER
execute a retraction movement independently. The retraction movement is performed
independently by the SIMODRIVE 611Digital drive. After the beginning of the retraction
phase the drive independently maintains its enables at the previously valid values.
For more information, see
/FB3/ Function Manual Special Functions; Axis Functions and ESR (M3).

 Additional functions
 13.8 Link communication

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-41

13.8 13.8 Link communication

Function
The NCU link, the link between several NCU units of an installation, is used in distributed
system configurations. When there is a high demand for axes and channels, e.g. with
revolving machines and multi-spindle machines, computing capacity, configuration options
and memory areas can reach their limits when only one NCU is used.
Several NCUs interconnected with an NCU link module provide a scalable solution which
fully meets the requirements of this type of machine tools. The NCU link module (hardware)
realizes a fast NCU-to-NCU communication by providing read and write access to system
variables.

Requirements
Options providing this functionality can be ordered separately.

Link variables
Link variables are global system data that can be addressed by the connected NCUs as
system variables.
The user (in this case, normally the machine manufacturer) specifies:
• the contents of these variables,
• their data type,
• their use,
• their position (access index) in the link memory.
Applications for link variables:
• global machine states,
• workpiece clamping open/closed
• etc.

Additional functions
13.8 Link communication

 Job planning
13-42 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Time behavior for accessing applications
The various NCU applications that access the link memory jointly at any one time must use
the link memory in a uniform way. The link memory can have different assignments for
processes that are completely separated in time.

Warning
A link variable write process is only then completed when the written information is also
available to all the other NCUs. Approximately two interpolation cycles are necessary for this
process. Local writing to the link memory is delayed by the same time for purposes of
consistency.

For more information, see
/FB2/ Function Manual Extension Functions; Multiple Operator Panels and NCUs (B3).

13.8.1 Access to a global NCU memory area

Function
Several NCUs linked via link modules can have read and write access to a global NCU
memory area via the system variables described in the following.
• Each NCU linked via a link module can use global link variables. These link variables are

addressed in the same way by all connected NCUs.
• Link variables can be programmed in the same was as system variables. As a rule, the

machine manufacturer defines and documents the meaning of these variables.
• Applications for link variables
• Data volume comparatively small
• Very high transfer speed, therefore: Use is intended for time-critical information.
• These system variables can be accessed from the parts program and from synchronized

actions. The size of the memory area for global NCU system variables configurable.
When a value is written in a global system variable, it can be read by all the NCUs
connected after one interpolation cycle.

 Additional functions
 13.8 Link communication

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-43

Parameters
Link variables are stored in the link memory. After power-up, the link memory is initialized
with 0.
The following link variables can be addressed within the link memory:
• INT $A_DLB[i] ;data byte (8 bits)
• INT $A_DLW[i] ;data word (16 bits)
• INT $A_DLD[i] ;double data word (32 bits)
• REAL $A_DLR[i] ;real data (64 bits)
According to the data type, 1, 2, 4, 8 bytes are addressed when reading/writing the link
variables.
Index i defines the start of the respective variable in relation to the start of the configured link
memory. The index is counted from 0.
Ranges of values
The data types have the following value ranges:
BYTE: 0 to 255
WORD: -32768 to 32767
DWORD: -2147483648 to 2147483647
REAL: -4.19e-308 to 4.19e-307

Example

$A_DLB[5]=21 The 5th byte in the shared link memory is assigned value 21.

Additional functions
13.9 Axis container (AXCTWE, AXCTWED)

 Job planning
13-44 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.9 13.9 Axis container (AXCTWE, AXCTWED)

Function
On rotary indexing machines/multi-spindle machines, the work-holding axes move from one
machining unit to the next.
Since the machining units are subject to different NCU channels, the axes holding the
workpiece must be dynamically reassigned to the corresponding NCU channel if there is a
change in station/ position. Axis containers are provided for this purpose.
Only one workpiece clamping axis/spindle is active on the local machining unit at a time. The
axis container provides the possible connections to all clamping axes/spindles, of which
exactly one is activated for the machining unit.

Programming
The entries in the axis container can be switched by increment n via the commands:

AXCTSWE(CTi)
AXCTSWED(CTi)

AXIS CONTAINER SWITCH ENABLE
AXIS CONTAINER SWITCH ENABLE DIRECT

Parameters

AXCTSWE For each channel, release for a container rotation
the axes entered in the container.

AXCTSWED Under the sole effect of the active channel, the
axis container rotates around the stored increment.
The axes entered in the container will be enabled
when the other channels that have axes in the
container are in the RESET state.

CTi

or

e.g., A_CONT1

The number of the axis container whose contents are
to be switched or

individual name of axis container set via MD.

 Additional functions
 13.9 Axis container (AXCTWE, AXCTWED)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-45

Axis container
The following can be assigned via the axis container:
• Local axes and/or
• Link axes (see Fundamentals)
The available axes that are defined in the axis container can be changed by switching the
entries in the axis container.
The modification can be triggered by the parts program.
Axis containers with link axes are a NCU-cross device (NCU-global) that is coordinated via
the control. It is also possible to have axis containers that are only used for managing local
axes.
For detailed information on configuring axis containers, see
/FB2/ Function Manual Extended Functions; Multiple Operator Panels and NCUs (B3).

Enable criteria
AXCTSWE ()
Each channel whose axes are entered in the specified container issues an enable for a
container rotation if it has finished machining the position/station. Once the control receives
the enables from all channels for the axes in the container, the container is rotated with the
increment specified in the SD.

Additional functions
13.9 Axis container (AXCTWE, AXCTWED)

 Job planning
13-46 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

In the preceding example, after axis container rotation by 1, axis AX5 on NCU1 is assigned
to channel axis Z instead of axis AX1 on NCU1.
AXCTSWED ()
The command variant AXCTSWED(CTi) can be used to simplify startup. Under the sole
effect of the active channel, the axis container rotates around the increment stored in the SD.
This call may only be used if the other channels, which have axes in the container are in the
RESET state.
After an axis container rotation, all NCUs whose channels refer to the rotated axis container
via the logical machine axis image are affected by the new axis assignment.

Axis container revolution with implicit GET/GETD
When an axis container revolution is enabled, all axis container axes assigned to the
channel are assigned to the channel with GET/GETD. The assignment of the axes cannot be
cleared until the axis container revolution is complete.
Machine manufacturer
This behavior can be set using a machine data bit. Please refer to the machine
manufacturer's instructions.

 Note
Axis container revolution with implicit GET/GETD cannot be used for an axis assigned as a
main run axis, e.g., for a PLC axis, as this axis would have to quit main run status for the
purpose of axis container revolution.

 Additional functions
 13.10 Program runtime/Workpiece counter

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-47

13.10 13.10 Program runtime/Workpiece counter

13.10.1 General
Information about the program runtime is provided to assist the operator on the machine tool.
This information is specified in the respective machine data and can be edited as a system
variable in the NC and/or PLC program. This information is also available to the HMI on the
operator control panel interface.

13.10.2 Program runtime

Function
Under the program runtime function, timers are provided as system variables, which can be
used to monitor technological processes.
These timers can only be read. It can be accessed at any time by the HMI in read mode.

Parameters
The following two timers are defined as NCK-specific system variables and are always
active.
System variables

$AN_SETUP_TIME Time in minutes since the last setup;

is reset with SETUP

$AN_POWERON_TIME Time in minutes since the last PowerOn;

is reset with POWERON

The following three timers are defined as channel-specific system variables and can be
activated via machine data.

$AC_OPERATING_TIME Total execution time in seconds of NC programs in

the automatic mode

$AC_CYCLE_TIME Execution time in seconds of the selected NC
program

$AC_CUTTING_TIME Tool operation time in seconds

$MC_RUNTIMER_MODE Tool operation time in seconds

 Note
All timers are reset with default values when the control is powered up, and can be read
independent of their activation.

Additional functions
13.10 Program runtime/Workpiece counter

 Job planning
13-48 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example

1. Activate runtime measurement for the active NC program; no measurement
 with active dry run feedrate and program testing:

$MC_PROCESSTIMER_MODE = 'H2'

2. Activate measurement for the tool operating time; measurement also with
active dry run feedrate and program testing:

$MC_PROCESSTIMER_MODE = 'H34'

3. Activate measurement for the total runtime and tool operating time;
 measurement also during program testing:

$MC_PROCESSTIMER_MODE = 'H25'

13.10.3 Workpiece counter

Function
The "Workpiece counter" function can be used to prepare counters, e.g., for internal counting
of workpieces on the control. These counters exist as channel-specific system variables with
read and write access within a value range from 0 to 999 999 999.
Machine data can be used to control counter activation, counter reset timing and the
counting algorithm.

Parameters
The following counters are available:
system variables

$AC_REQUIRED_PARTS Number of workpieces required (workpiece setpoint)

In this counter you can define the number of workpieces at
which the actual workpiece counter $AC_ACTUAL_PARTS is
reset to zero. The generation of the display alarm
workpiece setpoint reached and the channel VDI signal
workpiece setpoint reached can be activated via MD.

$AC_TOTAL_PARTS Total number of workpieces produced (total actual)

The counter specifies the total number of all workpieces
produced since the start time. The counter is automatically
reset with default values only when the control is powered
up.

$AC_ACTUAL_PARTS Number of actual workpieces (actual)

This counter registers the total number of all workpieces
produced since the start time. The counter is automatically
reset to zero (on condition that $AC_REQUIRED_PARTS is not
equal to 0) when the required number of workpieces
($AC_REQUIRED_PARTS) has been reached.

$AC_SPECIAL_PARTS Number of workpieces specified by the user

This counter allows users to make a workpiece counting in
accordance with their own definition. Alarm output can be
defined for the case of identity with $AC_REQUIRED_PARTS
(workpiece target). Users must reset the counter
themselves.

 Additional functions
 13.10 Program runtime/Workpiece counter

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-49

 Note
The "workpiece counter" function is independent of the tool management functions. All
counters can be read and written from the HMI.
All counters are reset with default values when the control is powered up, and can be
read/written independent of their activation.

Example

Activate workpiece counter $AC_REQUIRED_PARTS:

$MC_PART_COUNTER=’H3’ $AC_REQUIRED_PARTS is active,
display alarm on $AC_REQUIRED_PARTS
== $AC_SPECIAL_PARTS

Activate workpiece counter $AC_TOTAL_PARTS:

$MC_PART_COUNTER='H10'
$MC_PART_COUNTER_MCODE[0]=80

$AC_TOTAL_PARTS is active, the
counter is incremented by 1 on each
M02, $MC_PART_COUNTER_MCODE[0] is
irrelevant

Activate workpiece counter $AC_ACTUAL_PARTS:

$MC_PART_COUNTER='H300'
$MC_PART_COUNTER_MCODE[1]=17

$AC_TOTAL_PARTS is active, the
counter is incremented by 1 on each
M17

Activate workpiece counter $AC_SPECIAL_PARTS:

$MC_PART_COUNTER='H3000'
$MC_PART_COUNTER_MCODE[2]=77

$AC_SPECIAL_PARTS is active, the
counter is incremented by 1 on each
M77

Deactivate workpiece counter $AC_ACTUAL_PARTS:

$MC_PART_COUNTER='H200'
$MC_PART_COUNTER_MCODE[1]=50

$AC_TOTAL_PARTS is not active, rest
irrelevant

Activating all counters in examples 1-4:

$MC_PART_COUNTER = 'H3313'
$MC_PART_COUNTER_MCODE[0] = 80
$MC_PART_COUNTER_MCODE[1] = 17
$MC_PART_COUNTER_MCODE[2] = 77

$AC_REQUIRED_PARTS is active
Display alarm on $AC_REQUIRED_PARTS
== $AC_SPECIAL_PARTS
$AC_TOTAL_PARTS is active, the
counter is incremented by 1 on each
M02
$MC_PART_COUNTER_MCODE[0] is
irrelevant
$AC_ACTUAL_PARTS is active, the
counter is incremented by 1 on each
M17
$AC_SPECIAL_PARTS is active, the
counter is incremented by 1 on each
M77

Additional functions
13.11 Interactive window call from parts program, command:

 Job planning
13-50 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.11 13.11 Interactive window call from parts program, command:

Function
You can use the MMC command to display user-defined dialog windows (dialog displays) on
the HMI from the parts program.
The dialog window appearance is defined in a pure text configuration (COM file in cycles
directory), while the HMI system software remains unchanged.
User-defined dialog windows cannot be called simultaneously in different channels.

Programming
MMC(CYCLES, PICTURE_ON, T_SK.COM, BILD, MGUD.DEF, BILD_3.AWB,
TEST_1, A1", "S")
Please see the detailed notes on how to program the MMC command (incl. programming
examples) in /IAM/ in manuals AE1, BE1, HE1, IM2, IM4, and IM5, as appropriate for the
HMI software used.

Parameters

MMC Calling the dialog window interactively from the
parts program on the HMI.

CYCLES Operating area in which the configured user dialog
boxes are implemented.

PICTURE_ON or PICTURE_OFF Command: Display selection or display deselection.

T_SK.COM Com file: Name of the dialog display file (user
cycles). The dialog display design is defined here.
The dialog screen is used to display user variables
and/or comment texts.

DISPLAY Name of dialog display: The individual displays are
selected via the names of the dialog displays.

MGUD.DEF User data definition file, which is addressed while
reading/writing variables.

PICTURE_3.AWB Graphics file

TEST_1 Display time or acknowledgement variable.

A1 Text variables...",

"S" Acknowledgement mode: synchronous, acknowledgement
via "OK" soft key.

 Additional functions
 13.12 Influencing the motion control

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-51

13.12 13.12 Influencing the motion control

13.12.1 Percentage jerk correction (JERKLIM)

Function
In critical program sections, it may be necessary to limit the jerk to below maximum value, for
example, to reduce mechanical stress. The acceleration mode SOFT must be active. The
function only effects path axes.

Programming
JERKLIM[axis]= ...

Parameters

JERKLIM Percentage change for the greatest permissible jerk
relative to the value set in the machine data for
the axis.

Axis Machine axis whose jerk limit has to adapted.

Value range: 1 ... 200 100 corresponds to: no effect on the jerks.
100 is applied after RESET and parts program start.

Example
In the AUTOMATIC modes, the jerk limit is limited to the percentage of the jerk limit stored in
the machine data.
N60 JERKLIM[X]=75
Meaning: The axis carriage in the X direction must be accelerated/decelerated with only 75%
of the jerk permissible for the axis.

 Note
Another example in provided in the section "Percentage velocity correction (VELOLIM)".

Additional functions
13.12 Influencing the motion control

 Job planning
13-52 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

13.12.2 Percentage velocity correction (VELOLIM)

Function
In critical program sections, it may be necessary to limit the velocity to below maximum
values, for example, to reduce mechanical stress or enhance finish. The function only effects
path and positioning axes.

Programming
VELOLIM[axis]= ...

Parameters

VELOLIM Percentage change for the greatest permissible
velocity relative to the value set in the machine
data for the axis

Axis Machine axis whose velocity limit has to adapted

Value range: 1 ... 100 100 corresponds to: no effect on the velocity.
100 is applied after RESET and parts program start.

VELOLIM example
In the AUTOMATIC modes, the velocity limit is limited to the percentage of the velocity limit
stored in the machine data.
N70 VELOLIM[X]=80
Meaning: The axis carriage in the X direction must travel at only 80% of the velocity
permissible for the axis.

VELOLIM and JERKLIM example
N1000 G0 X0 Y0 F10000 SOFT G64
N1100 G1 X20 RNDM = 5 ACC[X] = 20
ACC[Y]=30
N1200 G1 Y20 VELOLIM[X]=5
JERKLIM[Y]=200
N1300 G1 X0 JERKLIM[X]=2
N1400 G1 Y0
M30

 Additional functions
 13.13 Master/slave grouping (MASLDEF, MASLDEL, MASLOF, MASLOF, MASLOFS)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-53

13.13 13.13 Master/slave grouping (MASLDEF, MASLDEL, MASLOF, MASLOF,
MASLOFS)

Function
The master/slave coupling in SW 6.4 and lower permitted coupling of the slave axes to their
master axis only while the axes involved are stopped.
Extension of SW 6.5 permits coupling and uncoupling of rotating, speed-controlled spindles
and dynamic configuration.

Programming

MASLON(Slv1, Slv2, ...,)
MASLOF(Slv1, Slv2, ...,)
MASLDEF(Slv1, Slv2, ...,
master axis) Extension for dynamic configuration
MASLDEL(Slv1, Slv2, ...,) Extension for dynamic configuration
MASLOFS(Slv1, Slv2, ...,) Extension for slave spindle

 Note
For MASLOF/MASLOFS, the implicit preprocessing stop is not required. Because of the
missing preprocessing stop, the $P system variables for the slave axes do not provide
updated values until next programming.

Parameters
General

MASLON Activate a temporary coupling.

MASLOF Disconnect an active coupling. The extensions
for spindles must be observed.

Dynamic configuration extension

MASLDEF Coupling user-defined using machine data or
also create/change from the parts program.

MASLOFS Disconnect the coupling analog to MASLOF and
automatically decelerate the slave spindle.

MASLDEL Uncouple master/slave axis grouping and clear
grouping definition.

Slv1, Slv2, ... Slave axes led by a master axis.

Master axis Axis leading slave axes defined in a
master/slave grouping.

Additional functions
13.13 Master/slave grouping (MASLDEF, MASLDEL, MASLOF, MASLOF, MASLOFS)

 Job planning
13-54 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example of the dynamic configuration of a master/slave coupling
Dynamic configuration of a master/slave coupling from the parts program:
The axis relevant after axis container rotation must become the master axis.

MASLDEF(AUX,S3) ;S3 master for AUX

MASLON(AUX) ;Coupling in for AUX

M3=3 S3=4000 ;Clockwise rotation

MASLDEL(AUX) ;Clear configuration and
;disconnect the coupling

AXCTSWE(CT1) ;Container rotation

Example of the actual-value coupling of a slave axis
Actual-value coupling of a slave axis set to the same value as the master axis with
PRESETON.
In a permanent master/slave coupling, the actual value on the SLAVE axis is to be changed
by PRESETON.

N37262
$MA_MS_COUPLING_ALWAYS_ACTIVE[AX2]=0

;Activate permanent coupling

N37263 NEWCONF

N37264 STOPRE

MASLOF(Y1) ;Temporary coupling off

N5 PRESETON(Y1, 0, Z1, 0, B1, 0, C1, 0,
U1, 0)

;Set actual value of the unreferenced
;slave axes because they are activated
;on Power on

N37262
$MA_MS_COUPLING_ALWAYS_ACTIVE[AX2]=1

;Activate permanent coupling

N37263 NEWCONF

Example of a coupling sequence Position 3 / Container CT1
To enable coupling with another spindle after container rotation, the previous coupling must
be uncoupled, the configuration cleared, and a new coupling configured.
Initial situation:

Direction of rotation
of the container

Mechanical infeed

 Additional functions
 13.13 Master/slave grouping (MASLDEF, MASLDEL, MASLOF, MASLOF, MASLOFS)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 13-55

After rotation by one slot:

Direction of
rotation of the
container

Mechanical
infeed

References:
/FB2/ Function Manual, Extension Functions; Several Operator Panel Fronts and NCUs (B3),
Section "Axis container "

Description
General

MASLOF This statement is executed directly for spindles in speed control mode.

The slave spindles rotating at this time retain their speeds until next
speed programming.

Dynamic configuration extension

MASLDEF Definition of a master/slave grouping from the parts program: Previously,
the definition was defined exclusively via machine data.

MASLDEL The statement revokes the assignment of the slave axes to the master
axis and disconnects at the same time, analog to MASLOF, the coupling.
The master/slave definitions specified in the machine data are retained.

MASLOFS MASLOFS can be used to decelerate slave spindles automatically when
disconnecting the coupling.
For axes and spindles in positioning mode, the coupling can only be
closed and disconnected while stopped.

Additional functions
13.13 Master/slave grouping (MASLDEF, MASLDEL, MASLOF, MASLOF, MASLOFS)

 Job planning
13-56 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

 Note

For the slave axis, the actual value can be synchronized to the same value of the master
axis with PRESETON. For this purpose, permanent master/slave coupling must be
deactivated briefly to set the actual value of the unreferenced slave axis to the value of the
master axis with Power On. After that, the permanent coupling is restored.
The permanent master/slave coupling is activated with MD 37262:
MS_COUPLING_ALWAYS_ACTIVE = 1 and does not have any affect on the commands of
the temporary coupling.

Coupling characteristics for spindles, SW 6.5 and higher
For spindles in the speed control mode, the coupling characteristics for MASLON, MASLOF,
MASLOFS and MASLDEL are explicitly specified using the MD 37263:
MS_SPIND_COUPLING_MODE.
In the default setting with MD 37263 = 0, the coupling and separation of the slave axes are
performed only when the associated axes are stopped. MASLOFS corresponds to the
MASLOF.
For MD 37263 = 1, the coupling statement is performed immediately, and thus also in the
motion. The coupling will be closed immediately for MASLON and immediately separated for
MASLOFS or MASLOF . The slave spindles turning at this time will be automatically
decelerated for MASLOFS and for MASLOF retain their speed until a new speed
programming is made.

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 14-1

User stock removal programs 14
14.1 14.1 Supporting function for stock removal

Function
Preprogrammed stock removal programs are provided for stock removal. You can also use
the following functions to develop your own stock removal programs.

 Note
You can use these functions universally, not just for stock removal.

Prerequisite
Before CONTPRON or CONTDCON is called
• a starting point must be approached which permits collision-free machining,
• tool edge radius compensation with G40 must be deactivated.

Programming
CONTPRON
or
CONTDCON
with
INTERSEC
or
ISPOINTS
or
EXECTAB
or
CALCDAT
Terminate contour preparation
EXECUTE (ERROR)

User stock removal programs
14.2 Contour preparation (CONTPRON)

 Job planning
14-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Parameters

CONTDCON Activate tabular contour decoding (6 columns)

CONTPRON Activate tabular contour preparation (11 columns)

INTERSEC Calculate the intersection of two contour elements.
(Only for tables created by CONTPRON).

ISPOINTS Calculate the possible intersections of two contour elements.
(Only for tables created by CONTPRON).

EXECTAB Non-modal processing of the contour elements of a table
(Only for tables created by CONTPRON).

CALCDAT Calculate the radiuses and centers of a circle that consists of 3
or 4 points.

EXECUTE Terminate contour preparation

ERROR Variable for error checkback, type INT

1 = error; 0 = no error

EXECUTE deactivates the contour preparation and switches back to the normal execution
mode.
Example:
N30 CONTPRON(...)
N40 G1 X... Z...
N50 ...
N100 EXECUTE(...)

14.2 14.2 Contour preparation (CONTPRON)

Function
The blocks executed after CONTPRON describe the contour to be prepared. The blocks are
not processed but are filed in the contour table. Each contour element corresponds to one
row in the two-dimensional array of the contour table. The number of relief cuts is returned.

Programming
CONTPRON (TABNAME, MACH, NN, MODE)
Deactivate contour preparations and at the same time switch back to the normal execution
mode:
EXECUTE (ERROR)

 User stock removal programs
 14.2 Contour preparation (CONTPRON)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 14-3

Parameters

CONTPRON Activate contour preparation

TABNAME Name of the contour table

MACH Parameters for type of machining:

"G": Longitudinal turning: Inside machining

"L": Longitudinal turning: External machining

"N": Face turning: Inside machining

"P": Face turning: External machining

NN Number of relief cuts in result variable of type INT

MODE Machining direction, INT type

0 = Contour preparation forward (default value)
1 = Contour preparation in both directions

Example 1: Creating curve table
Create a contour table with
• name KTAB,
• up to 30 contour elements (circles, straight lines),
• a variable for the number of relief cut elements,
• a variable for error messages.

User stock removal programs
14.2 Contour preparation (CONTPRON)

 Job planning
14-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

NC parts program

N10 DEF REAL KTAB[30,11] ;Contour table named KTAB and, for example,
;a maximum of 30 contour elements
;parameter value 11 is a fixed quantity

N20 DEF INT ANZHINT ;Variable for number of relief cut elements
;with name ANZHINT

N30 DEF INT ERROR ;Variable for acknowledgment

;0 = no error, 1 = error

N40 G18

N50 CONTPRON (KTAB,"G",ANZHINT) ;Contour preparation call

N60 G1 X150 Z20

N70 X110 Z30

N80 X50 RND=15

N90 Z70

N100 X40 Z85

N110 X30 Z90

N120 X0

;N60 to N120 contour description

N130 EXECUTE(ERROR) ;Terminate filling of contour table,
;switch to normal program execution

N140 … ;Continue processing the table

Table KTAB

Index
Line

Column

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
7 7 11 0 0 20 150 0 82.40535663 0 0
0 2 11 20 150 30 110 -1111 104.0362435 0 0
1 3 11 30 110 30 65 0 90 0 0
2 4 13 30 65 45 50 0 180 45 65
3 5 11 45 50 70 50 0 0 0 0
4 6 11 70 50 85 40 0 146.3099325 0 0
5 7 11 85 40 90 30 0 116.5650512 0 0
6 0 11 90 30 90 0 0 90 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

 User stock removal programs
 14.2 Contour preparation (CONTPRON)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 14-5

Explanation of column contents

(0) Pointer to next contour element (to the row number of that column)
(1) Pointer to previous contour element
(2) Coding of contour mode for the movement
 Possible values for X = abc
 a = 102 G90 = 0 G91 = 1
 b = 101 G70 = 0 G71 = 1
 c = 100 G0 = 0 G1 = 1 G2 = 2 G3 = 3
(3), (4) Starting point of contour elements

(3) = abscissa, (4) = ordinate of the current plane
(5), (6) Starting point of the contour elements

(5) = abscissa, (6) = ordinate of the current plane
(7) Max/min indicator: Identifies local maximum and minimum values on the contour
(8) Maximum value between contour element and abscissa (for longitudinal

machining) or ordinate (for face cutting). The angle depends on the type of
machining programmed.

(9), (10) Center point coordinates of contour element, if it is a circle block.
(9) = abscissa, (10) = ordinate

User stock removal programs
14.2 Contour preparation (CONTPRON)

 Job planning
14-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example 2: Creating curve table
Create a contour table with
• name KTAB,
• up to 92 contour elements (circles, straight lines),
• mode: Longitudinal turning, external machining,
• preparation forwards and backwards.

NC parts program

N10 DEF REAL KTAB[92,11] ;Contour table named KTAB and, for example,
;a maximum of 92 contour elements
;parameter value 11 is a fixed quantity

N20 CHAR BT="L" ;Mode for CONTPRON:
;longitudinal turning, external machining

N30 DEF INT HE=0 ;Number of relief cut elements=0

N40 DEF INT MODE=1 ;Preparation forwards and backwards

N50 DEF INT ERR=0 ;Error checkback message

...

N100 G18 X100 Z100 F1000

N105 CONTPRON (KTAB, BT, HE, MODE) ;Contour preparation call

N110 G1 G90 Z20 X20

N120 X45

N130 Z0

N140 G2 Z-15 X30 K=AC(-15) I=AC(45)

N150 G1 Z-30

N160 X80

N170 Z-40

N180 EXECUTE(ERR) ;Terminate filling of contour table,
;switch to normal program execution

...

 User stock removal programs
 14.2 Contour preparation (CONTPRON)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 14-7

Table KTAB
After contour preparation is finished, the contour is available in both directions.

Index Column
Line (0) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
0 61) 72) 11 100 100 20 20 0 45 0 0
1 03) 2 11 20 20 20 45 -3 90 0 0
2 1 3 11 20 45 0 45 0 0 0 0
3 2 4 12 0 45 -15 30 5 90 -15 45
4 3 5 11 -15 30 -30 30 0 0 0 0
5 4 7 11 -30 30 -30 45 -1111 90 0 0
6 7 04) 11 -30 80 -40 80 0 0 0 0
7 5 6 11 -30 45 -30 80 0 90 0 0
8 15) 26) 0 0 0 0 0 0 0 0 0
 ...
83 84 07) 11 20 45 20 80 0 90 0 0
84 90 83 11 20 20 20 45 -1111 90 0 0
85 08) 86 11 -40 80 -30 80 0 0 0 0
86 85 87 11 -30 80 -30 30 88 90 0 0
87 86 88 11 -30 30 -15 30 0 0 0 0
88 87 89 13 -15 30 0 45 -90 90 -15 45
89 88 90 11 0 45 20 45 0 0 0 0
90 89 84 11 20 45 20 20 84 90 0 0
91 839) 8510) 11 20 20 100 100 0 45 0 0

Explanation of column contents and comments for lines 0, 1, 6, 8, 83, 85 and 91
The explanations of the column contents given in example 1 apply.
Always in table line 0:
1) Predecessor: Line n contains the contour end (forwards)
2) Successor: Line n is the contour table end (forwards)
Once each within the contour elements forwards:
3) Predecessor: Contour start (forwards)
4) Successor: Contour end (forwards)
Always in line contour table end (forwards) +1:
5) Predecessor: Number of relief cuts (forwards)
6) Successor: Number of relief cuts (backwards)
Once each within the contour elements backwards:
7) Successor: Contour end (backwards)
8) Predecessor: Contour start (backwards)

User stock removal programs
14.3 Contour decoding (CONTDCON)

 Job planning
14-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Always in last line of table:
9) Predecessor: Line n is the contour table start (backwards)
10) Successor: Line n contains the contour start (backwards)

Permitted traversing commands, coordinate system
The following G commands can be used for the contour programming:
G group 1: G0, G1, G2, G3
also corner and chamfer.
Circular-path programming is possible via CIP and CT.
The Spline, Polynomial, Thread functions produce errors.
It is not permitted to change the coordinate system by activating a frame between
CONTPRON and EXECUTE. The same applies to a change between G70 and G71/ G700
and G710.
Changing the geometry axes with GEOAX while preparing the contour table produced an
alarm.

Terminate contour preparation
When you call the predefined subroutine EXECUTE (variable), contour preparation is
terminated and the system switches back to normal execution when the contour has been
described. The variable then indicates:
1 = error
0 = no error (the contour could be prepared without error).

Relief cut elements
The contour description for the individual relief cut elements can be performed either in a
subroutine or in individual blocks.

Stock removal independent of the programmed contour direction
The CONTPRON contour preparation has been expanded so that after being called, the
contour table is available irrespective of the programmed direction.

14.3 14.3 Contour decoding (CONTDCON)

Function
The blocks executed after CONTPRON describe the contour to be decoded. The blocks are
not processed but stored, memory-optimized, in a 6-column contour table. Each contour
element corresponds to one row in the contour table. When familiar with the coding rules
specified below, you can combine DIN code programs from the tables to produce

 User stock removal programs
 14.3 Contour decoding (CONTDCON)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 14-9

applications (e.g., cycles). The data for the starting point are stored in the table cell with the
number 0.

Programming
CONTDCON (TABNAME, MODE)
Deactivate contour preparations and at the same time switch back to the normal execution
mode:
EXECUTE (ERROR)

Parameters

CONTDCON Activate contour preparation

TABNAME Name of the contour table

MODE Direction of machining, type INT
0 = contour preparation (default) according to the contour
block sequence

The G codes permitted for CONTDCON in the program section to be included in the table are
more comprehensive than for CONTPRON. In addition, feedrates and feed type are also
stored for each contour section.

Example of creating a contour table
Create a contour table with
• name KTAB,
• contour elements (circles, straight lines),
• mode: turning,
• preparation forward.

User stock removal programs
14.3 Contour decoding (CONTDCON)

 Job planning
14-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

NC parts program

N10 DEF REAL KTAB[9,6] ;Contour table with name KTAB and 9 table

;cells.
;These allow 8 contour sets. Parameter value 6
;(column number in table) is a fixed size

N20 DEF INT MODE = 0 ;Default value 0: Only in programmed
;contour direction. Value 1 is not permitted.

N30 DEF INT ERROR = 0 ;Error checkback message

...

N100 G18 G64 G90 G94 G710

N101 G1 Z100 X100 F1000

N105 CONTDCON (KTAB, MODE) ;Call contour decoding

;MODE may be omitted, see above.

N110 G1 Z20 X20 F200

N120 G9 X45 F300

N130 Z0 F400

;Contour description

N140 G2 Z-15 X30 K=AC(-15) I=AC(45)F100

N150 G64 Z-30 F600

N160 X80 F700

N170 Z-40 F800

N180 EXECUTE(ERROR) ;Terminate filling of contour table,
;switch to normal program execution

...

Table KTAB

Column
index

0 1 2 3 4 5

Line index Contour
mode

End point
abscissa

End point
ordinate

Center point
abscissa

Center point
ordinate

Feed

0 30 100 100 0 0 7
1 11031 20 20 0 0 200
2 111031 20 45 0 0 300
3 11031 0 45 0 0 400
4 11032 -15 30 -15 45 100
5 11031 -30 30 0 0 600
6 11031 -30 80 0 0 700
7 11031 -40 80 0 0 800
8 0 0 0 0 0 0

 User stock removal programs
 14.3 Contour decoding (CONTDCON)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 14-11

Explanation of column contents

Line 0 Coding for the starting point:
 Column 0:
 100 (units digit): G0 = 0
 101 (tens digit): G70 = 0, G71 = 1, G700 = 2, G710 = 3
 Column 1: starting point of abscissa
 Column 2: starting point of ordinate
 Column 3-4: 0
 Column 5: line index of last contour piece in the table
Lines 1-n: Entries for contour pieces
 Column 0:
 100 (units digit): G0 = 0, G1 = 1, G2 = 2, G3 = 3
 101 (tens digit): G70 = 0, G71 = 1, G700 = 2, G710 = 3
 102 (hundreds digit): G90 = 0, G91 = 1
 103 (thousands digit): G93 = 0, G94 = 1, G95 = 2, G96 = 3
 104 (ten thousands digit): G60 = 0, G44 = 1, G641 = 2, G642 = 3
 105 (hundred thousands digit): G9 = 1
 Column 1: End point abscissa
 Column 2: End point ordinate
 Column 3: Center point abscissa for circular interpolation
 Column 4: Center point ordinate for circular interpolation
 Column 5: Feed

Permitted traversing commands, coordinate system
The following G groups and G commands can be used for the contour programming:

G group 1: G0, G1, G2, G3
G group 10: G60, G64, G641, G642
G group 11: G9
G group 13: G70, G71, G700, G710
G group 14: G90, G91
G group 15: G93, G94, G95, G96, G961

also corner and chamfer.
Circular-path programming is possible via CIP and CT.
The Spline, Polynomial, Thread functions produce errors.
It is not permitted to change the coordinate system by activating a frame between
CONDCRON and EXECUTE. The same applies to a change between G70 and G71/ G700
and G710.
Changing the geometry axes with GEOAX while preparing the contour table produces an
alarm.

User stock removal programs
14.4 Intersection of two contour elements (INTERSEC)

 Job planning
14-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Terminate contour preparation
When you call the predefined subroutine EXECUTE (ERROR), contour preparation is
terminated and the system switches back to normal execution when the contour has been
described. The associated variable ERROR gives the return value:
0 = no errors (the contour could be prepared successfully)
1 = error
Invalid commands, incorrect initial conditions, CONTDCON call repeated without
EXECUTE(), too few contour blocks or table definitions too small also produce alarms.

Stock removal in the programmed contour direction
The contour table produced using CONTDCON is used for stock removal in the programmed
direction of the contour.

14.4 14.4 Intersection of two contour elements (INTERSEC)

Function
INTERSEC calculates the intersection of two normalized contour elements from the contour
table generated with CONTPRON.

Programming
ISPOINT = INTERSEC (TABNAME1[n1], TABNAME2[n2], ISCOORD, MODE)
The status returned by ISPOINT specifies whether or an intersection exists
(ISPOINT = TRUE) or an intersect has not been found (ISPOINT = FALSE).

Parameters

INTERSEC Stock removal function of a REAL type for calculating two
contour elements from the contour table produced using
CONTPRON

ISPOINT Variable for the intersection status of the BOOL type:

TRUE: Intersection found
FALSE: No intersection found

TABNAME1[n1] Table name and n1. Contour element of the first table

TABNAME2[n2] Table name and n2. Contour element of the second table

ISCOORD Intersection coordinates in the active plane G17 - G19

MODE Machining type: Mode = 0 (default value) or mode = 1
(extension)

0 = intersection calculation in the active plane using
parameter 2
1 = intersection calculation regardless of the plane
transferred

G17 - G19 Plane of the contour table transferred during activation of
CONTPRON

 User stock removal programs
 14.4 Intersection of two contour elements (INTERSEC)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 14-13

 Note
Please note that variables must be defined before they are used.

The values defined with CONTPRON must be observed when transferring the contours:

Parameter 2 Coding of contour mode for the movement

Parameter 3 Contour start point abscissa

Parameter 4 Contour start point ordinate

Parameter 5 Contour end point abscissa

Parameter 6 Contour end point ordinate

Parameter 9 Center point coordinates for abscissa (only for circuit
contour)

Parameter 10 Center point coordinates for ordinate (only for circuit
contour)

Example
Calculate the intersection of contour element 3 in table TABNAME1 and contour element 7 in
table TABNAME2. The intersection coordinates in the active plane are stored in CUT (1st
element = abscissa, 2nd element = ordinate). If no intersection exists, the program jumps to
NOCUT (no intersection found).

DEF REAL TABNAME1 [12, 11] ;Contour table 1

DEF REAL TABNAME2 [10, 11] ;Contour table 2

DEF REAL ISCOORD [2] ;Intersection coordinates when ISPOINT =
1

DEF BOOL ISPOINT ;Variable for the intersection status

DEF INT MODE ;Defining machining type

…

MODE = 1 ;Calculation regardless of active plane

N10 ISPOINT=INTERSEC (TABNAME1[16,11],TABNAME2[3,11],ISCOORD, MODE)

 ;Call intersection of contour elements

N20 IF ISPOINT==FALSE GOTOF NOCUT ;Jump to NOCUT

…

User stock removal programs
14.5 Traversing a contour element from the table (EXECTAB)

 Job planning
14-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

14.5 14.5 Traversing a contour element from the table (EXECTAB)

Function
You can use command EXECTAB to traverse contour elements block by block in a table
generated, for example, with the CONTPRON command.

Programming
EXECTAB (TABNAME[n])

Parameters

TABNAME[n] Name of table with number n of the element

Example
The contour elements stored in Table KTAB are traversed non-modally by means of
subroutine EXECTAB. Elements 0 to 2 are transferred in consecutive calls.

N10 EXECTAB (KTAB[0]) ;Traverse element 0 of table KTAB

N20 EXECTAB (KTAB[1]) ;Traverse element 1 of table KTAB

N30 EXECTAB (KTAB[2]) ;Traverse element 2 of table KTAB

 User stock removal programs
 14.6 Calculate circle data (CALCDAT)

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 14-15

14.6 14.6 Calculate circle data (CALCDAT)

Function
Calculation of radius and circle center point coordinates from three or four known circle
points. The specified points must be different. Where four points do not lie directly on the
circle an average value is taken for the circle center point and the radius.

Programming
VARIB = CALCDAT (PT[n,2], NUM, RES)

 Note
Please note that variables must be defined before they are used.

The specified status indicates whether the three or four known points are on a circle
(VARIB = TRUE) or not (VARIB = FALSE).

Parameters

CALCDAT Calculate the radiuses and centers of a circle that consists of 3
or 4 points.

VARIB Variable for status

TRUE = circle, FALSE = no circle

PT [n,2] Points for calculation

n = number of points (3 or 4);
2 = point coordinates

NUM Number of points used for calculation: 3 or 4

RES [3] Variable for result: specification of circle center point
coordinates and radius;

0 = abscissa, 1 = ordinate of circle center point; 2 = radius

User stock removal programs
14.6 Calculate circle data (CALCDAT)

 Job planning
14-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Example
The program determines whether the three points lie along the arc of a circle.

N10 DEF REAL PT[3,2]=(20,50,50,40,65,20) ;Points definition

N20 DEF REAL RES[3] ;Result

N30 DEF BOOL STATUS ;Variable for the status

N40 STATUS = CALCDAT(PT,3,RES) ;Call calculated circle data

N50 IF STATUS == FALSE GOTOF ERROR ;Jump to error

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-1

Tables 15
15.1 15.1 List of statements

The list of statements summarizes all programming commands and G codes available in the
job planning.

Legend:
1 Default setting at beginning of program (factory settings of the control, if nothing else programmed).
2 The groups are numbered according to the table in section "List of G functions/preparatory functions".
3 Absolute end points: modal; incremental end points: non-modal; otherwise modal/non-modal (m, n) depending on syntax
of G function.
4 As arc centers, IPO parameters act incrementally. They can be programmed in absolute mode with AC. The address
modification is ignored when the parameters have other meanings (e.g., thread pitch).
5 The keyword is not valid for SINUMERIK 810D
6 The keyword is not valid for SINUMERIK 810D/NCU571
7 The keyword is only valid for SINUMERIK FM-NC
8 The OEM can add two extra interpolation types. The names can be changed by the OEM.
9 Extended address notation cannot be used for these functions.

name Meaning Value

assignme
nt

Description,
comment

Syntax Modal/
non-
modal

Group
2

: Block number - main block (see N) 0 ...
9999
9999
integers
only,
without
leading
signs

Special
identification of
blocks rather
than N... ;this
block should
contain all
statements for
a following
complete
machining
section

e.g. :20

A Axis Real m,n 3
A2 5 Tool orientation: Euler angles Real s

Tables
15.1 List of statements

 Job planning
15-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

A3 5 Tool orientation: Direction vector
component

Real s

A4 5 Tool orientation for start of block Real s
A5 5 Tool orientation for end of block;

normal vector component
Real s

ABS Absolute value Real
AC Input of absolute dimensions 0 ...,

359.9999
°

 X=AC(100) s

ACC 5 Axial acceleration Real, w/o
signs

 m

ACN Absolute dimensions for rotary
axes, approach position in negative
direction

 A=ACN(...)
B=ACN(...)
C=ACN(...)

s

ACP Absolute dimensions for rotary
axes, approach position in positive
direction

 A=ACP(...)
B=ACP(...)
C=ACP(...)

s

ACOS Arc cosine (trigon. function) Real
ADIS Rounding clearance for path

functions G1, G2, G3, ...
Real, w/o
signs

 m

ADISPOS Approximate distance for rapid
traverse G0

Real, w/o
signs

 m

ADISPOSA Size of the tolerance window for
IPOBRKA

Integer,
real,

 ADISPOSA=.. or
ADISPOSA(<axis>
[,REAL])

m

ALF Angle tilt fast Integer,
w/o signs

 m

AMIRROR Programmable mirroring (additive mirror) AMIRROR X0 Y0
Z0AMIRROR
; separate block

s 3

AND Logical AND
ANG Contour angle Real
AP Angle polar 0,..., ± 360° m,n 3
APR Read/display access protection

(access protection read)
Integer, w/o
signs

APW Write access protection
(access protection write)

Integer, w/o
signs

AR Aperture angle (angle circular) 0, ..., 360° m,n 3

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-3

AROT Programmable rotation
(additive rotation)

Rotation
about
1st geom.
axis:
-180o ..
180°

2nd geom.
axis:
-89.999°
 ... 90°

3rd geom.
axis:
-180° ..
180°

 AROT X... Y... Z...
AROT RPL=
;separate block

s 3

AROTS Programmable frame rotations with solid
angles (additive rotation)

 AROT X... Y...
AROT Z... X...
AROT Y... Z...
AROT RPL=
;separate block

s 3

AS Macro definition String
ASCALE Programmable scaling (additive scale) ASCALE X... Y...

Z...
;separate block

s 3

ASIN Arc sine (trigon. function) Real
ASPLINE Akima spline m 1
ATAN2 Arc tangent 2 Real
ATRANS Additive programmable shift

(additive translation)
 ATRANS X... Y...

Z...
;separate block

s 3

AX Integer without sign Real m,n 3
AXCSWAP Advance container axis AXCSWAP(CTn,

CTn+1,..)
 25

AXIS Data type: Axis identifier Name of file
can be added

AXNAME Converts the input string to an
axis name (get axname)

String An alarm is
generated if
the input string
does not
contain a valid
axis name

AXSTRING Convert the Spindle-number
string (get string)

String Name of file
can be added

AXSTRING[SPI(n)]

AXTOCHAN Request axis for a specific channel. Possible
from NC program and synchronized action.

 AXTOCHAN(axis,
channel number
[,axis,channel
number[,...]])

B Axis Real m,n 3
B_AND Bit AND
B_NOT Bit negation

Tables
15.1 List of statements

 Job planning
15-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

B_OR Bit OR
B_XOR Bit exclusive OR
B2 5 Tool orientation:

Euler angles
Real s

B3 5 Tool orientation:
Direction vector component

Real s

B4 5 Tool orientation for start of block Real s
B5 5 Tool orientation for end of block;

normal vector component
Real s

BAUTO Definition of first spline segment by the
following 3 points (begin not a knot)

 m 19

BLSYNC Processing of interrupt routine is only to start
with the next block change

BNAT1 Natural transition to first spline block
(begin natural)

 m 19

BOOL Data type: Boolean value TRUE / FALSE or
0 / 1

BRISK1 Fast non-smoothed path acceleration m 21
BRISKA Switch on brisk path acceleration for the

programmed axes

BSPLINE B spline m 1
BTAN Tangential transition to first spline block

(begin tangential)
 m 19

C Axis Real m,n 3
C2 5 Tool orientation: Euler angles Real s
C3 5 Tool orientation:

Direction vector component
Real s

C4 5 Tool orientation for start of block Real s
C5 5 Tool orientation for end of block;

normal vector component
Real s

CAC Absolute approach of position
(coded position: absolute coordinate)

Coded value is
table index;
table value is
approached

CACN Absolute approach in negative direction of
value stored in table.
(coded position absolute negative)

Permissible for
the
programming
of rotary axes
as positioning
axes

CACP Absolute approach in positive direction of
value stored in table.
(coded position absolute positive)

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-5

CALCDAT Calculate radius and center point
or circle from 3 or 4 points
(calculate circle data)

VAR Real
[3]

The points
must be
different.

CALL Indirect subroutine call CALL PROGVAR
CALLPATH Programmable search path for subroutine calls A path can be

programmed to
the existing
NCK file
system with
CALLPATH.

CALLPATH(/_N_W
KS_DIR/
_N_MYWPD/subrou
tine_ID_SPF)

CANCEL Cancel modal synchronized
action

INT Cancel with the
specified ID.
No parameters:
All modal
synchronized
actions are
deselected.

CASE Conditional program branch
CDC Direct approach of position

(coded position: direct coordinate)
See CAC

CDOF 1 Collision detection OFF

 m 23

CDON Collision detection ON m 23
CDOF2 Collision detection OFF

For CUT3DC
only

 m 23

CFC 1 Constant feed at contour

 m 16

CFIN Constant feed at internal radius only,
 not at external radius

 m 16

CFTCP Constant feed in tool edge reference point
(center-point path)

 m 16

CHAN Specify validity range for data once per
channel

CHANDATA Set channel number for channel
data access

INT Only
permissible in
the initialization
module

CHAR Data type: ASCII character 0, ..., 255
CHECKSUM Forms the checksum over a an

array as a fixed-length STRING
Max. length
32

Returns string
of 16 hex digits

ERROR=CHECKS
UM

CHF

CHR

Chamfer; value = length of
chamfer in direction of
movement (chamfer)
Chamfer; value = length of
chamfer

Real, w/o
signs

 S

Tables
15.1 List of statements

 Job planning
15-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

CHKDNO Check for unique D numbers
CIC Incremental approach of position

(coded position: incremental coordinate)
See CAC

CIP Circular interpolation through intermediate
point

 CIP X... Y... Z...
I1=... J1=... K1=...

m 1

CLEARM Reset one/several markers for
channel coordination

INT,
1 - n

Does not
influence
machining in
own channel

CLRINT Deselect interrupt: INT parameter:
Interrupt
number

CMIRROR Mirror on a coordinate axis FRAME
COARSEA Motion end when "Exact stop coarse" reached COARSEA=.. or

COARSEA[n]=..
m

COMPOF1,6 Compressor OFF m 30
COMPON6 Compressor ON m 30
COMPCURV Compressor ON: Polynomials with constant

curvature
 m 30

COMPCAD Compressor ON: optimized surface finish m 30
CONTDCON Tabular contour decoding ON
CONTPRON Activate contour preparation

(contour preparation ON)

COS Cosine (trigon. function) Real
COUPDEF Definition ELG group /

synchronous spindle group
(couple definition)

String Block change
(software)
response:
NOC: no
software
control,
FINE/COARSE
: block change
on
"synchronism
fine/coarse",
IPOSTOP:
block change
in setpoint-
dependent
termination of
overlaid
movement.

COUPDEF(FS, ...)

COUPDEL Delete ELG group (couple delete) COUPDEL(FS,LS)
COUPOF ELG group / synchronous spindle pair OFF

(couple OFF)
 COUPOF(FS,LS,

POSFS,POSLS)

COUPOFS Deactivating ELG assembly/synchronized
spindle pair with stop of following spindle

 COUPOFS(FS,LS,P
OSFS)

COUPON ELG group / synchronous spindle pair ON
(couple ON)

 COUPON(FS,LS,
POSFS)

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-7

COUPONC Transfer activation of ELG
assembly/synchronized spindle pair with
previous programing

 COUPONC(FS,LS)

COUPRES Reset ELG group
(couple reset)

Programmed
values invalid;
machine data
values valid

COUPRES(FS,LS)

CP Path movement (continuous path) m 49
CPRECOF1,6 Programmable contour precision OFF

 m 39

CPRECON 6 Programmable contour precision ON

 m 39

CPROT Channel-specific protection zone ON/OFF
CPROTDEF Channel specific protection area definition

CR Circle radius Real, w/o
signs

 S

CROT Rotation of the current
coordinate system.

FRAME Max.
parameter
count: 6

CROTS Programmable frame rotations with solid
angles
(rotations in the indicated axes)

 CROT X... Y...
CROT Z... X...
CROT Y... Z...
CROT RPL=
;separate block

S

CSCALE Scale factor for multiple axes. FRAME Max.
parameter
count:
2 * axis
countmax

CSPLINE Cubic spline m 1
CT Circle with tangential transition CT X... Y.... Z... m 1
CTAB Define following axis position

according to leading axis
position from curve table

Real If parameter
4/5 not
programmed:
Standard
scaling

CTABDEF Table definition ON
CTABDEL Clear curve table
CTABEND Table definition OFF
CTABEXISTS Checks the curve table with number n Parameter n
CTABFNO Number of curve tables still possible in the

memory
memType

CTABFPOL Number of polynomials still possible in the
memory

memType

CTABFSEG Number of curve segments still possible in the
memory

memType

CTABID Returns table number of the nth curve table parameter n
and memType

Tables
15.1 List of statements

 Job planning
15-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

CTABINV Define leading axis position
according to following axis
position from curve table

Real See CTAB

CTABISLOCK Returns the lock state of the curve table with
number n

Parameter n

CTABLOCK Set lock against deletion and overwriting Parameters n,
m, and
memType

CTABMEMTYP Returns the memory in which the curve table
has been created with number n

Parameter n

CTABMPOL Max. number of polynomials still possible in
the memory

memType

CTABMSEG Max. number of curve segments still possible
in the mem.

memType

CTABNO Number of defined curve tables irrespective of
mem. type

No parameters

CTABNOMEM Number of defined curve tables in SRAM or
DRAM memory.

memType

CTABPERIOD Returns the table periodicity with number n Parameter n
CTABPOL Number of polynomials already used in the

memory
memType

CTABPOLID Number of the curve polynomials used by the
curve table with number n

Parameter n

CTABSEG Number of curve segments already used in the
memory

memType

CTABSEGID Number of the curve segments used by the
curve table with number n

Parameter n

CTABSEV Returns the final value of the following axis of
a segment of the curve table

Segment is
determined by
LW

R10 =
CTABSEV(LW, n,
degree, Faxis,
Laxis)

CTABSSV Returns the initial value of the following axis of
a segment of the curve table

Segment is
determined by
LW

R10 =
CTABSSV(LW, n,
degree, Faxis,
Laxis)

CTABTEP Returns the value of the leading axis at curve
table end

Master value at
end of curve
table

R10 = CTABTEP(n,
degree, Laxis)

CTABTEV Returns the value of the following axis at curve
table end

Following value
at end of curve
table

R10 = CTABTEV(n,
degree, Faxis)

CTABTMAX Returns the maximum value of the following
axis of the curve table

Following value
of the curve
table

R10 =
CTABTMAX(n,
Faxis)

CTABTMIN Returns the minimum value of the following
axis of the curve table

Following value
of the curve
table

R10 =
CTABTMIN(n,
Faxis)

CTABTSP Returns the value of the leading axis at curve
table start

Master value at
beginning of
curve table

R10 = CTABTSP(n,
degree, Laxis)

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-9

CTABTSV Returns the value of the following axis at curve
table start

Following value
at start of curve
table

R10 = CTABTSV(n,
degree, Faxis)

CTABUNLOCK Cancel locking against deletion and
overwriting

Parameters n,
m, and
memType

CTRANS Zero offset for multiple axes FRAME Max. of 8 axes
CUT2D 1 2½D cutter compensation (cutter

compensation type 2 dimensional)
 m 22

CUT2DF 2½D tool offset (cutter compensation type 2
dimensional frame); The tool offset acts in
relation to the current frame (inclined plane)

 m 22

CUT3DC 5 3D cutter compensation type 3-dimensional
circumference milling

 m 22

CUT3DCC 5 Cutter compensation type 3-dimensional
circumference milling with limit surfaces

 m 22

CUT3DCCD 5 Cutter compensation type 3-dimensional
circumference milling with limit surfaces with
differential tool

 m 22

CUT3DF 5 3D cutter compensation type 3-dimensional
face milling

 m 22

CUT3DFF 5 3D cutter compensation type 3-dimensional
face milling with constant tool orientation
dependent on the current frame

 m 22

CUT3DFS 5 3D cutter compensation type 3-dimensional
face milling with constant tool orientation
independent of the current frame

 m 22

CUTCONO1 Constant radius compensation OFF m 40
CUTCONON Constant radius compensation ON m 40
D Tool offset number 1, ... 32 000 Contains the

correction data
for a specific
tool T... ; D0 →
correction
values for a
tool

D...

DC Absolute dimensions for rotary
axes, approach position directly

 A=DC(...) B=DC(...)
C=DC(...)
SPOS=DC(...)

s

DEF Variable definition Integer, w/o
signs

Tables
15.1 List of statements

 Job planning
15-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

DEFAULT Branch in CASE branch Jump to if
expression
does not fulfill
any of the
specified
values

DEFINE Define macro
DELAYFSTON Define start of a stop delay range

(DELAY feed stop ON)
Implied if
G331/G332
active

 m

DELAYFSTOF Define end of a stop delay range
(DELAY feed stop OFF)

 m

DELDTG Delete distance-to-go

DELETE Delete the specified file. The file name can be
specified with path and file identifier.

Can delete all
files

DELT Delete tool Duplo number
can be omitted

DIAMCYOF Radius programming for G90/91: ON. The G-
code of this group that was last active remains
active for display

Radius
programming.
last active G-
code

 m 29

DIAMOF1 Diameter programming: OFF
(Diametral programming OFF)

Radius
programming
for G90/G91

 m 29

DIAMON Diametral programming: ON
(Diametral programming ON)

Diameter
programming
for G90/G91

 m 29

DIAM90 Diameter program for G90, radius progr. for
G91

 m 29

DILF Length for lift fast m
DISABLE Interrupt OFF
DISC Transition circle overshoot -

radius compensation
0, ..., 100 m

DISPLOF Suppress current block display
(display OFF)

DISPR Distance for repositioning Real, w/o
signs

 S

DISR Distance for repositioning Real, w/o
signs

 S

DITE Thread run-out path Real m
DITS Thread run-in path Real m
DIV Integer division
DL Total tool offset INT m
DRFOF Deactivate the handwheel offsets (DRF) m

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-11

DRIVE9 Velocity-dependent path acceleration m 21
DRIVEA Switch on bent acceleration characteristic

curve for the programmed axes

DYNFINISH Dynamics for smooth-finishing DYNFINISH G1 X10
Y20 Z30 F1000

m 59

DYNNORM Normal dynamics as previous DYNNORM G1 X10 m 59
DYNPOS Dynamics for positioning mode, tapping DYNPOS G1 X10

Y20 Z30 F...
m 59

DYNROUGH Dynamics for roughing DYNROUGH G1
X10 Y20 Z30
F10000

m 59

DYNSEMIFIN Dynamics for finishing cut

Technology G
group

DYNSEMIFIN G1
X10 Y20 Z30 F2000

m 59

DZERO Set D number of all tools of the TO unit
assigned to the channel invalid

EAUTO Definition of last spline section by the last 3
points (end not a knot)

 m 20

EGDEF Definition of an electronic gear
(Electronic gear define)

For 1 following
axis with up to
5 leading axes

EGDEL Delete coupling definition for the following axis
(Electronic gear delete)

Stops the
preprocessing

EGOFC Switch off electronic gear continuous
(Electronic gear OFF continuous)

EGOFS Switch off electronic gear selectively
(Electronic gear OFF selective)

EGON Switch on electronic gear
(Electronic gear ON)

Without
synchronizatio
n

EGONSYN Switch on electronic gear
(electronic gear ON synchronized)

With
synchronizatio
n

EGONSYNE Switch on electronic gearing, stating approach
mode
(electronic gear ON synchronized)

With
synchronizatio
n

ELSE Program branch, if IF condition not fulfilled
ENABLE Interrupt ON
ENAT 1,7 Natural transition to next traversing block

(end natural)
 m 20

ENDFOR End line of FOR counter loop
ENDIF End line of IF branch
ENDLOOP End line of endless program loop LOOP

Tables
15.1 List of statements

 Job planning
15-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

ENDPROC End line of program with start line PROC
ENDWHILE End line of WHILE loop
ETAN Tangential transition to next traversing block at

spline end (end tangential)
 m 20

EVERY Execute synchronized action if condition
changes from FALSE to TRUE

EXECSTRING Transfer of a string variable with the parts
program line to run

Indirect parts
program line

EXECSTRING(MFC
T1 << M4711)

EXECTAB Execute an element from a motion table
(execute table)

EXECUTE Program execution ON Return from
the reference
point edit mode
or after building
a protection
area to the
normal
program
processing

EXP Exponential function (ex) Real
EXTCALL Execute external subroutine Reload

program from
HMI in
"Processing
from external
source" mode

EXTERN Broadcast a subroutine with parameter
passing

F Feed value
(in conjunction with G4 the dwell
time is also programmed in F)

0.001, ...,
99 999. 999

Tool/workpiece
path feedrate;
unit of
measurement
in mm/min or
mm/rev
dependent on
G94 or G95

F=100 G1 ...

FA Axial feed (feed axial) 0.001, ...,
999999.999
mm/min,
degrees/mi
n, 0.001, ...,
39999.9999
inch/min

 FA[X]=100 m

FAD Infeed feedrate for smooth
approach and retraction
(Feed approach / depart)

Real, w/o
signs

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-13

FALSE Logical constant: Incorrect BOOL Can be
replaced
with integer
constant 0

FCTDEF Define polynomial function Is evaluated in
SYFCT or
PUTFTOCF.

FCUB 6 Feedrate variable according to cubic spline
(feed cubic)

Acts on feed
with G93 and
G94

 m 37

FD Path feed for handwheel
override
(feed DRF)

Real, w/o
signs

 S

FDA Axial feed for handwheel
override
(feed DRF axial)

Real, w/o
signs

 S

FENDNORM Corner deceleration OFF m 57
FFWOF 1 Feedforward control OFF (feed forward OFF) m 24
FFWON Feedforward control ON (feed forward ON) m 24
FIFOCTRL Control of preprocessing buffer m 4
FIFOLEN Programmable preprocessing depth
FILEDATE Delivers date when file was last

accessed and written
STRING,
length 8

Format is
"dd.mm.yy"

FILEINFO Delivers sum of FILEDATE,
FILESIZE, FILESTAT and
FILETIME

STRING,
length 32

Format "rwxsd
nnnnnnnn dd.
hh:mm:ss"

FILESIZE Delivers current file size Type: INT in BYTES
FILESTAT Delivers file status of rights for

read, write, execute, display,
delete (rwxsd)

STRING,
length 5

Format is
"rwxsd"

FILETIME Delivers time when file was last
accessed and written

STRING,
length 8

Format is
"dd:mm:yy"

FINEA Motion end when "Exact stop fine" reached FINEA=... or
FINEA[n]=..

m

FL Speed limit for synchronized
axes
(feed limit)

Real, w/o
signs

The unit set
with G93, G94,
G95 is
applicable
(max. rapid
traverse)

FL[axis]=... m

FLIN 6 Feed linear variable (feed linear) Acts on feed
with G93 and
G94

 m 37

FMA Feed multiple axial

Real, w/o
signs

 m

FNORM 1,6 Feed normal to DIN 66025 m 37
FOCOF Deactivate travel with limited moment/force m

Tables
15.1 List of statements

 Job planning
15-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

FOCON Activate travel with limited moment/force m
FOR Counter loop with fixed number of passes
FP Fixed point: number of fixed

point to be approached
Integer, w/o
signs

 G75 FP=1 S

FPO Feed characteristic programmed
via a polynomial
(feed polynomial)

Real Quadratic,
cubic
polynomial
coefficient

FPR Identification for rotary axis 0.001, ...,
999999.999

 FPR (rotary axis)

FRAME Data type to define the coordinate system Contains for
each geometry
axis:
Offset, rotation,
angle of shear,
scaling,
mirroring;
for each
special axis:
Offset, scaling,
mirroring

FRC, Feed for radius and chamfer s
FRCM, Feed for radius and chamfer, modal m
FTOC Change fine tool offset As a function of

a 3rd order
polynomial
defined with
FCTDEF

FTOCOF

1,6
Online fine tool offset OFF

 m 33

FTOCON

6
Online fine tool offset ON

 m 33

FXS Travel to fixed stop ON

Integer,
w/o signs

1 = select,
0 = deselect

 m

FXST Torque limit for travel to fixed stop
(fixed stop torque)

% Parameter
optional

 m

FXSW Monitoring window for travel to fixed
stop (fixed stop window)

mm, inch
or
degrees

Parameter
optional

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-15

G Functions
G G function (preparatory

function)
The G functions are divided
into G groups. Only one G
function from one group can
be written in one block.
A G function can either be
modal (until canceled by
another function from the
same group), or non-modal
(only effective for the block it
is written in).

Only
integer,
predefined
values

 G...

G0 Linear interpolation with rapid traverse
(rapid traverse motion)

G0 X... Z... m 1

G1 1 Linear interpolation with feedrate (linear
interpolation)

G1 X... Z... F... m 1

G2 Circular interpolation clockwise

Motion
commands

G2 X... Z... I... K... F...
;center and end point
G2 X... Z... CR=... F...
;radius and end point
G2 AR=... I... K... F...
;aperture angle and
;center point
G2 AR=... X... Z... F...
;aperture angle and
;end point

m 1

G3 Circular interpolation counter-clockwise G3 ... ; otherwise as for
G2

m 1

G4 Dwell time preset Special motion G4 F...
;dwell time in s or
G4 S...
;dwell time in
;spindle revolution.
;separate block

s 2

G9 Exact stop - deceleration s 11
G17 1 Selection of working plane X/Y Infeed direction Z m 6
G18 Selection of working plane Z/X Infeed direction Y m 6
G19 Selection of working plane Y/Z Infeed direction X m 6
G25 Lower working area limitation Value

assignments in
G25 X.. Y.. Z..;separate
block

s 3

G26 Upper working area limitation Channel axes G26 X.. Y.. Z..;separate
block

s 3

Tables
15.1 List of statements

 Job planning
15-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

G33 Thread interpolation with
constant pitch

0.001, ...,
2000.00
mm/rev

Motion command G33 Z... K... SF=...
;cylindrical thread
G33 X... I... SF=...
;face thread
G33 Z... X... K... SF=...
;taper thread (in Z
axis;path larger than in
the X axis)
G33 Z... X... I... SF=...
;taper thread (in X
axis;path larger than in
the Z axis)

m 1

G34 Increase in thread pitch
(progressive change)

Motion command G34 Z... K... FUP=... m 1

G35 Decrease in thread pitch
(degressive change)

Motion command G35 Z... K... FDOWN=... m 1

G40 1 Tool radius compensation OFF m 7
G41 Tool radius compensation left of contour m 7
G42 Tool radius compensation right of contour m 7
G53 Suppression of current zero offset (non-

modal)
incl.
programmed
offsets

 s 9

G54 1. Settable zero offset m 8
G55 2. Settable zero offset m 8
G56 3. Settable zero offset m 8
G57 4. Settable zero offset m 8
G58 Programmable offset Replacing axially s 3
G59 Programmable offset Replacing

additively axially
 s 3

G60 1 Exact stop - deceleration m 10
G62 Corner deceleration at inside corners

when tool radius offset is active (G41, G42)
Together with
continuous-path
mode only

G62 Z... G1 m 57

G63 Tapping with compensating chuck G63 Z... G1 s 2
G64 Exact stop - continuous-path mode m 10
G70 Dimension in inches (lengths) m 13
G71 1 Metric dimension (lengths) m 13
G74 Reference point approach G74 X... Z...;separate

block
s 2

G75 Fixed point approach Machine axes G75 FP=.. X1=... Z1=...
;separate block

s 2

G90 1 Absolute dimensions G90 X... Y... Z...(...)
Y=AC(...) or
X=AC Z=AC(...)

m
n

14

G91 Incremental dimension input G91 X... Y... Z... or
X=IC(...) Y=IC(...)
Z=IC(...)

m
n

14

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-17

G93 Inverse-time feedrate rpm Execution of a
block: Time

G93 G01 X... F... m 15

G94 1 Linear feedrate F in mm/min or inch/min
and °/min

 m 15

G95 Revolutional feedrate F in mm/rev or
inches/rev

 m 15

G96 Constant cutting speed ON G96 S... LIMS=... F... m 15
G97 Constant cutting speed OFF m 15
G110 Pole programming relative to the last

programmed setpoint position
 G110 X.. Y.. Z.. s 3

G111 Polar programming relative to origin of
current workpiece coordinate system

 G110 X.. Y.. Z.. s 3

G112 Pole programming relative to the last valid
pole

 G110 X.. Y.. Z.. s 3

G140 1 SAR approach direction defined by
G41/G42

 m 43

G141 SAR approach direction to left of contour m 43
G142 SAR approach direction to right of contour m 43
G143 SAR approach direction tangent-

dependent
 m 43

G147 Soft approach with straight line s 2
G148 Soft retraction with straight line s 2
G153 Suppression of current frame incl. base

frame
 s 9

G247 Soft approach with quadrant s 2
G248 Soft retraction with quadrant s 2
G290 Switch to SINUMERIK mode ON m 47
G291 Switch to ISO2/3 mode ON m 47
G331 Thread tapping m 1
G332 Retraction (tapping)

± 0.001,
...,
2000.00
mm/rev

Motion
commands m 1

G340 1 Spatial approach block (depth
and in plane (helix))

 Effective during
soft approach/
retraction

 m 44

G341 Initial infeed on perpendicular axis (z), then
approach in plane

Effective during
soft approach/
retraction

 m 44

G347 Soft approach with semicircle s 2
G348 Soft retraction with semicircle s 2
G450 1 Transition circle m 18
G451 Intersection of equidistances

Corner behavior
with tool radius
compensation

 m 18

G460 1 Approach/retraction behavior with TRC m 48
G461 Approach/retraction behavior with TRC m 48
G462 Approach/retraction behavior with TRC m 48
G500 1 Deactivate all settable frames if G500 does

not contain a value
 m 8

Tables
15.1 List of statements

 Job planning
15-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

G505
.... G599

5. ... 99. Settable zero offset m 8

G601 1 Block change at exact stop fine m 12
G602 Block change at exact stop coarse m 12
G603 Block change at IPO - end of block m 12
G641 Exact stop - continuous-path mode G641 AIDS=... m 10
G642 Corner rounding with axial precision

Only effective
with active G60
or
G9 with
programmable
transition
rounding

 m 10

G643 Block-internal corner rounding m 10
G644 Corner rounding with specified axis

dynamics
 m 10

G621 Corner deceleration at all corners Together with
continuous-path
mode only

G621 AIDS=... m 57

G700 Dimension in inches and inch/min
(lengths + velocities + system variable)

 m 13

G710 1 Metric dimension in mm and mm/min
(lengths + velocities + system variable)

 m 13

G8101, ..., G819 G group reserved for the OEM 31
G8201, ..., G829 G group reserved for the OEM 32
G931 Feedrate specified by travel time Travel time m 15
G942 Freeze linear feedrate and constant cutting

rate or spindle speed
 m 15

G952 Freeze revolutional feedrate and constant
cutting rate or spindle speed

 m 15

G961 Constant cutting speed ON Feed type like for
G94

G961 S... LIMS=... F... m 15

G962 Linear or revolutional feedrate and
constant cutting rate

 m 15

G971 Constant cutting speed OFF m 15
G972 Freeze linear or revolutional feedrate and

constant spindle speed
 m 15

GEOAX Assign new channel axes to geometry axes
1 - 3

Without
parameter:
MD settings
effective

GET Assign machine axis/axes Axis must be
released in the
other channel
with RELEASE

GETD Assign machine axis/axes directly See GET

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-19

GETACTT Get active tool from a group of tools with
the same name

GETSELT Get selected T number
GETT50 Get T number for tool name
GOTO Jump statement first forward then

backward (direction initially to end of
program and then to start of program)

GOTO (label, block no.)
Labels must be present in
the sub-program

GOTOF Jump forwards (toward the end of the
program)

GOTOF (Label, block no.)

GOTOB Jump backwards (toward the start of the
program)

Parts program
and can also be
applied in
technology
cycles.

GOTOB (Label, block no.)

GOTOC Alarm 14080 Suppress jump destination
not found.

See GOTO

GWPSOF Deselect constant grinding wheel
peripheral speed (GWPS)

 GWPSOF(T No.) s

GWPSON Select constant grinding wheel peripheral
speed (GWPS)

 GWPSON(T No.) s

Tables
15.1 List of statements

 Job planning
15-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

H... Auxiliary function output to the
PLC

Real/INT settable via
machine data
(machine
manufacturer)

H100 or H2=100

I 4 Interpolation parameters Real s
I1 Intermediate point coordinate Real s
IC Incremental dimensioning 0, ...,

±99999.99
9°

 X=IC(10) s

ICYCOF All blocks of a technology cycle are
processed in one IPO cycle following
ICYCOF.

only within the
program level

ICYCON Each block of a technology cycle is
processed in a separate IPO cycle
following ICYCON.

only within the
program level

IDS Identification of static synchronized actions
IF Introduction of a conditional jump in the

parts program / technology cycle
Structure: IF-
ELSE-ENDIF

IF (condition)

INDEX Define index of character in
input string

0, ...,
INT

String: 1.
Parameter 1,
character: 2. par.

INIT Select module for execution in a channel Channel numbers
1-10 or $MC
_CHAN_NAME

INIT(1,1,2) or INIT(CH_X,
CH_Y)

INT Data type: Integer with leading
sign

- (231-1),
..., 231-1

INTERSEC Calculate intersection
between two contour elements
and specify TRUE intersection
status in ISPOINT

VAR
REAL [2]

ISPOINT error
status: BOOL
FALSE

ISPOINTS=INTERSEC
(TABNAME1[n1],
TABNAME2[n2],
ISTCOORD, MODE)

IP Variable interpolation
parameter
(Interpolation parameter)

Real

IPOBRKA Motion criterion from braking ramp
activation

Braking ramp
with 100% to 0%

IPOBRKA=.. or
IPOBRKA(<axis>[,REAL])

m

IPOENDA End of motion when “IPO stop” is reached IPOENDA=.. or
IPOENDA[n]..

m

IPTRLOCK Freeze start of the untraceable program
section at
next machine function block.

Freeze the
interrupt pointer

 m

IPTRUNLOCK Set end of untraceable program section at
current block at time of interruption

Set the interrupt
pointer

 m

ISAXIS Check if geometry axis 1 – 3
specified as parameter

BOOL

ISD Insertion depth Real m
ISFILE Checks whether the file exists

in the NCK user memory.
BOOL Returns results of

type BOOL
RESULT=ISFILE("Testfile
“) IF (RESULT==FALSE)

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-21

ISNUMBER Check whether the input string
can be converted to a number

BOOL Convert input
string to number

ISPOINTS Possible intersections
calculated by ISTAB between
two contours on the current
plane.

INT MODE machining
type (optional)

STATE=ISPOINTS
(KTAB1[n1], KTAB2[n2],
ISTAB, [MODE])

ISVAR Check whether the transfer
parameter contains a variable
known in the NC

BOOL Machine data,
setting data and
variables as
GUDs

J 4 Interpolation parameters Real s
J1 Intermediate point coordinate Real s
JERKA Activate acceleration response set via

machine data for programmed axes

K 4 Interpolation parameters Real s
K1 Intermediate point coordinate Real s
KONT Travel round contour on tool offset m 17
KONTC Approach/traverse with continuous-

curvature polynomial
 m 17

KONTT Approach/traverse with continuous-tangent
polynomial

 m 17

L Subroutine number Integer, up
to 7 places

 L10 s

LEAD 5 Lead angle Real m
LEADOF Master value coupling OFF (lead off)
LEADON Master value coupling ON (lead on)
LFOF 1 Interrupt thread cutting OFF m 41
LFON Interrupt thread cutting ON m 41
LFTXT 1 Tangential tool direction on retraction m 46
LFWP Non-tangential tool direction on retraction m 46
LFPOS Axial retraction to a position m 46
LIFTFAST Rapid lift before interrupt routine call
LIMS Spindle speed limitation (Limit

Spindle Speed) with
G96/G961 and G97

0.001, ...,
99 999.
999

 m

LN Natural logarithm Real
LOCK Disable synchronized action with ID

(stop technology cycle)

LOG (Common) logarithm Real

Tables
15.1 List of statements

 Job planning
15-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

LOOP Introduction of an endless loop Structure: LOOP-
ENDLOOP

M... Switching operations 0, ..., 9999
9999

Up to 5
unassigned
M functions can
be assigned by
the machine
manufacturer

M0 10 Programmed stop
M1 10 Optional stop
M2 10 End of main program with return to

beginning of program

M3 Direction of spindle rotation clockwise for
master spindle

M4 Direction of spindle rotation
counterclockwise for master spindle

M5 Spindle stop for master spindle
M6 Tool change
M17 10 Subroutine end
M19 Spindle positions
M30 10 End of program, same effect as M2
M40 Automatic gear change
M41... M45 Gear stage 1, ..., 5
M70 Transition to axis mode
MASLDEF Define master/slave axis grouping
MASLDEL Uncouple master/slave axis grouping and

clear grouping definition

MASLOF Disable a temporary coupling
MASLOFS Deactivate a temporary coupling with

automatic slave axis stop

MASLON Enable a temporary coupling
MCALL Modal subroutine call Without

subroutine name:
Deselection

MEAC Continuous measurement
without deleting distance-to-go

Integer,
w/o signs

 S

MEAFRAME Frame calculation from
measuring points

FRAME

MEAS Measure with touch-trigger
probe

Integer,
w/o signs

 S

MEASA Measurement with deletion of
distance-to-go

 s

MEAW Measure with touch-trigger
probe without deleting
distance-to-go

Integer,
w/o signs

 S

MEAWA Measurement without deletion
of distance-to-go

 s

MI Access to frame data: Mirroring

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-23

MINDEX Define index of character in
input string

0, ...,
INT

String: 1.
parameter,
character: 2. par.

MIRROR Mirroring, programmable MIRROR X0 Y0 Z0
;separate block

s 3

MMC Calling the dialog window
interactively from the parts
program on the HMI

STRING

MOD Modulo division
MOV Start positioning axis

(start moving positioning axis)
Real

MSG Programmable messages MSG("message") m
N Block number - subblock 0, ..., 9999

9999
integers
only,
without
leading
signs

Can be used for
assigning a
number to a
block; located at
beginning of
block

e.g., N20

NCK Specify validity range for data Once per NCK
NEWCONF Accept modified machine data.

Corresponds to set machine data active
Also possible via
HMI

NEWT Create new tool Duplo number
can be omitted

NORM 1 Standard setting in starting point and end
point with tool offset

 m 17

NOT Logical NOT (negation)
NPROT Machine-specific protection zone ON/OFF
NPROTDEF Machine-specific protection area definition

(NCK-specific protection area definition)

NUMBER Convert input string to number Real
OEMIPO16,8 OEM interpolation 1 m 1
OEMIPO26,8 OEM interpolation 2 m 1
OF Keyword in CASE branch
OFFN Allowance on the programmed contour OFFN=5
OMA1 6 OEM address 1 Real m
OMA2 6 OEM address 2 Real m
OMA3 6 OEM address 3 Real m
OMA4 6 OEM address 4 Real m
OMA5 6 OEM address 5 Real m
OFFN Offset - normal Real m
OR Logical OR

Tables
15.1 List of statements

 Job planning
15-24 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

ORIC 1,6 Orientation changes at outside corners are
superimposed on the circle block to be
inserted (orientation change continuously)

 m 27

ORID 6 Orientation changes are performed before
the circle block (orientation change
discontinuously)

 m 27

ORIAXPOS Orientation angle via virtual orientation
axes with rotary axis positions

 m 50

ORIEULER Orientation angle via Euler angle m 50
ORIAXES Linear interpolation of machine axes or

orientation axes
m 51

ORICONCW Interpolation on a circular peripheral
surface in CW direction

m 51

ORICONCCW Interpolation on a circular peripheral
surface in CCW direction

m 51

ORICONIO Interpolation on a circular peripheral
surface with intermediate orientation
setting

m 51

ORICONTO Interpolation on circular peripheral surface
in tangential transition
(final orientation)

m 51

ORICURVE Interpolation of orientation with
specification of motion of two contact
points of tool

m 51

ORIPLANE Interpolation in a plane
(corresponds to ORIVECT)

Final orientation:
Vector
specification
A3, B2, C2
Additional inputs:
Rotational
vectors
A6, B6, C6
Arc angle of taper
in degrees:
0<SLOT<180
deg.
Intermediate
vectors: A7, B7,
C7
contact point of
tool: XH, YH, ZH

Parameter settings as
follows:
Direction vectors
normalized A6=0, B6=0,
C6=0
Opening angle
implemented as travel
angle with SLOT=...
SLOT=+... at ≤ 180
degrees SLOT = -... at ≥
180 degrees
Intermediate orientation
normalized A7=0 B7=0
C7=1

m 51

ORIPATH Tool orientation trajectory relative to the
path

Transformation
package
handling, see
/FB/, TE4

 m 51

ORIPATHS Tool orientation relative to the path, blips in
the orientation characteristic are smoothed

Relative to the
path as a whole

 m 51

ORIROTA Angle of rotation to an absolute direction of
rotation

 m 54

ORIROTC Tangential rotational vector in relation to
path tangent

In relation to path
tangent

 m 54

ORIROTR Angle of rotation relative to the plane
between the start and end orientation.

 m 54

ORIROTT Angle of rotation relative to the change in
the orientation vector.

 m 54

ORIRPY Orientation angle via RPY angle (rotation
sequence XYZ)

 m 50

ORIRPY2 Orientation angle via RPY angle (rotation
sequence ZYX)

 m 50

ORIS 5 Orientation modification
(orientation smoothing factor)

Real Relative to the
path

 m

ORIVECT Large-radius circular interpolation (identical
to ORIPLANE)

 m 51

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-25

ORIVIRT1 Orientation angle via virtual orientation
axes (definition 1)

 m 50

ORIVIRT2 Orientation angle via virtual orientation
axes (definition 1)

 m 50

ORIMKS 6 Tool orientation in the workpiece
coordinate system

 m 25

ORIRESET Initial setting of tool orientation with up to 3
orientation axes

Parameter
optional (REAL)

ORIRESET(A,B,C)

ORIWKS 1,6 Tool orientation in the workpiece
coordinate system

 m 25

OS Oscillation ON / OFF

Integer,
w/o signs

OSB Oscillating: Start point m
OSC 6 Continuous tool orientation smoothing m 34
OSCILL Axis assignment for

oscillation-
 activate oscillation

 Axis: 1 –
infeed axes

 m

OSCTRL Oscillation control options Integer,
w/o signs

 M

OSD 6 Rounding of tool orientation by specifying
rounding length with SD

Block-internal m 34

OSE Oscillating: End point m
OSNSC Oscillating: Number of spark-

out cycles
(oscillating: number spark out
cycles)

 m

OSOF 1,6 Tool orientation smoothing OFF m 34
OSP1 Oscillating: Left reversal point

(oscillating: position 1)
Real m

OSP2 Oscillating: Right reversal
point
(oscillating: position 2)

Real m

OSS 6 Tool orientation smoothing at end of block m 34
OSSE 6 Tool orientation smoothing at start and end

of block
 m 34

OST 6 Rounding of tool orientation by specifying
angle tolerance in degrees with SD
(maximum deviation from programmed
orientation characteristic)

Block-internal m 34

OST1 Oscillating: Stopping point in
left reversal point

Real m

OST2 Oscillating: Stopping point in
right reversal point

Real m

OVR Speed override 1, ...,
200%

 m

OVRA Axial speed override 1, ...,
200%

 m

Tables
15.1 List of statements

 Job planning
15-26 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

P Number of subroutine passes 1, ...,
9999,
integers
w/o signs

 e.g., L781 P...
;separate block

PCALL Call subroutines with the absolute path and
parameter transfer

No absolute path
response like
CALL

PDELAYOF 6 Punch with delay OFF

 m 36

PDELAYON 1,6 Punch with delay ON

 m 36

PL Parameter interval length Real, w/o
signs

 S

PM Per minute Feed per minute
PO Polynomial Real, w/o

signs
 S

POLF LIFTFAST position Real, w/o
signs

Geometry axis in
WCS, otherwise
MCS

POLF[Y]=10 target
position of retracting axis

m

POLFA Start retract position of single
axes with
$AA_ESR_TRIGGER

 For single axes POLFA(AX1, 1, 20.0) m

POLFMASK Enable axes for retraction
without a connection between
the axes

 Selected axes POLFMASK(AX1, AX2,
...)

m

POLFMLIN Enable axes for retraction with
a linear connection between
the axes

 Selected axes POLFMIN(AX1, AX2, ...) m

POLY 5 Polynomial interpolation m 1
POLYPATH 5 Polynomial interpolation can be selected

for the AXIS or VECT axis groups
 POLYPATH ("AXES")

POLYPATH ("VECT")
m 1

PON 6 Punch ON m 35
PONS 6 Punch ON in IPO cycle (punch ON slow) m 35
POS Position axis POS[X]=20
POSA Position axis across block

boundary
 POSA[Y]=20

POSP Positioning in part sections
(oscillation)
(Position axis in parts)

Real: end
position,
part
length;
Integer:
option

POT Square (arithmetic function) Real
PR Per revolution Rev. feedrate

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-27

PRESETON Sets the actual value for programmed axes One axis
identifier is
programmed at a
time, with its
respective value
in the next
parameter.
Up to 8 axes
possible

PRESETON(X,10,Y,4.5)

PRIO Keyword for setting the priority for interrupt
processing

PROC First instruction in a program Block number - PROC -
identifier

PTP point to point; point to point motion m 49
PUTFTOC Tool offset fine for parallel dressing

(continuous dressing)
Channel numbers
1-10 or $MC
_CHAN_NAME

PUTFTOC(1,1,2) or
PUTFTOC(CH_X, CH_Y)

PUTFTOCF PutFineToolCorrectionFunctionDependent:
Fine tool correction depending on a
function defined by FCtDEF for continuous
dressing

Channel numbers
1-10 or $MC
_CHAN_NAME

PUTFTOCF(1,1,2) or
PUTFTOCF(CH_name)

PW Point weight Real, w/o
signs

 S

QECLRNOF Quadrant error compensation learning OFF

QECLRNON Quadrant error compensation learning ON

QU Fast additional (auxiliary) function output

Tables
15.1 List of statements

 Job planning
15-28 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

R... Arithmetic variables
also as settable address
identifier and
with numerical extension

±0.000000
1, ...,
9999 9999

Number of R
parameters can
be set by MD

R10=3 ;R parameter
assignment
X=R10 ;axis value
R[R10]=6
;indirect progr.

RDISABLE Read-in disable
READ Reads one or more lines in the specified

file and stores the information read in the
array.

The information
is available as
STRING

READAL Read alarm Alarms are
searched
according to
ascending
numbers

REAL Data type: floating point
variable with leading sign (real
numbers)

Correspon
ds to the
64-bit
floating
point
format of
the
processor

REDEF Setting for machine data, NC language
elements, and system variables which user
groups they are displayed for

RELEASE Release machine axes Multiple axes can
be programmed

REP Keyword for initialization of all elements of
an array with the same value

 REP(value) or
DO ARRAY[n, m]=REP()

REPEAT Repeat a program loop until (UNTIL) a
condition is
fulfilled

REPEATB Repeat a program line nnn times
REPOSA Repositioning linear all axes:

Linear repositioning with all axes
 s 2

REPOSH Repositioning semicircle:
Repositioning in semicircle

 s 2

REPOSHA Repositioning semicircle all axes:
Repositioning with all axes; geometry axes
in semicircle

 s 2

REPOSL Repositioning linear:
Linear repositioning

 s 2

REPOSQ Repositioning quarter-circle:
Repositioning in a quadrant

 s 2

REPOSQA Repositioning quarter-circle all axes:
Return to contour linear all axes; geometry
axes in quarter-circle

 s 2

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-29

RESET Reset technology cycle One or several
IDs can be
programmed

RET Subroutine end Use in place of
M17 – without
function output to
PLC

RET

RINDEX Define index of character in
input string

0, ...,
INT

String:
1st parameter,
character: 2. par.

RMB Repositioning at beginning of block
(Repos mode begin of block)

 m 26

RME Repositioning at end of block
(Repos mode end of block)

 m 26

RMI 1 Repositioning at interruption point
(Repos mode interrupt)

 m 26

RMN Reapproach to nearest path point
(Repos mode end of nearest orbital block)

 m 26

RND Round the contour corner Real, w/o
signs

 RND=... s

RNDM Modal rounding Real, w/o
signs

 RNDM=...
RNDM=0: disable modal
rounding

m

ROT Programmable rotation Rotation
about
1st geom.
axis:
-180° ..
180°
2nd geom.
axis:
-89.999°,
..., 90°
3rd geom.
axis:
-180° ..
180°

 ROT X... Y... Z...
ROT RPL=
;separate block

s 3

ROTS Programmable frame rotations with solid
angles (rotation)

 ROT X... Y...
ROT Z... X...
ROT Y... Z
ROT RPL=
;separate block

s 3

ROUND Round decimal places Real
RP Polar radius Real m,n 3
RPL Rotation in the plane

Real, w/o
signs

 S

RT Parameter for access to frame data:
Rotation

Tables
15.1 List of statements

 Job planning
15-30 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

S Spindle speed or
(with G4, G96/G961) other
meaning

0.1, ...,
99999999.
9

Spindle speed in
rpm
G4: Dwell time in
spindle
revolutions
G96/G961:
cutting speed in
m/min

S...: Speed for
master spindle
S1...: Speed for spindle 1

m, s

SAVE Attribute for saving information at
subroutine calls

The following are
saved: All modal
G functions and
the current frame

SBLOF Suppress single block
(single block OFF)

The following
blocks are
executed in
single block like a
block.

SBLON Clear single block suppression
(single block ON)

SC Parameter for access to frame data:
Scaling (scale)

SCALE50 Programmable scaling (scale) SCALE X... Y... Z...
;separate block

s 3

SD Spline degree Integer,
w/o signs

 S

SEFORM Structuring instruction in Step editor to
generate the step view for HMI Advanced

Evaluated in Step
editor.

SEFORM(<section_name
>, <level>,
 <icon>)

SET Keyword for initialization of all elements of
an array with listed values

 SET(value, value, ...) or
DO ARRAY[n, m]=SET()

SETAL Set alarm
SETDNO Set D number of tool (T) and its cutting

edge to new

SETINT Define which interrupt routine is to be
activated when an NCK input is present

Edge 0 → 1
 is analyzed

SETM Set one/several markers for channel
coordination

Machining in the
local channel is
not influenced by
this.

SETMS Reset to the master spindle defined in
machine data

SETMS(n) Set spindle n as master spindle
SETPIECE Set piece number for all tools assigned to

the spindle.
Without spindle
number: Valid for
master spindle

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-31

SF Starting point offset for thread
cutting (spline offset)

0.0000,...,
359.999°

 m

SIN Sine (trigon. function) Real
SOFT Soft smoothed path acceleration m 21
SOFTA Switch on soft axis acceleration for the

programmed axes

SON 6 Nibbling ON (stroke ON) m 35
SONS 6 Nibbling ON in IPO cycle (stroke ON slow) m 35
SPATH 1 Path reference for FGROUP axes is arc

length
 m 45

SPCOF Switch master spindle or spindle(s) from
speed control to position control

 SPCON
SPCON (n)

SPCON Switch master spindle or spindle(s) from
position control to speed control

 SPCON
SPCON (n)

SPIF1 1,6 Fast NCK inputs/outputs for
punching/nibbling byte 1
(stroke/punch interface 1)

see /FB/, N4:
Punching and
nibbling

 m 38

SPIF2 6 Fast NCK inputs/outputs for
punching/nibbling byte 2
(stroke/punch interface 2)

see /FB/, N4:
Punching and
nibbling

 m 38

SPLINE-PATH Define spline grouping Max. of 8 axes
SPOF 1,6 Stroke OFF, punching, nibbling OFF

 m 35

SPN 6 Number of path sections per
block
(stroke/punch number)

Integer s

SPP 6 Length of path section
(stroke/punch path)

Integer m

SPOS spindle position SPOS=10 or SPOS[n]=10 m
SPOSA Spindle position across block

boundaries
 SPOSA=5 or

SPOSA[n]=5
m

SQRT Square root; arithmetic
function

Real

SR Sparking-out retraction path
for synchronized action

Real, w/o
signs

 S

SRA Sparking-out retraction path
with input axial
for synchronized action

 SRA[Y]=0.2 m

ST Sparking-out time
for synchronized action

Real, w/o
signs

 S

Tables
15.1 List of statements

 Job planning
15-32 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

STA Sparking out time axial for
synchronized action

 m

START Start selected programs simultaneously in
several channels from current program

ineffective for the
local channel

START(1,1,2) or
START(CH_X, CH_Y)

STAT Position of joints Integer s
STARTFIFO1 Execute; simultaneously fill preprocessing

memory
 m 4

STOPFIFO Stop machining; fill preprocessing memory
until STARTFIFO is detected, FIFO full or
end of program

 m 4

STOPRE Stop preprocessing until all prepared
blocks are executed in main run.

STOPREOF Stop preprocessing OFF
STRING Data type: Character string max. 200

characters

STRINGIS Checks the present scope of
NC language and NC cycle
names, user variables,
macros and label names
belonging especially to this
command to establish whether
these exist, are valid, defined
or active.

INT The return value
results are
000
not known 100
programmable
2XX recognized
as present

STRINGIS(STRING,
name)=return value with
coding

STRLEN Define string length INT
SUBSTR Define index of character in

input string
Real String: 1.

Parameter 1,
character: 2. par.

SUPA Suppress the actual zero offset incl. programmed
offsets,
handwheel
offsets (DRF),
external zero
offsets and
PRESET offset

 s 9

SYNFCT Evaluation of a polynomial as
a function of a condition in the
motion-synchronous action

VAR
REAL

SYNR The variable is read
synchronously, i.e., at
execution time (synchronous
read)

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-33

SYNRW The variable is read and
written synchronously, i.e., at
execution time
(synchronous read-write)

SYNW The variable is written
synchronously, i.e., at
execution time
(synchronous write)

T Call tool
(only change if specified in
machine data; otherwise M6
command necessary)

1 ... 32
000

Call using T-no.:
or with tool
identifier:

e.g., T3 or T=3

e.g., T="DRILL"

TAN Tangent (trigon. function) Real
TANG Determine tangent for the follow-up from

both specified leading axes

TANGOF Tangent follow-up mode OFF

TANGON Tangent follow-up mode ON

TCARR Request toolholder (number
"m")

Integer m=0: deselect
active toolholder

TCARR=1

TCOABS 1 Determine tool length components from the
orientation of the current toolholder

Necessary after
reset, e.g.,
through

 m 42

TCOFR Determine tool length components from the
orientation of the active frame

Manual setting m 42

TCOFRX Determine tool orientation of an active
frame during tool selection, tool points in X
direction

Tool
perpendicular to
inclined surface

 m 42

TCOFRY Determine tool orientation of an active
frame during tool selection, tool points in Y
direction

Tool
perpendicular to
inclined surface

 m 42

TCOFRZ Determine tool orientation of an active
frame during tool selection, tool points in Z
direction

Tool
perpendicular to
inclined surface

 m 42

TILT 5 Tilt angle Real TILT=Value m
THETA Angle of rotation THETA is always

vertical to the
current tool
orientation

THETA=Value
THETA=AC
THETA=IC
Polynomial for THETA
PO[THT]=(…)

s

TMOF Deselect tool monitoring T-no. required
only when the
tool with this
number is not
active

TMOF (T no.)

TMON Activate tool monitoring T No. = 0:
Deactivate
monitoring for all
tools

TMON (T no.)

Tables
15.1 List of statements

 Job planning
15-34 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

TO Defines the end value in a FOR counter
loop

TOFFOF Deactivate on-line tool offset
TOFFON Activate online tool length compensation

(Tool Offset ON)
Specify a 3D
offset direction

TOFFON (Z, 25) with
offset direction Z
offset value 25

TOFRAME Set current programmable frame to tool
coordinate system

 m 53

TOFRAMEX X axis parallel to tool direction, secondary
axis Y, Z

 m 53

TOFRAMEY Y axis parallel to tool direction, secondary
axis Z, X

 m 53

TOFRAMEZ Z axis parallel to tool direction, secondary
axis X, Y

Frame rotations
in the tool
direction

 m 53

TOFROF Frame rotations in the tool direction OFF m 53
TOFROT Z axis parallel to tool orientation m 53
TOFROTX X axis parallel to tool orientation m 53
TOFROTY Y axis parallel to tool orientation m 53
TOFROTZ Z axis parallel to tool orientation

Frame rotations
ON
Rotation
component of
programmable
frame

 m 53

TOLOWER Convert letters of the string into lowercase
TOWSTD Initial setting value for corrections in tool

length
 m 56

TOWBCS Wear values in basic coordinate system
BCS

 m 56

TOWKCS Wear values in the coordinate system of
the tool head for kinetic transformation
(differs from MCS by tool rotation)

 m 56

TOWMCS Wear values in machine coordinate system
(MCS).

 m 56

TOWTCS Wear values in the tool coordinate system
(tool carrier ref. point T at the toolholder)

 m 56

TOWWCS Wear values in workpiece coordinate
system (WCS)

Inclusion of tool
wear

 m 56

TOUPPER Convert letters of the string into uppercase
TR Parameter for access to frame data:

Translation

TRAANG Transformation inclined axis Several
transformations
can be set for
each channel

TRACEOF Circularity test: Transfer of values OFF

 Tables
 15.1 List of statements

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 15-35

TRACEON Circularity test: Transfer of values ON
TRACON Transformation concatenated

TRACYL Cylinder: Peripheral surface transformation see TRAANG
TRAFOOF Deactivate transformation TRAFOOF()
TRAILOF Synchronous coupled motion of axes OFF

(trailing OFF)

TRAILON Synchronous coupled motion of axes ON
(trailing ON)

TRANS Programmable translation TRANS X. Y. Z.;separate
block

s 3

TRANSMIT Polar transformation see TRAANG
TRAORI 4-axis, 5-axis transformation, generic

transformation
(transformation oriented)

Activates the
specified
orientation
transformation

Generic transformation
TRAORI(1,X,Y,Z)

TRUE Logical constant: True BOOL Can be replaced
with integer
constant 1

TRUNC Truncate decimal places Real
TU Axis angle Integer TU=2 s
TURN Number of turns for helix 0, ..., 999 s
UNLOCK Enable synchronized action with ID

(continue technology cycle)

UNTIL Condition for end of REPEAT loop
UPATH Path reference for FGROUP

axes is curve parameter
 m 45

VAR Keyword: Type of parameter passing With VAR: Call
by reference

WAITC Wait until coupling block change criterion
for axes / spindles is fulfilled
(wait for couple condition)

Up to 2
axes/spindles
can be
programmed.

WAITC(1,1,2)

WAITE Wait for end of program on another
channel.

Channel numbers
1 - 10 or $MC
_CHAN_NAME

WAITE(1,1,2) or
WAITE(CH_X, CH_Y)

WAITM Wait for marker in specified channel; end
previous block with exact stop

Channel numbers
1-10 or $MC
_CHAN_NAME

WAITM(1,1,2 or
WATM(CH_X, CH_Y

WAITMC Wait for marker in specified channel; exact
stop only if the other channels have not yet
reached the marker

Channel numbers
1-10 or $MC
_CHAN_NAME

WAITMC(1,1,2) or
WATMC(CH_X, CH_Y

WAITP Wait for end of traversing WAITP(X) ; separate
block

WAITS Waiting to reach spindle position WAITS (main spindle)
WAITS (n,n,n)

Tables
15.1 List of statements

 Job planning
15-36 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

WALCS0 WORK-working area limitation deselected m 60
WALCS1 WORK-working-area-limitation group 1 active m 60
WALCS2 WORK-working-area-limitation group 2 active m 60
WALCS3 WORK-working-area-limitation group 3 active m 60
WALCS4 WORK-working-area-limitation group 4 active m 60
WALCS5 WORK-working-area-limitation group 5 active m 60
WALCS6 WORK-working-area-limitation group 6 active m 60
WALCS7 WORK-working-area-limitation group 7 active m 60
WALCS8 WORK-working-area-limitation group 8 active m 60
WALCS9 WORK-working-area-limitation group 9 active m 60
WALCS10 WORK-working-area-limitation group 10 active m 60
WALIMOF Working area limitation OFF ; separate block m 28
WALIMON1 Working area limitation ON ; separate block m 28
WHILE Start of WHILE program loop End: ENDWHILE
WRITE Write block in file system. Appends a block

to the end of the specified file.
The blocks are
inserted after
M30

X Axis Real m,n 3
XOR Logical exclusive OR
Y Axis Real m,n 3
Z Axis Real m,n 3

Legend:
1 Default setting at beginning of program (factory settings of the control, if nothing else programmed).
2 The groups are numbered according to the table in section "List of G functions/preparatory functions".
3 Absolute end points: modal; incremental end points: non-modal; otherwise modal/non-modal (m, n) depending on syntax
of G function.
4 As arc centers, IPO parameters act incrementally. They can be programmed in absolute mode with AC. The address
modification is ignored when the parameters have other meanings (e.g., thread pitch).
5 The keyword is not valid for SINUMERIK 810D
6 The keyword is not valid for SINUMERIK 810D/NCU571
7 The keyword is only valid for SINUMERIK FM-NC
8 The OEM can add two extra interpolation types. The names can be changed by the OEM.
9 Extended address notation cannot be used for these functions.

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 A-1

A List of abbreviations A

A Output
AS Automation system
ASCII American Standard Code for Information Interchange: American coding standard for

the exchange of information
ASIC Application Specific Integrated Circuit: User switching circuit
ASUB Asynchronous subroutine
AuxF Auxiliary function
AV Job planning
BA Operating mode
BB Ready to run
BCD Binary Coded Decimals: Decimal numbers encoded In binary code
BCS Basic Coordinate System
BIN Binary files (Binary Files)
BIOS Basic Input Output System
BOT Boot files: Boot files for SIMODRIVE 611 digital
BP Basic program
C Bus Communication bus
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CNC Computerized Numerical Control: Computerized numerical control
COM Communication
COR Coordinate rotation
CP Communications Processor
CPU Central Processing Unit: Central processing unit
CR Carriage Return
CRC Cutter radius compensation
CRT Cathode Ray Tube picture tube
CSB Central Service Board: PLC module
CSF Function plan (PLC programming method)
CTS Clear To Send: Signal from serial data interfaces
CUTOM Cutter radius compensation: Tool radius compensation
DAC Digital-to-Analog Converter
DB Data block in the PLC
DBB Data block byte in the PLC
DBW Data block word in the PLC
DBX Data block bit in the PLC

List of abbreviations

 Job planning
A-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

DC Direct Control: Movement of the rotary axis via the shortest path to the absolute
position within one revolution

DCD Data Carrier Detect
DDE Dynamic Data Exchange
DIN Deutsche Industrie Norm (German Industry Standard)
DIO Data Input/Output: Data transfer display
DIR Directory: Directory
DLL Dynamic Link Library
DOE Data transmission equipment
DOS Disk Operating System
DPM Dual-Port Memory
DPR Dual-Port RAM
DRAM Dynamic Random Access Memory
DRF Differential Resolver Function: Differential resolver function (DRF)
DRY Dry Run: Dry run feedrate
DSB Decoding Single Block: Decoding single block
DTE Data Terminal Equipment
DW Data word
E Input
EIA code Special punched tape code, number of holes per character always odd
ENC Encoder: Actual value encoder
EPROM Erasable Programmable Read Only Memory
Error Error from printer
FB Function block
FBS Slimline screen
FC Function Call: Function block in the PLC
FDB Product database
FDD Feed Drive
FDD Floppy Disk Drive
FEPROM Flash-EPROM: Read and write memory
FIFO First In First Out: Memory that works without address specification and whose data

are read in the same order in which they were stored.
FIPO Fine InterPOlator
FM Function Module
FM-NC Function module – numerical control
FPU Floating Point Unit Floating Point Unit
FRA Frame block
FRAME Data record (frame)
FST Feed Stop: Feed stop
GUD Global User Data: Global user data
HD Hard Disk Hard disk
HEX Abbreviation for hexadecimal number
HHU Handheld unit
HMI Human Machine Interface: Operator functionality of SINUMERIK for operation,

programming and simulation.

 List of abbreviations

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 A-3

HMS High-resolution Measuring System
HW Hardware
I/O Input/Output
I/R Infeed/regenerative-feedback unit (power supply) of the

SIMODRIVE 611digital
IBN Startup
IF Drive module pulse enable
IK (GD) Implicit communication (global data)
IKA Interpolative Compensation: Interpolatory compensation
IM Interface Module Interconnection module
IMR Interface Module Receive: Interconnection module for receiving data
IMS Interface Module Send: Interconnection module for sending data
INC Increment: Increment
INI Initializing Data: Initializing data
IPO Interpolator
IS Interface signal
ISA Industry Standard Architecture
ISO International Standardization Organization
ISO code Special punched tape code, number of holes per character always even
JOG Jogging: Setup mode
K1 .. K4 Channel 1 to channel 4
KUE Speed ratio
Kv Servo gain factor
LAD Ladder diagram (PLC programming method)
LCD Liquid Crystal Display: Liquid crystal display
LEC Leadscrew error compensation
LED Light-Emitting Diode: Light emitting diode
LF Line Feed
LR Position controller
LUD Local User Data
MB Megabyte
MC Measuring circuit
MCP Machine control panel
MCS Machine coordinate system
MD Machine data
MDI Manual Data Automatic: Manual input
MLFB Machine-readable product designation
Mode group Mode group
MPF Main Program File: NC parts program (main program)
MPI Multiport Interface Multiport Interface
MS Microsoft (software manufacturer)
MSD Main Spindle Drive
NC Numerical Control: Numerical Control

List of abbreviations

 Job planning
A-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

NCK Numerical Control Kernel: NC kernel with block preparation, traversing range, etc.
NCU Numerical Control Unit: Hardware unit of the NCK
NRK Name for the operating system of the NCK
NURBS Non-Uniform Rational B-Spline
OB Organization block in the PLC
OEM Original Equipment Manufacturer
OP Operator Panel
OP Operator Panel: Operating setup
OPI Operator Panel Interface
OPI Operator Panel Interface: Interface for connection to the operator panel
OPT Options: Options
OSI Open Systems Interconnection: Standard for computer communications
P bus Peripheral Bus
PC Personal Computer
PCIN Name of the SW for data exchange with the control
PCMCIA Personal Computer Memory Card International Association: Standard for plug-in

memory cards
PCU PC Unit: PC box (computer unit)
PG Programming device
PLC Programmable Logic Control: Interface control
PLC Programmable Logic Controller
PMS Position measuring system
POS Positioning
RAM Random Access Memory: Program memory that can be read and written to
REF Reference point approach function
REPOS Reposition function
RISC Reduced Instruction Set Computer: Type of processor with small instruction set and

ability to process instructions at high speed
ROV Rapid override: Input correction
RPA R-Parameter Active: Memory area on the NCK for R parameter numbers
RPY Roll Pitch Yaw: Rotation type of a coordinate system
RS-232-C Serial interface (definition of the exchange lines between DTE and DCE)
RTS Request To Send: RTS, control signal of serial data interfaces
SBL Single Block: Single block
SD Setting Data
SDB System Data Block
SEA Setting Data Active: Identifier (file type) for setting data
SFB System Function Block
SFC System Function Call
SK Softkey
SKP SKiP: Skip block
SM Stepper Motor
SPF Sub Routine File: Subroutine
SR Subroutine
SRAM Static RAM (non-volatile)

 List of abbreviations

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 A-5

SSI Serial Synchronous Interface: Synchronous serial interface
STL Statement list
SW Software
SYF System Files System files
T Tool
TC Tool change
TEA Testing Data Active: Identifier for machine data
TLC Tool length compensation
TNRC Tool Nose Radius Compensation
TO Tool offset
TO Tool Offset: Tool offset
TOA Tool Offset Active: Identifier (file type) for tool offsets
TRANSMIT TRANSform Milling Into Turning: Coordinate conversion on turning machine for

milling operations
TRC Tool Radius Compensation
UFR User Frame: Work offset
UI User interface
WCS Workpiece coordinate system
WOP Workshop-oriented Programming
WPD Workpiece Directory: Workpiece directory
ZO Work offset
ZOA Zero Offset Active: Identifier (file type) for zero offset data
µC Micro Controller

List of abbreviations

 Job planning
A-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-1

Glossary

Absolute dimensions
A destination for an axis movement is defined by a dimension that refers to the origin of the
currently active coordinate system. See -> incremental dimension.

Acceleration with jerk limitation
In order to optimize the acceleration response of the machine whilst simultaneously
protecting the mechanical components, it is possible to switch over in the machining program
between abrupt acceleration and continuous (jerk-free) acceleration.

Address
An address is the identifier for a certain operand or operand range, e.g. input, output etc.

Analog input/output module
Analog input/output modules are signal formers for analog process signals.
Analog input modules convert analog measured values into digital values which can be
processed in the CPU.
Analog output modules convert digital values into analog output signals.

Approach machine fixed-point
Approach motion towards one of the predefined -> fixed machine points.

Archiving
Reading out data and/or directories to an external memory device.

A-Spline
The Akima-Spline runs under a continuous tangent through the programmed interpolation
points (3rd order polynomial).

Asynchronous subroutine
A parts program which can be started asynchronously to (independently of) the current
program status by an interrupt signal (e.g. "rapid NC input" signal).

Glossary

 Job planning
Glossary-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Automatic
Operating mode of the control (block sequence operation according to DIN): Operating Mode
in NC systems in which a -> parts program is selected and continuously executed.

Auxiliary functions
Auxiliary functions can be used to transfer -> parameters to the -> PLC in -> parts programs,
where they trigger reactions which are defined by the machine manufacturer.

Axes
In accordance with their functional scope, the CNC axes are subdivided into:
• Axes: interpolating path axes
• Auxiliary axes: non-interpolating feed and positioning axes with an axis-specific feed rate.

Auxiliary axes are not involved in the actual machining, and include for example tool
feeders and tool magazines.

Axis address
See -> axis identifier

Axis identifier
Axes are labeled in accordance with DIN 66217 (for a clockwise orthogonal -> coordinate
system) with the letters X,Y, Z.
-> Rotary axes which rotate around are labeled with the letters A, B, C. Additional axes
parallel to the above can be identified with further address letters.

Axis name
See -> axis identifier

B spline
With the B-Spline, the programmed positions are not interpolation points, as they are just
"control points" instead. The generated curve only runs near to the control points, not directly
through them (optional 1st, 2nd or 3rd order polynomials).

Backlash compensation
Compensation for mechanical machine backlash, e.g. backlash on reversal for feed screws.
Backlash compensation can be entered separately for each axis.

Backup
Saving the memory contents to an external memory device.

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-3

Backup battery
A backup battery ensures that the → user program is stored retentively in the → CPU along
with specified data areas and bit memory, timers, and counters.

Back-up memory
The backup memory enables buffering of memory areas of the -> CPU without a buffer
battery. Buffering can be performed for a configurable number of times, counters, markers
and data bytes.

Basic axis
Axis whose setpoint or actual value position forms the basis of the calculation of a
compensation value.

Basic Coordinate System
Cartesian coordinate system which is mapped by transformation onto the machine
coordinate system.
In the -> parts program, the programmer uses the axis names of the basic coordinate
system. The basic coordinate system exists in parallel to the -> machine coordinate system
when no -> transformation is active. The difference between the systems relates to the axis
identifiers.

Baud rate
Rate of data transfer (Bit/s).

Block
"Block" is the term given to any files required for creating and processing programs.

Block search
For debugging purposes or following a program abort, the "Block search" function can be
used to select any location in the part program at which the program is to be started or
resumed.

Booting
Loading the system program after power on.

Bus connector
A bus connector is an S7-300 accessory part which is supplied together with the -> I/O
modules. The bus connector expands the -> S7-300 bus from the -> CPU or an I/O module
to the neighboring I/O module.

Glossary

 Job planning
Glossary-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

C axis
Axis around which the tool spindle describes a controlled rotational and positioning
movement.

C spline
The C-spline is the most well-known and widely used spline. The transitions at the
interpolation points are continuous, both tangentially and in terms of curvature. 3rd order
polynomials are used.

Channel
A channel is characterized by its ability to execute a -> parts program independently of other
channels. A channel exclusively controls the axes and spindles assigned to it. Parts
programs run on various channels can be coordinated by -> synchronization.

Channel structure
The channel structure enables the -> programs of the individual channels to be executed
simultaneously and asynchronously.

Circular interpolation
The -> tool is required to travel in a circle between defined points on the contour at a
specified feedrate while machining the workpiece.

CNC
See -> NC

COM
Component of the NC control for the implementation and coordination of communication.

Compensation axis
Axis with a setpoint or actual value modified by the compensation value

Compensation table
Table containing interpolation points. It provides the compensation values of the
compensation axis for selected positions on the basic axis.

Compensation value
Difference between the axis position measured by the position sensor and the desired,
programmed axis position.

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-5

Connecting cable
Connecting cables are pre-assembled or user-assembled 2-wire cables with a connector at
each end. This connecting cable connects the → CPU to a → programming device or to other
CPUs by means of a → multi-point interface (MPI).

Continuous-path mode
The purpose of continuous-path mode is to prevent excessive deceleration of the -> path
axes at the part program block boundaries (in terms of the control, machine and other
properties of the operation and the user) and to effect the transition to the next block at as
uniform a path speed as possible.

Contour
Outline of the -> workpiece

Contour monitoring
The following error is monitored within a defined tolerance band to ensure contour precision.
An impermissibly high following error might be caused by a drive overload, for example. In
this case an alarm is triggered and the axes are stopped.

coordinate system
See -> Machine Coordinate System, -> Workpiece Coordinate System

CPU
Central Processor Unit, see -> Programmable Logic Controller

Cycle
Protected subroutine for implementing a repetitious machining operation on the → workpiece.

Data Block
1. Data unit of the -> PLC, which the -> HIGHSTEP programs can access.
2. Data unit of the -> NC: Data blocks contain data definitions for global user data. These

data can be initialized directly when they are defined.

Data transmission program PCIN
PCIN is an auxiliary program which is used to send and receive CNC user data via the serial
interface, such as e.g. parts programs, tool offsets etc. The PCIN program can be executed
under MS-DOS on standard industrial PCs.

Data word
A data unit, two bytes in size, within a -> data block.

Glossary

 Job planning
Glossary-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Diagnosis
1. Control operating area
2. The control has both a self-diagnostics program and testing aids for service. Status,

alarm and service indicators.

Digital input/output module
Digital modules are signal formers for binary process signals.

Dimensions in metric units and inches
Position and gradient values can be entered in the machining program in inches. The control
can be set to a basic system regardless of the programmed measuring system (G70/G71).

DRF
Differential Resolver Function: An NC function which generates an incremental zero offset in
automatic mode in conjunction with an electronic handwheel.

Drive
The SINUMERIK 840D control system is connected to the SIMODRIVE 611 digital converter
system by means of a high-speed digital parallel bus.

Dynamic feedforward control
Inaccuracies in the → contour due to following errors can be practically eliminated using
dynamic, acceleration-dependent feedforward control. This results in excellent machining
accuracy even at high → path velocities. Feedforward control can be selected and
deselected on an axis-specific basis via the → part program.

Editor
The editor is used to create, modify, add to, compress, and insert programs/texts/program
blocks.

Electronic handwheel
The electronic handwheels can be used to simultaneously traverse selected axes manually.
The meaning of the lines on the handwheels is defined by the external zero offset increment
weighting.

Exact stop
With a programmed exact stop instruction, the position stated in a block is approached
precisely and very slowly, if necessary. In order to reduce the approach time, -> exact stop
limits are defined for rapid traverse and feed.

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-7

Exact stop limit
When all path axes reach their exact stop limits, the control responds as if it had reached its
destination point precisely. The -> part program continues execution at the next block.

External zero offset
Zero offset specified by the -> PLC.

Fast retraction from contour
When an interrupt occurs, a motion can be initiated via the CNC machining program,
enabling the tool to be quickly retracted from the workpiece contour that is currently being
machined. The retraction angle and the distance retracted can also be assigned. After fast
retraction, an interrupt routine can also be executed (SINUMERIK 840D).

Feed override
The programmed velocity is overriden by the current velocity setting made via the → machine
control panel or from the → PLC (0 to 200%). The feed velocity can also be offset by applying
a programmable percentage factor (1 to 200%) in the machining program.

Finished-part contour
Contour of the finished workpiece. See -> blank.

Fixed machine point
A point defined uniquely by the machine tool, e.g. the reference point.

Fixed-point approach
Machine tools can approach fixed points such as a tool change point, loading point, pallet
change point, etc. in a defined way. The coordinates of these points are stored in the control.
Where possible, the control moves these axes in -> rapid traverse.

Frame
A frame is an arithmetic rule that transforms one Cartesian coordinate system into another
Cartesian coordinate system. A frame contains the components -> zero offset, -> rotation, ->
scaling, -> mirroring.

Geometry
Description of a -> workpiece in the -> workpiece coordinate system.

geometry axis
Geometry axes are used to describe a 2- or 3-dimensional range in the workpiece coordinate
system.

Glossary

 Job planning
Glossary-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Global main program/subroutine
Every global main program/subroutine can only appear once under its own name in the
directory, and it is not possible to have the same program name in different directories with
different contents as a global program.

Ground
Ground is taken as the total of all linked inactive parts of a device which will not become live
with a dangerous contact voltage even in the event of a malfunction.

Helical interpolation
Helical interpolation is especially suitable for easy machining inside or outside threads with
form cutters and for milling lubricating grooves.
The helix consists of two motions:
• A circular movement in one plane
• A linear movement perpendicular to this plane

High-level CNC language
The high-level language offers: -> User-defined variable, -> System variable, -> Macro
technique.

High-speed digital inputs/outputs
Digital inputs can be used to start high-speed CNC program routines (interrupt routines), for
example. The digital CNC outputs can be used to trigger fast, program-controlled switching
functions (SINUMERIK 840D).

HIGHSTEP
Summary of the programming options for the -> PLC in the AS300/AS400 system.

I/O module
I/O modules represent the link between the CPU and the process.
I/O modules are:
• → Digital input/output modules
• → Analog input/output modules
• → Simulator modules

Inch system
Measuring system that defines distances in inches and fractions of inches.

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-9

Inclined surface machining
Drilling and milling operations on workpiece surfaces that do not lie in the coordinate planes
of the machine can be performed easily using the "inclined-surface machining" function.

Increment
Traversed distance information via the number of increments. The number of increments can
be stored as → setting data or be selected by means of a suitably labeled key (i.e., 10, 100,
1000, 10000).

Incremental dimension
Also incremental dimension: A destination for axis traversal is defined by a distance to be
covered and a direction referenced to a point already reached. See -> Absolute dimension.

Initialization block
Initialization blocks are special -> program blocks. They contain value assignments that are
performed before program execution. The primary purpose of initialization blocks is to
initialize predefined data or global user data.

Initialization files
It is possible to create an initialization file for each -> workpiece. Various variable
assignments which are intended to apply specifically to one workpiece can be stored in this
file.

Intermediate blocks
Motions with selected → tool offset (G41/G42) may be interrupted by a limited number of
intermediate blocks (blocks without axis motions in the offset plane), whereby the tool offset
can still be correctly compensated for. The permissible number of intermediate blocks that
the control reads ahead can be set via system parameters.

Interpolator
Logical unit of the -> NCK which determines intermediate values for the movements to be
traversed on the individual axes on the basis of destination positions specified in the parts
program.

Interpolatory compensation
The interpolatory compensation allows manufacturing related Leadscrew Error
Compensation and Measuring System Error Compensation (LEC, MSEC).

interrupt routine
Interrupt routines are special -> subroutines which can be started on the basis of events
(external signals) in the machining process. A parts program block which is currently being
worked through is interrupted and the position of the axes at the point of interruption is
automatically saved.

Glossary

 Job planning
Glossary-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Interrupts
All alarms and -> messages are output on the operator panel in plain text with the date and
time and a symbol indicating the cancel criterion. The display is divided into alarms and
messages.
1. Alarms and messages in the part program:

Alarms and messages can be displayed in plain text directly from the part program.
2. Alarms and messages from PLC

Alarms and messages for the machine can be displayed in plain text from the PLC
program. No additional function block packages are required to do this.

Inverse time feedrate
With SINUMERIK 840D, the time required for the path of a block to be traversed can be
programmed for the axis motion instead of the feed velocity (G93).

Jog
Control operating mode (setup mode): In JOG mode, it is possible to set up the machine.
Individual axes and spindles can be moved in this mode using the direction keys. Other
functions available in JOG mode are -> reference point approach, -> repositioning and ->
preset (setting an actual value).

Key switch
The key switch on the → machine control panel has 4 positions that are assigned functions
by the operating system of the control. The key switch has three different colored keys that
can be removed in the specified positions.

Keywords
Words with specified notation that have a defined meaning in the programming language for
→ part programs.

Kv
Servo gain factor, a control variable in a control loop.

Leadscrew error compensation
Compensation for the mechanical inaccuracies of a leadscrew participating in the feed. The
control uses stored deviation values for the compensation.

Limit speed
Maximum/minimum (spindle) speed: The maximum speed of a spindle may be limited by
values defined in the machine data, the -> PLC or -> setting data.

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-11

Linear axis
The linear axis is an axis which, in contrast to a rotary axis, describes a straight line.

Linear interpolation
The tool travels along a straight line to the destination point while machining the workpiece.

Load memory
For the CPU 314 of the -> PLC, the load memory is equal to the -> Work memory .

Look ahead
With the look ahead function, a configurable number of traversing blocks is read in advance
in order to calculate the optimum machining velocity.

Machine
Control operating area

Machine axes
Axes which exist physically on the machine tool.

Machine control panel
An operator panel on a machine tool with operating elements such as keys, rotary switches
etc. and simple indicators such as LEDs. It is used to control the machine tool directly via the
PLC.

Machine coordinate system
System of coordinates based on the axes of the machine tool.

Machine zero
A fixed point on the machine tool, which can be referenced by all (derived) measuring
systems.

Machining channel
Via a channel structure, parallel sequences of movements, such as positioning a loading
gantry during machining, can shorten unproductive times. Here, a CNC channel must be
regarded as a separate CNC control system with decoding, block preparation and
interpolation.

Macro techniques
Grouping of a set of instructions under a single identifier. The identifier in the program refers
to the grouped set of instructions.

Glossary

 Job planning
Glossary-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Main block
A block prefixed by ":" containing all the parameters required to start execution of a -> parts
program.

Main program
Parts program identified by a number or identifier in which further main programs,
subroutines or -> cycles may be called.

Mains
The term "network" describes the connection of several S7-300 and other terminal devices,
e.g. a programming device, via -> interconnecting cables. A data exchange takes place over
the network between the connected devices.

MDI
Control operating mode: Manual Data Automatic. In MDA mode, it is possible to enter
individual program blocks or sequences of blocks without reference to a main program or
subroutine and to then execute them immediately via the NC start key.

Messages
All messages programmed in the parts program and -> alarms recognized by the system are
output on the operator panel in plain text with the date and time and a symbol indicating the
cancel criterion. The display is divided into alarms and messages.

Metric system
Standardized measuring system: for lengths in millimeters (mm), meters (m), etc.

Mirroring
Mirroring inverts the signs of the coordinate values of a contour with respect to an axis. It is
possible to mirror in relation to more than one axis at a time.

Mode group
At any one time, all axes/spindles are assigned to just one channel. Each channel is
assigned to a mode group. The same -> mode is always assigned to the channels in a mode
group.

Multipoint interface
The multipoint interface (MPI) is a 9-pole Sub-D interface. A configurable number of devices
can be connected to a multipoint interface and then communicate with each other.
• Programming devices
• Operator control and monitoring equipment
• Further automation systems

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-13

The parameter block "Multipoint Interface MPI" of the CPU contains the -> parameters which
define the properties of the multipoint interface.

Name of identifier
The words according to DIN 66025 are supplemented by the identifiers (names) for variables
(computer variable, system variable, user variable), for subroutines, for keywords and words
with several address letters. In terms of the block format, these supplements have the same
significance as the words. Identifiers must be unique. The same identifier must not be used
for different objects.

NC
Numerical Control: NC control incorporates all the components of the of the machine tool
control system: -> NCK, -> PLC, HMI, -> COM.

 Note
CNC (Computerized Numerical Control) is a more accurate term for the SINUMERIK 840D
controls. MARS and Merkur controls.

NCK
Numerical Control Kernel: Component of the NC control which executes -> parts programs
and essentially coordinates the movements on the machine tool.

NRK
Numeric Robotic Kernel (operating system of the -> NCK)

NURBS
Internal motion control and path interpolation are performed using NURBS (non-uniform
rational B-splines). This provides a uniform internal method for all interpolations in the control
(SINUMERIK 840D).

OEM
For machine manufacturers who manufacture their own user interface or wish to integrate
their own technology-specific functions in the control, free space has been left for individual
solutions (OEM applications) for SINUMERIK 840D.

Offset memory
Data range in the control in which the tool offset data are stored.

Glossary

 Job planning
Glossary-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Operating mode
An operating concept on a SINUMERIK control. The operating modes -> Jog, -> MDA and ->
Automatic are defined.

Oriented spindle stop
Stops the workpiece spindle with a specified orientation angle, e.g. to perform an additional
machining operation at a specific position.

Oriented tool retraction
RETTOOL: If machining is interrupted (because of tool breakage, for example), a program
command can be used retract the tool with a defined orientation by a defined path.

Overall reset
In the event of an overall reset, the following memories of the → CPU are deleted:
• -→ RAM
• Read/write area of → load memory
• → System memory
• → Backup memory

Override
Manual or programmable control feature which enables the user to override programmed
feedrates or speeds in order to adapt them to a specific workpiece or material.

Part program
Series of instructions to the NC that act in concert to produce a particular → workpiece.
Likewise, this term applies to execution of a particular machining operation on a given → raw
part.

Part program block
Part of a → part program that is demarcated by a line feed. There are two types: → main
blocks and → subblocks.

Part program management
Part program management can be organized by → workpieces. The size of the user memory
determines the number of programs and the amount of data that can be managed. Each file
(programs and data) can be assigned a name comprising up to 24 alphanumeric characters.

Path axis
Path axes are all the machining axes in the -> channel which are controlled by the ->
interpolator so that they start, accelerate, stop and reach their end positions simultaneously.

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-15

Path feed
Path feed acts on -> path axes. It represents the geometrical sum of the feeds on the
participating -> geometry axes.

Path velocity
The maximum programmable path velocity depends on the input resolution. For example,
with a resolution of 0.1 mm the maximum programmable path velocity is 1000 m/min.

PLC
Programmable Logic Control: Component of → NC: Programmable controller for processing
the control logic of the machine tool.

PLC program memory
SINUMERIK 840D: The PLC user program and the user data are stored together with the
PLC basic program in the PLC user memory.

PLC Programming
The PLC is programmed using the STEP 7 software. The STEP 7 programming software is
based on the WINDOWS standard operating system and contains the STEP 5 programming
functions with innovative enhancements.

Polar coordinates
A coordinate system that defines the position of a point on a plane in terms of its distance
from the zero point and the angle formed by the radius vector with a defined axis.

Polynominal interpolation
Polynomial interpolation enables a wide variety of curve characteristics to be generated,
such as straight line, parabolic, exponential functions (SINUMERIK 840D).

Positioning axis
Axis which performs an auxiliary movement on a machine tool (e.g. tool magazine, pallet
transport). Positioning axes are axes that do not interpolate using → path axes.

Pre-coincidence
Block change occurs already when the path distance approaches an amount equal to a
specifiable delta of the end position.

Program block
Program blocks contain the main program and subroutines of → part programs.

Glossary

 Job planning
Glossary-16 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Programmable frames
Programmable → frames enable dynamic definition of new coordinate system output points
while the part program is being executed. A distinction is made between absolute definition
using a new frame and additive definition with reference to an existing starting point.

Programmable Logic Controller
Programmable logic controllers (PLC) are electronic controls, the function of which is stored
as a program in the control unit. This means that the layout and wiring of the device do not
depend on the function of the control. The programmable logic controller has the same
structure as a computer; it consists of a CPU (central module) with memory, input/output
modules and an internal bus system. The peripherals and the programming language are
matched to the requirements of the control technology.

Programmable working area limitation
Limitation of the motion space of the tool to a space defined by programmed limitations.

Programming key
Character and character strings that have a defined meaning in the programming language
for → part programs.

Protection zone
Three-dimensional zone within the → working area into which the tool tip must not pass.

Quadrant error compensation
Contour errors at quadrant transitions, which arise as a result of changing friction conditions
on the guideways, can be largely eliminated using quadrant error compensation. Quadrant
error compensation is parameterized by a circularity test.

R parameters
Arithmetic parameter that can be set or queried by the programmer of the → part program for
any purpose in the program.

Rapid traverse
The highest speed of an axis. It is used for example to move the tool from rest position to the
-> workpiece contour or retract the tool from the contour.

Raw part
Workpiece as it is before it is machined.

Reference point
Machine tool position that the measuring system of the → machine axes references.

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-17

Rotary axis
Rotary axes rotate a workpiece or tool to a defined angular position.

Rotation
Component of a → frame that defines a rotation of the coordinate system around a particular
angle.

Rounding axis
Rounding axes rotate a workpiece or tool to an angular position corresponding to an
indexing grid. When a grid index is reached, the rounding axis is "in position".

Safety functions
The control is equipped with permanently active montoring functions that detect faults in the
→ CNC, the → PLC, and the machine in a timely manner so that damage to the workpiece,
tool, or machine is largely prevented. In the event of a malfunction, the machining sequence
is interrupted and the drives are stopped and the cause of the malfunction is saved and
displayed as an alarm. At the same time, the PLC is informed that a CNC alarm is pending.

Scaling
Component of a → frame that implements axis-specific scale modifications.

Serial V.24 interface
For data input/output, the PCU 20 has one serial V.24 interface (RS232) while the
PCU 50/70 has two V.24 interfaces. Machining programs and manufacturer and user data
can be loaded and saved via these interfaces.

Services
Control operating area

Setting data
Data that communicate properties of the machine tool to the NC control in a manner defined
by the system software.

Softkey
A key whose name appears on an area of the screen. The selection of keys displayed is
adapted dynamically to the operating situation. The freely assignable function keys
(softkeys) are assigned defined functions in the software.

Glossary

 Job planning
Glossary-18 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Software limit switch
Software limit switches limit the traversing range of an axis and prevent an abrupt stop of the
slide at the hardware limit switch. Two value pairs can be specified for each axis and
activated separately by means of the → PLC.

Spline interpolation
With spline interpolation, the controller can generate a smooth curve characteristic from only
a few specified interpolation points of a set contour.

SRT
Speed ratio

Standard cycles
Standard cycles are available for frequently recurring machining tasks.
• for drilling/milling technology
• for turning technology
In the "Program" operating area, the available cycles are listed under the "Cycle Support"
menu. After selecting the desired machining cycle, the required parameters for the value
assignment are displayed in plain text.

Subblock
Block prefixed by "N" containing information for a machining step such as position data.

Subroutine
Sequence of statements of a → part program that can be called repeatedly with different
defining parameters. The subroutine is called from a main program. It is not possible to block
every subroutine against unauthorized reading and displaying. → Cycles are a form of
subroutines.

Synchronization
Statements in → part programs for coordination of sequences in different → channels at
certain machining points.

Synchronized actions
1. Auxiliary function output

During workpiece machining, technological functions (→ auxiliary functions) can be output
from the CNC program to the PLC. For example, these auxiliary functions are used to
control additional equipment for the machine tool, such as quills, grabbers, clamping
chucks, etc.

2. Fast auxiliary function output

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-19

For time-critical switching functions, the acknowledgement times for the → auxiliary
functions can be minimized and unnecessary hold points in the machining process can
be avoided.

Synchronized axes
Synchronized axes take the same time to traverse as geometry axes take for their path.

System memory
The system memory is a memory in the CPU in which the following data are stored:
• Data required by the operating system
• The operands times, counters, markers

System variable
A variable that exists without any input from the programmer of a → part program. It is
defined by a data type and variable name preceded by the character $.
See → User-defined variable.

TappingRigid
This function allows threads to be tapped without a compensating chuck. By using the
method whereby the spindle, as a rotary axis, and the drilling axis interpolate, threads can be
cut to a precise final drilling depth (e.g. for blind hole threads) (requirement: spindles in axis
operation).

Text editor
See → Editor

TOA area
The TOA area includes all tool and magazine data. By default, this area coincides with the
→ channel area with regard to the reach of the data. However, machine data can be used to
specify that multiple channels share one → TOA unit so that common tool management data
are then available to these channels.

TOA unit
Each → TOA area can have more than one TOA unit. The number of possible TOA units is
limited by the maximum number of active → channels. A TOA unit includes exactly one tool
data block and one magazine data block. In addition, a TOA unit can also contain a
toolholder data block (optional).

Tool
Active part on the machine tool that implements machining (e.g., turning tool, milling tool,
drill, LASER beam, etc.).

Glossary

 Job planning
Glossary-20 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Tool Nose Radius Compensation
Contour programming assumes that the tool is pointed. Because this is not actually the case
in practice, the curvature radius of the utilized tool must be communicated to the control
which then takes it into account. The curvature center is maintained equidistantly around the
contour offset by the radius of curvature.

Tool offset
Consideration of the tool dimensions in calculating the path.

Tool radius compensation
To directly program a desired → workpiece contour, the control must traverse an equistant
path to the programmed contour taking into account the radius of the tool that is being used
(G41/G42).

Transformation
Additive or absolute work offset of an axis.

Traversing range
The maximum permissible traversing range for linear axes is ± 9 decades. The absolute
value depends on the selected input and positioning resolutions and the basic unit system
used (inches or metric).

User interface
The user interface (UI) is the display medium for a CNC control in the form of a screen. It is
laid out with horizontal and vertical softkeys.

User memory
All program and data, such as part programs, subroutines, comments, tool compensations,
and work offsets/frames, as well as channel- and program user data can be stored in the
shared CNC user memory.

User program
User programs for the S7-300 automation systems are created using the programming
language STEP 7. The user program has a modular layout and consists of individual blocks.
The basic block types are:
code modules: these blocks contain the STEP 7 commands.
Data blocks: these blocks contain the constants and variables for the STEP 7 program.

User-defined variable
The user can declare user-defined variables for any use in the -> parts program or data
block (global user data). A definition contains a data type specification and the variable
name. See -> system variable.

 Glossary

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Glossary-21

Variable definition
A variable definition includes the specification of a data type and a variable name. The
variable names can be used to access the value of the variables.

Velocity control
In order to be able to achieve an acceptable traversing velocity on very short traverse
movements within a single block, predictive velocity control can be set over several blocks
(-> look ahead).

Work offset
Specification of a new reference point for a coordinate system through reference to an
existing zero point and a -> frame.
1. Adjustable

SINUMERIK 840D: A configurable number of adjustable zero offsets is available for each
CNC axis. The offsets which can be selected via G functions are effective on an
alternating basis.

2. External
In addition to all the offsets which define the position of the workpiece zero point, an
external zero offset can be overlaid by means of the handwheel (DRF offset) or from the
PLC.

3. Programmable
Zero offsets are programmable for all path and positioning axes with the TRANS
command.

Working area
Three-dimensional zone into which the tool tip can be moved on account of the physical
design of the machine tool. See -> protection zone.

Working area limitation
With the aid of the working area limitation, the traversing range of the axes can be further
restricted in addition to the limit switches. One value pair per axis may be used to describe
the protected working area.

Working memory
The working area is a RAM area in the -> CPU which is accessed by the processor to
access the user program during program execution.

Workpiece
Part to be created/machined by the machine tool.

Glossary

 Job planning
Glossary-22 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Workpiece contour
Set contour of the → workpiece to be created or machined.

Workpiece coordinate system
The workpiece coordinate system has its starting point in the → workpiece zero. In machining
operations programmed in the workpiece coordinate system, the dimensions and directions
refer to this system.

Workpiece zero
The workpiece zero is the starting point for the → workpiece coordinate system. It is defined
in terms of distances to the → machine zero.

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Index-1

Index

$
$AA_COUP_ACT, 9-11, 9-36, 13-23
$AA_COUP_OFFS, 13-23
$AA_LEAD_SP, 9-36
$AA_LEAD_SV, 9-36
$AA_MOTEND, 5-40
$AC_MARKER[n], 10-14
$AC_PARAM, 10-15
$AC_TIMER[n], 10-18
$MC_COMPESS_VELO_TOL, 9-41
$P_TECCYCLE, 10-70
$SA_LEAD_TYPE, 9-35, 9-36
$TC_CARR1...14, 8-40
$TC_CARR18[m], 8-40, 8-44
$TC_CARR24[m], 8-42

3
3D circumferential milling with limitation surfaces, 8-25
3D face milling, 7-22

Path curve using surface normal vectors, 7-22

5
5-axis transformation

Programming the tool orientation with LEAD and
TILT, 7-21

5-Axis transformation
Programming of directional vector, 7-20

A
A, 7-64
A1, A2, 8-40, 8-42
A2, 7-16
A3, 7-16
A4, 7-16, 7-22
A5, 7-16, 7-22
ABS, 1-19
ACC, 13-21

Access to curve table positions and curve table
segments, 9-27
ACOS, 1-19
Acquiring and finding untraceable sections, 9-50
ACTFRAME, 6-6
Actual value coupling, 13-15
Adaptive control, additive, 10-34
Adaptive control, multiplicative, 10-35
ADISPOSA, 5-38
ALF, 1-46
Amax, 12-2
Amin, 12-2
AND, 1-21
and after motion, 12-4
Angle of rotation, 7-36
Angle of rotation 1, 2, 8-40
Angle offset/angle increment of the rotary axes, 8-42
Angle reference, 13-19
ANZ, 14-15
ANZHINT, 14-4, 14-6
applim, 9-14
Approach from the nearest path point, 9-57
Approaching coded positions, 5-1
APR, 3-12, 3-15, 3-17
APW, 3-12, 3-15, 3-17
APX, 3-17
Arithmetic functions, 1-19
Arithmetic variables, 1-1
AROTS, 6-15
Array index, 1-9
AS, 2-41
ASIN, 1-19
ASPLINE, 5-4
Assign and start interrupt routine, 1-49
Assignments, 1-17
Asynchronous oscillation, 11-1
ATAN2, 1-19
Automatic "GET", 1-57
Automatic interrupt pointer, 9-50
Automatic path segmentation, 12-5
Auxiliary functions, 10-26, 12-5
AV, 13-19
AX, 13-1, 13-2
AXCTSWE, 13-44
AXCTSWED, 13-44

Index

 Job planning
Index-2 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Axial feed, 10-51
Axial master value coupling, 9-31
Axis

Local, 13-45
AXIS, 1-4
Axis container, 13-44, 13-47
Axis coordination, 10-52
Axis positioning, 10-43

Specified reference position, 10-45
Axis replacement

Accept axis, 1-57
AXTOCHAN, 1-58
GET, 1-55
Get and release using synchronized actions, 10-47
Preconditions, 1-57
Release axis, 1-57
Set up variable response, 1-58
without preprocessing stop, 1-58
Without synchronization, 1-56

Axis Replacement
RELEASE, 1-55

AXNAME, 13-1, 13-2
AXSTRING, 1-27, 13-1, 13-2
AXTOCHAN, 1-58
AXTOSPI, 13-1, 13-2

B
B_AND, 1-21
B_NOT, 1-21
B_OR, 1-21
B_XOR, 1-21
B2, 7-16
B3, 7-16
B4, 7-16, 7-22
B5, 7-16, 7-22
Backlash, 13-10
BAUTO, 5-4
Behavior at curve table edges, 9-22
BFRAME, 6-3
Bit logic operators, 1-21
BLOCK, 2-22
Block display, 2-23, 2-36
BNAT, 5-4
BOOL, 1-4
BSPLINE, 5-4
BTAN, 5-4

C
C2, 7-16
C3, 7-16
C4, 7-16, 7-22

C5, 7-16, 7-22
CAC, 5-1
CACN, 5-1
CACP, 5-1
CALCDAT, 14-2, 14-15
Calculate circle data, 14-15
Calculate intersection of two contour elements, 14-2
CALL, 2-21, 2-22
Call by value parameters for technology cycles, 10-71
Calling up a program in ISO language indirectly with
ISOCALL, 2-23
CALLPATH, 2-25, 3-5
CANCEL, 10-2
Cancel synchronized action, 10-77
Cartesian PTP travel, 7-6
CASE, 1-34
CASE statement, 1-34
CDC, 5-1
CFINE, 6-17
CHANDATA, 3-7
Channel-specific frames, 6-27
CHAR, 1-4
CHECKSUM, 1-69
CHKDNO, 8-37
CIC, 5-1
Circumferential milling with limitation surfaces, 8-26
Clamping axis/spindle, 13-44
Clearance control, 10-36
CLEARM, 1-41, 10-60
CLRINT, 1-46
CMIRROR, 1-19, 6-9
COARSE, 13-15
Coarse offset, 6-16
COARSE50, 13-19, 13-21
COARSEA, 5-38
COMCAD, 5-13
Command axes, 10-42
Command elements, 10-3
Comparison and logic operators, 1-20
COMPCURV, 5-13
COMPLETE, 3-6, 3-7
Complete basic frame, 6-29
COMPOF, 5-13, 5-22
COMPON, 5-13, 5-22, 7-45, 9-41
Compressor, 5-12, 5-24
Compressor for orientation

COMPON, COMPCURV, 5-16
Computing capacity, 13-41
Concatenation of strings, 1-28
Conditionally interruptible program sections, 9-44
Configurable parameter ranges, 10-11
Constraints for transformations, 7-76
CONTDCON, 14-2, 14-9
Contour element, 14-5

 Index

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Index-3

Contour elements, intersection, 14-12
Contour preparation, 14-3, 14-9

Relief cut elements, 14-8
Contour table, 14-3, 14-9
CONTPRON, 14-2, 14-3, 14-12, 14-14
Control structures, 1-36

Restrictions, 1-38
Runtime response, 1-37

Conversion routines, 10-10
Corner deceleration at all corners, 5-37
Corner deceleration at inside corners, 5-37
COS, 1-19
COUPDEF, 13-14, 13-17, 13-18
COUPDEL, 13-14, 13-17
Coupled motion, 9-8, 10-54

Coupled-motion axes, 9-10
Coupling factor, 9-11

Coupled-axis combinations, 9-9
Coupling, 9-3, 9-9
Coupling type

AV, 13-15
DV, 13-15
VV, 13-15

COUPOF, 13-14, 13-22
COUPOFS, 13-14, 13-22
COUPON, 13-14, 13-19
COUPONC, 13-14
COUPRES, 13-14, 13-22
cov.com, user cycles, 2-37
CP, 7-69
CPROT, 4-4
CPROTDEF, 4-2
Create interrupt routine as subroutine, 1-47
CROT, 1-19, 6-9
CROTS, 6-15
CS, 9-3
CSCALE, 1-19, 6-9
CSPLINE, 5-4
CTAB, 9-27, 9-28, 9-29
CTABDEF, 9-14, 9-16
CTABDEL, 9-14, 9-18, 9-20
CTABEND, 9-14, 9-16
CTABEXISTS, 9-20
CTABFNO, 9-20
CTABFPOL, 9-21
CTABFSEG, 9-21
CTABID, 9-20
CTABINV, 9-27, 9-28, 9-29
CTABISLOCK, 9-20
CTABLOCK, 9-20
CTABMAX, 9-23
CTABMEMTYP, 9-20
CTABMIN, 9-23
CTABMPOL, 9-21

CTABMSEG, 9-21
CTABNOMEM, 9-20
CTABPERIOD, 9-20
CTABPOLID, 9-21
CTABSEG, 9-20
CTABSEGID, 9-20
CTABSEV, 9-27, 9-28
CTABSSV, 9-27, 9-28
CTABTEP, 9-23
CTABTEV, 9-23
CTABTMAX, 9-23
CTABTMIN, 9-23
CTABTSP, 9-23
CTABTSV, 9-23
CTABUNLOCK, 9-20
CTRANS, 1-19, 6-9, 6-17
Current

Angular offset, 13-23
Coupling status following spindle, 13-23

Current block display, 2-36
Current channel basic frames, 6-29
Current first basic frame in the channel, 6-29
Current NCU-global basic frames, 6-28
Current programmable frame, 6-30
Current settable frame, 6-30
Current system frames, 6-28
Current total frame, 6-30
Curve tables, 9-13, 9-18

Non-periodic curve table, 9-25
Periodic curve table, 9-26
Read in synchronized actions, 9-27

CUT3DC, 8-16, 8-22
CUT3DCC, 8-26
CUT3DCCD, 8-26
CUT3DF, 8-16
CUT3DFF, 8-16
CUT3DFS, 8-16
CUTCONOF, 8-13
CUTCONON, 8-13
Cutting edge number, 8-36
Cycles

Setting parameters for user cycles, 2-31, 2-37
User cycles and manufacturer cycles with NC
programs of the same name, 2-26

Cylinder surface curve transformation, 7-55, 7-56
Offset contour normal OFFN, 7-61

Cylinder surface transformation, 7-6

D
D, 7-56
D numbers

Check, 8-37

Index

 Job planning
Index-4 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Determining the T number, 8-39
Freely assigned, 8-36
Renaming, 8-38

DC link backup, 13-38
Deactivate/reactivate interrupt routine, 1-50
Deactivation position, 13-22
DEF, 1-4, 1-9, 3-8, 10-67
DEFAULT, 1-34
Default axis identifier

Initialize undefined AXIS type axis variables, 10-13
DEFINE, 2-41, 10-67
Define user data, 3-8
degrees, 9-23, 9-28
DELAYFSTOF, 9-44
DELAYFSTON, 9-44
DELDTG, 5-30, 10-28
DELETE, 1-63
Delete couplings, 13-22
Delete distance-to-go with preparation, 10-28
Deletion of distance-to-go, 10-28, 11-2
DELT, 8-4
Denominator polynomial, 5-20
Deselecting a transformation

TRAFOOF, 7-77
Direct axis replacement

GETD, 1-54
DISABLE, 1-46
Displaying the block number programmed last, 2-23
DISPLOF, 2-36
DISPR, 9-52
DIV, 1-19
DO, 10-3, 10-7, 11-7
DRF, 6-18
DRF offset, 6-18
DRFOF, 6-21
Drive-independent retraction, 13-40
Drive-independent stopping, 13-39
DUPLO_NO, 8-4
DV, 13-19
DZERO, 8-39

E
EAUTO, 5-4
EG

Electronic gear, 13-24
EGDEF, 13-25
EGDEL, 13-29
EGOFC, 13-29
EGOFS, 13-28
EGON, 13-25
EGONSYN, 13-25
EGONSYNE, 13-25

Electronic gear, 13-24
ELSE, 1-37
ENABLE, 1-46
ENAT, 5-4
End angle, 7-36
ENDFOR, 1-37
ENDIF, 1-37
ENDLOOP, 1-37
End-of-motion criterion

Programmable, 5-38
Endpos, 11-6
ENDPROC, 10-37
ENDWHILE, 1-37
ERG, 14-15
ERROR, 14-2
Error checkback message, 14-2
ETAN, 5-4
Euler angle, 8-31
Evaluating 3D circumferential milling on outside
corners

Intersection procedure, 8-24
EVERY, 10-5
EXECSTRING, 1-16
EXECTAB, 14-2, 14-14
EXECUTE, 4-2, 14-2
EXP, 1-19
EXTCALL, 2-27
Extended measuring function, 5-27, 7-68
Extended stop and retract, 13-30
EXTERN, 2-10
External zero offset, 6-19

F
F word polynomial, 5-22
FA, 11-4, 13-21
Face turning

External machining, 14-3
Inside machining, 14-3

FALSE, 1-2
Faxis, 9-3, 9-9, 9-14, 9-23, 9-28, 9-32
FCTDEF, 8-8, 10-30
FCUB, 9-37
Feed

Axial, 10-51
Axis, 11-7
Movement, 11-11

FENDNORM, 5-37
FGROUP, 5-22
FIFO variable, 10-19
File information FILExxxx

read from NCK user memory, 1-67
FILEDATE, 1-67

 Index

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Index-5

FILEINFO, 1-67
FILESIZE, 1-67
FILESTAT, 1-67
FILETIME, 1-67
FINE, 13-15, 13-19
Fine offset, 6-16
FINEA, 5-38
First basic frame in the channel, 6-27
FLIN, 9-37
FMA, 15-13
FNORM, 9-37
Following axis, 9-31
FOR, 1-37, 1-38
FPO, 9-37
FPR, 13-29
Frame

Call, 6-13
Frame chaining, 6-32

FRAME, 1-4
Frame calculation

MEAFRAME, 6-22
Frame component

FI, 6-12
MI, 6-12
SC, 6-12
TR, 6-12

Frame component RT, 6-12
Frame components, 6-12
Frame rotation definition, 6-15
Frame variable

Assignments to G commands G54 to G599, 6-8
Predefined frame variable, 6-3, 6-13
Zero offsets G54 to G599, 6-8

Frame variables, 6-1
Assigning values, 6-9
Calling coordinate transformations, 6-1
Defining new frames, 6-15

Frames
Assign, 6-14
Deactivate, 6-21
Frame chains, 6-14

FRC, 15-14
FRCM, 15-14
Friction, 13-10
FROM, 10-5
FS, 13-15
FTOCOF, 8-8
FTOCON, 8-8

G
G code, 5-22
G[<group_index>], 1-13

G05, 7-67
G07, 7-67
G1, 11-3
G153, 6-21
G25, G26, 9-5
G4, 11-2
G450, 8-24
G451, 8-24
G53, 6-21
G62, 5-37
G621, 5-37
G643, 5-23
Generator operation, 13-38
GEOAX, 7-80
GET, 1-55
GETACTTD, 8-39
GETD, 1-55
GETDNO, 8-38
GETSELT, 8-4
GETT50, 8-4
GOTO, 1-34
GOTOB, 1-34
GOTOC, 1-34
GOTOF, 1-34
GUD, 3-3, 3-6, 3-10, 3-12

-Activating a definition file for the first time, 3-13
-and macro definitions, loading, 3-14
-and macro definitions, unloading, 3-14
Automatic activation, 3-14

GUD variable for synchronous actions
User-defined GUD variables, 10-11

H
Hold block, 9-50
Hold time, 11-2

I
I1,I2, 8-40
ICYCOF, 10-72
ICYCON, 10-72
ID, 10-2
Identification number, 10-4
IDS, 10-2
IF, 1-37
IF-ELSE-ENDIF, 1-38
IFRAME, 6-4
II1,II2, 11-8
Inclined axis transformation, 7-63
Inclined axis, TRAANG, 7-6, 7-63
Independent drive reactions, 13-32
INDEX, 1-31

Index

 Job planning
Index-6 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Indirect G code programming, 1-13
Indirect programming, 1-13
Indirect subroutine call, 1-14
INIT, 1-41
Initial tool orientation setting ORIRESET, 7-14
Initialization of array variables, 10-59
Initialization program, 3-6

Create initialization program, 3-6
Define user data (GUD), 3-8
Loading initialization program, 3-8
Saving the initialization program, 3-7

INT, 1-4
Integer/real_variable, 1-13
Interpolation cycle, 13-42
Interpolation of the rotation vector, 7-35, 7-41
Interrupt routine, 1-45

Define the priority, 1-49
Fast retraction from contour, 1-50
Programmable traverse direction, 1-46
Save interrupt position, 1-48

INTERSEC, 14-2, 14-12
IPOBRKA, 5-38
IPOENDA, 5-38
IPOSTOP, 13-15, 13-19, 13-21
IPTRLOCK, 9-49
IPTRUNLOCK, 9-49
ISAXIS, 13-1, 13-2
ISCOORD, 14-12
ISD, 8-16, 8-22
ISD (Insertion Depth), 8-15
ISFILE, 1-66
ISNUMBER, 1-28
ISOCALL, 2-23
ISPOINT, 14-12
ISPOINTS, 14-2
ISVAR (), 13-8

J
JERKLIM, 13-51
Jump statement

CASE statement, 1-34

K
Keyword, 10-5
Kinematic transformation TRANSMIT, TRACYL and
TRAANG, 7-5
Kinematic type, 8-44
Kinematics type M, 8-44
Kinematics type P, 8-44
Kinematics type T, 8-44
KTAB, 14-3, 14-6, 14-9, 14-14

L
Laser power control, 10-32
Laxis, 9-3, 9-9, 9-14, 9-23, 9-28, 9-32
LEAD, 7-16, 8-31
Lead angle, 7-16
Leading axis, 9-31
Leading value coupling, 10-56
LEADOF, 9-32
LEADON, 9-32
Learn compensation characteristics, 13-10
LIFTFAST, 1-46
Linear interpolation, 5-24
Link axis, 13-45
Link communication, 13-41
Link module, 13-42
Link variables

Global, 13-42
List

of statements, 15-1
LLIMIT, 10-30
LN, 1-19
LOCK, 10-2, 10-75
Logic operators, 1-20
Longitudinal turning

External machining, 14-3
Inside machining, 14-3

LOOP, 1-37
LOOP-ENDLOOP, 1-38
LS, 13-15

M
M, 8-42
M commands, 12-2
M function

Three-digit, 2-42
M17, 2-5
M6

Associated subroutine, 2-31
Subroutine call, 2-31

MAC
Automatic activation, 3-14

MACH, 14-3
Machine

Status, global workpiece clamping, 13-41
Macro techniques, 2-41, 12-2
Marker variables, 10-14
MASLDEF, 13-53
MASLDEL, 13-53
MASLOF, 13-53
MASLOFS, 13-53
MASLON, 13-53
Master value coupling

 Index

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Index-7

Actual value and setpoint coupling, 9-31, 9-35
from static synchronized actions, 9-32
Synchronization of leading and following axis, 9-34

Master value simulation, 9-35
MATCH, 1-31
Mathematical function

*, 1-19
/, 1-19
+, 1-19

Max/min indicator, 14-5
MCALL, 2-19
MEAC, 5-28, 5-30
MEAFRAME, 6-22
MEAFRAME, 6-22
MEAFRAME, 6-26
MEAS, 5-25
MEASA, 5-28
Measurement

Continuous measurement MEAC, 5-34
DDTG MEASA, MEAWA, 5-32
Operating mode, 5-31
Recognized programming errors, 5-35
Trigger events, 5-31

Measurement job
Status for MEASA, MEAWA, 5-34
with 2 measuring systems, 5-33

Measurement results for MEASA, MEAWA, 5-32
Measurement with touch-trigger probe

Programming measuring blocks, 5-25
Status variable, 5-26

Measuring, 10-58
MEAW, 5-25
MEAWA, 5-28, 10-58
Memory

Memory structure, 3-1
Program memory, 3-1
Working memory, 3-6

Milling tool
-reference point (FH), 8-22
-tip (FS), 8-22

MINDEX, 1-31
Minimum position/maximum position of the rotary
axis, 8-42
MIRROR, 6-5
MMC, 13-50
MOD, 1-19
Mode, 11-6
Mode, 11-6
MODE

Machining direction, 14-3
Machining type, 14-12

Motion control, 13-51
Motion synchronous actions

Actions, 10-7

Overview, 10-24
Programming, 10-2

MOV, 10-46
MPF, 3-3
MU, 7-66
MZ, 7-66

N
n, 9-28

Frame number, 6-12
Number of curve table, 9-14, 9-21
Number of curve tables, 9-23

NC-controlled reactions, 13-36
NCU

Link, 13-41
NCU-global basic frames, 6-26
NCU-global settable frames, 6-26
NCU-NCU communication, 13-41
Networked NCUs, 13-41
NEWCONF, 1-60
NEWT, 8-4
Nibbling, 12-1, 12-5
Nibbling ON, 12-2
NN, 14-3
NOC, 13-15, 13-19
NOT, 1-21
NPROT, 4-4
NPROTDEF, 4-2
NUMBER, 1-28

O
OEM addresses, 5-36
OEM functions, 5-36
OEMIPO1/2, 5-36
OF, 1-35
OFFN, 7-52, 7-53, 7-56
Offset contour normal OFFN, 7-61
Offset of the rotary axes, 8-42
Online tool length offset, 7-48, 10-41
Online tool offset, 10-39
OR, 1-21
ORIAXES, 7-42
ORIAXES, 7-26
ORIC, 8-31
ORICONCCW, 7-29, 7-42
ORICONCW, 7-29, 7-42
ORICONIO, 7-29, 7-42
ORICONTO, 7-29, 7-42
ORICURVE, 7-32, 7-42
ORID, 8-31
Orientation axes, 7-15, 7-23, 7-26, 7-28

Index

 Job planning
Index-8 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Orientation interpolation, 7-29, 7-42
Orientation programming, 7-26, 7-42
Orientation relative to the path

Inserting intermediate blocks, 7-43
Rotation of the orientation vector, 7-41
Rotation of the tool orientation, 7-40
Rotations of the tool, 7-39

orientation transformation TRAORI
Generic 5/6-axis transformation, 7-5
Machine kinematics, 7-4
Orientation programming, 7-13
Travel movements and orientation movements, 7-4
Variants of orientation programming, 7-14

ORIEULER, 7-42
ORIEULER, 7-26
ORIMKS, 7-24, 8-31
ORIPATH, 7-40
ORIPATHS, 7-40, 7-43
ORIPLANE, 7-29, 7-42
ORIRESET(A, B, C), 7-14
ORIROTA, 7-36
ORIROTC, 7-36, 7-41
ORIROTR, 7-36
ORIROTT, 7-36
ORIRPY, 7-42
ORIRPY, 7-26
ORIRPY2, 7-26
ORIS, 8-31
ORIVECT, 7-42
ORIVECT, 7-26
ORIVIRT1, 7-42
ORIVIRT1, 7-26
ORIVIRT2, 7-42
ORIVIRT2, 7-26
ORIWKS, 7-24, 8-31
OS, 11-1, 11-2
OSC, 8-31
OSCILL, 11-6, 11-9
Oscillating axis, 11-3
Oscillating motion

Infeed at reversal point, 11-11
Reversal point, 11-8
Reversal range, 11-8
Suppress infeed, 11-8

Oscillation
Activate, deactivate oscillation, 11-1
Asynchronous oscillation, 11-1
Control via synchronized action, 11-6
Defining the sequence of motions, 11-5
Partial infeed, 11-8
Synchronous oscillation, 11-6

Oscillation reversal points, 11-4
OSCTRL, 11-2, 11-5
OSD, 8-31

OSE, 11-2, 11-5
OSNSC, 11-2, 11-6
OSOF, 8-31
OSP, 11-4
OSP1, 11-2, 11-6
OSP2, 11-2, 11-6
OSS, 8-31
OSSE, 8-31
OST, 8-31, 11-2
OST1, 11-2, 11-6
OST2, 11-2, 11-6
Override, 11-12

Current, 10-64
Resulting, 10-64

Overview
Frames active in the channel, 6-28

Overwriting curve tables, 9-21
OVRA, 13-21

P
P, 2-18
Parameterizable subroutine return, 2-14
PAROT, 6-15
Partial length, 11-6
Partial length, 11-6
Parts program, 13-42, 13-45
Path

Absolute, 1-40
Relative, 1-40

Path reference
Circular interpolation and linear interpolation, 5-24
Curve parameter, 5-22
FGROUP axes, 5-22
G code group, 5-22
Path axes, 5-24
Path feed, 5-24
Restrictions, 5-24
Settable path reference, 5-22
Thread blocks, 5-24

Path section, 12-5
Path sections, 12-5
Path segmentation, 12-9
Path segmentation for path axes, 12-8
Path tangent angle, 10-63
PCALL, 2-24
PDELAYOF, 12-2
PDELAYON, 12-2
Peripheral milling, 8-16
PFRAME, 6-5
PHI, 7-34
PKT, 14-15
PL, 5-5, 5-17

 Index

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Index-9

PO, 5-17
PO[PHI], 7-34, 7-40
PO[PSI], 7-34
PO[THT], 7-34, 7-40
PO[XH], 7-34
PO[YH], 7-34
PO[ZH], 7-34
Polar transformation, 7-5
POLF, 13-35
POLFA, 13-35
POLFMASK, 13-35
POLFMLIN, 13-35
POLY, 5-16, 5-17
Polynomial

-Interpolation, 5-24
POLYNOMIAL, 14-8, 14-11
Polynomial coefficient, 5-17
Polynomial definition, 10-30
Polynomial interpolation, 5-16

Denominator polynomial, 5-20
Polynomials up to the 5th order, 9-16
POLYPATH, 5-16, 5-17
PON, 12-9
PONS, 12-2
POS, 10-43
POSFS, 13-19
POSFS POSLS, 13-15
Position synchronism, 13-12
Positioning movements, 10-42
POSP, 11-6
POSRANGE, 10-45
POT, 1-19
Predefined GUD variable name, 10-11
PREPRO, 2-26
Preprocessing memory, 9-42
Preprocessing stop, 10-27
Preset actual value memory, 10-53
Preset offset, 6-20
PRESETON, 6-20, 10-53
Preventing particular program position for
SERUPRO, 9-49
PRIO, 1-46
Probe status, 5-33
PROC, 2-5
Program coordination

Channel names, 1-42
Channel numbers, 1-42
Example, 1-42
Program coordination statements, 1-40

Program memory, 3-1
Create workpiece directory, 3-4
Directories, 3-2
File Types, 3-3
Overview, 3-1

Search path for subroutine call, 3-5
Selecting a workpiece, 3-4
Workpiece directories, 3-3
Workpiece directory, 3-3

Program repetition, 2-18
Program run with preprocessing memory, 9-42
Program runtime, 13-47
Programmable interruption pointer, 9-49
Programmable search path for subroutine calls, 2-24
Programming an inclined axis

G05, G07, 7-67
Programming rotation of orientation vector with
THETA, 7-35
Programming search paths for subroutine call, 3-5
Protection levels

Changes for machine data and setting data, 3-15
Changing attributes of language elements, 3-19
For user data, 3-12
Writing system variables and executing an NC
language element, 3-16

Protection zones
Activate, deactivate, 4-4
Activation status, 4-6
Channel-specific protection zones, 4-2
Contour definition of protection zones, 4-2
definition, 4-2
Definitions on the machine, 4-1
Machine-specific protection zones, 4-2
Multiple activation, 4-7
Offset, 4-7
Permissible contour elements, 4-3
Selected working plane, 4-3
Status after booting, 4-7

PSFS, 13-15
PSI, 7-34
PTP, 7-69, 7-73
PTP for TRANSMIT, 7-72
PTPG0, 7-73
PUNCHACC, 12-2
Punching, 12-1, 12-5
Punching ON, 12-2
Punching with delay OFF, 12-2
Punching with delay ON, 12-2
Punching, nibbling off, 12-2
PUTFTOC, 8-8
PUTFTOCF, 8-8
PW, 5-5

Q
QEC, 13-10
QECDAT.MPF, 13-11
QECLRN.SPF, 13-11

Index

 Job planning
Index-10 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

QECLRNOF, 13-11
QECLRNON, 13-11
QECTEST.MPF, 13-11
Quadrant error compensation

Activate the learning process, 13-10
Deactivate the learning process, 13-10
Relearning, 13-11

Quantity of parts, fixed, 1-37

R
R parameters, 10-15
RDISABLE, 10-26
READ, 1-64
Readin disable, 10-26
REAL, 1-4
REDEF, 3-15, 3-17
Refpos, 10-45
Relational operators

<, 1-21
<=, 1-21
<>, 1-21
>, 1-21
>=, 1-21

Relational operators, 1-21
==, 1-21

RELEASE, 1-55
Relief cut, 14-3
Relief cut elements, 14-8
REP, 1-8, 10-59
REPEAT, 1-37, 1-39
Repeated use of curve tables, 9-21
Repeating program sections with indirect programming
CALL, 2-22
Replaceable geometry axes, 7-80
REPOS, 1-45, 1-47
REPOSA, 9-51
REPOSH, 9-51
REPOSHA, 9-51
Repositioning, 9-51

Approach along line, 9-52
Approach along semi-circle, 9-54
Approach along the quadrant, 9-53
Approaching with a new tool, 9-58
Reapproach point, 9-55

REPOSL, 1-47, 9-51
REPOSQ, 9-51
REPOSQA, 9-52
RESET, 10-75
Resolved kinematics, 8-40, 8-44
RET, 2-5, 2-15, 2-32
RET (<block_number/label>, < >, < >), 2-14
Retract, 13-36

Reversal
Point, 11-6

RINDEX, 1-31
RMB, 9-52
RME, 9-52
RMI, 9-52
Rotary axes

Direction vectors V1, V2, 8-40
Distance vectors l1, l2, 8-40

ROTS, 6-15
ROUND, 1-19
Round up, 1-70
ROUNDUP, 1-70
RPY, 8-31

S
S1, S2, 13-17, 13-22
SAVE, 1-48, 2-3
SBL1, 2-35
SBL2, 2-35
SBL3, 2-35
SBLOF, 2-32
SBLON, 2-32
SCPARA, 5-41
SD, 5-5
Search for character, 1-31
SEFORM, 3-24
Selecting a substring, 1-32
Selection of a single character, 1-33
Sensor, 5-26
Servo parameter set

Programmable, 5-41
SET, 1-8, 10-59
SETAL, 10-60
SETDNO, 8-38
SETINT, 1-46
SETM, 1-41, 10-60
SETPIECE, 8-4
Setpoint value coupling, 13-15
Setting data, 11-3
Shaft

Container, 13-44
SIN, 1-19
Single axis motion, 12-10
Single block suppression, 2-32
Singular positions, 7-25
Smax, 12-2
Smin, 12-2
Smoothing of orientation characteristic, 7-40, 7-43
Software limit switch, 10-51
SON, 12-2, 12-8, 12-9
SONS, 12-2

 Index

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Index-11

Sparking-out stroke, 11-2
SPATH, 5-22
Speed coupling, 13-15
Speed ratio, 13-18
SPF, 3-3
SPI, 13-1, 13-2, 13-21
SPIF1, 15-31
SPIF2, 15-31
Spindle motions, 10-54
Spindle Replacement

GET, 1-55
RELEASE, 1-55

SPLINE, 14-8, 14-11
Spline grouping, 5-11
Spline interpolation, 5-3, 5-24

A-Spline, 5-8
B spline, 5-8
C spline, 5-9
Compressor, 5-11

SPLINEPATH, 5-11
SPN, 12-5
SPOF, 12-2
SPOS, 13-20
SPP, 12-5
SQRT, 1-19
SR, 15-31
SRA, 15-31
ST, 15-31
STA, 15-32
START, 1-41
Start/stop axis, 10-46
STARTFIFO, 9-42
STAT, 7-69, 7-73
Statement list, 15-1
Station/position change, 13-44
Status of coupling, 9-36
Stock removal, 14-1
Stop, 13-38
Stop and retract

Extended, 13-30
STOPFIFO, 9-42
STOPRE, 5-25, 5-28, 5-29, 9-42, 11-3
STRING, 1-4
String length, 1-30
String operations, 1-26
STRING_ARRAY, 1-26
STRINGIS, 13-3

Basic information, 13-4
Detailed Information, 13-5
NC addresses, 13-5
Return values, 13-4
Scope of NC language, 13-4
Scope of testing, 13-3
Special checks, 13-3

STRINGVAR, 1-26
STRLEN, 1-30
Structuring statement for the Step editor, 3-24
Subroutine call

indirect, 1-14
Subroutine call with M/T function, 2-31
Subroutine call, search path, 3-5
Subroutine with path specification and parameters, 2-
24
Subroutines, 2-1

Indirect subroutine call, 2-21
Modal subroutine call, 2-19
Nesting, 2-3
Program repetition, 2-18
SAVE mechanism, 2-3
Subroutine call, 2-9
Subroutine with parameter transfer, 2-9

Subroutines with parameter transfer
Array definition, 2-8
Parameter transfer between main program and
subroutine, 2-8

SUBSTR, 1-32
SUPA, 6-21
Synchronism

coarse, 13-15
Fine, 13-15
Setpoint-based synchronism, 13-15

Synchronized action, 13-42
Synchronized action parameters, 10-15
Synchronized actions

ASUB, 10-80
Block search, 10-80
Boundary conditions for important events, 10-78
CANCEL, 10-81
End of program, 10-80
List of values with SET and REP, 10-59
Main run variable, 10-9
Mode change, 10-78
NC Stop, 10-79
Power on, 10-78
Preprocessing variables, 10-9
Repositioning, 10-81
Reset, 10-79

Synchronous oscillation
Assignment of oscillating and infeed axes, 11-9
Define infeeds, 11-9
Evaluation, interpolation cycle, 11-12
Infeed in reversal point range, 11-10
Infeed movement, 11-10
Next partial infeed, 11-12
Stop at the reversal point, 11-11
Synchronized actions, 11-9

Synchronous spindle, 13-12
Block change behavior, 13-19

Index

 Job planning
Index-12 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

Define pair, 13-17
Delete coupling, 13-22
Pair, 13-12
Speed ratio SRT, 13-18
System variables, 1-2

SYNFCT, 10-33
SYNFCT() evaluation function, 10-33
System variables, 1-1, 10-9, 13-42

Global, 13-42

T
TABNAME, 14-3, 14-9, 14-14
TABNAME1, 14-12
TABNAME2, 14-12
TAN, 1-19
TANG, 9-3, 9-5
TANGDEL, 9-3
Tangential control

Defining following axis and leading axis, 9-5
Limit angle using the working area limitation, 9-5

Tangential control, activation, TANGON, 9-3
Tangential control, deactivation, 9-3
Tangential follow-up optimized, 9-3
TANGOF, 9-3
TANGON, 9-3
TE, 5-28
Technology cycles

Cascading, 10-73
Technology cycles, 10-67

Control cyclic processing ICYCOF, 10-72
Default parameters with initial values, 10-71

Technology cycles
in non-modal synchronized actions, 10-73

Technology cycles
IF check structures, 10-74

Technology cycles
Conditional branches, 10-74

Technology cycles
Jump instructions (GOTOP, GOTOF, GOTOB), 10-
74

Technology cycles
Unconditional jumps, 10-74

THETA, 7-34, 7-36
THREAD, 14-8, 14-11
Three-digit M/G function, 2-42
TILT, 7-16, 8-31
Tilt angle, 7-16
Time requirement

Synchronized actions, 10-65
Time use evaluation, 10-65
Timer variable, 10-18
TLIFT, 9-3

TOFFOF, 7-48, 10-41
TOFFON, 7-48, 10-41
TOFRAME, 6-15
TOLOWER, 1-30
Tool management, 8-5
Tool monitoring, grinding-specific, 8-11
Tool offset

3D face milling, 8-18
Compensation on the path, path curvature, and
insertion depth, 8-21
Face milling, 8-15
Offset memory, 8-1
Online, 8-7

Tool orientation, 8-30
Tool radius compensation

3D circumferential milling with CUT3DC, 8-23
3D circumferential milling with limitation surfaces, 8-
28
3D circumferential milling with real tools, 8-26
3D circumferential milling without limitation
surfaces, 8-25
Corner deceleration, 5-36

Tool radius compensation with standard tools
Contour on the machining surface., 8-29

Tool radius compensation, 3D, 8-15
Behavior at outer corners, 8-35
Insertion depth (ISD), 8-22
Inside corners/outside corners, 8-23
Intersection of equidistances, 8-24
Peripheral milling, 8-17, 8-18
Programming tool orientation, 8-31
Tool orientation, 8-30
Transition circle, 8-24

Tool types
Mill shapes, tool data, 8-19

Toolholder
Deleting/changing/reading data, 8-44
Kinematics, 8-40

Toolholder with orientation capability
Number of the toolholder, 8-42
Parameters for the user, 8-42
Parameters of the rotary axes, 8-42
System variable, 8-40

TOROT, 6-15
Torsion, 13-10
TOUPPER, 1-30
TRAANG, 7-6, 7-63, 7-64
TRACON, 7-79
TRACYL, 7-6, 7-55, 7-56, 7-61
TRACYL transformation, 7-56
TRAFOOF, 7-52, 7-56, 7-64, 7-77, 7-79
TRAILOF, 9-9
TRAILON, 9-9
Transformation TRAORI, 7-12

 Index

Job planning
Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0 Index-13

Transformation types
General function, 7-1

Transformation with a swiveling linear axis, 7-11
Transformation, five-axis

Programming in Euler angles, 7-18
Programming in RPY angles, 7-19
Programming of path curve in surface normal
vectors, 7-22
Programming using LEAD/TILT, 7-15

Transformation, three-, four-axis transformations, 7-12
Transformations

Chained, 7-78
Chained transformations, 7-3
Initial tool orientation setting regardless of
kinematics, 7-2
Kinematic transformations, 7-3
Orientation transformation, 7-2
Three, four and five axis transformation
(TRAORI), 7-2

TRANSMIT, 7-5, 7-51, 7-52, 7-54, 7-73
TRANSMIT transformation, 7-52
TRAORI, 7-9, 7-12
Travel to fixed stop FXS and FOCON/FOCOF, 10-61
Travel-dependent acceleration PUNCHACC, 12-2, 12-
3
Traversing a contour element, 14-14
TRUE, 1-2
TRUNC, 1-19, 1-23
TU, 7-69, 7-73
Type conversion, 1-27
Type of coupling, 13-15

U
U1,U2, 11-8
uc.com, user cycles, 2-38
ULIMIT, 10-30
UNLOCK, 10-2, 10-75
UNTIL, 1-37, 1-39
UPATH, 5-22

V
V1,V2, 8-40
Value range, 1-1
VAR, 2-5
Variable, 1-1

Arithmetic variables, 1-2
Assignments, 1-17
Indirect G code programming, 1-13
Indirect programming, 1-13
System variables, 1-2
Type conversion, 1-25

user-defined, 1-1
User-defined variable, 1-3
Variable types, 1-1

Variable definition, 1-3, 10-11
Variable type, 1-4
VARIB, 14-15
VELOLIM, 13-52

W
WAIT, 1-41
Wait markers, 10-60
WAITC, 13-14, 13-21
WAITE, 1-41
WAITM, 1-41
WAITMC, 1-41
WALIMON, 9-5
WCS, 3-3
WHEN, 10-5
WHEN-DO, 11-7, 11-9
WHENEVER, 10-5
WHENEVER-DO, 11-7, 11-9
WHILE, 1-37, 1-39
Winlimit, 10-45
Work offset

Deactivating transformations, 6-21
External zero offset, 6-19
Offset with the handwheel, 6-18
PRESETON, 6-20

Working memory, 3-6
Data areas, 3-6
Initialization programs, 3-6
Reserved block names, 3-10

Workpiece counter, 13-48
Workpiece directories, 3-3
Workpiece directory, 3-3
WPD, 3-3
WRITE, 1-61
WZ, 8-4

X
x, 8-4
XOR, 1-21

Z
Zero frame, 6-21

Index

 Job planning
Index-14 Programming Manual, 03/2006 Edition, 6FC5398-2BP10-1BA0

	SINUMERIK 840D sl/840Di sl/840D/840Di/810D Job planning
	Preface
	Table of contents
	1 Flexible NC programming
	1.1 Variables and arithmetic parameters (user-defined variables, arithmetic parameters, system variables)
	1.2 Variable definition (DEF user-defined variables LUD, GUD, PUD)
	1.3 Array definitions (DEF, SET, REP)
	1.4 Indirect programming
	1.4.1 Run string as parts program line (EXECSTRING)

	1.5 Assignments
	1.6 Arithmetic operations/functions
	1.7 Comparison and logical operations
	1.7.1 Precision correction on comparison errors (TRUNC)

	1.8 Priority of the operations
	1.9 Possible type conversions
	1.10 String operations
	1.10.1 Type conversion to STRING
	1.10.2 Type conversion of STRING
	1.10.3 Concatenation of strings
	1.10.4 Conversion to lower/upper case
	1.10.5 Length of the string
	1.10.6 Look for character/string in the string
	1.10.7 Selection of a substring
	1.10.8 Selection of a single character

	1.11 CASE statement
	1.12 Control structures
	1.13 Program coordination
	1.14 Interrupt routine (SETINT, DISABLE, ENABLE, CLRINT)
	1.15 Axis replacement, spindle replacement (RELEASE, GET, GETD)
	1.16 Transfer axis to another channel (AXTOCHAN)
	1.17 NEWCONF: Setting machine data effective
	1.18 WRITE: Write file
	1.19 DELETE: Delete file
	1.20 READ: Read lines in the file
	1.21 ISFILE: File present in the NCK user memory
	1.22 FILEDATE/TIME/SIZE/STAT/INFO: File information
	1.23 CHECKSUM: Form the checksum over an array
	1.24 ROUNDUP: Round up

	2 Subroutines, Macros
	2.1 Using subroutines
	2.2 Subroutines with SAVE mechanism
	2.3 Subroutines with parameter transfer (PROC, VAR)
	2.4 Call subroutines (L or EXTERN)
	2.5 Parameterized subroutine return (RET)
	2.6 Subroutine with program repetition (P)
	2.7 Modal subroutine (MCALL)
	2.8 Indirect subroutine call (CALL)
	2.9 Repeating program sections with indirect programming (CALL)
	2.10 Indirect call of a program programmed in ISO language (ISOCALL)
	2.11 Calling subroutine with path specification and parameters (PCALL)
	2.12 Extend search path for subroutine calls with CALLPATH
	2.13 Search path adaptation of the subroutines prepared during startup
	2.14 Execute external subroutine (EXTCALL)
	2.15 Subroutine call with M, T and D functions
	2.16 Suppress individual block (SBLOF, SBLON)
	2.17 Suppress current block display (DISPLOF)
	2.18 Cycles: Setting parameters for user cycles
	2.19 Macro technique (DEFINE...AS)

	3 File and Program Management
	3.1 Program memory
	3.2 Working memory
	3.3 Defining user data
	3.4 Protection levels for user data, MD, SD and NC commands
	3.4.1 Defining protection levels for user data (GUD)
	3.4.2 Automatic activation of GUDs and MACs
	3.4.3 Change the protection data for the machine and setting data (REDEF MD, SD)
	3.4.4 Protection levels for NC commands (REDEF)

	3.5 REDEF Changing the attributes of the NC language elements
	3.6 SEFORM structuring statement in the Step editor

	4 Protection zones
	4.1 Definition of the protection zones (CPROTDEF, NPROTDEF)
	4.2 Activating, deactivating protection zones (CPROT, NPROT)
	4.3 Checking for protection zone violation, working area limitation and software limits

	5 Special Motion Commands
	5.1 Approaching coded positions (CAC, CIC, CDC, CACP, CACN)
	5.2 Spline interpolation (ASPLINE, BSPLINE, CSPLINE, BAUTO, BNAT, BTAN)
	5.3 Spline grouping (SPLINEPATH)
	5.4 Compressor (COMPOF/ON, COMPCURV, COMPCAD)
	5.5 Polynomial interpolation (POLY, POLYPATH)
	5.6 Settable path reference (SPATH, UPATH)
	5.7 Measurements with touch trigger probe (MEAS, MEAW)
	5.8 Extended measuring function (MEASA, MEAWA, MEAC) (option)
	5.9 Special functions for OEM users (OEMIPO1, OEMIPO2, G810 to G829)
	5.10 Feed reduction with corner deceleration (FENDNORM, G62, G621)
	5.11 Programmed end-of-motion criterion (FINEA, COARSEA, IPOENDA, IPOBRKA, ADISPOSA)
	5.12 Programmable servo parameter set (SCPARA)

	6 Frames
	6.1 Coordinate transformation via frame variables
	6.1.1 Predefined frame variable ($P_BFRAME, $P_IFRAME, $P_PFRAME, $P_ACTFRAME)

	6.2 Frame variables / assigning values to frames
	6.2.1 Assigning direct values (axis value, angle, scale)
	6.2.2 Reading and changing frame components (TR, FI, RT, SC, MI)
	6.2.3 Linking complete frames
	6.2.4 Defining new frames (DEF FRAME)
	6.2.5 Specifying frame rotations (ROT, ROTS, TOFRAME, TOROT, PAROT)

	6.3 Coarse and fine offsets (CFINE; CTRANS)
	6.4 DRF offset
	6.5 External zero offset
	6.6 Preset offset (PRESETON)
	6.7 Deactivating frames (DRFOF, G53, G153, and SUPA)
	6.8 Frame calculation from three measuring points in space (MEAFRAME)
	6.9 NCU global frames
	6.9.1 Channel-specific frames ($P_CHBFR, $P_UBFR)
	6.9.2 Frames active in the channel

	7 Transformations
	7.1 General programming of transformation types
	7.1.1 Orientation movements for transformations
	7.1.2 Overview of orientation transformation TRAORI

	7.2 Three, four and five axis transformation (TRAORI)
	7.2.1 General relationships of universal tool head
	7.2.2 Three, four and five axis transformation (TRAORI)
	7.2.3 Variants of orientation programming and initial setting (OTIRESET)
	7.2.4 Programming of the tool orientation (A..., B..., C..., LEAD, TILT)
	7.2.5 Face milling (3D-milling A4, B4, C4, A5, B5, C5)
	7.2.6 Orientation axis reference (ORIWKS, ORIMKS)
	7.2.7 Programming the orientation axes (ORIAXES, ORIVECT, ORIEULER, ORIRPY)
	7.2.8 Orientation programming along the peripheral surface of a taper (ORIPLANE, ORICONxx)
	7.2.9 Specification of orientation for two contact points (ORICURVE, PO[XH]=, PO[YH]=, PO[ZH]=)

	7.3 Orientation polynomials (PO[angle], PO[coordinate])
	7.4 Rotations of the tool orientation (ORIROTA, ORIROTR/TT, ORIROTC, THETA)
	7.5 Orientations relative to the path
	7.5.1 Orientation types relative to the path
	7.5.2 Rotation of the tool orientation relative to the path (ORIPATH, ORIPATHS, angle of rotation)
	7.5.3 Interpolation of the tool rotation relative to the path (ORIROTC, THETA)
	7.5.4 Smoothing of orientation characteristic (ORIPATHS A8=, B8=, C8=)

	7.6 Compression of the orientation COMPON (A..., B..., C..., THETA)
	7.7 Online tool length compensation (TOFFON, TOFFOF)
	7.8 Kinematic transformation
	7.8.1 Milling on turned parts (TRANSMIT)
	7.8.2 Cylinder surface transformation (TRACYL)
	7.8.3 Inclined axis (TRAANG)
	7.8.4 Inclined axis programming (G05, G07)

	7.9 Cartesian PTP travel
	7.9.1 PTP for TRANSMIT

	7.10 Constraints when selecting a transformation
	7.11 Deselect transformation (TRAFOOF)
	7.12 Chained transformations (TRACON, TRAFOOF)
	7.13 Replaceable geometry axes (GEOAX)

	8 Tool offsets
	8.1 Offset memory
	8.2 Language commands for tool management
	8.3 Online tool compensation (PUTFTOCF, PUTFTOC, FTOCON, FTOCOF)
	8.4 Keep tool radius compensation constant (CUTCONON)
	8.5 Activate 3D tool offsets (CUT3DC..., CUT3DF...)
	8.5.1 Activate 3D tool offsets (CUT3DC, CUT3DF, CUT3DFS, CUT3DFF)
	8.5.2 3D tool radius compensation: peripheral milling, face milling)
	8.5.3 Tool types/tool change with changed dimensions (G40, G41, G42)
	8.5.4 Compensation on the path, path curvature, and insertion depth ISD and tool status (CUT3DC)
	8.5.5 Inside corners/outside corners and intersection procedure (G450/G451)
	8.5.6 3D circumferential milling with limitation surfaces general use)
	8.5.7 Consideration of a limitation surface (CUT3DCC, CUT3DCCD)

	8.6 Tool orientation (ORIC, ORID, OSOF, OSC, OSS, OSSE, OSD, OST)
	8.7 Free assignment of D numbers, cutting edge numbers
	8.7.1 Free assignment of D numbers, cutting edge numbers (CE address)
	8.7.2 Checking D numbers (CHKDNO)
	8.7.3 Renaming D numbers (GETDNO, SETDNO)
	8.7.4 Deriving the T number from the specified D number (GETACTTD)
	8.7.5 Invalidate D numbers (DZERO)

	8.8 Tool holder kinematics

	9 Path traversing behavior
	9.1 Tangential control (TANG, TANGON, TANGOF, TANGDEL)
	9.2 Coupled motion (TRAILON, TRAILOF)
	9.3 Curve tables (CTAB)
	9.3.1 Curve tables: general relationships
	9.3.2 Principal functions curve tables (CTABDEF, CTABEND, CTABDEL)
	9.3.3 Curve table forms (CTABDEL, CTABNOMEM, CTABFNO, CTABID, CTABLOCK, CTABUNLOCK)
	9.3.4 Behavior at the edges of curve tables (CTABTSV, CTABTSP, CTABMIN, CTABMAX)
	9.3.5 Access to curve table positions and table segments (CTAB, STABINV, CTABSSV, CTABSEV)

	9.4 Axial leading value coupling (LEADON, LEADOF)
	9.5 Feedrate response (FNORM, FLIN, FCUB, FPO)
	9.6 Program run with preprocessing memory (STARTFIFO, STOPFIFO, STOPRE)
	9.7 Conditionally interruptible program sections (DELAYFSTON, DELAYFSTOF)
	9.8 Preventing program position for SERUPRO (IPTRLOCK, IPTRUNLOCK)
	9.9 Repositioning at contour (REPOSA/L, REPOSQ/H, RMI, RMN, RMB, RME)

	10 Motion synchronous actions
	10.1 Structure, basic information
	10.1.1 Programming and command elements
	10.1.2 Validity range: Identification number ID
	10.1.3 Cyclic checking of the condition
	10.1.4 Actions

	10.2 Operators for conditions and actions
	10.3 Main run variables for synchronized actions
	10.3.1 General information on system variables
	10.3.2 Implicit type conversion
	10.3.3 GUD variables for synchronous actions
	10.3.4 Default axis identifier (NO_AXIS)
	10.3.5 Synchronized action marker $AC_MARKER[n]
	10.3.6 Synchronized action parameters $AC_PARAM[n]
	10.3.7 Arithmetic parameter $R[n]
	10.3.8 Read and write NC machine and NC setting data
	10.3.9 Timer-Variable $AC_Timer[n]
	10.3.10 FIFO variable $AC_FIFO1[n] ... $AC_FIFO10[n]
	10.3.11 Information about the block types in the interpolator

	10.4 Actions in synchronized actions
	10.4.1 Overview
	10.4.2 Output of auxiliary functions
	10.4.3 Set read-in disable (RDISABLE)
	10.4.4 Cancel preprocessing stop (STOPREOF)
	10.4.5 Delete distance-to-go (DELDTG)
	10.4.6 Polynomial definition (FCTDEF)
	10.4.7 Synchronized function (SYNFCT)
	10.4.8 Clearance control with limited compensation $AA_OFF_MODE
	10.4.9 Online tool offset (FTOC)
	10.4.10 Online tool length offset ($AA_TOFF[tool direction])
	10.4.11 Positioning movements
	10.4.12 Position axis (POS)
	10.4.13 Position in specified reference range (POSRANGE)
	10.4.14 Start/stop axis (MOV)
	10.4.15 Axis replacement (RELEASE, GET)
	10.4.16 Axial feed (FA)
	10.4.17 Software limit switch
	10.4.18 Axis coordination
	10.4.19 Set actual values (PRESETON)
	10.4.20 Spindle motions
	10.4.21 Coupled motion (TRAILON, TRAILOF)
	10.4.22 Leading value coupling (LEADON, LEADOF)
	10.4.23 Measuring (MEAWA, MEAC)
	10.4.24 Initialization of array variables with SET, REP
	10.4.25 Set/delete wait markers with SETM, CLEARM
	10.4.26 Error responses during SETAL cycle alarms
	10.4.27 Travel to fixed stop (FXS and FOCON/FOCOF)
	10.4.28 Determining the path tangent in synchronized actions
	10.4.29 Determining the current override
	10.4.30 Time use evaluation of synchronized actions

	10.5 Technology cycles
	10.5.1 Context variable ($P_TECCYCLE)
	10.5.2 Call by value parameters
	10.5.3 Default parameter initialization
	10.5.4 Control processing of technology cycles (ICYCOF, ICYCON)
	10.5.5 Cascading technology cycles
	10.5.6 Technology cycles in non-modal synchronized actions
	10.5.7 IF check structures
	10.5.8 Jump instructions (GOTO, GOTOF, GOTOB)
	10.5.9 Lock, unlock, reset (LOCK, UNLOCK, RESET)

	10.6 Delete synchronized action (CANCEL)
	10.7 Restrictions

	11 Oscillation
	11.1 Asynchronous oscillation
	11.2 Control oscillation via synchronized actions

	12 Punching and nibbling
	12.1 Activation, deactivation
	12.1.1 Punching and nibbling On or Off (SPOF, SON, PON, SONS, PONS, PDELAYON/OF)

	12.2 Automatic path segmentation
	12.2.1 Path segmentation for path axes
	12.2.2 Path segmentation for single axes

	13 Additional functions
	13.1 Axis functions (AXNAME, AX, SPI, AXTOSPI, ISAXIS, AXSTRING)
	13.2 Check scope of NC language present (STRINGIS)
	13.3 ISVAR () function call and read machine array index
	13.4 Learn compensation characteristics (QECLRNON, QECLRNOF)
	13.5 Synchronous spindle
	13.5.1 Synchronous spindle (COUPDEF, COUPDEL, COUPON/ONC, COUPOF/OFS, COUPRES)

	13.6 Electronic gear (EG)
	13.6.1 Defining an electronic gear (EGDEF)
	13.6.2 Activate electronic gear (EGON)
	13.6.3 Deactivate electronic gear (EGOFS)
	13.6.4 Revolutional feedrate (G95)/electronic gear (FPR)

	13.7 Extended stop and retract
	13.7.1 Drive-independent responses to ESR
	13.7.2 NC-controlled reactions to retraction
	13.7.3 NC-controlled reactions to stoppage
	13.7.4 Generator operation/DC link backup
	13.7.5 Drive-independent stopping
	13.7.6 Drive-independent retraction

	13.8 Link communication
	13.8.1 Access to a global NCU memory area

	13.9 Axis container (AXCTWE, AXCTWED)
	13.10 Program runtime/Workpiece counter
	13.10.1 General
	13.10.2 Program runtime
	13.10.3 Workpiece counter

	13.11 Interactive window call from parts program, command:
	13.12 Influencing the motion control
	13.12.1 Percentage jerk correction (JERKLIM)
	13.12.2 Percentage velocity correction (VELOLIM)

	13.13 Master/slave grouping (MASLDEF, MASLDEL, MASLOF, MASLOF, MASLOFS)

	14 User stock removal programs
	14.1 Supporting function for stock removal
	14.2 Contour preparation (CONTPRON)
	14.3 Contour decoding (CONTDCON)
	14.4 Intersection of two contour elements (INTERSEC)
	14.5 Traversing a contour element from the table (EXECTAB)
	14.6 Calculate circle data (CALCDAT)

	15 Tables
	15.1 List of statements

	A List of abbreviations
	Glossary
	Index
	$
	3
	5
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

