Description of Functions 10/2003 Edition

signification in the second se

HLA Module SINUMERIK 840D SIMODRIVE 611 digital

SIEMENS

SINUMERIK 840D SIMODRIVE 611 digital

HLA module

Description of Functions

General	1
Configuration	2
Installation and Start-Up	3
Firmware Drive Functions	4
Hardware Drive Functions	5
Hydraulics Diagnostics	6
Peripherals/Accessories	7
Service	8

Valid for

Control	Software Version
SINUMERIK 840D	5, 6
SINUMERIK 840DE (expo	ort version) 5, 6
SINUMERIK 840Di	2
SINUMERIK 840DiE (expo	ort version) 2

Hydraulics	Α
Abbreviations	В
Definition of Terms	С
References	D
EC Declaration of Conformity	Е
Index	F

SINUMERIK[®] Documentation

Revision history

Brief details of this edition and previous editions are listed below.

The status of each edition is indicated by the code in the "Remarks" column.

Status code in the "Remarks" column:

- A New documentation.
- B Unmodified reprint with new order number
- **C** Revised version with new edition status.

If the technical subject matter shown on the page has changed compared to the previous edition status, this is indicated by the changed edition status in the header of the respective page.

Edition	Order no.	Remarks
02/99	6SN1197-0AB60-0BP0	Α
08/99	6SN1197-0AB60-0BP1	С
04/00	6SN1197-0AB60-0BP2	С
10/03	6SN1197-0AB60-0BP3	С

This manual is supplied as part of the CD-ROM documentation (DOCONCD)

Edition	Order no.	Remarks
03/04	6FC5 298-7CA00-0BG3	С

Trademarks

SIMATIC®, SIMATIC HMI®, SIMATIC NET®, SIROTEC®, SINUMERIK®, SIMODRIVE® and MOTION-CONNECT® are registered trademarks of Siemens AG. Other names in this publication might be trademarks whose use by a third party for his own purposes may violate the rights of the registered holder.

More information is available on the Internet at: http://www.siemens.com/motioncontrol

This document was created with Interleaf V 7

The reproduction, transmission or use of this document or its contents is not permitted without express written authority. Offenders will be liable for damages. All rights, including rights created by patent grant or registration or a utility model or design, are reserved.

© Siemens AG, 1999-2004. All rights reserved

Other functions not described in this documentation might be executable in the control. This does not, however, represent an obligation to supply such functions with a new control or when servicing.

We have checked that the contents of this document correspond to the hardware and software described. Nevertheless, differences might exist and therefore we cannot guarantee that they are completely identical. The information given in this publication is reviewed at regular intervals and any corrections that might be necessary are made in subsequent editions. We welcome all recommendations and suggestions.

Subject to change without prior notice

Order no. 6SN1197-0AB60-0BP3 Printed in Germany Siemens Aktiengesellschaft.

Preface

Notes for the Reader

Structure of the documentation	The documentation for SIMODRIVE 611/SINUMERIK 840D is organized on the following levels:
	General Documentation
	Manufacturer/Service Documentation
	Electronic Documentation
	The description of functions of the HLA module is part of the SIMODRIVE/SINUMERIK documentation.
	For further information about the publications listed in the documentation over- view and other available SIMODRIVE/SINUMERIK publications, please contact your local Siemens sales office.
	This Description of Functions does not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in con- nection with installation, operation or maintenance.
	The contents of this document shall neither become part of nor modify any prior or existing agreement, commitment or relationship. The Sales Contract contains the entire obligations of Siemens. The warranty contained in the contract be- tween the parties is the sole warranty of Siemens. Any statements contained herein do not create new warranties or modify the existing warranty.
Target group	This documentation is intended for use by machine manufacturers and servicing personnel who use the "HLA modules".
Objective	This Description of Functions provides the information required to configure and start up the hydraulic drive module.
	Chapter 2 describes the procedures for configuring the electric and hydraulic components.
	• Chapter 3 shows how the hydraulic drive is started up with the support of a menu-driven user interface.
	• The firmware and the HLA module hardware functionality are explained in Chapters 4 and 5.
	 Chapter 6 explains how to check and interpret status displays and alarms (hydraulic diagnostics).
	 Chapter 7 describes the accessories required, e.g. measuring systems and cables.
	 Appendix A contains general information and an explanation of the hydraulic system functionality.

	Note
	Hydraulics In this document, information about specific hydraulic functions refers to functions provided by Bosch Rexroth AG.
How to use this manual	The following guide information is provided to help you reference information in this Description of Functions:
	General table of contents
	Header (as orientation aid):
	- The top line of the header is the main section number
	- The second line of the header is the subsection number
	Appendix with
	- abbreviations, terms and references
	- Glossary (index)
Definition of qualified persons	For the purpose of this manual and product labels, a "qualified person" is one who is familiar with the installation, mounting, start-up and operation of the equipment and the hazards involved.
	 Training or instruction/permit for connecting electric circuits and devices in accordance with safety technology standards.
	 Training and instruction in maintenance and use of adequate safety equip- ment according to safety regulations.
	Trained in rendering first aid.
Software version	The SW versions specified in this documentation refer to the SINUMERIK 840D control system and the HLA module.
	The Description of Functions applies only to the software versions specified. When a new software version is released, the Description of Functions for that version must be ordered.

Explanation of symbols

The following danger and warning concept is used in this document:

Danger

This symbol appears whenever death, severe physical injury or substantial material damage **will** occur if appropriate precautions are not taken.

Warning

This symbol appears whenever death, severe physical injury or substantial material damage **may** occur if appropriate precautions are not taken.

Caution

This symbol appears whenever minor physical injury or material damage **may** occur if appropriate precautions are not taken.

Caution

This warning (without warning triangle) indicates that material damage **may** occur if appropriate precautions are not taken.

Notice

This warning indicates that an undesirable result or an undesirable state **may** occur if the information is ignored.

Note

In the context of this document, it is advisable to take note of the warning information.

Hotline

The hotline phone numbers appear in Chapter 8.

Should you have any questions about the documentation (suggestions, corrections), please fax them to:

Fax: +49 (9131) 98-2176

Fax form: See the reply form at the end of the brochure

Danger and warning notices

Danger

Commissioning should not start until you have ensured that the machine in which the components described here are to be installed complies with Directive 98/37/EC.

Only appropriately qualified personnel may commission/start-up this equipment.

The personnel must take into account the information provided in the technical customer documentation for the product, and be familiar with and observe the specified danger and warning notices.

When electrical devices are operated, the electrical circuits automatically conduct a dangerous voltage.

Dangerous mechanical movements may occur in the system during operation.

All work on the electrical system must be carried out when the system has been disconnected from the power supply.

Warning

Proper transportation, expert storage, installation and mounting, as well as careful operation and maintenance are essential for this device to operate correctly and reliably.

In addition to the danger and warning information provided in the technical customer documentation, applicable national, local, and system-specific regulations must be taken into account.

The information given in catalogs and quotations applies additionally to special versions of machines and equipment.

Caution

When attaching the connecting cables, you must ensure that:

- They must not be damaged
- They must not be stressed
- They cannot come into contact with rotating parts

Caution

As part of routine tests, the devices undergo a voltage test in accordance with EN 50178. During voltage testing of electrical equipment on industrial machines in accordance with EN 60204-1, Section 19.4, all SIMODRIVE device connections must be disconnected/removed. This is necessary in order to avoid damaging the SIMODRIVE devices.

ESD notices

Electrostatic Sensitive Devices

Components which can be destroyed by electrostatic discharge are individual components, integrated circuits or boards which, when handled, tested or transported, could be destroyed by electrostatic fields or electrostatic discharge. These components are designated as **ESDS** (Electro**S**tatic **D**ischarge **S**ensitive Devices).

Handling of modules containing devices sensitive to electrostatic discharge:

- When handling components which can be destroyed by electrostatic discharge, it must be ensured that personnel, the workstation and packaging are well grounded,.
- As a general principle, electronic modules should only be touched if this is absolutely unavoidable (owing to repair work, etc.).
- Touch components only if
 - you are constantly grounded by an antistatic armband,
 - you are wearing ESD boots or ESD boots with grounding strips in conjunction with ESD flooring.
- Modules may be placed only on electrically conductive surfaces (table with ESD top, conductive ESD foam plastic, ESD packing bags, ESD transport containers).
- Keep modules away from visual display units, monitors or TV sets (minimum distance from screen > 10 cm).
- Do not bring ESD-sensitive modules into contact with chargeable and highly-insulating materials, such as plastic, insulating table tops or clothing made of synthetic materials.
- · Measurements on modules are allowed only if
 - the measuring instrument is properly grounded (e.g. equipment grounding conductor), or
 - before measuring, with an isolated measuring instrument, the measuring head is briefly discharged (e.g. touching a bare metal control housing).
- Closed-loop control modules, option modules and memory submodules may only be held by the front plate or on the board edges.

Table of Contents

1	General		1-15
	1.1	Typical applications	1-15
	1.2	Comparison of electric and hydraulic drive systems	1-16
	1.3 1.3.1 1.3.2 1.3.3 1.3.4 1.3.5 1.3.6 1.3.7 1.3.8	Structure of an electro-hydraulically-controlled drive axis Machine guideway Cylinder Servo solenoid valve Valve amplifier Shutoff valve Position measuring system SINUMERIK 840D/SIMODRIVE 611 digital Hydraulic power unit	1-18 1-19 1-19 1-19 1-19 1-19 1-20 1-20
2	Configur	ation	2-21
	2.1 2.1.1 2.1.2	Configuring steps Procedure for configuring electrical components Procedure for configuring hydraulic components	2-21 2-21 2-22
	2.2 2.2.1 2.2.2 2.2.3	Integration in SINUMERIK 840D/SIMODRIVE 611 digital System overview Required FW packages Hardware requirements	2-24 2-24 2-29 2-29
	2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5	Configuring the hydraulic drive Cylinder selection Selection of servo solenoid valves Selection of shutoff valves Natural frequency of the hydraulic drive Hydraulic power unit	2-30 2-30 2-32 2-39 2-42 2-43
	2.4 2.4.1 2.4.2 2.4.3	Connection Internal power supply External power supply Grounding concept/Electromagnetic compatibility (EMC)	2-45 2-45 2-45 2-48
3	Installati	on and Start-Up	3-49
	3.1	Overview of start-up process	3-49
	3.2	Drive configuration	3-51
	3.3	Modify drive machine data	3-52
	3.4	Valve selection	3-53
	3.5	Cylinder selection	3-56
	3.6	Mounting/supply data	3-57
	3.7	Measuring system data	3-58
	3.8	Modifying data	3-59
	3.9	Fine adjustment and optimization	3-62

4

3.9.1 3.9.2 3.9.3 3.9.4 3.9.5 3.9.6 3.9.7	Control direction, travel direction Offset adjustment Velocity adjustment Referencing data for HLA Controller optimization Controller adaptation Hydraulic/electrical interpolation	3-62 3-64 3-65 3-67 3-68 3-73 3-74
3.10	File functions	3-75
3.11 3.11.1 3.11.2 3.11.3 3.11.4 3.11.5	Start-up functions Measurement function Function generator Circularity test Servo trace DAC parameter settings	3-76 3-77 3-84 3-88 3-88 3-89
3.12	User views	3-90
3.13	Display options	3-91
3.14	Configuring an OEM valve list	3-92
3.15	System variables	3-94
Firmwa	re Drive Functions	4-95
4.1	Block diagram of closed-loop control	4-95
4.2 4.2.1 4.2.2	Functions Overview of functions Parameter set changeover	4-97 4-97 4-98
4.3 4.3.1 4.3.2 4.3.3	Closed-loop velocity control Velocity adaptation/feedforward control Velocity controller Dynamic stiffness control (DSC)	4-99 4-99 4-106 4-114
4.4 4.4.1 4.4.2 4.4.3	Closed-loop force control Force limitation Static friction injection Force controller	4-115 4-117 4-118 4-119
4.5 4.5.1 4.5.2 4.5.3	Manipulated voltage output Characteristic compensation Control output filter Manipulated voltage limitation	4-124 4-124 4-130 4-132
4.6	Supply unit data	4-133
4.7	Valve	4-134
4.8	Cylinder drive	4-136
4.9	Drive data	4-137
4.10	Position measuring system	4-140
4.11	Pressure sensing system	4-145
4.12	Terminals	4-146
4.13	Monitoring functions	4-152

	4.13.1 4.13.2	Alarms	4-152 4-154
	4.14 4.14.1 4.14.2 4.14.3	Service functions Min/max display Monitor Diagnostic machine data	4-159 4-159 4-160 4-161
	4.15	Parameters table	4-165
5	Hardwar	e Drive Functions	5-175
	5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 5.1.6	Interface overview	5-175 5-178 5-179 5-180 5-181 5-182 5-183
	5.2	System environment	5-184
	5.3 5.3.1 5.3.2 5.3.3	Notes Climatic and mechanical environmental conditions in operation Transport and storage conditions Stress caused by contaminants	5-185 5-185 5-186 5-187
6	Hydrauli	cs Diagnostics	6-189
7	Peripher	als/Accessories	7-219
7	Peripher 7.1 7.1.1 7.1.2	als/Accessories Measuring systems Encoders, linear scales Connection diagrams	7-219 7-219 7-219 7-222
7	7.1 7.1.1	Measuring systems	7-219 7-219
7	7.1 7.1.1 7.1.2	Measuring systems Encoders, linear scales Connection diagrams	7-219 7-219 7-222
7	7.1 7.1.1 7.1.2 7.2 7.3 7.3.1	Measuring systems Encoders, linear scales Connection diagrams BERO (X432) Pressure sensor Sensor equipment	7-219 7-219 7-222 7-226 7-227 7-227
8	7.1 7.1.1 7.1.2 7.2 7.3 7.3.1 7.3.2 7.4	Measuring systems Encoders, linear scales Connection diagrams BERO (X432) Pressure sensor Sensor equipment Connection diagrams	7-219 7-219 7-222 7-226 7-227 7-227 7-227 7-231
-	7.1 7.1.1 7.1.2 7.2 7.3 7.3.1 7.3.2 7.4	Measuring systems Encoders, linear scales Connection diagrams BERO (X432) Pressure sensor Sensor equipment Connection diagrams for servo solenoid valves	7-219 7-219 7-222 7-226 7-227 7-227 7-227 7-231 7-232
-	7.1 7.1.1 7.1.2 7.2 7.3 7.3.1 7.3.2 7.4 Service	Measuring systems Encoders, linear scales Connection diagrams BERO (X432) Pressure sensor Sensor equipment Connection diagrams for servo solenoid valves	7-219 7-219 7-222 7-226 7-227 7-227 7-231 7-232 8-237
-	7.1 7.1.1 7.1.2 7.2 7.3 7.3.1 7.3.2 7.4 Service 8.1 8.2	Measuring systems Encoders, linear scales Connection diagrams BERO (X432) Pressure sensor Sensor equipment Connection diagrams Connection diagrams for servo solenoid valves Areas of responsibility at Siemens/Bosch Rexroth	7-219 7-219 7-222 7-226 7-227 7-227 7-231 7-232 8-237 8-237
8	7.1 7.1.1 7.1.2 7.2 7.3 7.3.1 7.3.2 7.4 Service 8.1 8.2	Measuring systems Encoders, linear scales . Connection diagrams . BERO (X432) . Pressure sensor . Sensor equipment . Connection diagrams . Connection diagrams for servo solenoid valves . Areas of responsibility at Siemens/Bosch Rexroth . Hotline and contacts .	7-219 7-219 7-222 7-226 7-227 7-227 7-231 7-232 8-237 8-237 8-238

В	Abbrevia	ations	B-257
С	Definitio	n of Terms	C-259
D	Referen	ces	D-261
	D.1	Electrical applications	D-261
	D.2	Hydraulic applications	D-274
Е	EC Decla	aration of Conformity	E-275
F	Index		Index-279

General

1

1.1 Typical applications

Applications The NCU 573.2 of the SINUMERIK 840D is capable of handling axis configurations of a maximum of 31 axes on up to 10 different channels. This functional sophistication makes the SINUMERIK 840D an increasingly popular system for the automation of rotary indexing machines. These machines are often highly compact in design and frequently equipped with hydraulic axes (cylinders and servo solenoid valves). The hydraulics (HLA) module provides a means of controlling hydraulic axes directly from the SINUMERIK 840D system via the digital drive bus. The HLA module is a closed-loop control plug-in unit of the modular SIMODRIVE 611 converter system mounted in a 50 mm carrier module (universal empty housing). The gating and closed-loop control electronics for operating controlled hydraulic drives are integrated on the HLA module. From the point of view of the manufacturer of modern servo solenoid valves, an innovative step in the field of hydraulic drive systems has been taken by treating electric and hydraulic drives as equal partners and integrating them into a standard NC. Objective To place equal emphasis on the functional importance of both hydraulic and electric drives and make them available as a combined system within an interpolating axis grouping. Interfaces Firmware The communications interface is compatible with the SIMODRIVE 611D SRM(FDD)/ARM(MSD) for supported services. Code and data management is analogous to the SIMODRIVE 611D SRM(FDD)/ARM(MSD). The hydraulics software is stored as a separate program code in the control system. Hardware The mode of integration into the SIMODRIVE 611 system is compatible with the SIMODRIVE 611 digital SRM(FDD)/ARM(MSD). This basically involves the following interfaces: Drive bus

- Device bus
- Power supply system

1.2 Comparison of electric and hydraulic drive systems

Criterion	Electric direct drive	Electric drive with leadscrew	Hydraulic drive
Power density / mounting space require- ments	 Low weight and reduced spatial requirements of the electric part on the machine table. 	 Servomotor and leads- crew large and heavy. Problematic with lim- ited mounting space. 	 Cylinder and servo sole- noid valve are light-weight and compact. Transfer of E motor to hydraulic power unit.
Mass inertia of moving parts	Electric part on machine table has low mass.	Servomotor and leads- crew have high mass mo- ment of inertia.	Piston and piston rod have very low mass
Operational reliability, service life	Service life depends in principle only on linear guides.	 Shock-sensitive. Service life limited by leadscrew. Sudden failure possible. 	 Protected against overload by pressure limitation. Sturdy, insensitive to shocks. Cylinder seals and valve control edges have long service life. Warning of wear.
Servicing	Simple replacement	Expensive replacement and repair of leadscrew by specialists.	 Simple error diagnosis Simple replacement and repair of valves and cylinders.
Energy storage	Peak requirement must be installed as no storage is possible.	Peak requirement must be installed as no storage is possible.	 Compensation of energy requirement peaks by hy- draulic accumulator. Rapid traverse in differen- tial circuit. Reduction of installed ca- pacity.
Maximum forces	Peak thrust per unit area approx. 40 to 80 kN/m ²	Restriction with larger forces.	Practically unlimited (cylinderφ, p _{max} =700 bar)
Load stiffness	Very good; Servo gain can be set to betw. 10-100 times higher than on the other two drives.	 Elasticity under large forces. Elasticity of leadscrew is largely compensated as a control function. 	 Oil compressibility is compensated as a control function (I component). Good zero overlap quality of valve ensures very high rigidity under load.
maximum ve- locity	Up to 500 m/min	$v_{max}=h_s \cdot \omega_{max}/2\pi$ $h_s=$ thread lead $\omega_{max}=$ max. motor speed	30300 m/min (depending on which cylinder seal kit is used)
Maximum travel path	Unlimited	≤ 6 m	≤ 3 m
Collision protection	Mechanically difficult	Mechanically possible	Mechanically possible

Table 1-1 Comparison of electric and hydraulic drive systems

Criterion	Electric direct drive	Electric drive with leadscrew	Hydraulic drive
Noise	Noise produced by linear guides	Noise produced by servo- motor and leadscrew	 Flow through valve may produce noise. Pump noise on hydraulic power unit.
Acceleration characteristics	max. 45 g	max. 1 g	max. 2 g
Drive cooling	Absolutely essential	Required only at high speeds	Required in some cases, in power unit only
Sensitivity to ferromagnetic swarf	High	Low	Low

Table 1-1 Comparison of electric and hydraulic drive systems
--

Table 1-2 Analogy of characteristic data

Electric	Hydraulic
Spindle speed	-
Velocity	Velocity
Current	flowrate
DC link voltage	System pressure
Power	Flow rate · Valve pressure differential
Transistor/power section	Valve
Motor	Drive cylinder

1.3 Structure of an electro-hydraulically-controlled drive axis

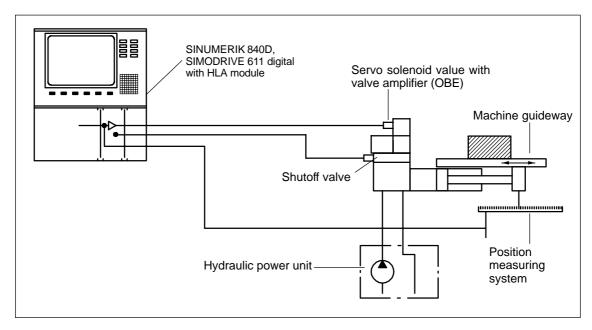


Fig. 1-1 Construction of an electro-hydraulically controlled drive axis

loop stability.

1.3.1 Machine guideway

Guide mechanism Hydrodynamic and hydrostatic slideways or roller slideways allow machine slides and tables to move in straight lines with minimum friction and maximum precision.

 Friction
 A degree of friction can be very useful for damping oscillations.

 However, excessive friction, especially pronounced transitions from static to sliding friction, have a negative effect on the control result and impair the control

1.3.2 Cylinder

Construction	The cylinder represents the simplest form of linear motor and can be integrated easily into the machine guide. The cylinder normally has a piston rod at one end.
Quality criteria	The following are critical quality criteria:
	 The surface quality of barrel and piston rod and
	 The seals and guides (low-friction, servo quality).

1.3.3 Servo solenoid valve

 Task
 This is the final control element in the closed control loop and forms the electrohydraulic converter.

Function The valve steplessly converts electrical signals into a hydraulic flow.

Its quality is defined by static and dynamic parameters, such as

- Zero overlap
- Hysteresis
- Limit frequency, etc.

1.3.4 Valve amplifier

This circuit contains the power electronics for the solenoid in the servo solenoid valve which adjusts the valve spool position.

The position controller in the valve amplifier (on-board electronics - OBE) controls the position of the valve spool proportionally to the output value (U=0... \pm 10 V).

1.3.5 Shutoff valve

Shut-off valves are used to add safety functions to a valve control with servo solenoid valve. Shut-off valves can prevent uncontrolled motion of the cylinder.

1.3.6 Position measuring system

TaskThe position measuring system supplies the actual value for the position of the
moving machine element.

1.3 Structure of an electro-hydraulically-controlled drive axis

Function

The speed is acquired by continuous differentiation of the distance over time. Various systems are available depending on the level of accuracy required.

The highest accuracy requirements are fulfilled by digital systems (glass scale with photoelectric evaluation circuit) mounted directly on the machine.

The most widely used digital incremental systems require a reference point approach at the beginning of a machining operation.

1.3.7 SINUMERIK 840D/SIMODRIVE 611 digital

SINUMERIK controls and SIMODRIVE drive systems are specially designed for machine tools, manipulators and special-purpose machines.

The numerical control processes the machine program and converts it into control commands. It also monitors command execution continuously.

The control structures for the electrohydraulic control loop and the interfaces to

- the shutoff valve,
- the servo solenoid valve,
- the position measuring system and
- the central arithmetic logic unit

are all provided by the HLA module.

The HLA module is an integral component of the SINUMERIK 840D and SIMODRIVE 611 digital systems.

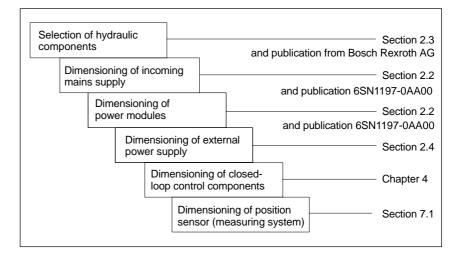
A range of different NCU modules with graded scope of functions is provided to allow the SINUMERIK 840D system to be tailored to the varying functional requirements of machines. The control can therefore be optimally adapted to individual machines and machining applications and is suitable for equipping standardized machine series.

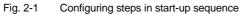
1.3.8 Hydraulic power unit

This unit supplies hydraulic energy.

It is installed at a distance from the drive axis. Accumulators are employed to compensate for strongly fluctuating hydraulic energy requirements and to minimize the installed power.

Configuration


2.1 Configuring steps


2.1.1 Procedure for configuring electrical components

The procedure for configuring an HLA module is divided into steps in such a way that the user is guided through the full range of relevant settings, from the required force, to the hydraulics components, and finally the HLA and its encoder evaluation circuitry. This initial configuring phase may be followed by a second in some cases, in which the corresponding circuit recommendations and EMC measures are taken into account.

The functions of SIMODRIVE components are described with keywords in this Planning Guide. Limit values for functions may be specified in some cases. For further details (e.g. characteristics), please refer to the Installation and Start-Up Guides for SIMODRIVE 611 digital and SINUMERIK 840 digital.

Further configuring instructions and detailed ordering information can be found in Catalogs NC 60 and NC Z.

Phase 1

2 Configuration

Phase 2

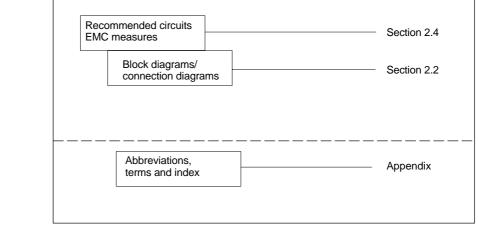


Fig. 2-2 2. configuring phase

2.1.2 Procedure for configuring hydraulic components

Hydraulically controlled drives are normally configured by the technical sales and marketing personnel of the hydraulics supplier (e.g. Bosch Rexroth, see Chapter 8) in close co-operation with the machine manufacturer.

This configuring phase is divided into the following steps:

- Selection of the cylinder on the basis of forces and velocities required and the cylinder mounting conditions in the machine (see Subsection 2.3.1).
- Selection of the servo solenoid valves on the basis of the cylinder data, forces, velocities and dynamic requirements (see Subsection 2.3.2, 2.3.3).
- Selection of the position measuring system and optionally the pressure sensors with regard to the measuring range, accuracy and linearity (see Section 7.1, 7.3).
- Dimensioning of the hydraulic power unit, taking all loads into account (see Subsection 2.3.5).
- Calculation of the natural frequency of the drive for an initial assessment of whether the expected control result can be achieved (see Subsection 2.3.4).
- In difficult cases, it may be worthwhile carrying out a dynamic simulation of the drive as an aid to configuration.

The basic data required to design a system are obtained from a questionnaire.

Questionnaire Design of hydraulic NC axes

		Hydraulic NC a	xes						
	Dimensioning of systems with linear motions								
Company:			Contact person:						
Address:			Department:						
			Phone:						
Machine:									
Axis:	Function/designation:								
	Straight-cut control:		ntinuous-path control:						
Drive specific	ation								
Cylinder dime			Accuracy requirements						
Piston diamet			Positioning precision [µm]						
1st rod diame			from rapid traverse:						
2nd rod diame Stroke:	eter:		from feedrate: Path accuracy:						
Cylinder mou	nting position:		Velocity tolerance						
		\sim \sim	[mm/min]:						
051-001/									
Connection:			Position measuring	incremental,					
Valve - cylind	er		system	output signal					
Pipe/hose len	gth [mm]:		Make:						
Pipe/hose dia			Туре:						
Moved mass			Other:						
Machining for			Resolution [µm]:						
Piston advance									
Piston retracti									
Slide guide fri			Numerical control Make:	SIEMENS					
	μ: F _R [N]:		Туре:	840D					
Pump pressu			Type.						
Velocities [m/r									
Rapid travers	-								
Rapid travers									
Machining fee									
Machining fee									
Acceleration r	ates [m/s ²]								
Max. accelera									
Max. delay:									
Pro	cessed by:	Dept.:	No. of pages:	Date:					

2.2 Integration in SINUMERIK 840D/SIMODRIVE 611 digital

2.2.1 System overview

Components

A complete SINUMERIK 840 digital control system with HLA module consists of various individual components. These are listed below.

 Table 2-1
 Components of SINUMERIK 840 digital control with HLA module (number, component, description)

No.in Fig. 2-3	Component	Description
0	NCU box	Enclosure for NC CPU
В	NC CPU	 Central processing unit of 840D Execution of NC program, Contains modules with e.g. PLC, communications functions NCU 573.2 includes a fan module
B1	Cable distributor	For insertion in NCU
C ¹⁾	Operator panel	 Display, keyboard, power supply unit and operator controls for NC
D ¹⁾	MMC module	 Operator panel calculator (integrated in panel), MMC 103 with hard disk
1	Mains supply module (MS)	References: /PJ1/ SIMODRIVE 611
F ¹⁾	Machine control panel	Machine operation
G1 ¹⁾	ISA adapter	 Allows AT modules to be used in conjunction with the MMC module MMC103 (mounted in operator panel)
G2 1)	Full CNC keyboard	Full keyboard for connection to MMC module
G3	Memory card (PCMCIA)	 Contains the system program, can be slotted into the NCU 561.2, 571.2, 572.2, 573.2
G4	Diskette unit (accessory)	Built-in unit for connection to MMC module
H1 to H 9	Cable	References: /Z/, Catalog of Accessories NC Z
H10 to H12	Cable	See Chapter 7, Peripherals/Accessories
1	SIMODRIVE hydraulics module (HLA module)	 Closed-loop control of hydraulic drive Actuation of servo solenoid valve
	50 mm carrier module (universal empty housing)	Holder for HLA closed-loop control plug-in module (see Fig. 2-6)
11	Phoenix cable connection	 Shutoff valve External 24 V supply BERO input "Power enable"
J	SIMATIC components	References: /S7H/, Manual
К	Terminator	Terminator for drive bus (inserted in last module in drive grouping)

Table 2-1	Components of SINUMERIK 840 digital control with HLA module (number,
	component, description)

No.in Fig. 2-3	Component	Description			
L ¹⁾	Handheld unit	 Connect HHU to K bus via MPI Handwheel, EMERGENCY STOP button, key-ac- tuated switch, override, agreement buttons, dis- play, unassigned keys 			
M ¹⁾	Distribution box	 For linking the hand-held unit to the MPI bus Connection for EMERGENCY STOP circuit, enable keys, handwheel, 24 V DC 			
N	Cable distributor	 24V supply for connection to MPI connector 			
0	Hydraulic Drive	References: /BR1/, "Servo solenoid valves" catalog /BR2/, "Sensors and electronics" catalog /BR3/, "Adapter plate valves" catalog			
Ρ	External 24 V supply	 SITOP stabilized power supply modules References: SITOP catalog Order No. E860060-K2410-A101-A4 			

1) A description of these components can be found in:

References: /BH/, Operator Components Manual

Note

An HLA module must never be operated directly on a SIMODRIVE monitoring module, i.e. it must always be connected via a mains infeed module.

For information about connecting further additional SIMODRIVE monitoring modules in configurations with several HLA modules, please refer to the Planning Guide for SIMODRIVE 611 Converters /PJU/.

In a multi-tier configuration, all the infeed supply units must be connected simultaneously.

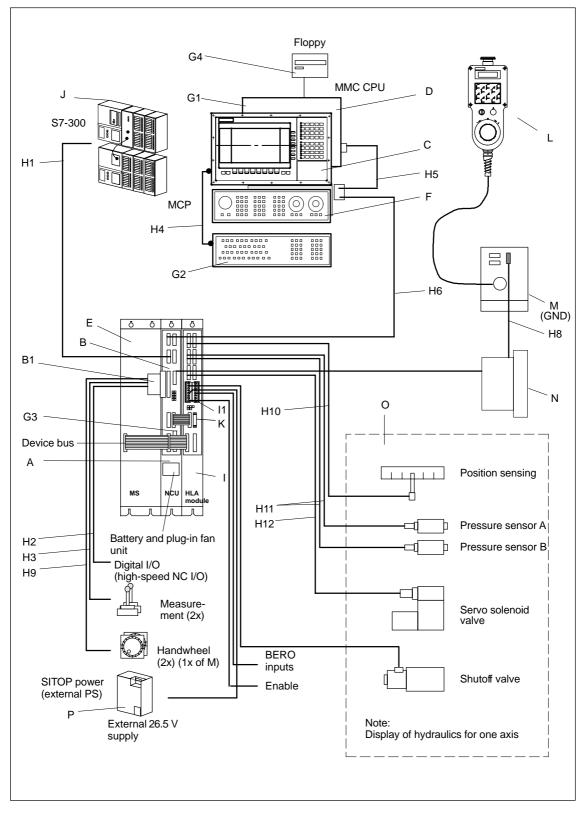
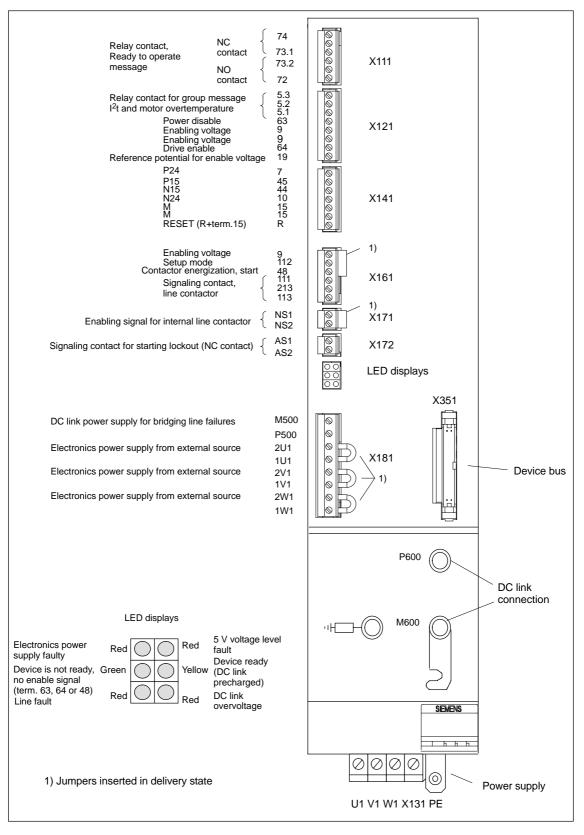


Fig. 2-3 System components

Fig. 2-4 Connection configuration for HLA module

2 Configuration

2.2 Integration in SINUMERIK 840D/SIMODRIVE 611 digital



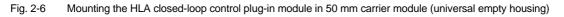


Fig. 2-5 Interfaces on mains supply module (OI and I/RF module)

Mounting the HLA closed-loop control plug-in module

2.2.2 Required FW packages

- SINUMERIK 840D NCK SW ≥ 5.1 including SIMODRIVE 611 digital HLA module ≥ 1.0
- SINUMERIK 840D MMC SW > 5.1 or

SINUMERIK 840D HMI SW $\geq\!6$

2.2.3 Hardware requirements

• NCU 561.2, 571.2, 572.2, 573.2

General Hydraulic drives are generally configured by technical sales personnel from the hydraulics supplier, Rexroth.

The configuration is based on the data from the questionnaire in Subsection 2.1.2.

Please refer to Appendix A for a description of hydraulic components. The hydraulic drive is configured in the sequence of steps described below.

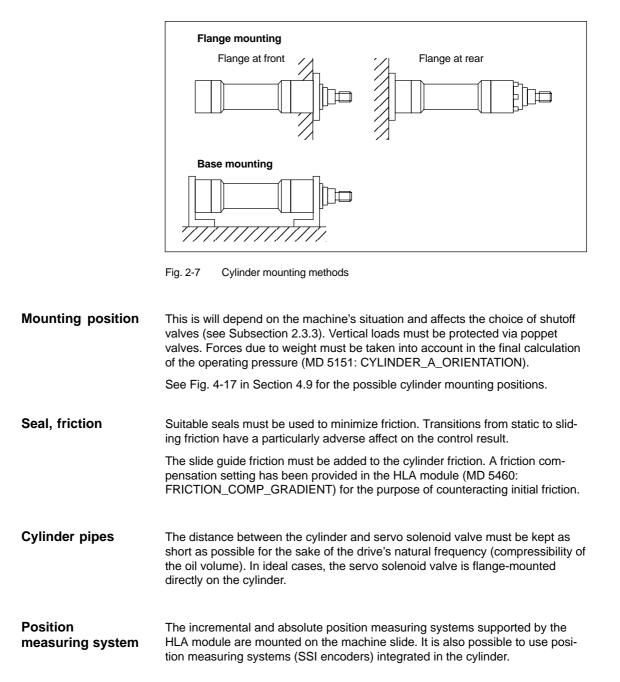
2.3.1 Cylinder selection

Piston and rod diameter

The piston and rod diameters are calculated according to Pascal's theorem on the basis of the necessary compressive and tensile forces F and a standard pressure value of P=40...100 bar for machine tools (a maximum pressure setting of 350 bar is permitted).

$$p = \frac{F}{O}$$

The force value calculation must include friction and acceleration forces as well as the actual feed force. Pistons and rods with the following standard diameter dimensions are available:


Table 2-2	Typical cylinder data
-----------	-----------------------

Description		Diameter						
Piston Ø	25	32	40	50	63	80	100	125
Rod \varnothing Standard	12	14	18	22	28	36	45	56
Rod \varnothing Optional	18	22	28	36	45	56	70	90

Stroke length

The stroke is identical to the working stroke of the drive except that it includes a few additional safety reserves.

Mounting In order to ensure good control quality, backlash-free mountings, e.g. base or flange mountings, must be used.

References: /BR1/, "Servo solenoid valves" catalog

Valve types
(overview)The HLA module supports servo solenoid valves with on-board electronics
(OBE) supplied by Bosch Rexroth AG. The technical data for these valves and
valves supplied by other manufacturers is stored in the HLA module software.
The drive is parameterized automatically when the order number is entered.
The following table lists the various types of servo solenoid valve and HR (=
High Response) servo solenoid valves available from Bosch Rexroth AG.

For a complete list, please see Tables 2-4 to 2-10.

Table 2-3Overview of servo solenoid and HR servo solenoid valves from Bosch Rexroth AG

Title	Nomi- nal size	Nominal flowrate (I/min) for nominal pressure drop per control edge (bar)	curve	Limit fre- quency ¹⁾ (Hz)
4WRPEH (directly-controlled servo solenoid valve)	6	up to 40 / 35 bar	linear and with knee	110
E E E	10	up to 100 / 35 bar	linear and with knee	85
4WRPE (pilot-controlled servo solenoid valve)	10	up to 70 / 5 bar	with knee	40
	16	up to 150 / 5 bar	with knee	40
4WRPEH (directly-controlled HR servo solenoid valve)	6	up to 40 / 35 bar	linear and with knee	210
4WRVE (pilot-controlled HR servo solenoid valve)	10	up to 70 / 35 bar	with knee	80
	16	up to 150 / 5 bar	with knee	80

1) The characteristic values specified for the valve limit frequencies relate to an amplitude of \pm 5% and a phase offset in the Bode diagram of -90°, see also data in catalog supplied by Bosch Rexroth AG.

The choice of valve for a particular application is made with reference to the following criteria.

Servo solenoid or HR servo solenoid valves

HR (**H**igh **R**esponse) valves are characterized by their improved dynamic quality, i.e. by a higher limit frequency compared to servo solenoid valves. They react with greater sensitivity to setpoint changes especially in the small-signal range. The use of HR servo solenoid valves is recommended in the following cases:

- 1. When extremely high contour precision is required in high-speed continuous-path control machining operations.
- 2. When very high response sensitivity is required to achieve the best possible positioning accuracy.

Note that HR servo solenoid valves do not generally have a fail-safe position. The connector is also 12-pin, rather than 7-pin as with servo solenoid valves.

Valve size The valve size is determined by the maximum flowrate Q_X. This maximum flowrate is calculated according to the law of flow:

 $Q_X = v \cdot A$

v: Maximum drive speed for extension and retraction A: associated cylinder surface area

The calculated maximum flow rate must not exceed the limit for use of the valve. This limit is generally specified in the catalog by the valve manufacturer (e.g. Rexroth: /BR1/, "Servo solenoid valves" catalog).

Within the limits for use, the flow rate that can be achieved with the valve is calculated by

$$Q=Q_{nom} \cdot \sqrt{\frac{\Delta p}{\Delta p_{nom}}}$$

In practice, the cylinder speeds that can actually be achieved depend on the operating pressure, the load pressure and flow-specific characteristics of the drive. The dimensioning is left to the hydraulic configuration engineer, who has access to a number of design calculation and simulation programs.

Linear/knee-shapeValues with either a linear or knee-shaped characteristic can be selected.d flowrateThe latter are suitable for obtaining a higher resolution in the low signal rangecharacteristic(machining) and sufficient flow in the high signal range (rapid traverse).

The definition of the knee-point position as 40% or 60% means that only 10% of the nominal opening cross-section (nominal flowrate) is released at 40% or 60% of the nominal control signal (i.e. at U=4 V or 6 V).

The knee-shaped characteristic of the valve must be linearized in the HLA module to adapt it to the closed-loop control of the entire drive (cylinder).

2.3 Configuring the hydraulic drive

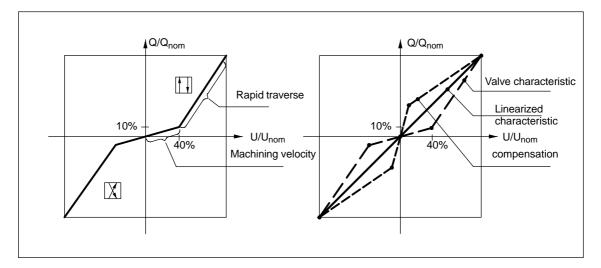


Fig. 2-8 Diagram of a knee-shaped servo solenoid valve characteristic and its correction in the HLA module

Note

Recommended selection:

Servo solenoid valves are generally recommended for applications where there is a clear separation between machining operation and rapid traverse.

Asymmetrical flowrate characteristics

It is a good idea to use valves with asymmetrical restriction cross-sections for differential cylinders or for cylinders that are not arranged horizontally and move large loads. This improves the hydraulic clamping of the cylinder and adjusts the controlled system gain of the hydraulic servo-drive for both directions of travel.

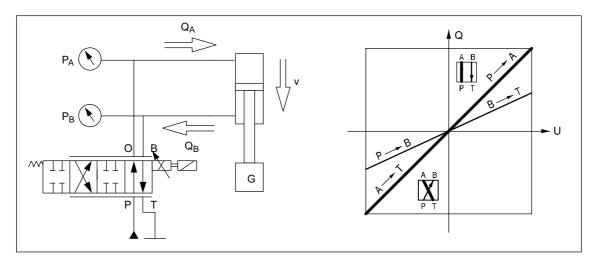


Fig. 2-9 Asymmetrical characteristics

Fail-safe position Directly-controlled servo solenoid valves have a fail-safe position, i.e. the control spool moves to a safe position when the valve is disconnected from the power supply. The fail-safe position is either "closed" (A, B, P, T disabled) or "open" (A, B and T connected and P disabled). It should be noted that the "crossed" switching position is necessarily passed when the valve is switched on and off, and there can be temporary responses from the cylinder at these moments. Separate shut-off valves are therefore required in order to implement safety functions, such as a totally safe cylinder stop.

Pilot-controlled servo solenoid valves, pilot-controlled HR servo solenoid valves and directly-controlled HR servo solenoid valves do not have a fail-safe position and thus do not have a safe basic position when switched off. Any safety functions nmust therefore be implemented via separate shut-off valves.

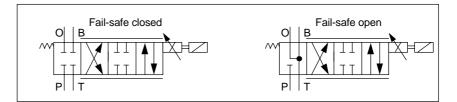


Fig. 2-10 Fail-safe position in the valve graphical symbol

Pin assignments A distinction

A distinction must be made between servo solenoid valves and HR servo solenoid valves.

• Servo solenoid valves (directly and pilot-actuated): 7-pin round connector

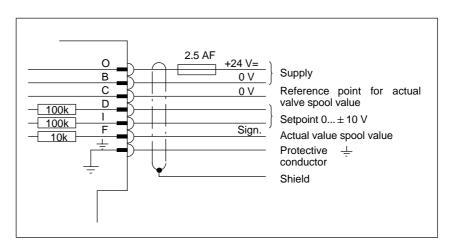
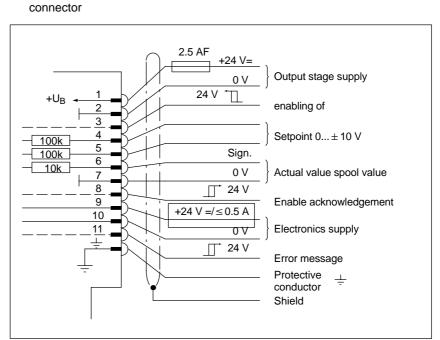



Fig. 2-11 Connector pin assignment on servo solenoid valves

2.3 Configuring the hydraulic drive

•

HR servo solenoid valves (directly and pilot-controlled); 12-pin round

Fig. 2-12 Connector assignment for HR servo solenoid valves

Preferred range of servo solenoid valves

The following tables list all the servo solenoid valves and HR servo solenoid valves supplied by Bosch Rexroth AG for which technical data is stored in the HLA module.

HLA code no.	Rexroth order num- ber	Q _{nom} (I/min) for ∆p / edge = 35 bar	Character- istic kneep- oint (%)	No. of connec- tor pins	Graphic symbol	Rexroth catalog
9	0 811 404 600	4	Linear.	7-pin	О В	/BR1/
10	0 811 404 601	12	Linear.			
11	0 811 404 602	24	Linear.			
12	0 811 404 603	40	Linear.			
13	0 811 404 610	4	Linear.		O B	-
14	0 811 404 611	12	Linear.			
15	0 811 404 612	24	Linear.			
16	0 811 404 613	40	Linear.			
17	0 811 404 642	15	60		<u>OB</u>	
18	0 811 404 747	25	60	-		
19	0 811 404 644	40	40		P T	
20	0 811 404 645	15	60		O B	
21	0 811 404 646	25	60			
22	0 811 404 647	40	40		P T	

Table 2-4 NG6 directly-controlled servo solenoid valves; model code 4WRPEH 6

HLA code no.	Rexroth order num- ber	Q _{nom} (I/min) for ∆p / edge = 35 bar	Character- istic kneep- oint (%)	No. of connec- tor pins	Graphic symbol	Rexroth catalog
23	0 811 404 648	A:40; B:20 ¹⁾	40	7-pin		/BR1/
24	0 811 404 649	A:40; B:20 ¹⁾	40			

Table 2-4 NG6 directly-controlled servo solenoid valves; model code 4WRPEH 6

Table 2-5 NG10 directly-controlled servo solenoid valves; model code 4WRPEH 10

HLA code no.	Rexroth order num- ber	Q _{nom} (I/min) for ∆p / edge = 35 bar	Character- istic kneep- oint (%)	No. of connec- tor pins	Graphic symbol	Rexroth catalog
41	0 811 404 800	50	Linear.	7-pin		/BR1/
42	0 811 404 801	100	Linear.			
43	0 811 404 802	50	Linear.			
44	0 811 404 803	100	Linear.			
45	0 811 404 822	50	40			
46	0 811 404 823	100	40			
47	0 811 404 824	50	40			
48	0 811 404 825	100	40			
49	0 811 404 826	A:50; B:25 ¹⁾	40			
50	0 811 404 827	A:100; B:50 ¹⁾	40			
51	0 811 404 828	A:50; B:25 ¹⁾	40			
52	0 811 404 829	A:100; B:50 ¹⁾	40			

1) Asymmetrical characteristic

2 Configuration

2.3 Configuring the hydraulic drive

HLA code no.	Rexroth order num- ber	Q _{nom} (I/min) for ∆p / edge = 5 bar	Character- istic kneep- oint (%)	No. of connec- tor pins	Graphic symbol	Rexroth catalog
25	0 811 404 686	40	40	7-pin		/BR1/
26	0 811 404 687	70	40			
27	0 811 404 688	A:40; B:20 ¹⁾	40			
28	0 811 404 689	A:70; B:40 ¹⁾	40			

Table 2-6 NG10 pilot-controlled servo solenoid valves; model code 4WRLE 10

 Table 2-7
 NG16 pilot-controlled servo solenoid valves; model code 4WRLE 16

HLA code no.	Rexroth order num- ber	Q _{nom} (I/min) for ∆p / edge = 5 bar	Character- istic kneep- oint (%)	No. of connec- tor pins	Graphic symbol	Rexroth catalog
1	0 811 404 263	90	40	7-pin		/BR1/
2	0 811 404 264	150	40			
3	0 811 404 265	A:90; B:50 ¹⁾	40			
4	0 811 404 266	A:150; B:90 ¹⁾	40			

Table 2-8 NG6 directly-controlled HR servo solenoid valves; model code 4WRREH 6

HLA code no.	Rexroth order num- ber	Q _{nom} (I/min) for ∆p / edge = 35 bar	Character- istic kneep- oint (%)	No. of connec- tor pins	Graphic symbol	Rexroth catalog
33	0 811 404 720	40	Linear.	12-pin	<u> </u>	/BR1/
34	0 811 404 721	24	Linear.	-		
35	0 811 404 722	12	Linear.			
36	0 811 404 723	8	Linear.			
37	0 811 404 725	15	60			
38	0 811 404 726	25	60			
39	0 811 404 727	40	40	1		
40	0 811 404 728	A:40; B:20 ¹⁾	40	1		

Table 2-9 NG10 pilot-controlled HR servo solenoid valves; model code 4WRVE 10

HLA code no.	Rexroth order num- ber	Q _{nom} (I/min) for ∆p / edge = 5 bar	Character- istic kneep- oint (%)	No. of connec- tor pins	Graphic symbol	Rexroth catalog
29	0 811 404 693	40	40	12-pin	<u> </u>	/BR1/
30	0 811 404 694	70	40			
31	0 811 404 695	A:40; B:20 ¹⁾	40			
32	0 811 404 696	A:70; B:40 ¹⁾	40			

1) Asymmetrical characteristic

HLA code no.	Rexroth order num- ber	Q _{nom} (I/min) for ∆p / edge = 5 bar	Character- istic kneep- oint (%)	No. of connec- tor pins	Graphic symbol	Rexroth catalog
5	0 811 404 296	90	40	12-pin	<u> </u>	/BR1/
6	0 811 404 297	150	40			
7	0 811 404 298	A:90; B:50 ¹⁾	40			
8	0 811 404 299	A:150; B:90 ¹⁾	40			

Table 2-10 NG16 pilot-controlled HR servo solenoid valves; model code 4WRVE 16

1) Asymmetrical characteristic

2.3.3 Selection of shutoff valves

References:/BR3/, "Adapter plate valves" catalog

General

The shutoff valves are automatically enabled and disabled in the correct switching sequence by the HLA module.

Start condition: The hydraulic pressure must be available before the system is switched on.

Warning

In the event of sudden failure (e.g. open circuit) of the external 24 V supply, an axial storage capacitor on the HLA module provides energy to supply the servo solenoid valve until such time as the pressure supply for a configured shutoff valve is disabled.

The machine manufacturer must verify the interaction between valves, making allowance for all tolerances in the controlled system.

The energy content of the storage capacitors is dependent upon

- the tolerances of the capacitors,
- the voltage level of the external supply and
- the charging time of the integrated capacitors (instant of voltage failure).

The available response time is mainly defined by

- the power required for the current machining step,
- the response time of the shutoff valves and
- the trip threshold of the servo solenoid valves.

2.3 Configuring the hydraulic drive

Examples Figure 2-13 shows an electrically-switched sandwich-type shut-off valve used to shut off the system pressure at the servo solenoid valve.

Interruption of the hydraulic power circuit upstream of the servo solenoid valve is sufficient to meet simple safety requirements. When a servo solenoid valve in the closed fail-safe position is switched off, then approximate shut-off of the consumer connections with respect to the cylinder is guaranteed.

There are some safety limitations, however, since the servo solenoid valve's fail-safe position is not totally free of leakage oil, and thus does not work without some cylinder drift. In addition, when the servo solenoid valve is switched on and off, the "crossed" position is necessarily passed, which can result in cylinder movement.

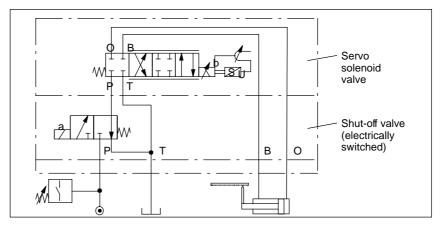


Fig. 2-13 A typical example for an electrically-controlled shut-off valve

The circuit in Figure 2-14 achieves a high level of safety. In this case, an additional barrier block closes the consumer connections to the cylinder safely and with no leakage of oil. This means that even heavy loads on non-horizontal axis can be quickly stopped and held safely, regardless of the state of the servo solenoid valve. Totally safe scenarios for switching the drive on and off can thus be implemented.

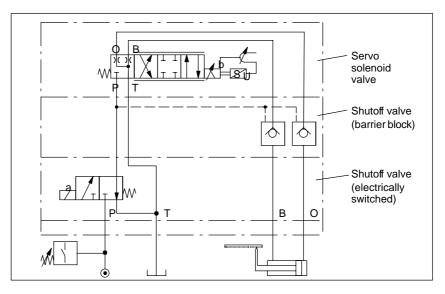


Fig. 2-14 Typical example for the combination of an electrically-switched shut-off valve with an additional barrier block

Preferred range of shut-off valves

Bosch Rexroth shut-off valves from the following table should ideally be used in conjunction with the HLA module. These are sandwich-plate valves in sizes 6 and 10. Additional shut-off valves are available upon request from Bosch Rexroth.

Rexroth order number	Nominal size	Graphic symbol	Rexroth catalog
0 811 024 120	6		/BR3/
0 811 020 040	10		
0 811 024 125	6		
0 811 024 123	6		
0 811 004 102	6		_
0 811 004 103	6		
0 811 004 104	6	B T A' P'	
0 811 024 122	6		
0 811 024 121	6	$\begin{array}{c c} & P & A & B' & T' \\ \hline & & & & \\ \hline & & & \\ P & O & B & T \end{array}$	

Table 2-11 Shutoff valves

2.3.4 Natural frequency of the hydraulic drive

Servo gain

The possible servo gain is essentially determined by the natural frequency of the cylinder and its load ω_0 and the limit frequency of the servo solenoid value ω_v .

The cylinder and its load constitute a spring/mass attenuation system whose natural frequency is calculated using the following formula:

$$w_{o} \sim \sqrt{\frac{4 \cdot E \cdot A}{m \cdot h}} (\frac{1 + \alpha}{2}) \qquad 0 \qquad \qquad m$$

Where:

E=modulus of elasticity (N/m²) A=piston area (m²) A_R=ring surface (m²) h=stroke (m) α =surface ratio A_R/A m=mass (kg)

Oil volumes in the cylinder pipes must also be taken into account.

The minimum natural frequency occurs only at a particular mid-position about the middle and increases as the end positions are approached.

- **Natural frequency** The natural frequency of the hydraulic drive is automatically calculated by the HLA module and applied in the controller once the corresponding data parameters have been set. See machine data, Sections 4.8 and 4.9:
 - MD 5131: CYLINDER_PISTON_DIAMETER

MD 5136: CYLINDER_DEAD_VOLUME_B

MD 5140: VALVE_CYLINDER_CONNECTION

MD 5143: PIPE_INNER_ DIAMETER_A_B

• MD 5150: DRIVE_MASS

... MD 5152: CYLINDER_FASTENING

• MD 5160: PISTON_POS_MIN_NAT_FREQ

MD 5163: DRIVE_NATURAL_FREQUENCY

Possible dynamic response dynamic response dynamic response dynamic response dynamic response dynamic response tude of the valve modulation. For valves that are used in controlled axes, the natural frequency is typically determined for a modulation amplitude of $\pm 10\%$ and a phase offset of -180°. The relevant information is given in the valve manufacturer's catalog, e.g. /BR1/.

For pilot-controlled servo solenoid valves, the dynamic response is determined by the pilot pressure p_{pilot} , in addition to the valve type:

$$f_0 \sim \sqrt{p_{before}}$$

The Rexroth catalog data relates to a pilot pressure of 100 bar.

Servo valves can reach corner frequencies of up to 1000 Hz, but are very sensitive to contamination.

< ^

2.3.5 Hydraulic power unit

The hydraulic power is supplied by a hydraulic power unit installed separately or integrated in the machine. The power unit is configured individually to meet the requirements of all hydraulic loads. The following factors are of particular importance:

- Pressure pThe pressure is determined from the cylinder geometry, hydraulic characteristics
of the servo solenoid valve and other data such as load forces or flow resist-
ance values in the hydraulic circuit due to the drive speeds and forces required.
The standard value for the system pressure for machine tool feed drives is
around 40... 100 bar.
- Flow rate Q
 The maximum flowrate is calculated from the rapid traverse velocity.

 If several cylinders are operating simultaneously, the sum of all loads must be taken into account.

 Maximum flow is often reached for only brief periods and can be supplied by an accumulator.
 - The pump capacity is selected to satisfy the mean flow rate.
- Drive power PThe power P output by the electric motor to the pump drive is calculated as the
product of pressure p, flow rate Q and efficiency η.

P=p · Q · η

Pump type Variable displacement pumps with pressure regulators in combination with an accumulator are generally employed in order to prevent power losses and to match the energy supply to the fluctuating delivery requirement during the cycle.

Vane pumps have proven successful in the normal pressure range for these applications of 70 to 210 bar.

Axial piston pumps are commonly used for high-pressure applications up to 350 bar.

Filtration Classic servo-valves with fluid converters as initial stages are extremely sensitive to contamination. However, even the control edges of modern servo solenoid valves require filtration.

> To ensure general operational reliability, but more importantly, to protect the control edges against premature erosion and to maintain the quality of zero overlap, the oil contamination must be limited in compliance with Class 7...9 according to NAS 1638.

> This is achieved by using class β_{10} =75 full flow filters, which must be positioned in the pressure line directly upstream of the servo solenoid valve.

The most critical phase is start-up, since contamination which has "accumulated" prior to installation often causes failures. For this reason, it is advisable to purge the system before the servo solenoid valves are fitted. 2.3 Configuring the hydraulic drive

Cooling

Since considerable power losses that cannot be compensated for solely through oil reservoir dissipation occur when the flow is throttled via the control edges on the valve, additional oil/air or oil/water heat exchangers must be provided in most cases.

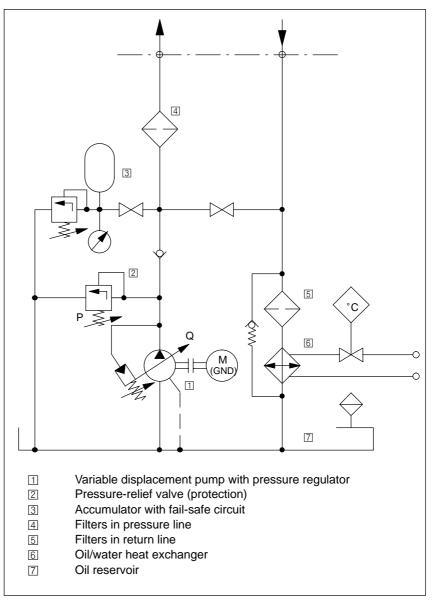


Fig. 2-15 Overview of typical hydraulic power unit

2.4 Connection

2.4.1 Internal power supply

Comments

	Note					
	The NC CPU is supplied by the SIMODRIVE power supply via the device bus. No provision has been made for any other type of voltage supply and failure to use the supply provided could damage the unit.					
Connection and power loss calculation for the NCU	The HLA module is integrated as a single module into the network of SIMODRIVE modules (power supply or incoming supply module, possibly feed modules and/or main spindle modules) and 840D. The power supply is fed in via the device bus.					
	The total power requirement for the entire network must be calculated. This must not exceed the power supplied by the power supply module.					
	To make the calculation easier, each module has a weighting factor.					
	This can be found in Chapter 9 of the following reference material:					
	References: NC 60 catalog					
	The sum of electronic and control points must not be larger than stated in the data sheet of the power supply module.					

2.4.2 External power supply

 Requirements of external 26.5 V
 The purpose of the external power supply is to switch and supply the hydraulic components

 supply
 Components

- closed-loop proportional valves
- Shutoff valves
- pressure sensors

via the closed-loop control.

In principle, stabilized or unstabilized power supplies and switched-mode or in-phase-controlled supplies can be used.

The following points must, however, be noted:

- The required voltage tolerance can only be achieved in practice with stabilization and preferably switched for the existing currents. The ripple associated with an unstabilized power supply may cause tripping at the lower monitoring threshold.
- The stabilization has 24000 μF input capacity per module, which can best be charged up with a stabilized power supply (with current limitation).

2.4 Connection

Warning

• The DC supply must be **safely electrically isolated**. See also:

References: /PHD/, Configuration NCU 561.2-573.2

• The DC supply must be connected to the functional ground of the control at **one** point (e.g. X131 on I/RF module). As a rule, the connection is provided as standard in the S7-300 I/Os. See also:

References: /EMC/, SINUMERIK, SIROTEC, SIMODRIVE, EMC Installation Guideline

The input for the 26.5 V supply is protected against polarity reversal.

26.5 V \pm **2%** must be fed from the external 26.5 V supply to connector X431 to supply the hydraulics components (servo solenoid valves, shut-off valves, and pressure sensors). The power requirements is calculated from the power required by external components plus 0.1 A for the internal circuit. The input voltage tolerance relates to the input terminals of the closed-loop control; the voltage drops on the supply leads are **not** negligible.

The external 26.5 V supply is monitored for violation of a lower limit in the control.

Caution

After the external 26.5 V supply has powered up, terminal X431 may no longer be inserted or switched since the high charging currents can irreparably damage the module or external switch.

- If the external 26.5 V supply has to be switched, then an external "precharging circuit" (e.g. relay with timer and resistor) must be used.
- The 26.5 V outputs are short-circuit-proof or protected by fuses.

The outputs for the shutoff valves are designed as electronic switches with integrated zener diodes for disconnecting inductive loads. The zener diodes are located between the 24 V input and the output, with a typical zener voltage of 58 V.

On supply disconnection, the energy produced by the coil inductance and the valve spool spring, plus the energy supplied from the 24 V source in the zener diode and ohmic resistance in the solenoid coil is converted to heat. This energy must not exceed 1.7 J during one power OFF process or else the zener diode will be destroyed; no electronic protection against this type of overload is available.

- Other requirements of the external 26.5 V supply:
 - Voltage range (mean value) 25.97 V to 27.03 V DC
 - Ripple 240 mVpp
 - No voltage dips, otherwise disconnection

Recommended power supply

The **SITOP power** product range supplied by SIEMENS is recommended for use as the external 26.5 V power supply.

References: SITOP catalog Order no. E86060-K2410-A101-A4

• SITOP power for line supply connection

The SITOP power product types shown in the tables are recommended for the line supply connection:

Table 2-12	SITOP power for line supply connection
------------	--

Input	Output	Order No.	
Voltage range [v]	Voltage U _a	Current I _{a Nom}	
2AC 85132/176550	24 V DC	5 A	6EP1333-3BA00
	(2428.8 V) tol. ±1%	10 A	6EP1334-3BA00
3AC 320550		20 A	6EP1436-3BA00
		40 A	6EP1437-3BA00

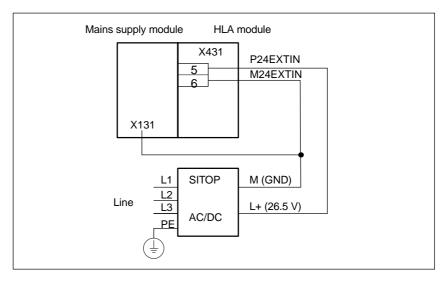


Fig. 2-16 Connection of external 26.5 V SITOP power for line connection

2.4 Connection

2.4.3 Grounding concept/Electromagnetic compatibility (EMC)

The 840D system with HLA module consists of a number of individual components. The individual system components are:

- I/RF infeed/regenerative feedback module
- NCU box
- HLA module
- Machine control panel MCP
- Qwerty keyboard
- Operator panel components (various monitors with different MMC CPUs)
- Terminal block (NCU and L2 DP)
- Distributor box and handheld unit

The individual modules are attached to a metal cabinet panel by means of screws. Make sure that near the screws a low-impedance contact of the NCU box with the cabinet wall can be made. Insulating varnishes must be avoided where possible.

The electronic grounding points of the modules are interconnected via the device and drive bus and at the same time conducted to the X131 terminal of the I/RF module.

The internal electronics ground of the HLA module is directly connected to the metal front (module) plate.

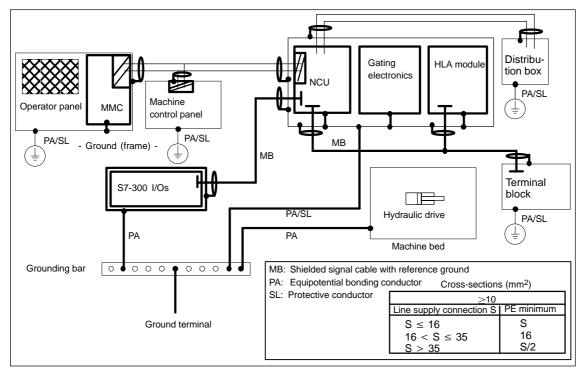


Fig. 2-17 Grounding concept

Please note the following in relation to electromagnetic compatibility: **References:** /EMC/, EMC Installation Guidelines Standards according to Declaration of Conformity (Appendix E)

3

Installation and Start-Up

3.1 Overview of start-up process

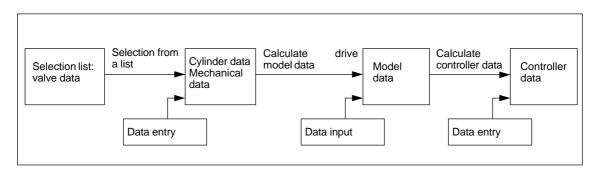


Fig. 3-1 Overview of start-up process

Specially designed start-up menu displays are provided by the SINUMERIK 840D control system.

Instructions for calling menu displays can be found in:

References: /IAD/, Installation and Start-Up Guide

Machine Configuration

The hydraulic linear drive (HLA) is displayed as follows next to the electric drives (SRM, ARM and SLM) in the "Machine Configuration" screen (basic start-up display):

Machir	ne axis		DRIVE		Channel	
ndex	Name	Туре	Number	Туре		
1	X1	Linear axis	11	SRM(FDD)	1	
2	Y1	Linear axis	12	SRM(FDD)	1	Change
3	Z1	Spindle	3	ARM(MSD)	1	language
4	A1	Linear axis	4	SLM	1	NCK Res
5	B1	Linear axis	5	HLA	1	
6	C1	Linear axis	6	HLA	1	Changeo metric
						Password
urrent	access level: Ma	inufact.				

Fig. 3-2 Machine Configuration (basic start-up display)

Machine Data	Hydraulic linear drives (HLA) are adapted to suit the machine using the machine data.
	In addition to the following soft keys:
	General MD
	Channel MD
	Axis MD
	Display MD
	Softkey "Drive MD".
Start-up sequence	The following list shows the general steps to be taken to start up an HLA mod- ule.
	1. Select a value \rightarrow Select a value from the list
	2. Enter cylinder data
	3. Mounting/supply data
	4. Measuring system data
	5. Calculate controller data, save boot file, NCK reset.
	 MD 5474: OUTPUT_VOLTAGE_POS_LIMIT and MD 5475: OUTPUT_VOLTAGE_NEG_LIMIT to low values to check the control direction.
	 Approach reference point and adjust position; Position adjustment if piston is in A position at end stop.
	 Adjust pressure sensors (MD 5550, MD 5551, MD 5552, MD 5553, MD 5704, MD 5705, MD 5708). Adjust "manually" using this machine data or automatically via MD 5650. Enter <i>1000 Hex</i> in MD 5650. The data is reset to 0 after approximately 2 s and the sensors are then adjusted. The sensors must be unpressurized during adjustment.
	 Run offset compensation MD 5470. Automatic offset compensation can be run via MD 5650 if 2000 Hex is en- tered in MD 5650. Automatic offset compensation takes approximately 30 s and functions only if the P and I components of the velocity controller are active and all enabling signals are set (see Service Drive).
	10. Reduce valve knee-point voltage in MD 5111 by 23% if necessary.
	11. Area adaptation in MD 5462, set MD 5463 such that the control difference in the positive and negative traversing directions is almost identical.
	12. Force limitation and friction torque compensation, see Section 4.4.

3.2 Drive configuration

)rive co	nfiguratio	n						Insert module
Slot	Drive	Active	Drive	Module	PowerSec	t Current		
1	11	Yes	SRM (FDD)		14 H	9718A	F	Delete module
2	12	Yes	SRM (FDD)	. 2 axis-2	14 H	9/18A		Select
3	3	Yes	ARM (MSD)	✓ 1 axis	06 H	24/32/32A		power se
4	4	Yes	SLM	🗸 1 axis	16 H	18/36A		Copy SI
5	5	Yes	HLA	 (hydraulic lir	near drive)	→		data
6	6	Yes	SRM (FDD)	(synchronou	e rotation mo	tor)		Confirm SI data
7			ARM (MSD) SLM	(asynchrono	us rotation n s linear moto	notor)		
8			HLA	(hydraulic lir	ear drive)			Save
9			ANA PER	(analog driv (1/0s)	e)			
10				-	Н			Abort
								OK
eneral D	Char MD			ive Drive nfig. MD		Display MD	y	File functions

You must configure the drive bus before you can start up the drives. Do this by pressing softkey "Drive configuration".

Fig. 3-3 "Drive Configuration" menu display

The selected drive type (hydraulic linear drive in this example) is stored in NC machine data MD 13040: DRIVE_TYPE stored.

Drive	Motors	Contents of MD 13040 DRIVE_TYPE
SRM (FDD)	Synchronous rotating motor (1FT6)	1
ARM (MSD)	Asynchronous rotating motor (1PH)	2
SLM	Synchronous linear motor (1FN)	3
HLA	Hydraulic linear drive	5
ANA	Analog drive	4
PER	I/Os	0

Table 3-1 Abbreviations of drive types

Once (at least) the following axis-specific machine data:

- MD 30110: CTRLOUT_MODULE_NR
- MD 30130: CTRLOUT_TYPE
- MD 30220: ENC_MODULE_NR
- MD 30240: ENC_TYPE

has been entered and an NCK power ON reset has been carried out (taking you to the "Drive Machine Data" menu display), the drive can be started up.

You can use softkeys "Drive +" and "Drive -" to scroll through all digital (SRM, ARM, SLM and HLA) drives listed in the drive machine data.

HLA (h	ydraulic linear drive) (\$MD_)	Axis:	B1 5	HLA	5	Drive +			
5001	SPEEDCTRL_CYCLE_TIME	0	31.25 μs	ро	-				
5002	MONITOR_CYCLE_TIME		3200 31.25 μs	ро		Drive -			
5003	STS_CONFIG		330H	ро					
5005	ENC_RESOL_MOTOR		2048	ро		Direct			
5008	ENC_PHASE_ERROR_CORRECTION		0.00000000 deg.	im		selection			
5011	ACTUAL_VALUE_CONFIG		OH	ро		Valve/			
5012	FUNC_SWITCH		8000H	im		controller			
5021	ENC_ABS_TURN_MOTOR		0	ро					
5022	ENC_ABS_RESOL_MOTOR		0	ро		Bootfile/ NCK res			
5023	ENC_ABS_DIAGNOSIS_MOTOR		OH	im					
5024	DIVISION_LIN_SCALE		20000 Nm	ро		Search			
5040	PISTON_ZERO		-14.71750259 mm	im					
5041	MACHINE_ZERO_HIGH		0	im	-	Continue			
Veloc	Velocity control cycle								
						Display			
^					i	options			
Genera MD	l Channel Axis Drive MD MD config	. Driv MD		Displa MD	y	File functions			

Fig. 3-4 "Drive machine data" menu display

The softkey "Motor/Controller..." is renamed "Valve/Controller..." for the HLA.

Softkey "Valve/Controller..." changes the keys of the vertical softkey menu for the HLA as follows:

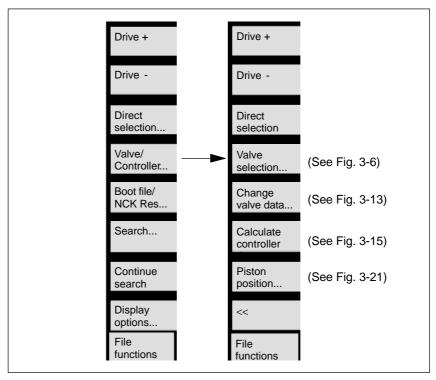


Fig. 3-5 Rearrangement of vertical softkey menu for HLA

General

3.4 Valve selection

You can select the servo solenoid valve from a list when you start up the SIMO-DRIVE 611 for the first time. Once you have made your selection, the valve machine data defaults are overwritten.

If the valve you want to use is not included in the list, you must enter the valve machine data manually.

"Valve selection..." soft key

This soft key starts the user-prompted start-up process for the HLA module.

You can select a valve from a list stored in the module software, or a non-listed valve, in the following menu display.

	tion for HLA		Axis	e 👘	B1 5	Drive:	5
firm I	Order no.	Name	Rated flow	Knee-point voltage	Rated flow A:B	Code	
Ext. va	alve					1000	
Bosch	0811404263	NG16 vorg.	80 1/min	Knee-pt 40	* 1	1	
Bosch	0811404264	NG16 vorg.	140 1/min	Knee-pt 40	* 1	2	
Bosch	0811404265	NG16 vorg.	90 1/min	Knee-pt 40	% 1.8	3	Search.
Bosch	0811404266	NG16 vorg.	140 1/min	Knee-pt 40	≈ 1.6 6	4	
Bosch	0811404296	HRV2-NG16	80 1/min	Knee-pt 40	* 1	5	
Bosch	0811404297	HRV2-NG16	140 1/min	Knee-pt 40	≈ 1	6	Continue
Bosch	0811404298	HRV2-NG16	80 1/min	Knee-pt 40	\$ 1.8	7	search
Bosch	0811404299	HRV2-NG16	140 1/min	Knee-pt 40	≈ 1.6 6	8	
Bosch	0811404600	NG6	4 1/min	LINEAR	1	9	
Bosch	0811404601	NG6	12 1/min	LINEAR	1	10	
Bosch	0811404602	NG6	24 1/min	LINEAR	1	11	- I

Fig. 3-6 "Valve selection for HLA" menu display

Enter "Unlisted valve" to call a new menu display (see Fig. 3-7) in which the corresponding machine data can be entered manually.

Choose softkeys "Search..." and "Continue search" to look for any character string within the list.

Select softkey "Back" to return to the previously displayed menu. This softkey is disabled in the menu display 3-6.

Note

When you select "Abort", the program branches back to the drive machine data display (see Fig. 3-5), both in this screen and the following menu displays for user-prompted start-up. The "Abort" soft key also activates a prompt box in which you must confirm that you really want to abort start-up for this drive.

No data is ever changed when you select "Abort". This also applies to the following menu displays.

From 10.03 onwards, the name of the company will be changed from Bosch to Rexroth in the menu displays. The order numbers will remain unchanged.

3.4 Valve selection

Valve selection from a list	If the "Unlisted valve" entry is selected, press the "Continue" soft key to go to the "Unlisted Valve Data for HLA" menu display (see Fig. 3-7). If you press softkey "Continue" otherwise, the machine data assigned to the entry are written to a buffer whose contents are transferred to the drive at the end of the start-up process. The "Cylinder data" menu display then appears (see Fig. 3-9). The following data appears in the MMC list display for a stored valve when you select one:				
	Company	e.g.: Rexroth			
	Order No.	e.g.: 0811404829			
	• Type	e.g.: 4WRPEH 10			
	Nominal flow rate	e.g: 100 l/min.			
	Knee-point voltage	e.g.: Knee 40%			
	Nominal flow rate A:B	e.g.: 2.0			
	Code	e.g.: 52			
Loaded valve data	If you select a valve from the list, the following ma default value is overwritten):	achine data is preset (i.e. the			
	• MD 5106: VALVE_CODE (valve code no.)				
	MD 5107: VALVE_NOMINAL_FLOW (nomina	al flow rate of valve)			
	• MD 5108: VALVE_NOMINAL_PRESSURE (r	nominal pressure drop of valve)			
	• MD 5109: VALVE_NOMINAL_VOLTAGE (not	minal valve voltage)			
	• MD 5110: VALVE_DUAL_GAIN_FLOW (knee	e-point flow rate of valve)			
	• MD 5111: VALVE_DUAL_GAIN_VOLTAGE (knee-point voltage of valve)			
	• MD 5112: VALVE_FLOW_FACTOR_A_B (ratio of flow rate at the A end to th	e B end of valve)			
	• MD 5113: VALVE_CONFIGURATION (valve	configuration)			
	MD 5114: VALVE_NATURAL_FREQUENCY (natural frequency of valve in smal	I-signal range)			
	MD 5115: VALVE_DAMPING (valve damping)			

Unlisted valve data

You must enter the valve machine data manually for an unlisted valve. You can also preset the machine data to the settings of a similar valve.

5110 VALVE_DUAL_GAIN_FLOW 10 % im 5111 VALVE_DUAL_GAIN_VOLTAGE 60 % im 5112 VALVE_FLOW_FACTOR_A_B 1 im 5113 VALVE_CONFIGURATION 2 im 5114 VALVE_NATURAL_FREQUENCY 110 Hz im 5115 VALVE_DAMPING 0.5 im Enter the valve data or select "Default" to preset the data with the values of a similar valve select "Default" Image: Select "Default"	Extern	al valve data for HLA	Axis:	B1 5	HLA: 5	
5108 VALVE_NOMINAL_PRESSURE 35 bar im 5109 VALVE_NOMINAL_VOLTAGE 10 V im 5110 VALVE_NOMINAL_VOLTAGE 10 % im 5111 VALVE_DUAL_GAIN_FLOW 10 % im 5112 VALVE_FLOW_FACTOR_A_B 1 im 5113 VALVE_CONFIGURATION 2 im 5114 VALVE_DAMPING 0.5 im	5106	VALVE_CODE	<u>p</u>		im	
5109 VALVE_NOMINAL_VOLTAGE 10 V im 5110 VALVE_DUAL_GAIN_FLOW 10 % im 5111 VALVE_DUAL_GAIN_FLOW 10 % im 5111 VALVE_DUAL_GAIN_YOLTAGE 60 % im 5112 VALVE_FLOW_FACTOR_A_B 1 im 5113 VALVE_CONFIGURATION 2 im 5114 VALVE_NATURAL_FREQUENCY 110 Hz im 5115 VALVE_DAMPING 0.5 im Enter the valve data or select "Default" to preset the data with the values of a similar valve Image: Similar valve	5107	VALVE_NOMINAL_FLOW		25 1/min	im	
5110 VALVE_DUAL_GAIN_FLOW 10 % im 5111 VALVE_DUAL_GAIN_YOLTAGE 60 % im 5112 VALVE_FLOW_FACTOR_A_B 1 im 5113 VALVE_CONFIGURATION 2 im 5114 VALVE_CONFIGURATION 2 im 5115 VALVE_DAMPING 0.5 im Enter the valve data or select "Default" to preset the data with the values of a similar valve then press "Continue".	5108	VALVE_NOMINAL_PRESSURE		35 bar	im	
5111 VALVE_DUAL_GAIN_YOLTAGE 60 % im 5112 VALVE_FLOW_FACTOR_A_B 1 im 5113 VALVE_CONFIGURATION 2 im 5114 VALVE_NATURAL_FREQUENCY 110 Hz im 5115 VALVE_DAMPING 0.5 im Enter the valve data or select "Default" to preset the data with the values of a similar valve then press "Continue".	5109	VALVE_NOMINAL_VOLTAGE		10 V	im	
5112 VALVE_FLOW_FACTOR_A_B 1 im 5113 VALVE_CONFIGURATION 2 im 5114 VALVE_NATURAL_FREQUENCY 110 Hz im 5115 VALVE_DAMPING 0.5 im	5110	VALVE_DUAL_GAIN_FLOW		10 %	im	
5112 VALVE_FLOW_FACTOR_A_B 1 im 5113 VALVE_CONFIGURATION 2 im 5114 VALVE_NATURAL_FREQUENCY 110 Hz im 5115 VALVE_DAMPING 0.5 im Enter the valve data or select "Default" to preset the data with the values of a similar valve then press "Continue". Image: Continue in the value of a similar valve in the valve of a sin the valve of a similar va	5111	VALVE_DUAL_GAIN_VOLTAGE		60 %	im	Default
5114 VALVE_NATURAL_FREQUENCY 110 Hz im 5115 VALVE_DAMPING 0.5 im Enter the valve data or select "Default" to preset the data with the values of a similar valve then press "Continue".	5112	VALVE_FLOW_FACTOR_A_B		1	im	Denault.
5115 VALVE_DAMPING 0.5 im Enter the valve data or select "Default" to preset the data with the values of a similar valve then press "Continue".	5113	VALVE_CONFIGURATION		2	im	
Enter the valve data or select "Default" to preset the data with the values of a similar valve then press "Continue".	5114	VALVE_NATURAL_FREQUENCY		110 Hz	im	
select "Default" to preset the data with the values of a similar valve then press "Continue".	5115	VALVE_DAMPING		0.5	im	
	select ''[then pre	Default" to preset the data with the values of a s ss "Continue".	similar valve			
					i	
	< Back		Abort			Next

Fig. 3-7 "Unlisted valve data for HLA" menu display

Press the "Continue" softkey to call menu display "Cylinder data". This data is not written to the drive until start-up has ended.

By pressing vertical softkey "Preset", you can go to the corresponding menu display in which you can preset machine data by selecting "OK". You then return to menu display "Unlisted valve data for HLA".

irm	Order no.	Name	Rated	Knee-point	Rated flow	Code	
111	oraci no.	Halle	flow	voltage	A:B	CONE	
						Ē	
Bosch	0811404263	NG16 vorg.	80 1/min	Knee-pt 40	* 1	1	
Bosch	0811404264	NG16 vorg.	140 1/min	Knee-pt 40		2	
Bosch	0811404265	NG16 vorg.	90 l/min	Knee-pt 40	% 1.8	3 🗖	Search
Bosch	0811404266	NG16 vorg.	140 1/min	Knee-pt 40	* 1.66	4	
Bosch	0811404296	HRV2-NG16	80 l/min	Knee-pt 40	* 1	5	
Bosch	0811404297	HRV2-NG16	140 1/min	Knee-pt 40	* 1	6	Continue
Bosch	0811404298	HRV2-NG16	80 l/min	Knee-pt 40	* 1.8	7	search
Bosch	0811404299	HRV2-NG16	140 l/min	Knee-pt 40	≈ 1.66	8	
Bosch	0811404600	NG6	4 1/min	LINEAR	1	9	
Bosch	0811404601	NGG	12 1/min	LINEAR	1	10	
Bosch	0811404602	NG6	24 1/min	LINEAR	1	11 💌	
							Abort
							OK

Fig. 3-8 "Preset Unlisted Valve for HLA" menu display

When you press "OK", the machine data in menu display "Preset unlisted valve for HLA" are preset. You then return to this menu display.

3.5 Cylinder selection

The following cylinder data must be entered manually:

- MD 5131: CYLINDER_PISTON_DIAMETER (piston diameter of cylinder)
- MD 5132: CYLINDER_ROD_A_DIAMETER (cylinder piston rod diameter at A end)
- MD 5133: CYLINDER_ROD_B_DIAMETER (cylinder piston rod diameter at B end)
- MD 5134: PISTON_STROKE (piston stroke)
- MD 5135: CYLINDER_DEAD_VOLUME_A (cylinder dead volume at A end)
- MD 5136: CYLINDER_DEAD_VOLUME_B (cylinder dead volume at B end)

Cylinde	er data for HLA	Axis:	B1 5	HLA: 5	
5131	CYLINDER_PISTON_DIAMETER	0.00000	100 mm	ро	
5132	PISTON_ROD_A_DIAMETER		0.00000000 mm	ро	
5133	PISTON_ROD_B_DIAMETER		0.00000000 mm	ро	
5134	PISTON_STROKE		0.00000000 mm	im	
5135	CYLINDER_DEAD_VOLUME_A		0.00000000 ccm	im	
5136	CYLINDER_DEAD_VOLUME_B		0.00000000 ccm	im	
	cylinder data and press "Continue". Ier piston diameter				
Cymre					
				i	
< Back		Abort			Nex >

Fig. 3-9 "Cylinder data for HLA" menu display

3.6 Mounting/supply data

Attach	ment/supply data for HLA	Axis:	B1 5	HLA: 5
5100	FLUID_ELASTIC_MODULUS	11000.00 00	000 bar	im
5101	WORKING_PRESSURE	0.00	000000 bar	ро
5102	PILOT_OPERATION_PRESSURE	0.00	1000000 bar	im
5140	VALVE_CYLINDER_CONNECTION		OH	im
5141	PIPE_LENGTH_A	0.00	1000000 mm	im
5142	PIPE_LENGTH_B	0.00	1000000 mm	im
5143	PIPE_INNER_DIAMETER_A_B	5.00	000000 mm	im
5150	DRIVE_MASS	0.00	1000000 kg	im
5151	CYLINDER_A_ORIENTATION	0.00	1000000 deg.	im
5152	CYLINDER_FASTENING		0	im
Enter the	mounting/supply data and press "Continue".			
Elast	icity module for hydraulic oil			
		Abort		<u>u</u>

Fig. 3-10 "Mounting/supply data for HLA" menu display

Select the "Back" softkey to return to the "Cylinder data for HLA" menu display. Then press "Continue" to go to the "Measuring system data for HLA" menu display.

The following mounting and supply data must be entered manually.

Supply unit		
•	MD 5100: FLUID_ELASTIC_MODULUS (modulus of elasticity of hydraulic fluid)	
•	MD 5101: WORKING_PRESSURE (system pressure)	
•	MD 5102: PILOT_OPERATION_PRESSURE (pilot pressure, for pi actuated valves only)	lot-
Connection		
•	MD 5140: VALVE_CYLINDER_CONNECTION (valve-cylinder connection configuration)	
•	MD 5141: PIPE_LENGTH_A (pipe length at A end)	
•	MD 5142: PIPE_LENGTH_B (pipe length at B end)	
•	MD 5143: PIPE_INNER_DIAMETER_A_B (internal pipe diameter A-B (nominal diameter))	
•	MD 5530: CYLINDER_SAFETY_CONFIG (protection circuit)	
Drive data		
•	MD 5150: DRIVE_MASS (moved mass of drive)	
•	MD 5151: CYLINDER_A_ORIENTATION (mounting position A end of cylinder)	
•	MD 5152: CYLINDER_FASTENING (cylinder mounting)	

3.7 Measuring system data

3.7 Measuring system data

Measuring system data HLA	Axis:	B1 5	Drive: 5	
Linear measuring system				
Oincremental				
Absolute (EnDat interface)				
Velocity actual value invertion				
O Yes				
Grid graduations: Enter the measuring system data and press "Re	20000 Nm eady".			
G Back	Abort		i	Next

Fig. 3-11 "Measuring System Data HLA, Incremental" menu display

To set the encoder parameters, select either the "Incremental" or the "Absolute (EnDat interface/SSI interface)" option.

The value of the associated machine data is displayed as the scale graduation. You can return to menu display "Mounting/supply data for HLA" by selecting softkey "Back".

Softkey "Ready" Select the "Ready" softkey to conclude the start-up for this drive.

Start-up

A dialog message then appears. This must be acknowledged with "Abort" or "OK".

The first startup for this drive is terminated with "OK". The drive model data and controller data are therefore calculated and the boot file stored. The individual machine data can be changed with "Change valve data".

Fig. 3-12 Dialog message "Start-up ready"

You can return to menu display "Measuring system data for HLA" by selecting softkey "Abort".

Press "OK", to write the machine data to the drive. The drive model and controller data are then calculated and the boot file saved. The program then jumps to the "Valve/Controller..." menu display (see Fig. 3-5), where data can be checked and/or modified using "Change valve data".

The remaining drives can then be started up.

Activation of data The entered/calculated data can be activated by an NCK power On/Reset.

3.8 Modifying data

Changing valve data

The following menu display appears when you press the "Change valve data..." softkey (see Fig. 3-5):

odify data f	for HLA		Axis:		B1 5	HLA: 5	Valve data
firm	Order no.	Name	Rated flow	Knee-point voltage	Rated fl A:B	ow Code	Cylinder data
							Attachment data
Bosch	0811404646	NG6	2 4 1/min	Knee-pt 60	* 1	21	Meas. sys. data
	Calculate contr	oller data		alculate drive i	model data		
Press "Abo	ort" to retain old va	lues of					
							Abort
							OK

Fig. 3-13 Menu display "Change data for HLA"

If you press "Abort", the old machine data settings are retained and you return to the initial menu display (see Fig. 3-5).

Softkeys "Valve data...", "Cylinder data..." and "Mounting data..." each call a display that has the same format as the following screenshot except for display header and contents (e.g. valve data for HLA):

Valve data for HLA		Axis:	Axis: B1 5		
5106	VALVE_CODE	<mark>21</mark>		im	
5107	VALVE_NOMINAL_FLOW	25.0	0000000 1/min	im	
5108	VALVE_NOMINAL_PRESSURE	20.0	0000000 bar	im	
5109	VALVE_NOMINAL_VOLTAGE	10.0	0000000 V	im	
5110	VALVE_DUAL_GAIN_FLOW	10.0	0000000 %	im	
5111	VALVE_DUAL_GAIN_VOLTAGE	60.0	0000000 %	im	
5112	VALVE_FLOW_FACTOR_A_B	1.0	0000000	im	
5113	VALVE_CONFIGURATION		2H	im	
5114	VALVE_NATURAL_FREQUENCY	110.0	0000000 Hz	im	
5115	VALVE_DAMPING	0.5	0000000	im	
					Abort
Valve	e code number				
L					OK
				i	

Fig. 3-14 Menu display "Valve data for HLA"

You can return to menu display "Change data for HLA" (see Fig. 3-13) by pressing "Abort" or "OK".

3.8 Modifying data

The valve and cylinder data and the mounting/supply data are used to preset the following data when you activate "Calculate drive model data". These settings can be changed manually afterwards. It is advisable to confirm the calculated model data by carrying out tests on the drive and correct them in accordance with the test results.

- MD 5401: DRIVE_MAX_SPEED (maximum useful velocity)
- MD 5440: POS_DRIVE_SPEED_LIMIT (positive velocity setpoint limit)
- MD 5441: NEG_DRIVE_SPEED_LIMIT (neg. velocity setpoint limit)
- MD 5160: PISTON_POS_MIN_NAT_FREQ (min. natural frequency, piston position)
- MD 5161: DRIVE_DAMPING (drive damping)
- MD 5162: DRIVE_NATURAL_FREQUENCY_A (natural freq. of drive A)
- MD 5163: DRIVE_NATURAL_FREQUENCY (natural frequency of drive)
- MD 5164: DRIVE_NATURAL_FREQUENCY_B (natural freq. of drive B)
- MD 5231: FORCE_LIMIT_WEIGHT (weight force limitation)
- MD5240: FORCECONTROLLED_SYSTEM_GAIN (controlled system gain force controller)
- MD 5435: CONTROLLED_SYSTEM_GAIN (controlled system gain)
- MD 5462: AREA_FACTOR_POS_OUTPUT (fact. area adaptation pos.)
- MD 5463: AREA_FACTOR_NEG_OUTPUT (fact. area adaptation neg.)

The data entered for valve, cylinder, mounting/supply and drive model are used to preset the following data when you activate "Calculate drive model data". These settings can be changed manually afterwards.

- MD 5242: FORCECTRL_GAIN (P-gain of force controller)
- MD 5243: FORCECTRL_GAIN_RED (reduction of force controller P gain)
- MD 5244: FORCECTRL_INTEGRATOR_TIME (force controller reset time)
- MD 5245: FORCECTRL_PT1_TIME (smoothing time constant of force contr.)
- MD 5246: FORCECTRL_DIFF_TIME (force controller D-action time)
- MD 5476: OUTPUT_VOLTAGE_INVERSION (manip. variable inversion)
- MD 5464: POS_DUAL_GAIN_COMP_FLOW (knee compensation pos. flow rate)
- MD 5465: POS_DUAL_GAIN_COMP_VOLTAGE (knee comp. pos. voltage)
- MD 5467: NEG_DUAL_GAIN_COMP_FLOW (knee comp. neg. flow rate)
- MD 5468: NEG_DUAL_GAIN_COMP_VOLTAGE (knee comp. neg. voltage)
- MD 5406: SPEEDCTRL_GAIN_A (P gain, P gain
- MD 5407: SPEEDCTRL_GAIN (velocity controller P gain)
- MD 5408: SPEEDCTRL_GAIN_B (P gain, P gain
- MD 5409: SPEEDCTRL_INTEGRATOR_TIME[n] (vel. controller reset time)
- MD 5413: SPEEDCTRL_ADAPT_ENABLE (selection of vel. c. adaptation)
- MD 5414: SPEEDCTRL_REF_MODEL_FREQ[n] (natural freq. of ref.model)
- MD 5415: SPEEDCTRL_REF_MODEL_DAMPING[n]
 (damping of velocity controller reference model)
- MD 5430: SPEEDCTRL_PT1_TIME (smoothing time constant vel. lead time)
- MD 5431: SPEEDCTRL_DIFF_TIME_A[n] (velocity controller A derivative-action time)
- MD 5432: SPEEDCTRL_DIFF_TIME[n] (velocity controller lead time)
- MD 5433: SPEEDCTRL_DIFF_TIME_B[n] (velocity controller B)

Calculate controller data/drive model data

Press "OK" (in Fig. 3-13) to transfer the modified machine data is transferred to the drive and, depending on the option settings

- calculate drive model data and/or
- Calculate controller data

the "Calculate controller/drive model data" dialog box appears with the corresponding text (see Fig. 3-15; in this case, for both options).

odify data for HI	A		Axis		B1 5	HLA:	5	
Firm Ord	er no.	Name	Rated flow	Knee-point voltage	Rated fl A:B	ow Code		
	Start-up							
Bosch 08:	Calculate			ate drive model with default valu		p all		
With "Abort", n With "OK" the								
with OK the L					5		Abe	ort
							OK	
				_				

Fig. 3-15 Menu display "Dialog box for calculate controller/drive data"

Press "Abort" to return to the "Change Data for HLA" menu display (see Fig. 3-13).

Press "OK", to recalculate the drive model data and/or controller data and then return to the initial menu display (see Fig. 3-5).

The filters, friction compensation and limitation parameters can then be set to suit the application.

Softkey "Help" displays a list of those machine data that are changed with softkey "OK". In this case as well, the texts are dependent on the set options.

	oller data' and 'Calculate drive iffes the following machine data:	
160	PISTON_POS_MIN_NAT_FREQ	
161 162	DRIVE_DAMPING DRIVE NATURAL FREQUENCY A	
163		
164	DRIVE NATURAL FREQUENCY B	
231[07]	FORCE LIMIT WEIGHTIO	
240	FORCECONTROLLED_SYSTEM_GAIN	
242[07]	FORCECTRL GAIN[0]	
243	FORCECTRL_GAIN_RED	
244[07]	FORCECTRL_INTEGRATOR_TIME[0]	
245[07]	FORCECTRL_PT1_TIME[0]	
246[07]	FORCECTRL_DIFF_TIME[0]	
401	DRIVE_MAX_SPEED	
406[07]	SPEEDCTRL_GAIN_A[0]	
407[07]	SPEED CTRL_GAIN[0]	
408[07]	SPEEDCTRL_GAIN_B(0)	
409[07]	SPEEDCTRL_INTEGRATOR_TIME[0]	
		OK

Fig. 3-16 Help screen for changing controller/drive model data

3.9 Fine adjustment and optimization

3.9 Fine adjustment and optimization

On completion of start-up, the control loop settings must be checked.

3.9.1 Control direction, travel direction

General

The control direction can be reversed by the following methods:

- Inversion of the manipulated voltage
- Actual value inversion
- Scale rotation
 - Pipes A \rightarrow A to A \rightarrow B (inversion)

Any adjustment in the hydraulic piping can be canceled by inversion of the manipulated voltage.

If the scale is rotated or attached at the wrong point (jacket or rod of cylinder), the control direction can be adjusted by means of actual value inversion.

Limitation of manipulated voltage

The manipulated voltage must be limited before the system is <u>first</u> switched on for a control direction check.

MD 5474: OUTPUT_VOLTAGE_POS_LIMIT \approx 1 V MD 5475: OUTPUT_VOLTAGE_NEG_LIMIT \approx 1 V

Determine control direction (step 1)

Note

It is not necessary to determine the control direction if the drive can already operate in JOG mode. In this case, the control direction is already set correctly (MD 32110). The control direction of the velocity controller still needs to be checked (MD 5011 bit 0). The control direction must be set identically: both "inverted" or both "not inverted". Continue from step 2.

When the enabling signals are set, the axis may move in an uncontrolled manner.

Causes:

- Incorrect control direction of velocity controller
 - Actual value encoder mounting
 - Connections combining servo solenoid valve and cylinder
 - Manipulated voltage polarity reversed
- Incorrect control direction of position controller
 - Actual value encoder mounting

Fig. 3-17 shows the methods which can be used to adjust any uncontrolled traversing movements.

Note

If valve end A is connected to cylinder end B (MD 5140=1), inversion of the valve manipulated variable (MD 5476) is preset by "Calculate controller data".

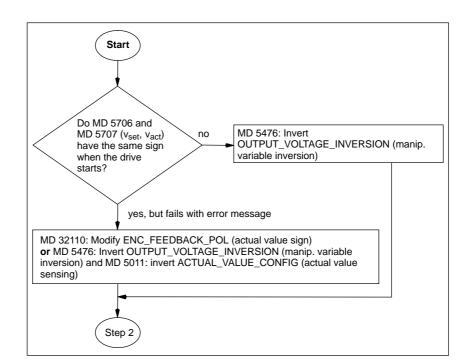


Fig. 3-17 Start-up flow chart, determine control direction

Definition of drive travel direction (step 2) When the cylinder piston moves in the A \rightarrow B direction (flow rate Q > 0), the actual velocity value V_{act} must be positive.

This definition MUST be made in the drive for the associated functionality of

- velocity controller adaptation and
- force limitation

absolutely essential.

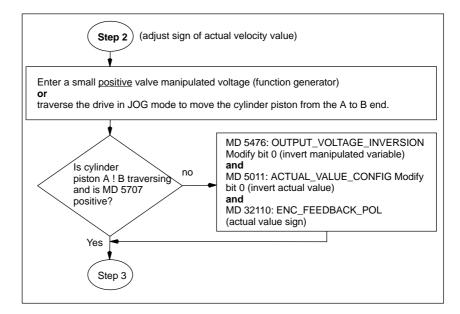


Fig. 3-18 Start-up flow chart, definition of drive travel direction

Definition of travel direction in NC (Step 3)

The positive direction of travel of the machine is defined by the user. With adjustment of travel direction with setpoint MD 32100: AX_MOTION_DIR.

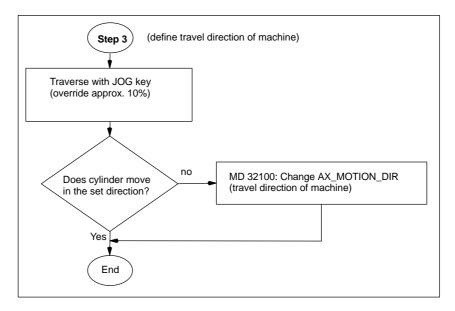


Fig. 3-19 Start-up flow chart, definition of travel direction in NC

Cancel	The setpoint limitation must be set to 10 V in the following MDs:
manipulated voltage limitation	MD 5474: OUTPUT_VOLTAGE_POS_LIMIT MD 5475: OUTPUT_VOLTAGE_NEG_LIMIT

3.9.2 Offset adjustment

```
Offset of pressure sensors
```

Note

Only in combination with pressure sensing function.

Condition: Sensors are pressure-free!

Ideal: The pressure indicator should also display 0 bar at zero pressure. Adjustment:

- MD 5650: Set DIAGNOSIS_CONTROL_FLAGS bit 12 (canceled automatically after 2 s).
- Pressure sensor A: MD 5551: PRESSURE_SENS_A_OFFS is automatically adjusted.
- Pressure sensor B: MD 5553: PRESSURE_SENS_B_OFFS is automatically adjusted.

For unpressurized pressure sensors, the display must read approximately 0.0 bar for both pressures (MD 5704, MD 5705).

Reference value for pressure						
sensors	Note					
	Only in combination with pressure sensing function.					
	Pressure sensor characteristic data in					
	MD 5550: PRESSURE_SENS_A_REF (ref. value for pressure sensor A)					
	MD 5552: PRESSURE_SENS_B_REF (ref. value for pressure sensor B)					
	according to data sheet.					
Offset of valve	Ideal: Adjustment of electro-hydraulic zero point					
manipulated voltage	The voltage is adjusted automatically by the following sequence of operations:					
Tonago	 Preset velocity controller with I component (e.g. V_p=-10%, T_N=30 ms) (see Subsection 4.3.2). 					
	 In position-controlled mode at zero speed with all enabling signals applied (drive can be traversed with JOG keys). 					
	Set MD 5650 bit 13. (Bit 13 is automatically reset after about 30 s.)					
	 MD 5470: OFFSET_COMPENSATION offset compensation is set automati- cally. 					
3.9.3 Velocity	adjustment					
Target	Owing to the tolerances of the valves and drive units with					
	real areas					
	real valve control edges					
	it is advisable to readjust the controlled system gain for the purpose of obtaining a symmetrical actual velocity.					
	$\Delta \mathbf{v}_{move out} = \Delta \mathbf{v}_{move in}$					
	The gain is adjusted via machine data					
	 MD 5435: CONTROLLED_SYSTEM_GAIN (stage 1) and 					

• MD 5462: AREA_FACTOR_POS_OUTPUT/ MD 5463: AREA_FACTOR_NEG_OUTPUT (stage 2).

is substituted.

Controller parameters

- P: P gain of velocity controller (MD 5406/MD 5407/MD 5408)
- I: reset time of velocity controller (MD 5409)
- D: D-action time of velocity controller (MD 5431/MD 5432/MD 5433) must be set to 0.

Adjustment of controlled system gain

Use function generator to enter a velocity setpoint of v_{set} , offset=0.

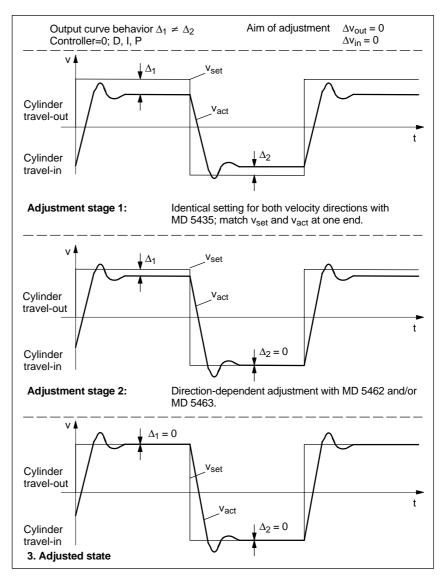


Fig. 3-20 Adjustment of controlled system gain

Note

- V_{set} is not represented by the "servo trace" function if the setpoint is defined by the function generator.
- The setting must be checked at different velocities.
 - Generally speaking, the average value of the calculated controlled system gain must be set or
 - the gain can be adjusted to match the relevant operating range.
- Both adjustment are equivalent, i.e. adjustment by the stage 2 method via MD 5462 and MD 5463 produces equivalent results when the preset value (setting) of the controlled system gain (MD 5435) is applied.

3.9.4 Referencing data for HLA

Piston zeroing

The position of the cylinder piston is required for the "Force controller" and "Velocity controller adaptation" functions. For this purpose, the piston position must be adjusted once after referencing.

This is done by the following sequence of operations:

- Reference Point Approach
- Press the "Piston position" soft key (see Fig. 3-5)
- Move cylinder piston to limit stop at A end
- Press softkey "Position adjust." (see Fig. 3-21) to transfer the value set in MD 5740: ACTUAL_POSITION to MD 5040: PISTON_ZERO.
- Saving the boot file

Refere	ncing data for HLA		Axis:		B1 5	HLA: 5	
5040	PISTON_ZERO		<mark>-14.71</mark>	750259	mm	im	
5740	ACTUAL_POSITIC	IN			# mm	im	
5741	ACTUAL_PISTON	_POSITION			# mm	im	
Move the machine	: piston into the zero po data 5740 is thus entere	sition (drive end) and ad in machine data 5	then press Softkey * 040.	'Position adjusti	ment". The v	alue of	Position calibrat.
Pistor) zero to machine z	210					
1000							OK

Fig. 3-21 Menu display "Referencing data for HLA"

Press the "OK" soft key to return to the initial menu display for HLA.

The following machine data affects the position adjustment:

- MD 5040: PISTON_ZERO (piston zero in relation to machine zero))
- MD 5740: ACTUAL_POSITION (actual position in relation to machine zero)
- MD 5741: ACTUAL_PISTON_POSITION (piston position in relation to piston zero)

Note

The piston position adjustment must be repeated if the control direction, reference point offset or travel direction (MD 32110, MD 34090 or MD 32100) in the axis-specific machine data is changed.

3.9.5 Controller optimization

General

The most important travel motions are implemented via the feedforward control path.

The function of the controller parameters is to damp the oscillation characteristics of the valve/cylinder grouping.

In this respect, we distinguish between three different scenarios relating to the corner frequency (f):

1. $f_{valve} \ll f_{cylinder} (f_{1})$

The valve cannot actively influence any cylinder frequency that is higher than the valve corner frequency.

Disturbances with frequencies $f_{St} > f_{valve}$ cannot be damped.

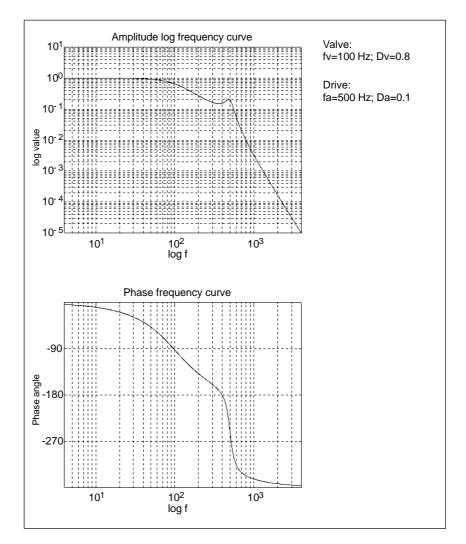


Fig. 3-22 Frequency response of controlled system ($f_{valve} \ll f_{cylinder}$)

^{2.} $f_{valve} \approx f_{cylinder} (f_{2})$

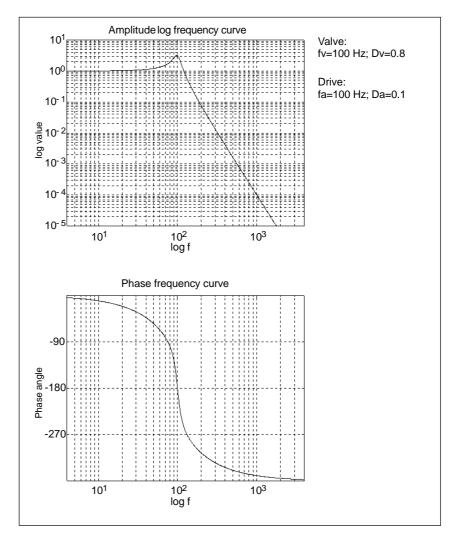


Fig. 3-23 Frequency response of controlled system (f_valve ~ f_cylinder)

3. $f_{valve} >> f_{cylinder} (f_{3})$

The valve can actively influence all natural frequencies of the drive.

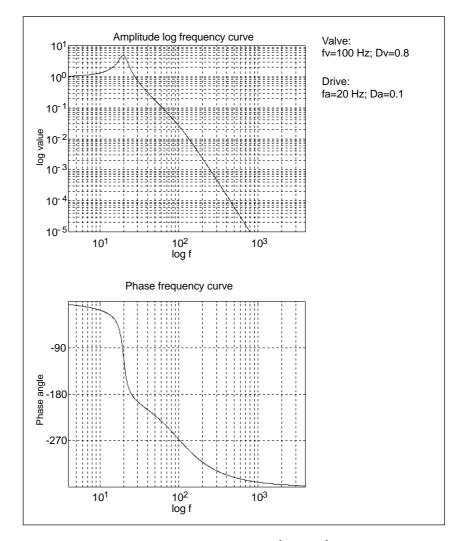


Fig. 3-24 Frequency response of controlled system ($f_{valve} >> f_{cylinder}$)

The controller components are optimized in the following order:

- 1. P component (proportional component)
- 2. D component (derivative component)
- 3. I component (integral component)

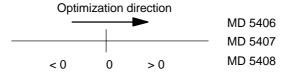
The preferred method of optimization uses unit step functions (step response) with the function generator (FG) after entering a velocity setpoint v_{set} .

The measuring function with noise signals (FFT, PBRS) may be difficult to interpret owing to non-linearities in the controlled system.

Differences in the characteristic data may be caused as follows:

- Theor. valve: Real valve
- Pipes: Control pressure = f(Q)
- Additional valves; shut-off valves; filters; throttles (pressure measuring plates)

Optimization of controller P component


Relevant machine data:

MD 5406: SPEEDCTRL_GAIN_A(P gain of velocity controller A)MD 5407: SPEEDCTRL_GAIN(P gain of velocity controller)MD 5408: SPEEDCTRL_GAIN_B(P gain of velocity controller B)

The theoretical characteristic data of the valve and cylinder are used to calculate a suggested P gain value. The positive feedback area (MD 5406...MD 5408 <0) is included in the calculation to damp the drive system.

The adjustment to real conditions on the machine (special damping requirements) should be made according to the following criteria:

1. P component must be as positive as possible.

2. The acceptable overshoot behavior represents the upper limit for the setting.

Note

P<0 (positive feedback) may be necessary to achieve the required damping behavior. However, this setting will degrade the control quality. Friction in particular causes prolonged settling times.

Threshold values (typical):

• 1	t ₁	P>0

- f₂ P<0, or around zero
- f₃ P>0

(f₁...f₃ see section 3.9.5 point 1...3)

Note

The P gain is indicated as a % of MD 5435: CONTROLLED_SYSTEM_GAIN. P=-100% compensates the feedforward control.

Optimization of controller D component	Relevant machine data: MD 5431: SPEEDCTRL_DIFF_TIME_A MD 5432: SPEEDCTRL_DIFF_TIME MD 5433: SPEEDCTRL_DIFF_TIME_B	(derivative-action time T_V of velocity controller A) (derivative-action time T_V of velocity controller) (derivative-action time T_V of velocity controller B)
	MD 5430: SPEEDCTRL_PT1_TIME	(velocity controller smoothing time constant)
	The positive phase displacement of the c damp the controlled system for f_{\Im} type.	derivative term can be used to actively

The derivative-action time constant/corner frequency parameters must be set to values higher than the minimum natural frequency of valve and drive.

Test run:

- As long as the damping effect improves, the the D-action time value can be raised further:
- Leave D-action time at its old value if the damping effect does not improve.

(see Fig. 3-22 - f_{□1})

The smoothing time constant is set to values ≥ 1 ms as a function of the controlled system for "Calculate controller".

Owing to the fact that a derivative action amplifies the actual value noise, it is necessary in this case to find a compromise between

• the derivative action (and thus vibration damping)

(MD 5430: SPEEDCTRL_PT1_TIME as low as possible, i.e. high corner frequency of D-action component or wide D-action frequency range)

and

• the noise of the manipulated variable.

Like the P component setting, the optimization criterion here is the maximum acceptable overshoot of the closed velocity control loop.

The main area of application is the valve/cylinder combination $f_{\mbox{\scriptsize I}}$ (see Fig. 3-24) with values $T_V\!\!>\!\!>\!\!0.$

For applications $f_{\square} + f_{\square}$ (see Figs. 3-22, 3-23) improvements of the damping characteristics are only to be expected at specific points when $T_V \ge 0$. In most cases $T_V=0$ is the best choice.

Note

A second iteration loop (optimize P and D components) with further improvements can be connected in series downstream.

Optimization of controller I component

Integrator/reset time (T _N	()
Objective:	Elimination of errors in feedforward control channel.
Implementation:	T _N >5 ms taking the overshoot of the valve frequency response into account.

Note

The I component is deactivated if $T_N=0$ (MD 5409) or if the P component is zero (MD 5406=0, MD 5407=0, MD 5408=0).

3.9.6 Controller adaptation

Since the natural frequency of the cylinder changes as a function of position, it may be useful to adapt the position of the velocity controller. The maximum values coincide with the limits, and the minimum approximately with the center (MD 5160), of the traversing range.				
Requirement:				
NC end has been referenced.				
• Cylinder piston in neutral position has been adjusted as described in Section 3.9.4.				
 Control parameters have been processed according to the relevant operat- ing range. 				
Procedure:				
 Optimize the velocity controller (P and D components) with the associated machine data at the limits and at position set in MD 5160. 				
Example: (see Fig. 4-11) operating range = total piston stroke				
Interpolation point 1 Optimization to A end of cylinder → MD 5406: SPEEDCTRL_GAIN_A (P gain) → MD 5431: SPEEDCTRL_DIFF_TIME_A (D gain)				
Interpolation point 2 Optimization to piston position as set in MD 5160: PISTON_POS_MIN_NAT_FREQ \rightarrow MD 5407: SPEEDCTRL_GAIN (P gain) \rightarrow MD 5432: SPEEDCTRL_DIFF_TIME (D gain)				
Interpolation point 3 Optimization to B end of cylinder \rightarrow MD 5408: SPEEDCTRL_GAIN_B (P gain) \rightarrow MD 5433: SPEEDCTRL_DIFF_TIME_B (D gain)				

Note

If one end of a cylinder cannot be approached, then the adaptation process can be limited to two interpolation points.

 Velocity controller adaptation active MD 5413: SPEEDCTRL_ADAPT_ENABLE=1

Note

SPEEDCTRL_ADAPT_ENABLE=1 (MD 5413) is switched through only when the axis has been referenced and adjusted.

For f_{\fbox} (see section 3.9.5), adaptation is deactivated in "Calculate controller data".

TargetContour accuracy between hydraulic and electric drives is achieved when the
drive dynamic response is set identically on the axes involved.

In addition to identical servo gain settings, it must be ensured that the step response of the closed speed controller is "identical".

Implementation A velocity setpoint filter of the faster axis (e.g. electric) must be set to the difference between the time constants of the closed velocity control loop (Tv, eqv).

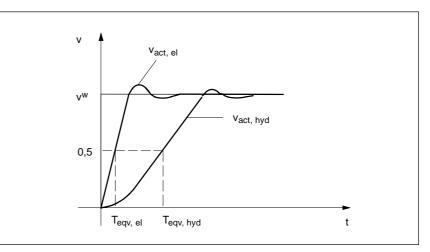


Fig. 3-25 Hydraulic/electrical interpolation

If dynamic stiffness control (DSC) is active, the DSC function must be activated on all interpolating axes.

3.10 File functions

Save data	The drive type is recorded in the MD files when drive machine data is saved. Thus, the comment is inserted only if the entry "MdFileDriveType=TRUE" has been set in the [Compatibility] section of INI file "ib.ini". This setting is the de- fault.
Load data	Only MD files that are suitable for a particular drive type may be downloaded to that drive. If you attempt, for example, to load an MD file for SLM to an HLA module, the following message will be displayed:
	CAUTION: Unable to load Synchronous linear motor machine data to Hydraulic linear drive machine data

Fig. 3-26 Menu display "Dialog box Load machine data"

File functions	: (HLA)		Axis			B1	5	HLA: 5	Drive +
Machine	data								
_ File —				Dal	a				Drive -
HLA6					Gen.	NC MD			
HLAG			→		CL				Direct selection
				0	Lnan	nel MD			Delete
				0	Axis I	4D			Delete
					Drive	MD			Save
				0	Displ	ay MD			
Disala						-			Load
Directo									
HYDR	AULIK		<u> </u>						Error log
									-
^									E ditor
	Channel	Axis	Drive	Drive				Display	File
MD	MD	MD	config.	MD				MD	functions

Fig. 3-27 Menu display "File functions"

3.11 Start-up functions

The following start-up functions are implemented for axes with HLA:

- Measuring functions
 - Measurement of valve control loop
 - Measurement of velocity control loop
 - Position control measurement
- Function generator
- Circularity test
- Servo trace
- DAC configuration

S	tart-up functions		Ax	is:	B 1	5	HLA:	5	Axis +
	Axis configuration —							٦	
									Axis -
	Axis type:		Linear	axis.					
	Drive type:		HLA (F	ydraulic lineai	r drive)				Direct selection
	Drive number:		!	5					
	Slot:			5					
	Velocity controller cycl	e:	1	0.125 ms					
	Position controller cycl	e:		4.000 ms					
~									
Va	alve Velocity	Position	Function	Circularty	Servo		Self-opt.		DAC
CO	ontr.loop contr.loop	contr.loop	generator	test	trace	1	AM/MSE)	config. 🔉

Fig. 3-28 Menu display "Start-up functions"

Disabled softkeys The softkey "Self-opt.AM/MSD" in the "Start-up functions" menu is also disabled for axes with HLA since this is a special function for AM/MSD.

The "Aut. Controller setting" in the "Startup functions" menu is disabled for axes with HLA since the algorithms it uses are designed for automatic controller setting for electric digital drives.

3.11.1 Measurement function

The measurement functions can be used to evaluate the most important speed and position control loop variables in the time and frequency range on screen without having to use external measuring devices.

An overview of the measurement functions provided for HLA is given below. Only the hydraulic-specific functionality for HLA is described in detail.

The following measurement functions can be performed in conjunction with the HLA:

- Valve control loop measurement
 - Valve frequency response
- Velocity control loop measurement
 - Reference frequency response
 - Setpoint step change
 - Interference frequency response
 - Disturbance step change
 - Velocity path
 - Velocity path + controller

Position control loop measurement

- Reference frequency response
- Setpoint step change
- Setpoint ramp

Valve control loop measurement

Table 3-2 Measurement types and measured variables for the valve control loop measurement

Measurement	Trigger	Measured quantities
Valve frequency response	Valve spool setpoint in velocity con- troller cycle, valve control loop closed, velocity control loop open	Actual valve spool value/ valve spool setpoint

 Table 3-3
 Valve control loop measurement parameter settings

Par	Physical unit	
Amplitude	Typ. 1 V	V
Bandwidth	typ. 1000 Hz	Hz
Averaging operations	typ. 10	-
Settling time	typ. 100	ms
Offset	typ. 0	V

Note

It must be ensured that the drive is adequately lubricated before PBRS/FFT is applied (high-frequency movement at one position).

3 Startup

3.11 Start-up functions

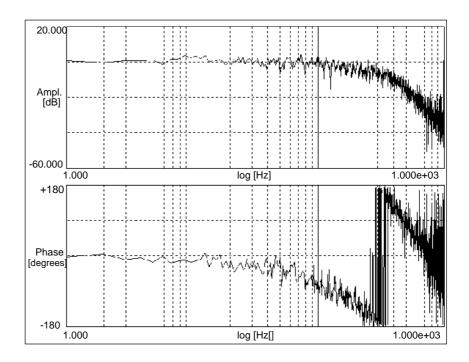


Fig. 3-29 Sample valve frequency response for type 4WRREH 6 HR servo solenoid valves from Bosch Rexroth AG Note: For setting the valve data, see Section 4.7.

Measurement of velocity control loop

Table 3-4 Measurement types and measured variables for the velocity control loop measurement

Measure- ment	Trigger	Measured quantities		
Reference frequency re- sponse	Velocity setpoint in velocity controller cycle, valve control loop closed, velocity control loop closed	Actual velocity value/ velocity setpoint		
Setpoint step change	Velocity setpoint in velocity controller cycle, valve control loop closed, velocity control loop closed	 Measured variable 1: Velocity setpoint valve spool setpoint Measured variable 2: Actual velocity 		
Interference frequency re- sponse	Valve spool setpoint in velocity controller cycle, valve control loop closed, velocity control loop closed	Actual velocity value/ valve spool setpoint		
Disturbance step change	Valve spool setpoint in velocity controller cycle, valve control loop closed, velocity control loop closed	Measured variable 1: Valve spool setpoint Measured variable 2: Actual velocity		
Velocity con- troller path	Valve spool setpoint in velocity controller cycle, valve control loop closed, velocity control loop closed	Actual velocity value/ actual valve spool value		
Velocity con- troller path + controller	Velocity setpoint in velocity controller cycle, valve control loop closed, velocity control loop closed	Actual velocity value/ control deviation		

Parameters	Physical unit
Reference frequency response	
Amplitude (linear axis)	mm/min inch/min
Bandwidth	Hz
Averaging operations	-
Settling time	ms
Offset (linear axis)	mm/min inch/min
Setpoint step change	
Amplitude (linear axis)	mm/min inch/min
Measurement time	ms
Settling time	ms
Offset (linear axis)	mm/min inch/min
Disturbance step change	
Amplitude	V
Measurement time	ms
Settling time	ms
Offset (linear axis)	mm/min inch/min
Velocity controller path	
Amplitude	V
Bandwidth	Hz
Averaging operations	-
Settling time	ms
Offset (linear axis)	mm/min inch/min
Velocity controller path + controller	
Amplitude (linear axis)	mm/min inch/min
Bandwidth	Hz
Averaging operations	-
Settling time	ms
Offset (linear axis)	mm/min inch/min

Table 3-5	Parameter settings for measurement of velocity control loop

The following functional response in the diagrams were recorded with the equipment combination below:

Valve: Type 4WRREH 6 HR servo solenoid (15 l/min, knee 60 %) from Bosch Rexroth AG

3 Startup

3.11 Start-up functions

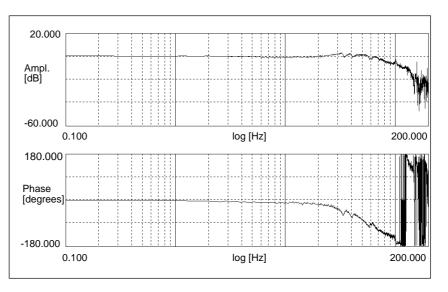


Fig. 3-30 Oscillogram showing reference frequency response of velocity control loop

Amplitude: 20 mm/min.

Offset: 100 mm/min.

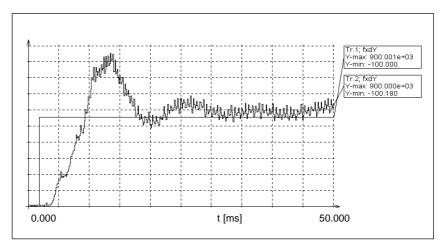


Fig. 3-31 Timing of setpoint step change in velocity control loop

Step change: 0 \rightarrow 100 mm/min without closed-loop force control, real friction conditions

Trace 1: Velocity setpoint

Trace 2: Actual velocity value

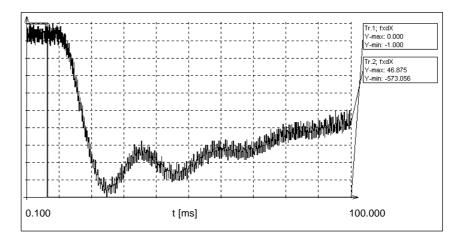


Fig. 3-32 Timing of disturbance step change, integral branch of velocity controller deactivated

Trace 1: valve spool setpoint

Trace 2: Actual velocity value

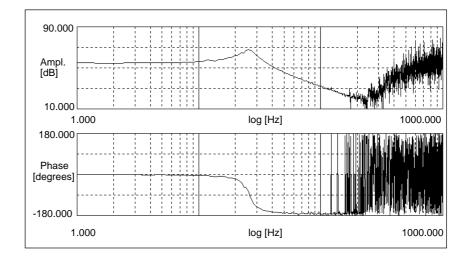


Fig. 3-33 Oscillogram showing velocity controlled system vact/Qact

Note: Phase crossover -90 degrees essentially characterizes the cylinder natural frequency

3 Startup

3.11 Start-up functions

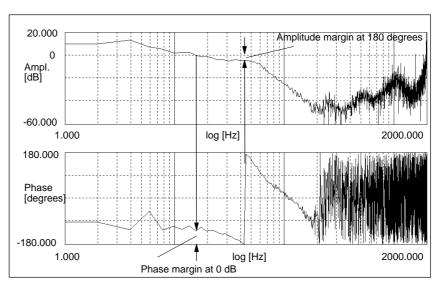


Fig. 3-34 Oscillogram for velocity controller path + controller

Note: Measurement of open velocity controlled system, indicative of the stability of the control loop.

Target values for stability of control loop:

- At least 3 dB amplitude margin at 180 degrees
- At least 60 degrees phase margin at 0 dB

Position control measurement

Table 3-6 Measurement types and measured variables for position feedback loop measurement

Measurement	Trigger	Measured quantities
Reference fre- quency response	Position setpoint in position control- ler cycle, position control loop closed, velocity control loop closed	Actual position/position set- point
Setpoint step change	Position setpoint in position control- ler cycle, position control loop closed, velocity control loop closed	Measured variable 1:Position setpointMeasured variable 2:• Actual position value
Setpoint ramp		Control deviationFollowing errorActual velocity value

Parameters	Physical unit	
Reference frequency response		
Amplitude (linear axis)	mm inch	
Bandwidth	Hz	
Averaging operations	-	
Settling time	ms	
Offset (linear axis)	mm/min inch/min	
Setpoint step change		
Amplitude (linear axis)	mm inch	
Measurement time	ms	
Settling time	ms	
Offset (linear axis)	mm/min inch/min	
Setpoint ramp		
Amplitude (linear axis)	mm inch	
Measurement time	ms	
Ramp time	ms	
Settling time	ms	
Offset (linear axis)	mm/min inch/min	

 Table 3-7
 Parameter settings for measurement of position control loop

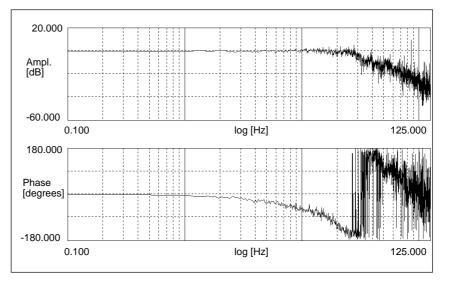


Fig. 3-35 Example of measurement of position control loop

3.11.2 Function generator

The function generator for HLA is based on the existing functionality provided for other drive types integrated to date. The funct. for HLA, which is not especially designed for hydraulic drives, is based on the SLM range of functions.

The function generator excites the drive with a periodic signal. The signal type is a modifiable parameter. External measuring instruments such as oscillographs can record the system responses via DAC output jacks.

The following signals (operating modes) and signal types are available on the HLA:

- Signals (operating modes)
 - valve spool setpoint
 - Velocity setpoint
 - Position setpoint
- Signal type
 - Square-wave
 - Noise signal (only for signal output via DAC and external evaluation equipment for frequency response analyses)

Function generator		Axis:	B1 5	HLA: 5	Axis +
┌ Drive test travel enable —			G tatus ————		
	Without PLC	1	nactive		Axis -
Travel range		A	Absolute position:		Direct
Monitoring:	Active		0.0000 in	ich 🛛	selection
Upper limit:	0.00000	inch			Start
Lower limit:	0.00000	inch			Stop
Mode					3100
Signal:	Velocity setpoint			e	
Signal type:	Valve spool setpoin Velocity setpoint Position setpoint	t value			
Scaling:	100				
Measure- ment Signal A: parameter M	xis-spec. Drive D MD		User views		File functions

Fig. 3-36 Menu display "Function generator selection signal"

Function generator		Axis:	B1 <mark>5 HLA:</mark> !	Axis +
-Drive test travel enable-			Status	
	Without PLC		Inactive	Axis -
- Travel range			Absolute position:	Direct
Monitoring:	Active		0.0000 inch	selection
Upper limit:	0.00000	inch		Start
Lower limit:	0.00000	inch		Stop
Mode				
Signal:	Velocity setpoint	t		
Signal type:	Square-wave		Ð	
Scaling:	Square-wave Noise signal			
^				
Measure- ment Signal parameter	Axis-spec. Drive MD MD		User views	File functions

Fig. 3-37 Menu display "Function generator selection signal type"

For an explanation of how to use the function generator, please refer to

References: /FBA/, DD2 "Speed control loop" /SHM/, SIMODRIVE 611 "Manual for MCU 172A"

An overview of the function generator functions provided for HLA is given below, with only the purely hydraulic-specific functionality for HLA described in detail.

Valve spool setpoint (manipulated voltage)

Table 3-8 Signal (operating mode) for valve spool setpoint

Trigger	Signal type
Valve spool setpoint in velocity controller cycle, valve control loop closed, velocity control loop open	Square-wave

Table 3-9 Signal (operating mode) for valve spool setpoint parameter settings

Parameters	Physical unit
Signal type: Square-wave	
Amplitude	V
Period	ms
Pulse width	ms
Offset	V
limitation	V

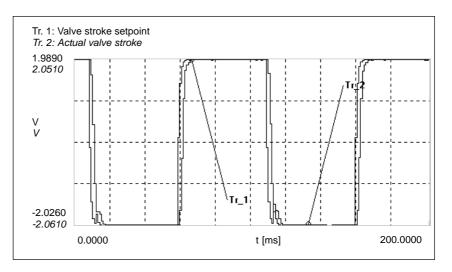


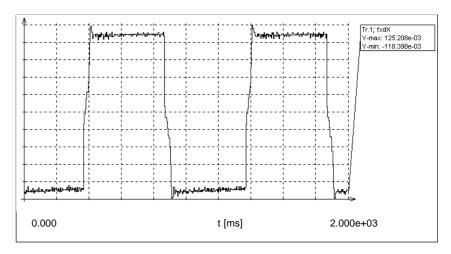
Fig. 3-38 Servo trace of actual valve value with square-wave signal type to valve setpoint

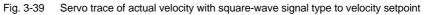
3 Startup

3.11 Start-up functions

Velocity setpoint

Table 3-10 Signal (operating mode) for velocity setpoint


Trigger	Signal type
Velocity setpoint in velocity controller cycle, valve control loop closed, velocity control loop closed	Square-wave


Table 3-11 Signal (operating mode) for velocity setpoint parameter settings

Parameters	Physical unit
Signal type: Square-wave	I
Amplitude (linear axis)	mm/min inch/min
Period	ms
Pulse width	ms
Offset (linear axis)	mm/min inch/min
Limitation (linear axis)	mm/min inch/min

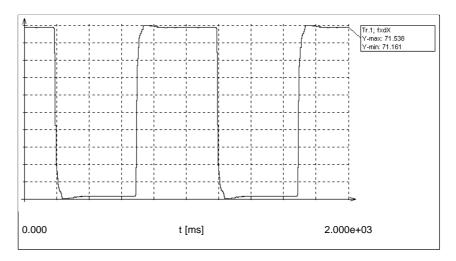
Note

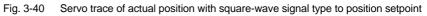
The following diagram was created using a servo trace.

Amplitude: 100 mm/min.

Position setpoint

Table 3-12 Signal (operating mode) for position setpoint


Trigger	Signal type
Position setpoint in position controller cycle, position con- trol loop closed, velocity control loop closed	Square-wave

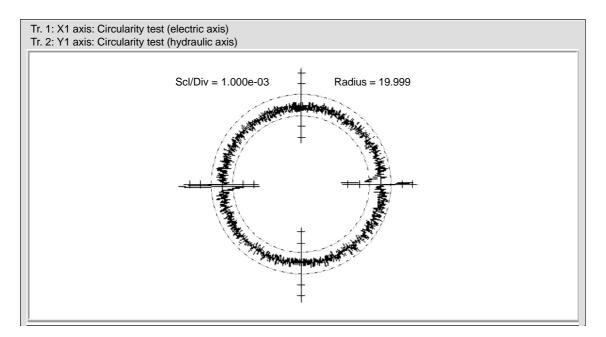

Table 3-13 Signal (operating mode) for position setpoint parameter settings

Parameters	Physical unit	
Signal type: Square-wave	I	
Amplitude (linear axis)	mm inch	
Period	ms	
Pulse width	ms	
Offset (linear axis)	mm/min inch/min	
Limitation (linear axis)	mm inch	

Note

The following diagram was created using a servo trace.

Amplitude: 100 mm


3.11.3 Circularity test

The circularity test is used among other things as a way of checking the resulting contour precision. It works by measuring the actual positions during a circular movement and displaying the deviations from the programmed radius as a diagram (especially at the quadrant transitions). For detailed information, see:

References: /FB/Part 2, K3, Sect. 2.7 "Circularity test"

Example: The following example refers to a drive with an HRV.

X1 axis: Horizontal movement by electric drive Y1 axis: Vertical movement by hydraulic drive

3.11.4 Servo trace

The servo trace function is used for graphic representation of signals and operating conditions.

A hydraulic-specific signal list (servo and drive signals) is available as a support function for axes with HLA module.

The following hydraulic-specific drive signals are supported by the servo trace:

- Active power (with pressure sensing)
- Actual force (with pressure sensing)
- Actual velocity value
- Valve stroke setpoint
- Actual valve stroke
- Actual pressure cylinder A end
- Actual pressure cylinder B end

3.11.5 DAC parameter settings

DAC output	Axis:	B1	5 <mark>Drive:</mark> 5	Drive +
CDAC1		Offset:	0.000 V	
Signal:	Control deviation 🕘			Drive -
Axis:	SERVO SIGNALS:	Shift factor:	25	
raniv.	Following error	Multiplier:	1	
Resolution	Contour deviation	Status:	Inactive	Direct selection
DAC2	Position actual value meas system 1			selection
Signal:	Position actual value meas.system 2 Position setpoint	Offset:	0.000 V	Start
-	Actual velocity value active encoder	Shift factor:	0	
Axis:	B1 - 5	Multiplier:	0	
Resolution		Status:	Inactive	Stop
DAC3				
Signal:		Offset:	0.000 V	Physical address
-		Shift factor:	0	audiess
Axis:	B1 5	Multiplier:	0	
Resolution		Status:	Inactive	
L				
^				1
DAC config.				File functions

For DAC measuring sockets see subsection 5.1.5.

Fig. 3-42 Menu display "DAC parameter settings"

DAC selection list

Table 3-14 DAC selection list

Pressure p(A) (with pressure sensing) Pressure p(B) (with pressure sensing) Actual value spool value	bar bar V
	V
Actual value speed value	•
nciual value spool value	
valve spool setpoint	V
Actual velocity value	mm/min
velocity Setpoint (upstream of filter)	mm/min
velocity Setpoint (limited at filter output)	mm/min
velocity Reference model setpoint	mm/min
Actual force (with pressure sensing)	N
Active power (with pressure sensing)	kW
Control deviation of velocity controller	mm/min
Velocity controller P component	V
Velocity controller I component	V
Velocity controller D component	V
Feedforward control component velocity controller	V
Friction feedforward control component velocity controller	V
Velocity controller output before filter	V
Velocity controller output after filter	V
Actual position value	mm
Force setpoint	Ν
Force controller control deviation	N

Table 3-14	DAC selection list
Table 3-14	DAC Selection list

Description	Unit
P component of force controller	V
I component of force controller	V
D component of force controller	V
Feedforward control component force controller	V
Force controller output	V
Zero mark signal	-
BERO signal	-
Physical address (drive)	-

3.12 User views

The horizontal softkey HLA is used under menu items "User Views/Edit View/Insert Date".

Edit view				_	B1	5
	HLA (h	ydraulic linear drive)	(\$MD_)			
	5042	MACHINE_ZERO_L	.0W		in 🖵	
	5100	FLUID_ELASTIC_M	IODULUS	bar	in 🖂	
	5101	WORKING_PRESS	URE	bar	ро	Insert bef. line
	5102	PILOT_OPERATIO	N_PRESSURE	bar	im 📗	
	5106	VALVE_CODE			im 📗	Insert after line
	5107	VALVE_NOMINAL_	FLOW	l/min	im	atter line
	5108	VALVE_NOMINAL_	PRESSURE	bar	im	Search
	51 09	VALVE_NOMINAL_	VOLTAGE	v	in 🖵	
	Rated	valve volume current	:			Continue search
						< <
	Channel-	Axis- specific	SRM (FDD)	ARM (MSD)	SLM	HLA

Fig. 3-43 Menu display "Edit view"

3.13 Display options

The display options allow the user to selectively reduce the amount of machine data that is displayed.

Machine data groups

The machine data is grouped for display purposes is similarly to the machine data display for electric drives.

Display options	
MD display filter active	Index from 1 to 1
Display groups D01 COController data	All others
D02 Monitoring functions /limits	
D03 🔲 Message data D04 🗌 Status data / diagnostics	
D05 🗌 Yalve/cylinder data	
D06 🔲 Measuring system	
D08 🛛 Standard machine	

Fig. 3-44 Menu display "Display options"

3.14 Configuring an OEM valve list

General	OEM users can add their own valves to the valve list by copying file ibhlvlvo.ini to the "\oem" directory. This list is added as a separate item under the heading "OEM valves" at the end of the system list (Siemens list).
	The syntax of the valve list is identical to that of a Windows INI file. The list may be created under "Start-up", "MMC" or "Editor". Select C:\OEM, then "New". Enter the filename ibhlvlvo.ini , followed by "OK".
Structure	This file must have the following structure: [DATA] Column1 = Column2, Column3, , Column15,

Example of an OEM valve list

[DATA]

;5106	,	,	,	5107,	510 8,	510 9,		5111 ,	511 2,	5113,	511 4,	511 5,	,	,
1001=	OEM,	01,	abc type,	90.1,	5,	10,	10,	39.8 ,	1,	0001B,	35,	1.0,	90,	\$T7⊔40,
1050=	OEM,	02,	xyz type,	40.2,	5,	10,	10,	40.1 ,	1,	0001B,	35,	1.0,	40,	\$T7⊔40,
1051=	OEM,	03,	def type,	8.1,	35,	10,	10,	10,	1,	0000B,	200,	0.8,	8,	\$T8,
1030=	OEM,	04,	gkl type,	100.1,	35,	10,	10,	38.5 ,	2,	0010B,	70,	0.8,	100,	\$T7⊔40,

\$L= "End of list"

\$L= "-----"

Note

Columns 1 and 2 are separated by a "=" character. All other columns are separated by a comma. Column 15 ends with a comma.

An MMC Reset must be performed to make changes effective.

Column in OEM	Description	Column in MMC display	Reference to MD		Unit
valve list		/ max. char- acters	Name	No.	
1	Valve code number	7 / 5	VALVE_CODE	5106	
2	Manufacturer's name	1/7			
3	Order Number	2 / 13			
4	Туре	3 / 11			
5	Nominal valve flow		VALVE_NOMINAL_FLOW	5107	[l/min]
6	Nominal pressure drop of valve		VALVE_NOMINAL_PRESSURE	5108	[bar]
7	Nominal voltage of valve		VALVE_NOMINAL_VOLTAGE	5109	[V]
8	Knee-point flow rate of valve		VALVE_DUAL_GAIN_FLOW	5110	[%]
9	Knee-point voltage of valve		VALVE_DUAL_GAIN_VOLTAGE	5111	[%]
10	Nominal flow rate ratio between A and B ends of valve	6 / 10	VALVE_FLOW_FACTOR_A_B	5112	
11	Valve configuration		VALVE_CONFIGURATION	5113	
12	Natural frequency of valve		VALVE_NATURAL_FREQUENCY	5114	[Hz]
13	Valve damping		VALVE_DAMPING	5115	
14	Nominal valve flow rate for display	4 / 9			[l/min]
15	Valve knee-point voltage for dis- play	5 / 15			[%]

Table 3-15 Meaning of individual columns

The valve code is entered in the first column and must be a number. Numbers 1 to 1000 are reserved for Siemens. Individual values are separated by commas. Columns 1 and 2 are separated by an equals signal (=). Comments are preceded by a semicolon.

Different numeric formats may be used.

- The following applies to the display (selection list) on the MMC: The character strings used are identical to those stored in the INI file.
- The following applies to writing machine data:
 - Unless otherwise specified, the decimal format is always used. If the number is followed by a capital B, it is interpreted as a binary number. If a capital H is inserted after the number, it is interpreted as a hexadecimal value.
 - Floating-point numbers must be specified in US format (decimal point=".") and **without** the separator symbol for 1000s (",").
 - The individual fields in this section can be left empty, i.e. they contain 2 commas one after the other or two blanks between the 2 commas. Empty fields are not written to the drive, i.e. the default setting of the machine data is transferred unchanged. The number of blanks is optional. The maximum permitted number of characters is shown in Table 3-15.

10.03

Language-	
dependent texts	Any language-dependent texts can be inserted in the OEM valve list. These all start with \$T.
	Syntax: \$T <x> (no semicolon) <x> refers to a text in the language-dependent text files (see also language-dependent OEM texts)</x></x>
	Subheadings can also be inserted in the OEM valve list by adding the instruc- tion "\$L= <any text="">;" at the beginning of a line. \$T<x> can be used to insert other language-dependent texts within this optional text instruction.</x></any>
Language- dependent	The following language-dependent texts are predefined by the system and can be used in OEM valve lists.
system texts	<pre>\$T1=Order No.; \$T2=Type; \$T3=Nominal flow rate; \$T4=Knee-point voltage; \$T5=Nominal flow rate A:B; \$T6=Code; \$T7=" Knee"; \$T6=Code; \$T7=" Knee"; \$T8=" Linear"; \$T9=Company; \$T10=Unlisted valve; \$T11=I/min;</pre>
Language- dependent	Language-dependent OEM display texts are stored in the \oem\language di- rectory in \ibdrv_<sprache>.ini</sprache> files
OEM texts	<language> stands for the appropriate language code. This file would be called ibdrv_gr.ini for German. The codes for all languages installed in a system are listed in the \mmc2\mmc.ini file, [LANGUAGE] section, LanguageList entry. Language-dependent OEM text files must be formatted as follows:</language>
	[TEXT] $T=;$: <x> is any number \geq 1000 and \leq 32767, which must only occur once.</x>
	The number range from 1 to 999 is reserved for the system.

3.15 System variables

The NC control can use system variables to read in the measuring signals applied to connectors X121/X122 or X111/X112.

Table 3-16	Assignment of system variables
------------	--------------------------------

Name	Male connector	Pin
\$VA_VALVELIFT[X]	X121/X122	14 and 15
\$VA_PRESSURE_A[X]	X111/X112	11 and 12
\$VA_PRESSURE_B[X]	X111/X112	14 and 15

4

Firmware Drive Functions

4.1 Block diagram of closed-loop control

Integration in overall system

The following diagram shows how the HLA module is embedded between the control system and the hydraulic drive. The control functions of the module are shown in greatly simplified form. They are shown in more detail in the diagram on the following page.

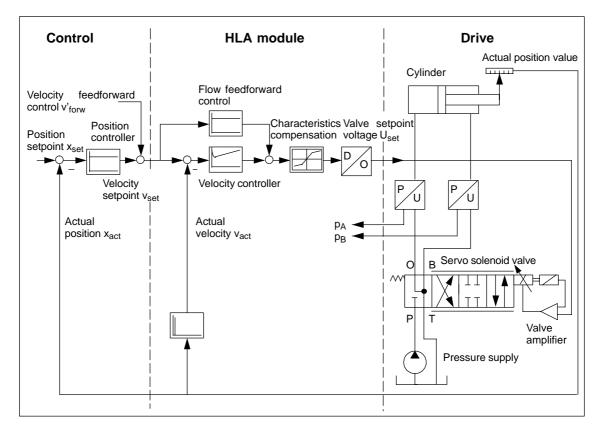


Fig. 4-1 General block diagram of NC - HLA module - drive system

Possible dynamic response

The dynamic response is dependent on:

- Natural frequency of the servo solenoid valve (see Subsection 2.3.2)
- Natural frequency of the drive (see Subsection 2.3.4)

The greater the natural frequency, the better the achievable dynamic response. For the purpose of oscillation damping, the natural frequency of the servo solenoid valve must be greater than that of the drive. 4.1 Block diagram of closed-loop control

Block diagram of control functions

Fig.4-2 shows the functionality for velocity and closed-loop force control plus characteristics implemented in the HLA module.

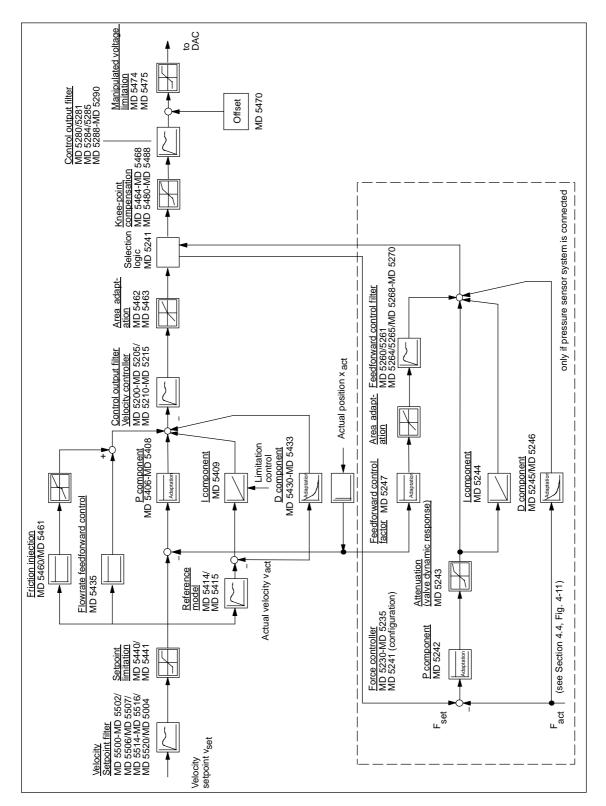


Fig. 4-2 Controller and characteristic functions of the HLA module

4.2 Functions

4.2.1 Overview of functions

The document has been organized under the following main topics with reference to Fig. 4-2:

- Velocity feedforward control (Subsection 4.3.1)
 - Servo gain
 - Velocity setpoint filter
 - Setpoint limitations
- Velocity controller (Subsection 4.3.2)
 - P/D/I components
 - Deactivate adaptation
 - Integrator feedback
 - Reference model
 - Control output filter in velocity controller
- Force control (Section 4.4)
 - P/D/I components
 - Force limitations
- Servo gain
- Manipulated voltage output (Section 4.5)
 - Characteristic compensation
 - Control output filter
 - Manipulated voltage limitations

4.2.2 Parameter set changeover

It is possible to switch between 8 different parameter sets. Data which are assigned to specific parameter sets are identified by an [n] in the string code [0-7].

The request is made from the PLC by means of IS "Select drive parameter set" DB 31-61 DBB 21 bits 0-2. They are predominantly controller and filter data that can be switched over as a function of parameter set.

The status is interrogated by means of IS "Active drive parameter set" DB 31-61 DBB 93 bits 0-2.

Section 4.15 contains a complete parameter list with the attributes for each parameter.

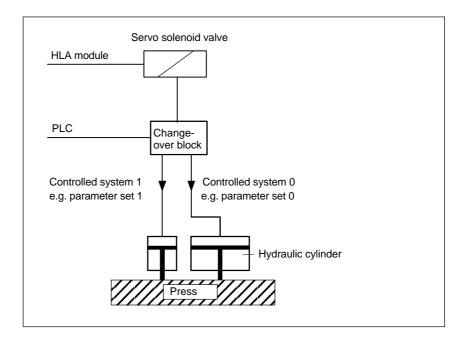


Fig. 4-3 Example of a parameter set changeover

4.3 Closed-loop velocity control

4.3.1 Velocity adaptation/feedforward control

Velocity setpointThe NC \rightarrow drive transfer interface is normalized to the maximum velocity set in
data MD 5401: DRIVE_MAX_SPEED.

5401	DRIVE_MAX_	Cross reference: -			
	Maximum use	ful velocity		Related to: HLA	Protection level: 3/3
Unit: mm/min	Default: 0.0	Minimum: 0.0	Maximum: 120 000.0	Data type: FLOAT	Active: Power On

The velocity limit is defined by the settings in MD 5440:

POS_DRIVE_SPEED_LIMIT and MD 5441: NEG_DRIVE_SPEED_LIMIT, but not with MD 5401: DRIVE_MAX_SPEED.

Velocity setpoint interpolation

5004	CTRL_CONF	Cross reference: -			
Configuration structure				Related to: HLA	Protection level: 3/3
Unit: HEX	Default: 1000	Minimum: 0	Maximum: 1000	Data type: UNS.WORD	Active: Power On

Velocity setpoints are preset in the position controller cycle. In order to prevent rigorous drive positioning motions at the beginning of each position controller cycle, the current and previous velocity setpoint are interpolated linearly in the drive.

- Bit 12=0: no interpolation, velocity setpoint only changes in the position controller cycle.
- Bit 12=1: linear interpolation of the velocity setpoint over one position controller cycle. The default setting is active.

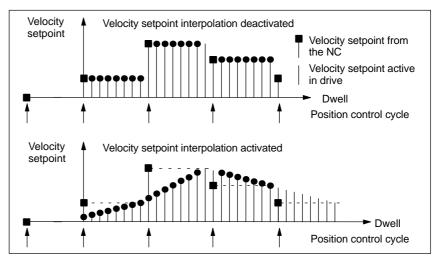


Fig. 4-4 Velocity setpoint interpolation

Velocity setpoint filter	The complexity of applying velocity setpoint filters means that it is not possible to provide generally-applicable, definitive guidelines for their use. However, cri-
	teria for selecting filters and their parameters are defined below.

The velocity setpoint filters are used to adapt the velocity-controlled drive grouping to the higher-level position control loop. You can choose between bandstop filters and low passes (PT2/PT1).

The task of a filter is to

- smooth the control response characteristic,
- damp mechanical resonance and
- symmetrize axes with different dynamic responses, especially the response of interpolating axes.

Note

Low-pass filters can be employed on interpolating axis groupings to compensate for differences in dynamic response in velocity control loops.

The total equivalent time constant (equivalent time constant of velocity control loop + equivalent time constant of velocity setpoint filter) must be set to an identical value for all mutually interpolating axes.

Entering damping values close to the minimum input limits results in overshoots up to a factor of 2 in the time range.

5500	NUM_SPEED_FIL	TERS [n] 07 index of	of the parameter set		Cross reference: -
No. of velocity filters 0: No velocity filters active 1: Velocity filter activated			Related to: HLA	Protection level: 3/3	
Unit: -	Default: 0	Minimum: O	Maximum: 1	Data type: UNS.WORD	Active: Immediately
5501	SPEED_FILTER_	TYPE [n] 07 index	of the parameter	set	Cross reference: -
Type of velocity filter Bit 0= 0: Low-pass (see MD 5502, MD 5506, MD 5507) 1: Bandstop (see MD 5514 - MD 5516, MD 5520) Bit 8= 0: PT2 low-pass (see MD 5506, MD 5507) 1: PT1 low-pass (see MD 5502)				Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: O	Maximum: 257	Data type: UNS.WORD	Active: Immediately
5502	SPEED_FILTER_	_ TIME [n] 07 inde	ex of the parameter	er set	Cross reference: -
PT1 time constant for velocity filter 1				Related to: HLA	Protection level: 3/3
Unit: ms	Default: 0.0	Minimum: 0.0	Maximum: 500.0	Data type: FLOAT	Active: Immediately

The filter is activated via MD 5500 (1) and deactivated via (0). The default setting is deactivated. The type of velocity filter can be defined by setting MD 5501 to PT1 or PT2 low-pass or to band-stop filter. The key data for the filter is defined in MD 5502 to MD 5520.

The filter is deactivated if machine data MD 5502 is set to 0.

5506	SPEED_FILTER_1	_FREQUENCY [n] ()7 index of the pa	arameter set	Cross reference: -
PT2 natural frequency for velocity filter 1			Related to: HLA	Protection level: 3/3	
Unit: Hz	Default: 2000.0	Minimum: 10.0	Maximum: 8000.0	Data type: FLOAT	Active: Immediately
5507	SPEED_FILTER_1	_ DAMPING [n] 07	7 index of the parar	meter set	Cross reference: -
	PT2 damping for ve		Related to: HLA	Protection level: 3/3	
Unit: -	Default: 0.7	Minimum: 0.2	Maximum: 1.0	Data type: FLOAT	Active: Immediately

Setting the machine data to a value of < 10 Hz as the low-pass natural frequency deactivates the filter.

Note

For interpolating axes, please read Subsection 3.9.7.

Fig. 4-5 Low-pass filter (PT2) operation at natural frequency (MD 5506) of 1000 Hz and variations in damping (MD 5507) of 0.2, 0.5 and 1.0

4 Firmware Drive Functions

4.3 Closed-loop velocity control

5514	SPEED_FILTER_	1_SUPPR_FREQ [r] 07 index of the	e parameter set	Cross reference: -
	Protection level: 3/3				
Unit: Hz	Default: 3500.0	Minimum: 10.0	Maximum: 7999.0	Data type: FLOAT	Active: Immediately
5515	SPEED_FILTER_	1_BANDWIDTH [n]	07 index of the	parameter set	Cross reference: -
	Protection level: 3/3				

Note

The bandwidth must be less than or equal to 2 x MD 5514 x MD 5520.

5516	SPEED_FILTER_1	Cross reference: -			
Bandwidth numerator of velocity filter 1			Related to: HLA	Protection level: 3/3	
Unit: Hz	Default: 0.0	Minimum: 0.0	Maximum: 7999.0	Data type: FLOAT	Active: Immediately

Note

Setting a value of 0 (MD 5516) initializes the filter as an undamped band-stop. The value set in MD 5516 must not exceed twice the value set in MD 5515.

5520	SPEED_FILTE	SPEED_FILTER_1_BS_FREQ [n] 07 index of the parameter set					
Band-stop filter natural frequency for velocity filter 1				Related to: HLA	Protection level: 3/3		
Unit: %	Default: 100.0	Minimum: 1.0	Maximum: 141.0	Data type: FLOAT	Active: Immediately		

The natural frequency for the general band-stop is set in MD 5520 as a percentage of MD 5514 (blocking frequency).

Note

Setting MD 5520=100% initializes the filter as an undamped band-stop.

The natural frequency in Hz of the filter must be less than the reciprocal of two velocity controller cycles

(MD 5520 · 0.01 · MD 5514<1/(2 · MD 5001 · 31.25 μs).

5522	ACT_SPEED	ACT_SPEED_FILTER_TIME					
Time constant for actual velocity filter 1				Related to: HLA	Protection level: 3/3		
Unit: ms	Default: 0	Minimum: 0	Maximum: 0	Data type: UNS.WORD	Active: Power On		

Note

MD 5522 performs no function and is only compatible with the electric drives.

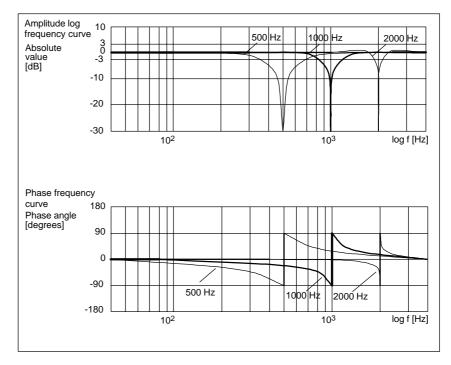


Fig. 4-6 Frequency response of undamped band-stop with a bandwidth of 500 Hz and variations in blocking frequency (MD 5514) of 500 Hz, 1000 Hz, 2000 Hz

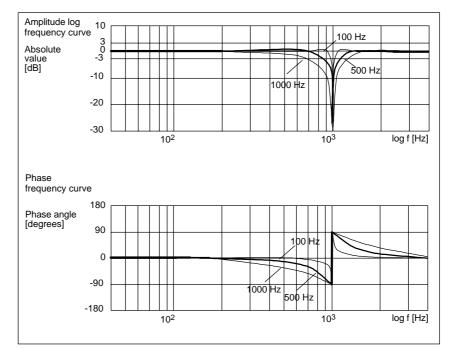
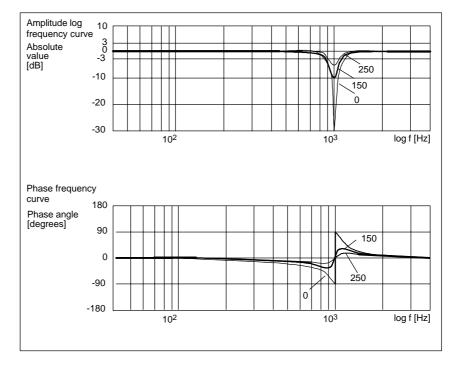
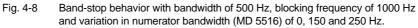




Fig. 4-7 Frequency response of undamped band-stop at a blocking frequency of 1000 Hz and variations in bandwidth (MD 5515) of 100 Hz, 500 Hz, 1000 Hz. The bandwidth is the difference between the two frequencies with 3 dB drop in amplitude.

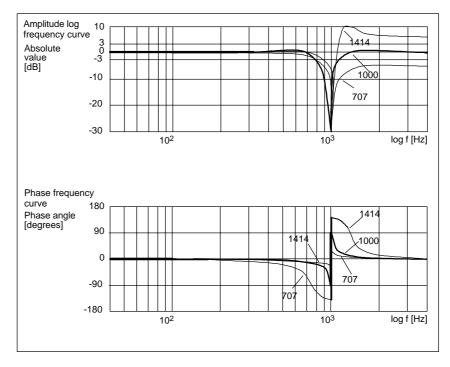


Fig. 4-9 Frequency response of general band-stop at a blocking frequency of fz=1000 Hz, bandwidth fBn=500 Hz, numerator bandwidth fBz=0 Hz and variation in natural frequency of (MD 5520) fn=70.7%, 1000% and 141.4%

Velocity setpoint limitation

The velocity setpoint is limited in the positive and negative directions.

Note

The maximum rapid traverse velocity of the drive (G0 function) is determined by NC machine parameter 32000.

5420	DRIVE_MAX_SF	PEED_SETUP			Cross reference: -		
	Max. velocity for	Related to: HLA	Protection level: 3/3				
Unit: mm/min	Default: 10.0	Minimum: 0.0	Maximum: 120 000.0	Data type: FLOAT	Active: Immediately		
5440	POS_DRIVE_SF	POS_DRIVE_SPEED_LIMIT					
	Positive velocity	Related to: HLA	Protection level: 3/3				
Unit: mm/min	Default: 0.0	Minimum: 0.0	Maximum: 120 000.0	Data type: FLOAT	Active: Immediately		
5441	NEG_DRIVE_SF	PEED_LIMIT			Cross reference: -		
Negative velocity setpoint limit Re					Protection level: 3/3		
Unit: mm/min	Default: 0.0	Minimum: 0.0	Maximum: 120000.0	Data type: FLOAT	Active: Immediately		

With a differential cylinder, the physically possible velocities for piston travel-out and travel-in are asymmetrical. For this reason, it is advisable to set asymmetrical limitations. A message is sent to the PLC if the limit is violated.

If setup mode is selected, then the velocity setpoint is set to the value in MD 5420 for both directions. The velocity setpoint limitation is calculated as part of the "Calculate drive model data" operation and MD 5440 and MD 5441 are preset accordingly.

Acceleration limitation To protect mechanical components against excessive wear and damage, the drive acceleration setpoints can be limited by the NC. Linear interpolation of the velocity setpoints (see MD 5004: CTRL_CONFIG, bit 12; velocity setpoint interpolation) ensures that the drive accelerates at the rate specified by the control. A function for limiting the acceleration in the drive has **not** been implemented. (A braking ramp is operative only if the velocity controller is disabled, see MD 5402: SPEED_CTRL_DISABLE_STOPTIME).

Servo gain The controlled system gain is entered in MD 5435 after "Calculate drive model data" and should not be altered unless it is incorrect. The value in MD 5435 is the reference for the P gain of the velocity controller.

5435	CONTROLLED_S	CONTROLLED_SYSTEM_GAIN [n] 07 index of the parameter set				
Controlled system gain			Related to: HLA	Protection level: 3/3		
Unit: mm/Vmin	Default: 0.0	Minimum: 0.0	Maximum: 20000.0	Data type: FLOAT	Active: Immediately	

4.3 Closed-loop velocity control

Friction

5460	FRICTION_COM	FRICTION_COMP_GRADIENT					
	Gradient of friction compensation characteristic			Related to: HLA	Protection level: 3/3		
Unit: %	Default: 0.0	Minimum: 0.0	Maximum: 400.0	Data type: FLOAT	Active: Immediately		
5461	FRICTION_COM	IP_OUTPUT_RAN	GE		Cross reference: -		
	Effective range o	Related to: HLA	Protection level: 3/3				
Unit: %	Default: 0.1	Minimum: 0.1	Data type: FLOAT	Active: Immediately			

In order to reduce the effects of friction, the characteristic gradient is made steeper around the zero point in the flow rate feedforward control path (see Fig. 4-2). The differential pressure is thus boosted with the velocity setpoint sign. Fig. 4-10 shows an example of this characteristic and the way that the associated machine data works (see also Subsection 2.3.1 and Appendix A).

Fig. 4-10 Friction compensation characteristic; see also static friction injection in Subsection 4.4.2.

4.3.2 Velocity controller

Velocity controller Sampling time with which the velocity control loop is calculated. cycle

5001	SPEEDCTRL_CY	Cross reference: -			
Velocity controller cycle				Related to: HLA	Protection level: 3/3
Unit: 31.25 μs	Default: 4	Minimum: 2	Maximum: 16	Data type: UNS.WORD	Active: Power On

- Short cycle: Good dynamic response, but measurement noise from actual velocity increases.
- Long cycle: Poor dynamic response, actual velocity values are not noisy

Recommended setting:

Increase cycle time for measuring system with wide scale graduations or large derivative action time of D component.

Adaptation of the P and D components is recommended where the natural fre-

quency of the servo solenoid valve is higher than that of the drive.

P and D components

Adaptation of

5413	13 SPEEDCTRL_ADAPT_ENABLE					
	Selection of ve	locity controller adapta	Related to: HLA	Protection level: 3/3		
Unit: -	Default: 0	Minimum: 0	Maximum: 1	Data type: UNS.WORD	Active: Immediately	

Requirement: Adaptation can only be selected following zero calibration of cylinder piston, see Subsection 3.9.4.

With MD 5413: SPEEDCTRL_ADAPT_ENABLE can be used to activate (bit 0=1)/deactivate (bit 0=0) adaptation. If adaptation is deactivated, MD 5407 applies: SPEEDCTRL_GAIN and MD 5430: SPEEDCTRL_PT1_TIME apply.

Adaptation ON (see Fig. 4-11)

With MD 5406: SPEEDCTRL_GAIN_A and MD 5408: SPEEDCTRL_GAIN_B are programmed to define the P gain and MD 5431: SPEEDCTRL_DIFF_TIME_A, MD 5433: SPEEDCTRL_DIFF_TIME_B to define the derivative-action time (D component) at the A and B ends of the cylinder.

MD 5407: SPEEDCTRL_GAIN and MD 5432: SPEEDCTRL_DIFF_TIME act on the position set in MD 5160: PISTON_POS_MIN_NAT_FREQ.

Adaptation OFF

MD 5407: SPEEDCTRL_GAIN and MD 5432: SPEEDCTRL_DIFF_TIME are active over the entire range,

The natural frequency of the drive varies as a function of distance. Extreme values occur at the two limits and in the approximate center (MD 5160) of the traversing range. It may therefore be useful to adapt the velocity controller position (P and D components), with the extreme range limits specified as interpolation points.

The adaptation function can be activated or deactivated.

If the piston zero has not been calibrated, the adaptation will not be operative, even if it is activated.

When adaptation is active, the P gain and D-action component of the velocity controller are interpolated linearly between two points.

"Calculate controller data" alters the settings for the controllers and the adaptation selection.

4 Firmware Drive Functions

4.3 Closed-loop velocity control

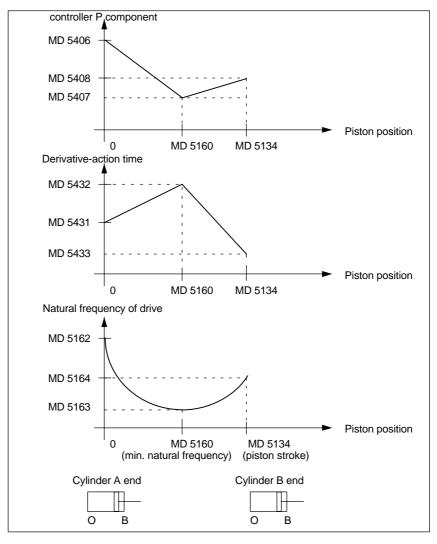


Fig. 4-11 Deactivate adaptation

P component

5406	SPEEDCTRL_GAI	N_A [n] 07 index	of the parameter s	et	Cross reference: -		
	P gain of velocity c	Related to: HLA	Protection level: 3/3				
Unit: %	Default: 0.0	Minimum: -100.0	Maximum: 1000.0	Data type: FLOAT	Active: Immediately		
5407	SPEEDCTRL_GAI	SPEEDCTRL_GAIN [n] 07 index of the parameter set					
	P gain of velocity controller				Protection level: 3/3		
Unit: %	Default: 0.0	Minimum: -100.0	Maximum: 1000.0	Data type: FLOAT	Active: Immediately		
5408	SPEEDCTRL_GAI	N_B [n] 07 index	of the parameter s	et	Cross reference: -		
	P gain of velocity c		Related to: HLA	Protection level: 3/3			
Unit: %	Default: 0.0	Data type: FLOAT	Active: Immediately				

A negative P gain setting may be useful for oscillation damping. Negative gain settings are permissible. The gain is specified in relation to the drive servo gain setting. 100% means that if the distance-to-go is equal to the maximum speed (MD 5440: POS_DRIVE_SPEED_LIMIT, MD 5441:

NEG_DRIVE_SPEED_LIMIT), the full nominal valve voltage will be output as the P component.

The P gain set in MD 5407 SPEEDCTRL_GAIN is referred to the controlled system gain set in MD 5435: CONTROLLED_SYSTEM_GAIN.

I component

5409	SPEEDCTRL	SPEEDCTRL_INTEGRATOR_TIME [n] 07 index of the parameter set			
	Reset time of	velocity controller		Related to: HLA	Protection level: 3/3
Unit: ms	Default: 50.0	Minimum: 0.0	Maximum: 2000.0	Data type: FLOAT	Active: Immediately

The integral-action component can be deactivated by setting the reset time to zero. For a negative P gain setting, the reset time is interpreted as a negative value so that the compensation always acts as negative feedback.

The integrator can be activated/deactivated via the PLC. The current status is returned to the PLC.

Integrator feedback

5421	21 SPEEDCTRL_INTEGRATOR_FEEDBK [n] 07 index of the parameter set				Cross reference: -
	Time constant of int	egrator feedback		Related to: HLA	Protection level: 3/3
Unit: ms	Default: 0.0	Minimum: 0.0	Maximum: 1000.0	Data type: FLOAT	Active: Immediately

The integrator of the velocity controller loop is reduced to a 1st order low-pass action with the configured time constant via a weighted feedback.

• Effect:

The output of the velocity controller integrator is limited to a value proportional to the difference between setpoint and actual values (steady-state proportional action).

• Applications:

Machining motions for position setpoint zero and dominant static friction can be suppressed but result in a permanent distance-to-go, e.g. oscillation of the position-controlled axis at zero speed (stick-slip effect) or overshooting in the μ m-step method.

Setting notes:

Optimize this data starting from a high value until you find the best compromise.

If the time constant integrator feedback \leq 1 ms is set, feedback is disabled.

Integrator	Velocity below which the integrator feedback takes effect.
feedback	
threshold	

5422	5422 FEEDBK_SPEED_THRESHOLD				Cross reference: -
	Velocity threshold for	or integrator feedback	(Related to: HLA	Protection level: 3/3
Unit: mm/min	Default: 10.0	Minimum: 0.0	Maximum: 120000.0	Data type: FLOAT	Active: Immediately

The integrator feedback function is mainly used when static friction problems are encountered, i.e. so as to suppress undesirable movements caused by static friction (slip-stick effect) in position-controlled operation and at zero speed.

MD 5422 can be set to ensure that the integrator feedback is activated only for low velocity setpoints and stabilizes the axis at zero speed. At high velocities, however, the effect of the I component is not restricted.

D component (acceleration feedback) A derivative-action component (acceleration feedback) is implemented in the controller in addition to the P component. This derivative-action component is located in the feedback branch. It is set via the derivative-action time. It may be a negative or positive setting. No D component is active if the D-action time is set to zero.

5430	SPEEDCTRL_PT1	_ TIME [n] 07 inde	x of the parameter	set	Cross reference: -
	Velocity controller smoothing time constant			Related to: HLA	Protection level: 3/3
Unit: ms	Default: 0.25	Minimum: 0.25	Maximum: 100.0	Data type: FLOAT	Active: Immediately
5431	SPEEDCTRL_DIFF_TIME_A[n] 07 index of the parameter set				Cross reference: -
	Derivative-action time of velocity controller A (D component)			Related to: HLA	Protection level: 3/3
Unit: ms	Default: 0.0	Minimum: -100.0	Maximum: 100.0	Data type: FLOAT	Active: Immediately
5432	SPEEDCTRL_DIF	TIME [n] 07 inde	ex of the parameter	rset	Cross reference: -
	Derivative-action tir	ne of velocity controll	er (D component)	Related to: HLA	Protection level: 3/3
Unit: ms	Default: 0.0	Minimum: -100.0	Maximum: 100.0	Data type: FLOAT	Active: Immediately
5433	SPEEDCTRL_DIF	F_TIME_B [n] 07 ir	ndex of the parame	eter set	Cross reference: -
	Derivative-action tir	ne of velocity controll	er B (D component)	Related to: HLA	Protection level: 3/3
Unit: ms	Default: 0.0	Minimum: -100.0	Maximum: 100.0	Data type: FLOAT	Active: Immediately

Similar to the P component setting, it is possible to set a D component at the A and B ends of the cylinder.

Since precise differentiation is not possible, an additional denominator component must be provided. This component is set by means of a smoothing time constant (MD 5430: SPEEDCTRL_PT1_TIME). If the D component is deactivated, then the smoothing constant also ceases to function.

Reference model

5414	SPEEDCTRL_REF	SPEEDCTRL_REF_MODEL_FREQ [n] 07 index of the parameter set			
	Natural frequency of	of reference model		Related to: HLA	Protection level: 3/3
Unit: Hz	Default: 150.0	Minimum: 0.0	Maximum: 1000.0	Data type: FLOAT	Active: Immediately
5415	SPEEDCTRL_REF_MODEL_DAMPING [n] 07 index of the parameter set				Cross reference: -
0.110	SPEEDCIRL_REP			ne parameter set	Cross reference: -
	Reference model d			Related to: HLA	Protection level: 3/3

The dynamic response of the velocity control loop to control commands without an I component in the velocity controller is simulated in the reference model. In the ideal case of exact simulation, there is no deviation after the setpoint/actual value comparison on the integrator under no-load conditions. In practice, velocity overshoots in the response to control commands can be reduced in this way.

The reference model is defined by setting the natural frequency (MD5414) and damping (MD 5415) parameters.

Control output, velocity controller

Two control output filters have been implemented. As compared to the current setpoint filter on electrical drives, the scope of functions has been extended by the general band stop.

5200	NUM_OUTPUT_V	NUM_OUTPUT_VCTRL_FILTERS [n] 07 index of the parameter set			
	Number of control c	output filters in velocit	y controller	Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: 0	Maximum: 2	Data type: UNS.WORD	Active: Immediately

The number of control output filters in the velocity controller is set in MD 5200. No filters are active by default. Bandstop filters and 2nd-order low pass filters can be selected and set in MD 5201: OUTPUT_FILTER_CONFIG.

 Table 4-1
 Selection of number of control output filters in velocity controller

0	No control output filter active
1	Filter 1 active
2	Filters 1 and 2 active

Enter the configuration for 2 control output filters. Bandstops (BS) and low-pass filters can be selected. The variable filter parameters are entered in the associated machine data.

Note

The filter machine data must be assigned before the filter type is configured.

4 Firmware Drive Functions

4.3 Closed-loop velocity control

5201	OUTPUT_VC	OUTPUT_VCTRL_FILTER_CONFIG [n] 07 index of the parameter set			Cross reference: -
	Control output	filter type in velocity c	ontroller	Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: 0	Maximum: 3	Data type: UNS.WORD	Active: Immediately

Table 4-2 Control output filter type in velocity controller

4	Dire	0	Low-pass (see MD 5202/5203)
1st filter	Bit 0	1	Bandstop filter (refer to MD 5210/5211/5212)
		0	Low-pass (see MD 5204/5205)
2nd filter	Bit 1	1	Bandstop filter (refer to MD 5213/5214/5215)

Table 4-3Filter combinations

Filter 2	Filter 1	MD 5201: OUTPUT_VCTRL_FILTER_CONFIG
PT2	PT2	0
PT2	BS	1
BS	PT2	2
BS	BS	3

5202	OUTPUT_VCTRL_FIL_1_FREQ[n] 07 index of the parameter set				Cross reference: -
	Natural frequency	output filter 1 veloc	ity controller	Related to: HLA	Protection level: 3/3
Unit: Hz	Default: 1000.0	Minimum: 10.0	Maximum: 8000.0	Data type: FLOAT	Active: Immediately
5204	OUTPUT_VCTRL	OUTPUT_VCTRL_FIL_2_FREQ[n] 07 index of the parameter set			
······································			Related to:	Protection level:	
	Natural frequency		.,	HLA	3/3

The filter key data is defined in MD 5202 to MD 5205 and MD 5210 to MD 5215. Enter the natural frequency for control output filters 1...2 (PT2 low-pass) in the velocity controller.

The filters are activated in MD 5200: NUM_OUTPUT_VCTRL_FILTERS and MD 5201: OUTPUT_VCTRL_FILTER_CONFIG.

5203	OUTPUT_VCTRL	OUTPUT_VCTRL_FIL_1_DAMP[n] 07 index of the parameter set				
Damping control output filter 1 velocity controller			Related to: HLA	Protection level: 3/3		
Unit: -	Default: 1.0	Data type: FLOAT	Active: Immediately			
5205	OUTPUT_VCTRL	_FIL_2_DAMP[n] C	7 index of the p	arameter set	Cross reference: -	
Damping control output filter 2 velocity controller				Related to: HLA	Protection level: 3/3	
Unit: -	Default: 1.0	Minimum: 0.05	Maximum: 1.0	Data type: FLOAT	Active: Immediately	

Enter the damping for control output filters 1...2 (PT2 low-pass) in the velocity controller. The filters are activated in MD 5200: NUM_OUTPUT_VCTRL_FILTERS and MD 5201: OUTPUT_VCTRL_FILTER_CONFIG.

5210	OUTPUT_VCTRI	_FIL_1_SUP_FRI	EQ [n] 07 index of	the parameter set	Cross reference: -
Blocking frequency output filter 1 velocity controller			Related to: HLA	Protection level: 3/3	
Unit: Hz	Default: 3500.0	Active: Immediately			
5213	OUTPUT_VCRTL	_FIL_2_SUP_FRI	EQ[n] 07 index of	the parameter set	Cross reference: -
	Blocking frequence	Related to: HLA	Protection level: 3/3		
Unit: Hz	Default: 3500.0				Active: Immediately

Enter the blocking frequency for control output filters 1...2 (bandstop) in the velocity controller. The filters are activated in MD 5200: NUM_OUT-PUT_VCTRL_FILTERS and MD 5201: OUTPUT_VCTRL_FILTER_CONFIG.

5211	OUTPUT_VCTRL_	eter set	Cross reference: -			
Bandwidth control output filter 1 velocity controller			Related to: HLA	Protection level: 3/3		
Unit: Hz	Default: 500.0					
5214	OUTPUT_VCTRL_	FIL_2_BW[n] 07 i	ndex of the parame	eter set	Cross reference: -	
Bandwidth control output filter 2 velocity controller				Related to: HLA	Protection level: 3/3	
Unit: Hz	Default: Minimum: Maximum: 500.0 5.0 7999.0			Data type: FLOAT	Active: Immediately	

Enter the -3dB bandwidth for control output filters 1...2 (bandstop filter) in the velocity controller.

The filters are activated in MD 5200: NUM_OUTPUT_VCTRL_FILTERS and MD 5201: OUTPUT_VCTRL_FILTER_CONFIG.

4.3 Closed-loop velocity control

5212	OUTPUT_VCTRL_	arameter set	Cross reference: -		
Numerator bandwidth output filter 1 velocity controller			Related to: HLA	Protection level: 3/3	
Unit: Hz	Default: 0.0	Data type: FLOAT	Active: Immediately		
5215	OUTPUT_VCTRL_	FIL_2_BW_NUM [n]	arameter set	Cross reference: -	
Numerator bandwidth output filter 2 velocity controller Relate					
	Numerator bandwid	dth output filter 2 velo	city controller	Related to: HLA	Protection level: 3/3

Enter the numerator bandwidth for control output filters 1...2 (damped bandstop) in the velocity controller. Entering a value of 0 initializes the filter as an unattenuated bandstop filter.

The filters are activated in MD 5200: NUM_OUTPUT_VCTRL_FILTERS and MD 5201: OUTPUT_VCTRL_FILTER_CONFIG.

4.3.3 Dynamic stiffness control (DSC)

DSC The DSC (dynamic stiffness control) function is supported, allowing higher P gain settings in the position controller. The function is implemented in the same way as on an electrical drive. It is also activated via the control system (as on an electrical drive).

4.4 Closed-loop force control

Requirements

- Pressure sensors must be installed
- Force limitation and/or static friction injection activated (MD 5241: FORCECTRL_CONFIG)
- Piston position must have been calibrated (see Subsection 3.9.4)

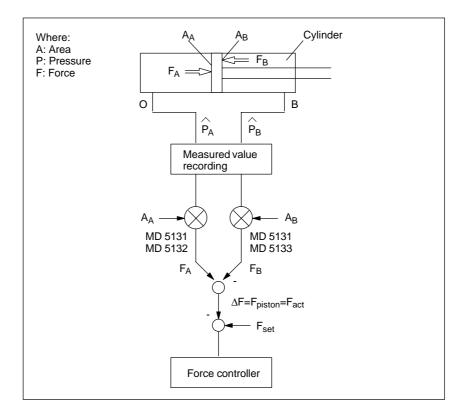


Fig. 4-12 Actual force measurement sensing

 $\begin{array}{ll} \mbox{Starting up the} \\ \mbox{force controller} \end{array} & \mbox{To start up the force controller, the measuring functions and function generator} \\ \mbox{can be redirected from the velocity controller to the force controller by setting bit} \\ \mbox{8 in MD 5650. In this setting, velocity setpoints are interpreted as force setpoints} \\ \mbox{in units of kN. This mode is deactivated by clearing MD 5650, bit 8} \\ \mbox{(mm/min} \rightarrow kN). \end{array}$

Force limitation Force limitation is required

- in certain machining processes for which the "Travel to fixed stop" function must be implemented or
- to work material in the machining of force profiles.
- Static friction
compensationThis compensation function is needed to compensate the effects of static fric-
tion occurring when the traversing direction changes (reduction of contour er-
rors, see e.g. circularity test).

4.4 Closed-loop force control

Force controller	Enter configuration for force controller:
configuration	

5241	FORCECTRL_CO	FORCECTRL_CONFIG [n] 07 index of the parameter set				
	Force controller configuration Bit 0= 0: Force limitation 1 from 1: Force limitation 1 ON Bit 1= 0: Static friction injection OFF 1: Static friction injection ON Bit 2= 0: Force limitation 2 OFF 1: Force limitation 2 ON				Protection level: 3/3	
Unit: HEX	Default: 0	Minimum: 0	Maximum: 6	Data type: UNS.WORD	Active: Immediately	

If a pressure sensor is installed and connected for the pressures at A and B, the force limitation and/or static friction injection functions in MD 5241 can be switched on.

Before the force limitation and/or static friction injection is activated, the associated machine data for force limitation (MD 5230, MD 5231)

or friction force (MD 5234, MD 5235) should be set. These data may contain the force of weight values and might not be preset correctly by the defaults.

If the cylinder load changes and the force of weight must be held by the cylinder, then the static friction injection function cannot be utilized, as the values in MD 5234 and MD 5235 vary depending on the load.

- Static friction injection (MD 5241 bit 1=1), see Subsection 4.4.2.
- Force limitation 1 (MD 5241 bit 0=1)

Force limitation 1 is always effective, even without FFA (NC function "Travel to fixed stop"). The force limit is specified in MD 5230. If FFA is active, the lowest force limitation always takes effect (MD 5230 or MD 37010 or value from FXST[x]). Reference value (100% value) of force limit for NC is MD 5725.

If the current force limitation is exceeded, the speed controller will remain active, even if FFA has been activated. This may lead to faults if FFA is active. At higher velocities, this can also cause continuous alternation between the force and velocity controller. This mode is therefore only suitable for low velocities (<0.1 \cdot maximum velocity).

• Force limitation 2 (MD 5241 bit 2=1)

Force limitation 2 becomes active when the force limit value is exceeded **and** FFA is active. In each case, the lowest force limitation becomes active (MD 5230 or MD 37010 or value from FXST[x]). Reference value (100% value) of force limit for NC is MD 5725.

Force limitation remains active until the function FFA is deactivated, even if the force has already fallen below the current force limitation.

02.99

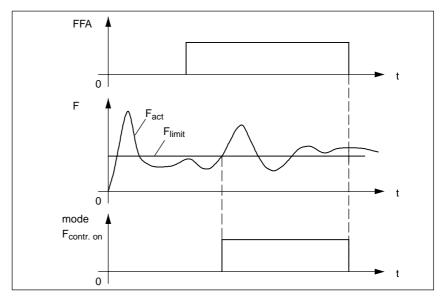


Fig. 4-13 Force limitation 2

Deselection of closed-loop force control by deactivating function "Travel to fixed stop" bit.

4.4.1 Force limitation

Force limitation tolerance band (plus/minus) about force of weight and weight force limitation.

5230	FORCE_LIMIT	FORCE_LIMIT_THRESHOLD[n] 07 index of the parameter set					
	Force limitation	Related to: HLA	Protection level: 3/3				
Unit: N	Default: 10000.0	Minimum: 0.0	Maximum: 100000000.0	Data type: FLOAT	Active: Immediately		
5231	FORCE_LIMIT	_ WEIGHT [n] 07 inde	ex of the paramete	r set	Cross reference: -		
	Weight force limitation				Protection level: 3/3		
Unit: N	Default: 0.0	Minimum: -100000000.0	Maximum: 100000000.0	Data type: FLOAT	Active: Immediately		

If a pressure sensor is installed and connected for the pressures at A and B, the force limitation in MD 5241 can be activated.

The force controller then ensures that the cylinder force is limited to the relevant values if it is threatening to exceed the value set in MD 5230 plus force of weight (MD 5231) or to drop below the force of weight value (MD 5231) minus the setting in MD 5230.

Since only the cylinder force is measured and regulated, it may be necessary to allow for the force of weight in MD 5231 and the friction force in MD 5230.

An additional force limitation value with the same effect as MD 5230 can be preset by the NC, e.g. when traveling onto a fixed stop. The lower of the two force limitation values is then applied.

4.4.2 Static friction injection

If a pressure sensor is installed and connected for the pressures at A and B, the static friction injection function in MD 5241 can be activated.

Static force injection should not be activated if the cylinder is required to hold a varying force of weight. In addition, the offset of the valve manipulated voltage and the piston position must already have been adjusted. Machine data MD 5232...MD 5235 can be adjusted by means of a circularity test.

Velocity threshold Velocity below which zero speed and thus static friction is detected.

5232	STICTION_SPI	STICTION_SPEED_THRESHOLD				
Velocity threshold for static friction			Related to: HLA	Protection level: 3/3		
Unit: mm/min	Default: 10.0	Minimum: 0.0	Maximum: 500.0	Data type: FLOAT	Active: Immediately	

The force controller ensures that the force is limited to the value set in MD 5234 or MD 5235 when the velocity drops below the setting in MD 5232 for as long as the drive is stationary.

Which of the two force setpoints is applied (MD 5234 or MD 5235) is determined by the sign of the velocity setpoint.

Cutoff limit

5233	STICTION_CO	STICTION_COMP_THRESHOLD				
Cutoff limit static friction			Related to: HLA	Protection level: 3/3		
Unit: %	Default: 40.0	Minimum: 3.0	Maximum: 100.0	Data type: FLOAT	Active: Immediately	

The force controller is deactivated just before the setpoint is reached via the cutoff limit (MD 5233) to prevent overshoots occurring during servo solenoid valve actuation.

If MD 5233 is set to 100%, then the force controller is not switched off until the force setpoint (MD 5234 or MD 5235) is reached or unless the drive moves beforehand. This setting results in overshoots in the actual velocity value.

Cylinder friction force

The cylinder friction force at a positive or negative velocity is set in MD 5234 and 5235 respectively.

5234	STICTION_FO	STICTION_FORCE_POS				
Friction force at velocity > 0			Related to: HLA	Protection level: 3/3		
Unit: N	Default: 100.0	Minimum: -100000000.0	Maximum: 100000000.0	Data type: FLOAT	Active: Immediately	

Allowance must be made for the force of weight applied to the cylinder in MD 5234 (e.g. with a cylinder mounting position other than 0 degrees, MD 5151). The value to be set can be read in MD 5708 when the cylinder is moved slowly (e.g. in JOG mode) in the **positive** direction.

If the force of weight applied to the cylinder varies as a function of load, then static force injection cannot be utilized.

5235	STICTION_FORCE	STICTION_FORCE_NEG				
Friction force at velocity < 0			Related to: HLA	Protection level: 3/3		
Unit: N	Default: -100.0	Minimum: -100000000.0	Maximum: 100000000.0	Data type: FLOAT	Active: Immediately	

Allowance must be made for the force of weight applied to the cylinder in MD 5235 (e.g. with a cylinder mounting position other than 0 degrees, MD 5151). The value to be set can be read in MD 5708 when the cylinder is moved slowly (e.g. in JOG mode) in the **negative** direction.

If the force of weight applied to the cylinder varies as a function of load, then static force injection cannot be utilized.

4.4.3 Force controller

Feedforward control gain of force controller Factor for setting the feedforward control gain in the force controller.

5247	FORCE_FFW_W	FORCE_FFW_WEIGHT				
Feedforward control factor for force controller			Related to: HLA	Protection level: 3/3		
Unit: %	Default: 100.0	Minimum: 0.0	Maximum: 120.0	Data type: FLOAT	Active: Immediately	

Operative only if force limitation or static friction injection is activated in MD 5241.

The more accurate the feedforward control setting, the more effective the force limitation at high velocities.

An excessively high setting can result in continuous switching between force and velocity controllers.

The area adaptation (MD 5462 and MD 5463) and controlled system gain (MD 5435) are taken into account by the feedforward control.

Controlled system gain of force controller

5240	FORCECONTROL	Cross reference: -			
Force controlled controlled-system gain			Related to: HLA	Protection level: 3/3	
Unit: N/V	Default: 0.0	Minimum: 0.0	Maximum: 1000000000.0	Data type: FLOAT	Active: Immediately

MD 5240 contains the controlled system proportional gain for the force control loop.

Since the force control loop has an integral action, a unit integrator (I-action time of 1 second) was subtracted from the controlled system to calculate the gain.

MD 5240 is preset by the "Calculate drive model data" routine.

The controlled system gain depends on the volume of oil in the cylinder and the nominal volumetric flow of the servo solenoid valve. The value should not generally be altered.

The value in MD 5240 is the reference for the P gain of the force controller.

MD 5240 makes allowance for the effects of geometric dimensions.

The effect of the valve dynamic response is taken into account in MD 5242, which means that the same gain value can always be set for an identical valve dynamic response on different cylinders.

P component of force controller

5242	FORCECTRL_GAI	FORCECTRL_GAIN [n] 07 index of the parameter set				
Force controller P gain			Related to: HLA	Protection level: 3/3		
Unit: -	Default: 0.0	Minimum: 0.0	Maximum: 10000.0	Data type: FLOAT	Active: Immediately	

If force limitation and/or static friction injection is activated in MD 5241, the P gain of the force controller is entered in this machine data.

The P gain reference is MD 5240, which contains a value representing the effects of the geometric dimensions.

The effect of the valve dynamic response is taken into account in MD 5242, which means that the same gain value can always be set for an identical valve dynamic response on different cylinders.

5243	5243 FORCECTRL_GAIN_RED				
Reduction of force controller P gain Related HLA				Related to: HLA	Protection level: 3/3
Unit: %	Default: 40.0	Minimum: 0.1	Maximum: 100.0	Data type: FLOAT	Active: Immediately

If force limitation and/or static friction injection are activated in MD 5241, the reduction in the force controller P gain in response to large setpoint/actual value deviations (large-signal operation) is entered in MD 5243. The P component of the force controller must be reduced since the dynamic limitations of the actuator in large-signal operation also reduce the potential dynamic response of the control loop.

Small-signal operation is set in MD 5242.

The factor in MD 5243 specifies as a percentage the value to which a P component of 10 V is reduced.

I component of force controller

5244	FORCECTRL_INT	FORCECTRL_INTEGRATOR_TIME [n] 07 index of the parameter set				
Force controller reset time			Related to: HLA	Protection level: 3/3		
Unit: ms	Default: 40.0	Minimum: 0.0	Maximum: 2000.0	Data type: FLOAT	Active: Immediately	

If force limitation and/or static friction injection is activated in MD 5241, the reset time of the force controller is entered in this machine data.

Enter a value of 0 for the reset time deactivates the I-action component.

D component of force controller

5245	FORCECTRL_	FORCECTRL_PT1_TIME [n] 07 index of the parameter set				
Force controller smoothing time constant				Related to: HLA	Protection level: 3/3	
Unit: ms	Default: 0.5	Minimum: 0.25	Maximum: 100.0	Data type: FLOAT	Active: Immediately	
5246	FORCECTRL_	DIFF_TIME [n] 07	neter set	Cross reference: -		
Force controller D-action time				Related to: HLA	Protection level: 3/3	
Unit: ms	Default: 0.0	Minimum: -10000.0	Maximum: 10000.0	Data type: FLOAT	Active: Immediately	

If force limitation and/or static friction injection is activated in MD 5241, a smoothing time constant of the force controller for derivative action is set in MD 5245 and, in addition to the force controller P component (MD 5242), a D-action component (jerk feedback) in MD 5246.

If the D-action component of the force controller is deactivated (MD 5246), then the smoothing function (MD 5245) is also rendered inoperative.

The D-action time setting (MD 5246) can be negative or positive. No D component is active if the D-action time is set to zero.

Feedforward control filter for force controller

5260	NUM_FFW_FCTRI	Cross reference: -		
No. of force controller feedforward control filters			Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: O	Data type: UNS.WORD	Active: Immediately

The number of feedforward control filters in the force controller are entered in this machine data.

Table 4-4	Selection of number of feedforward control filters

0	No feedforward control filter active (default)
1	Filter(s) activated

Note

The filter machine data must be assigned before the filter type is configured.

5261	FFW_FCTRL_FILT	Cross reference: -			
Type of feedforward control filter in force controller			Related to: HLA	Protection level: 3/3	
Unit: -	Default: 0	Minimum: 0	Maximum: 1	Data type: UNS.WORD	Active: Immediately

The type of feedforward control filter in the force controller is entered in this machine data.

Table 4-5Type of feedforward control filter

D'L O	0	Low-pass (see MD 5264/5265)
Bit 0	1	Bandstop filter (refer to MD 5268/5269/5270)

5264	FFW_FCTRL_FIL_	FFW_FCTRL_FIL_1_FREQ [n] 07 index of the parameter set				
PT2 natur. freq. feedforward control filter1			Related to: HLA	Protection level: 3/3		
Unit: Hz	Default: 2000.0	Minimum: 10.0	Maximum: 8000.0	Data type: FLOAT	Active: Immediately	

The filter key data is defined in MD 5264, MD 5265 and MD 5268 to MD 5270.

5265	FFW_FCTRL_FIL_	FFW_FCTRL_FIL_1_DAMP [n] 07 index of the parameter set				
PT2 damping for feedforward control filter 1			Related to: HLA	Protection level: 3/3		
Unit: -	Default: 0.7	Minimum: 0.2	Maximum: 1.0	Data type: FLOAT	Active: Immediately	

Enter damping for feedforward control filter 1 (PT2 low-pass) in force controller.

5268	FFW_FCTRL_FIL	FFW_FCTRL_FIL_1_SUP_FREQ [n] 07 index of the parameter set					
	Blocking frequency of feedforward control filter 1			Related to: HLA	Protection level: 3/3		
Unit: Hz	Default: 3500.0	Minimum: 10.0	Maximum: 7999.0	Data type: FLOAT	Active: Immediately		

Enter the blocking frequency for feedforward control filter 1 (band-stop) in force controller.

5269	FFW_FCTRL_FIL_	FFW_FCTRL_FIL_1_BW [n] 07 index of the parameter set					
Bandwidth of feedforward control filter 1				Related to: HLA	Protection level: 3/3		
Unit: Hz	Default: 500.0	Minimum: 5.0	Maximum: 7999.0	Data type: FLOAT	Active: Immediately		

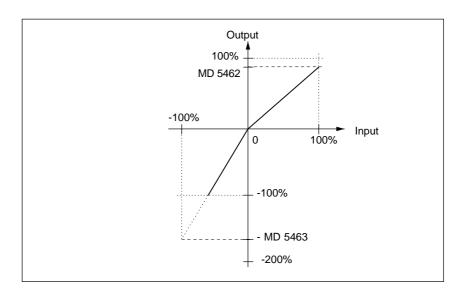
Enter the -3 dB bandwidth for feedforward control filter 1 (band-stop) in force controller.

5270	FFW_FCTRL_FIL_	Cross reference: -			
	Numerator bandwid	Related to: HLA	Protection level: 3/3		
Unit: Hz	Default: 0.0	Minimum: 0.0	Maximum: 7999.0	Data type: FLOAT	Active: Immediately

Enter numerator bandwidth for feedforward control filter 1 (damped band-stop) in force controller.

Entering a value of 0 initializes the filter as an unattenuated bandstop filter. The value set in MD 5270 must not exceed twice the value set in MD 5269.

4.5 Manipulated voltage output


4.5.1 Characteristic compensation

Area adaptation

Various non-linear effects of valve or drive can be compensated by means of characteristics. The characteristics are cascaded so that they can be set separately.

5462	AREA_FACTO	parameter set	Cross reference: -		
Piston surface adaptation factor, positive			Related to: HLA	Protection level: 3/3	
Unit: %	Default: 100.0	Minimum: 50.0	Maximum: 200.0	Data type: FLOAT	Active: Immediately
5463	AREA_FACTO	DR_NEG_OUTPUT [n] 07 index of the	parameter set	Cross reference: -
	Piston surface	adaptation factor, neg	gative	Related to: HLA	Protection level: 3/3
Unit: %	Default: 100.0	Minimum: 50.0	Maximum: 200.0	Data type: FLOAT	Active: Immediately

In order to compensate the direction-dependent controlled-system gain on differential cylinders, a characteristic with a gradient that is variable as a function of direction has been implemented. Fig. 4-14 shows a sample characteristic and illustrates how the associated machine data works. In practice, only one of the two gradients is weighted with a factor not equal to 100%. Normally, it is the gradient that causes the cylinder piston to travel out that is weighted with a factor of less than 100% (see also Subsection 2.3.1 and Appendix A).

Fig. 4-14 Example of piston surface adaptation characteristic

Linearization of valve

Valves with a fine control range are described in Section 4.7. An inverse characteristic is applied to compensate the nonlinear characteristic of these valves. The breakpoint on real valves is rounded. For this reason, the breakpoint range in the compensation characteristic is also rounded. The rounding is based on a root characteristic in such a way that the intersection points lie on a continuous tangent; the rounding range can be set as required. Fig. 4-15 shows a sample characteristic and illustrates how the associated machine data works.

The knee point is defined by the percentage for input (voltage) and output (flow).

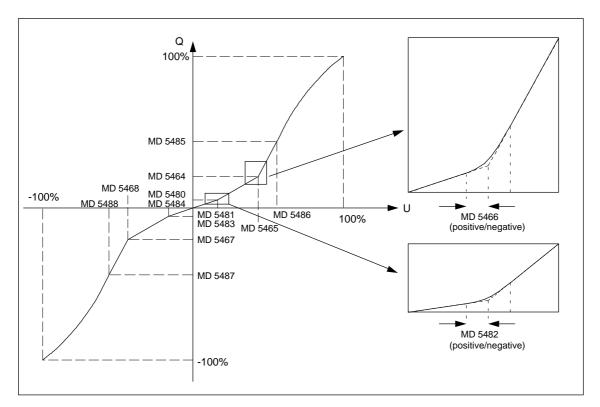


Fig. 4-15 Valve characteristic with breakpoint in zero, fine control and saturation ranges

Valve characteristic with breakpoint in zero range

5480	POS_DUAL_GAI	POS_DUAL_GAIN_COMP_Z_FLOW[n] 07 index of the parameter set				
Knee-point compensation pos. flowrate in zero range				Related to: HLA	Protection level: 3/3	
Unit: %	Default: 0.01	Minimum: 0.01	Maximum: 95.0	Data type: FLOAT	Active: Immediately	
5481	POS_DUAL_GAI] 07 index of the	parameter set	Cross reference: -		
· ····· · · · · · · · · · · · · · · ·						
	Knee-point compe	nsation pos. voltage i	n zero range	Related to: HLA	Protection level: 3/3	

4.5 Manipulated voltage output

5482	DUAL_GAIN_C	the parameter set	Cross reference: -		
Knee-point compensation rounding in zero range				Related to: HLA	Protection level: 3/3
Unit: %	Default: 0.0	Minimum: 0.0	Maximum: 10.0	Data type: FLOAT	Active: Immediately
5483	NEG_DUAL_GA	NIN_COMP_Z_FLOV	V [n] 07 index of	the parameter set	Cross reference: -
Knee-point compensation neg. flow in zero range Relate HLA					Protection level: 3/3
Unit: %	Default: 0.01	Minimum: 0.01	Maximum: 95.0	Data type: FLOAT	Active: Immediately
5484	NEG_DUAL_GA	AIN_COMP_Z_VOLT	[n] 07 index of t	he parameter set	Cross reference: -
	Knee-point com	pensation neg. voltag	je in zero range	Related to: HLA	Protection level: 3/3
Unit: %	Default: 0.0	Minimum: 0.0	Maximum: 95.0	Data type: FLOAT	Active: Immediately

To calculate the inverse characteristic, a knee-point is defined in the positive zero range of the valve characteristic with MD 5480 and MD 5481 and in the negative zero range with MD 5483 and MD 5484.

The positive and negative valve flows at the knee-point in relation to the nominal flow (MD 5107) are entered in 5483 and MD 5480 respectively.

The valve voltage at the knee-point in relation to the nominal valve voltage (MD 5109) is entered in MD 5481.

When MD 5481 is set to default zero, there is no breakpoint in the positive zero range.

When MD 5484 is set to default zero, there is no breakpoint in the negative zero range.

The rounding range is parameterized in MD 5482.

Valve characteristic with breakpoint in fine control range

5464	POS_DUAL_GAI	N_COMP_FLOW [n]	07 index of the	e parameter set	Cross reference: -			
	Knee-point compe	Related to: HLA	Protection level: 3/3					
Unit: %	Default: 10.0	Minimum: 0.2	Maximum: 95.0	Data type: FLOAT	Active: Immediately			
5465	POS_DUAL_GAI	POS_DUAL_GAIN_COMP_VOLTAGE [n] 07 index of the parameter set						
	Knee-point compe	Related to: HLA	Protection level: 3/3					
Unit: %	Default: 10.0	Minimum: 0.2	Maximum: 95.0	Data type: FLOAT	Active: Immediately			
5466	DUAL_GAIN_CO	MP_SMOOTH_RAN	GE [n] 07 index	of the parameter set	Cross reference: -			
	Rounding range for	or knee-point comper	nsation	Related to: HLA	Protection level: 3/3			
Unit: %	Default: 2.5	Default: Minimum: Maximum: Data type:						

5467	NEG_DUAL_GA	Cross reference: -				
Knee-point compensation neg. flow				Related to: HLA	Protection level: 3/3	
Unit: %	Default:Minimum:Maximum:Data type10.00.295.0FLOAT				Active: Immediately	
5468	NEG DUAL GA	f the parameter set	Cross reference: -			
	NEO_DOAL_OA			•		
		ensation neg. volta	je	Related to: HLA	Protection level: 3/3	

To calculate the inverse characteristic, the knee-point in the positive quadrant of the valve characteristic is defined in MD 5464 and MD 5465 and in the negative quadrant with MD 5467 and MD 5468.

The positive and negative valve flows at the knee-point in relation to the nominal flow (MD 5107) are entered in 5467 and MD 5464 respectively.

The positive and negative valve voltages at the knee-point in relation to the nominal valve voltage (MD 5109) are entered in MD 5465 and MD 5468 respectively.

When the same values (defaults) are set in MD 5464 and MD 5465, the characteristic is linear (without breakpoint in the zero range (default) and without saturation (default)).

This breakpoint data is preset from the valve data (MD 5110, MD 5111) during the "Calculate controller data" operation. The presettings can be altered later. The rounding range is not a valve data and is therefore only preset to a default value. It can however be changed later by the user (MD 5466). If necessary, a measurement can be taken to obtain a precise setting.

Note

A constant machining velocity of the drive directly at the knee-point of the valve is not recommended.

• Valve characteristic with breakpoint at the start of a saturation range

5485	POS_DUAL_O	the parameter set	Cross reference: -		
Knee-point compensation pos. flow saturation				Related to: HLA	Protection level: 3/3
Unit: %	Default: 100.0	Minimum: 0.2	Maximum: 100.0	Data type: FLOAT	Active: Immediately
5486	POS_DUAL_C	GAIN_COMP_S_VOL	T [n] 07 index of t	he parameter set	Cross reference: -
	Knee-point cor	mpensation pos. volta	ge saturation	Related to: HLA	Protection level: 3/3
Unit: %	Default: 100.0	Minimum: 0.2	Data type: FLOAT	Active: Immediately	

4.5 Manipulated voltage output

5487	NEG_DUAL_GAIN	Cross reference: -			
	· · · · · · · · · · · · · · · · · · ·			Related to: HLA	Protection level: 3/3
Unit: %	Default: 100.0	Minimum: 0.2	Maximum: 100.0	Data type: FLOAT	Active: Immediately
5488	NEG_DUAL_GAIN	COMP_S_VOLT	[n] 07 index of t	he parameter set	Cross reference: -
Knee-point compensation neg. voltage saturation Related to: HLA					Protection level:
				HLA	3/3

To calculate the inverse characteristic, the beginning of a saturation range with parabolic rounding in the positive quadrant of the valve characteristic is defined in MD 5485 and MD 5486 and in the negative quadrant with MD 5487 and MD 5488.

The positive and negative valve flow rates at the start of the saturation range in relation to the nominal valve flow rate (MD 5107) are entered in MD 5485 and MD 5487 respectively.

The positive and negative valve voltages in relation to the nominal voltage (MD 5109) are entered in MD 5486 and MD 5488 respectively.

The saturation range is compensated by a root characteristic such that the intersection point lies on a continuous tangent and the characteristic ends at the point (100%, 100%).

If the default of 100% is set in MD 5485 and MD 5486 or MD 5487 and MD 5488, there is no saturation range in the positive or negative quadrant.

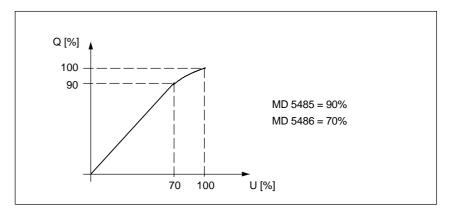


Fig. 4-16 Example

For a more detailed explanation, see also Subsection 2.3.1 and Appendix A.

Offset

5470	OFFSET_COMPE	OFFSET_COMPENSATION					
	Offset compensation				Protection level: 3/3		
Unit: -	Default: 0	Minimum: -4000	Maximum: 4000	Data type: WORD	Active: Immediately		

Since the valves are operated under analog control, an offset voltage of the D/A converter or valve amplifier may cause a zero point error and thus a position deviation (if no I-action component has been activated). By adding a compensation value, the offset error can be largely eliminated.

An automatic offset adjustment can be triggered with MD 5650 (see Subsection 3.9.2).

Note

When closed-loop force control is active (MD 5241), offset compensation is absolutely necessary because the I component of the velocity controller is deactivated with closed-loop force control.

4.5.2 Control output filter

5280	NUM_OUTPUT_FI	Cross reference: -			
	Number of control output filters			Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: 0	Maximum: 1	Data type: UNS.WORD	Active: Immediately

The number of control output filters must be set in this machine data.

 Table 4-6
 Selecting the number of control output filters

0	No filter(s) active (default)
1	Filter(s) activated

Note

The filter machine data must be assigned before the filter type is configured.

5281	5281 OUTPUT_FILTER_TYPE [n] 07 index of the parameter set				
Type of control output filter				Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: 0	Maximum: 1	Data type: UNS.WORD	Active: Immediately

The type of control output filter is entered in this machine data.

Table 4-7Type of control output filter

Dire	0	Low-pass (see MD 5284/5285)
Bit 0	1	Bandstop filter (refer to MD 5288/5289/5290)

5284	OUTPUT_FIL_1_FI	OUTPUT_FIL_1_FREQ [n] 07 index of the parameter set				
Natural frequency of control output filter 1			Related to: HLA	Protection level: 3/3		
Unit: Hz	Default: 1000.0	Minimum: 10.0	Maximum: 8000.0	Data type: FLOAT	Active: Immediately	

The filter key data is defined in MD 5284, MD 5285 and MD 5288 to MD 5290. Enter the natural frequency for control output filter 1 (PT2 low-pass). Setting a value of <10 Hz for the natural frequency of the low pass initializes the filter as a proportional element with a gain of 1, irrespective of the associated damping.

5285	OUTPUT_FIL_1_D	OUTPUT_FIL_1_DAMP [n] 07 index of the parameter set				
Damping of control output filter 1				Related to: HLA	Protection level: 3/3	
Unit: -	Default: 1.0	Minimum: 0.05	Maximum: 1.0	Data type: FLOAT	Active: Immediately	

Enter damping for control output filter 1 (PT2 low-pass).

5288	OUTPUT_FIL	OUTPUT_FIL_1_SUP_FREQ [n] 07 index of the parameter set				
Blocking frequency of control output filter 1			Related to: HLA	Protection level: 3/3		
Unit: Hz	Default: 3500.0	Minimum: 1.0	Data type: FLOAT	Active: Immediately		

Enter blocking frequency for control output filter 1 (bandstop)

5289	OUTPUT_FIL_1_B	Cross reference: -			
Bandwidth of control output filter 1				Related to: HLA	Protection level: 3/3
Unit: Hz	Default: 500.0	Minimum: 5.0	Maximum: 7999.0	Data type: FLOAT	Active: Immediately

Enter -3dB bandwidth for control output filter 1 (bandstop).

5290	OUTPUT_FIL	OUTPUT_FIL_1_BW_NUM [n] 07 index of the parameter set					
Numerator bandwidth for control output filter 1				Related to: HLA	Protection level: 3/3		
Unit: Hz					Active: Immediately		

Enter the numerator bandwidth for control output filter 1 (damped bandstop).

Entering a value of 0 initializes the filter as an unattenuated bandstop filter. The value set in MD 5290 must not exceed twice the value set in MD 5289.

4.5.3 Manipulated voltage limitation

5474	OUTPUT_VO	OUTPUT_VOLTAGE_POS_LIMIT [n] 07 index of the parameter set				
Manipulated voltage limitation positive				Related to: HLA	Protection level: 3/3	
Unit: V	Default: 10.0	Minimum: 1.0	Maximum: 10.0	Data type: FLOAT	Active: Immediately	

The manipulated variable setpoint is limited in the positive direction to the value set in MD 5474 before the D/A conversion. A message is sent to the PLC if the limit is violated.

5475	OUTPUT_VOLTAG	Cross reference: -			
Manipulated voltage limitation negative				Related to: HLA	Protection level: 3/3
Unit: V	Default: 10.0	Minimum: 1.0	Maximum: 10.0	Data type: FLOAT	Active: Immediately

The manipulated variable setpoint is limited in the negative direction to the value set in MD 5475 before the D/A conversion. A message is sent to the PLC if the limit is violated.

Output value inversion

5476	OUTPUT_VOLTA	Cross reference: -			
Manipulated variable inversion Bit 0= 0: No inversion 1: Inversion				Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: 0	Maximum: 1	Data type: UNS.WORD	Active: Immediately

The voltage output (manipulated variable) can be inverted in machine data MD 5476 in order to compensate for differences in sign in the piping or wiring. Alternatively, the wiring of the manipulated variable for the valve could be altered. Definition of direction: See Subsection 3.9.1.

4.6 Supply unit data

The supply unit is defined by

- the modulus of elasticity of the hydraulic fluid,
- the system pressure and
- on pilot-actuated valves by the pilot pressure
- at the cylinder working temperature.

are programmed.

These data influence the limit data (maximum velocity, maximum force...) as well as the dynamic response characteristics of the drive system (corner frequencies).

5100	FLUID_ELAS	FIC_MODULUS			Cross reference: -
	Modulus of ela	sticity of hydraulic flui	Related to: HLA	Protection level: 3/3	
Unit: bar	Default: 11000	Minimum: 1000	Maximum: 21000	Data type: FLOAT	Active: Immediately
5101	WORKING_P	Cross reference: -			
System pressure				Related to: HLA	Protection level: 3/3
Unit: bar	Default: 0.0	Minimum: 0.0	Maximum: 350.0	Data type: FLOAT	Active: Power On
5102	PILOT_OPER	ATION_PRESSURE			Cross reference: -
Pilot pressure				Related to: HLA	Protection level: 3/3
Unit: bar	Default: 0.0	Minimum: 0.0	Maximum: 250.0	Data type: FLOAT	Active: Immediately

MD 5102 is used for "Calculate controller data" if MD 5113 bit 0=1.

Note

The elasticity of oil variable as a function of the temperature can be ignored for industrial hydraulics.

MD 5100 defines the compressibility of the hydraulic fluid.

MD 5101 defines the pressure supplied by the hydraulic power unit.

MD 5102 defines the pressure for a pilot-actuated valve. Zero must be entered valves without pilot actuation.

4.7 Valve

Valve data

The nominal valve data defines the key valve data at the nominal operating point. The latter is defined by the

- Nominal flow rate,
- nominal pressure drop and
- nominal voltage.

5106	VALVE_CODE				Cross reference: -
Valve code number				Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: 0	Maximum: 2000	Data type: UNS.WORD	Active: Immediately
5107	VALVE_NOMINA	FLOW			Cross reference: -
	Nominal valve flow rate			Related to: HLA	Protection level: 3/3
Unit: I/min	Default: 0.0	Minimum: 0.0	Maximum: 1000	Data type: FLOAT	Active: Immediately
5108	VALVE_NOMINA	Cross reference: -			
	Nominal pressure	drop of valve (per	control edge)	Related to: HLA	Protection level: 3/3
Unit: bar	Default: 35.0	Minimum: 1.0	Maximum: 200.0	Data type: FLOAT	Active: Immediately
5109	VALVE_NOMINA	VOLTAGE			Cross reference: -
Nominal voltage of valve				Related to: HLA	Protection level: 3/3
Unit: V	Default: 10.0	Minimum: 0.5	Maximum: 15.0	Data type: FLOAT	Active: Immediately

Valves with the associated data are included in the valve selection list (see Subsection 2.3.2).

Other valve data includes:

- Knee characteristic,
- Flow ratio,
- Dynamic definition with natural frequency and damping and
- Valve configuration.

For a more detailed explanation of valves, see Section 2.3 and Appendix A.

5110	VALVE_DUA	GAIN_FLOW			Cross reference: -
Knee-point flow rate of valve Note: MD 5464 and MD 5467 are preset				Related to: HLA	Protection level: 3/3
Unit:	Default:	Minimum:	Data type:	Active:	
%	10.0	0.2	FLOAT	Immediately	
5111	VALVE_DUA	GAIN_VOLTAGE			Cross reference: -
Knee-point voltage of valve				Related to:	Protection level:
Note: MD 5465 and MD 5468 are preset				HLA	3/3
Unit:	Default:	Minimum:	Maximum:	Data type:	Active:
	10.0	0.2	95.0	FLOAT	Immediately

A valve characteristic as shown in Fig. 2-8 results in an entry of 10% in MD 5110 and 40% in MD 5111. Entering the same value in both machine parameters produces a linear characteristic (default setting).

5112	VALVE_FLOV	VALVE_FLOW_FACTOR_A_B					
Valve flow rate ratio between A and B ends of valve			Related to: HLA	Protection level: 3/3			
Unit: -	Default: 1.0	Minimum: 0.5	Maximum: 2.0	Data type: FLOAT	Active: Immediately		

The flow ratio specifies the ratio between the nominal flow towards the A end and the nominal flow towards the B end.

5114	VALVE_NATU	Cross reference: -			
	Natural freque	ncy of valve	Related to: HLA	Protection level: 3/3	
Unit: Hz	Default: 150.0	Minimum: 1.0	Maximum: 1000.0	Data type: FLOAT	Active: Immediately
5115	VALVE_DAM	PING			Cross reference: -
	Valve damping]	Related to: HLA	Protection level: 3/3	
Unit: -	Default: 0.8	Minimum: 0.4	Maximum: 1.0	Data type: FLOAT	Active: Immediately

To dimension the velocity controller, the transmission behavior of the valve on conversion of the voltage setpoint to the spool position is approximated as a PT2 low-pass.

The valve's natural frequency can be read for a phase shift of -180°. The valve's natural frequency for a valve modulation of $\pm 10\%$ in relation to 100 bar pilot pressure is specified in MD 5114.

The valve damping can be calculated from the amplitude overshoot at resonant frequency for values of less than 0.7. The valve damping for a valve modulation of $\pm 20\%$ in relation to 100 bar pilot pressure is specified in MD 5115.

Special points to
be notedMachine parameter MD 5113 with control bits has been introduced to allow spe-
cial valve features to be taken into account.

5113	VALVE_CONFIG	VALVE_CONFIGURATION					
	1: Pilot-c Bit 2/Bit 1= 00: 01: 10: 11: Bit 3= 0: No diff 1: Differe Bit4= 0: 7-pin c	y-controlled valv ontrolled valve No fail-safe Fail safe closed Fail-safe open - erential circuit ntial circuit	e	Related to: HLA	Protection level: 3/3		
Unit: HEX	Default: 0	Minimum: 0	Maximum: 1	Data type: UNS.WORD	Active: Immediately		

4.8 Cylinder drive

Cylinder data

5131	CYLINDER_PISTO	DN_DIAMETER			Cross reference: -
	Cylinder piston dia	Related to: HLA	Protection level: 3/3		
Unit: mm	Default: 0.0	Minimum: 0.0	Data type: FLOAT	Active: Power On	
5132	CYLINDER_ROD	_A_DIAMETER			Cross reference: -
	Cylinder piston roc	diameter at A end		Related to: HLA	Protection level: 3/3
Unit: mm	Default: 0.0	Minimum: 0.0	Maximum: 500.0	Data type: FLOAT	Active: Power On
5133	CYLINDER_ROD	B_DIAMETER			Cross reference: -
	Cylinder piston rod diameter at B end				Protection level: Immediate
Unit: mm	Default: 0.0	Minimum: 0.0	Maximum: 500.0	Data type: FLOAT	Active: Power On
5134	PISTON_STROKE	Cross reference: -			
	Piston stroke			Related to: HLA	Protection level: 3/3
Unit: mm	Default: 0.0	Minimum: 0.0	Maximum: 3000.0	Data type: FLOAT	Active: Immediately
5135	CYLINDER_DEAD	D_VOLUME_A			Cross reference: -
	Cylinder dead volta	age A end		Related to: HLA	Protection level: 3/3
Unit:	Default:	Minimum:	Maximum:	Data type:	Active:
ccm	0.0	0.0	200000.0	FLOAT	Immediately
5136	CYLINDER_DEAD	D_VOLUME_B		I	Cross reference: -
	Cylinder dead volta	age B end		Related to: HLA	Protection level: 3/3
Unit: ccm	Default: 0.0	Minimum: 0.0	Maximum: 200000.0	Data type: FLOAT	Active: Immediately

Apart from the piston diameter (MD 5131), the rod diameters at the A and B ends must also be specified (5132, MD 5133). On a differential cylinder, both rod diameters are different, one of the rods might even have a zero diameter. The maximum piston stroke (MD 5135) and cylinder dead volume (MD 5135, MD 5136) are also required.

The cylinder dead volume is the liquid volume between the cylinder and servo solenoid valve which cannot be displaced by the piston.

The dead volume attributable to the pipework is separately parameterized (MD 5141 to MD 5143).

For a more detailed explanation of the cylinder data, see also Subsection 2.3.1 and Appendix A.

4.9 Drive data

Valve-to-drive connection

5140	VALVE_CYLINDE	R_CONNECTION			Cross reference: -
	Valve-cylinder cor Bit 0 = 0: Valve A 1: Valve A	Related to: HLA	Protection level: 3/3		
Unit: -	Default: 0	Data type: UNS.WORD	Active: Immediately		
5141	PIPE_LENGTH_A	<u> </u>			Cross reference: -
Pipe length at A end				Related to: HLA	Protection level: 3/3
Unit: mm	Default: 0.0	Minimum: 0.0	Maximum: 10000.0	Data type: FLOAT	Active: Immediately
5142	PIPE_LENGTH_E	}			Cross reference: -
	Pipe length at B e	nd		Related to: HLA	Protection level: 3/3
Unit: mm	Default: 0.0	Minimum: 0.0	Maximum: 10000.0	Data type: FLOAT	Active: Immediately
5143	PIPE_INNER_ DI	METER_A_B			Cross reference: -
Internal pipe diameters at A and B				Related to: HLA	Protection level: 3/3
Unit: mm	Default: 5.0	Minimum: 0.0	Maximum: 100.0	Data type: FLOAT	Active: Immediately

These machine data provide information about the valve-to-drive connection. They are used to preset other machine data during the "Calculate drive model data" and "Calculate controller data" routines. If there is a pipe between the valve and cylinder, then the dead volume of the pipe can be calculated from the pipe length (A and B ends) and the inner pipe diameter. If the valve is mounted directly on the cylinder, then zero must be entered for the pipe length at each end. The dead volume affects the natural frequency of the drive.

For more detailed explanation of the drive data, see also Subsection 2.3.4 and Appendix A.

Mechanical design of drive

5150	DRIVE_MASS	DRIVE_MASS					
	Moved drive n	nass	Related to: HLA	Protection level: 3/3			
Unit: kg	Default: 0.0	Minimum: 0.0	Maximum: 20000.0	Data type: FLOAT	Active: Immediately		

The movement of the piston rod is transmitted to other mechanical components (e.g. table, tools, ...). The total moved mass must be specified as a machine data (MD 5150).

Note

The mass of the drive is a critical parameter and should be calculated as exactly as possible!

5151	CYLINDER_A_OF	RIENTATION			Cross reference: -
	Cylinder mounting	Related to: HLA	Protection level: 3/3		
Unit: Degrees	Default: 0.0	Minimum: -90.0	Maximum: 90.0	Data type: FLOAT	Active: Immediately
5152	CYLINDER_FAST	ENING			Cross reference: -
	Cylinder fixing (fixe Bit 0= 0: Cylinder 1: Piston roo	Related to: HLA	Protection level: 3/3		
Unit: -	Default: 0	Minimum: 0	Maximum: 1	Data type: UNS.WORD	Active: Immediately

The mounting position of the cylinder (MD 5151) specifies to what degree the force due to weight of the moved mass (MD 5150) is taken into account in calculating the servo gain and maximum piston travel-in/travel-out speed.

It is assumed that the moved mass will act in the direction of the cylinder axis. If the weight of the moved mass does not act in this direction, however, MD 5151 must be converted accordingly.

A distinction is made between two different mounting methods in the HLA:

- The cylinder is stationary, the moved mass is attached to the piston rod (MD 5152 bit 0=0).
- The piston is stationary, the moved mass is attached to the cylinder (MD 5152 bit 0=1).

The Calculate drive model data routine calculates the weight force applied to the cylinder from MD 5150...MD 5152 and enters the result in MD 5231.

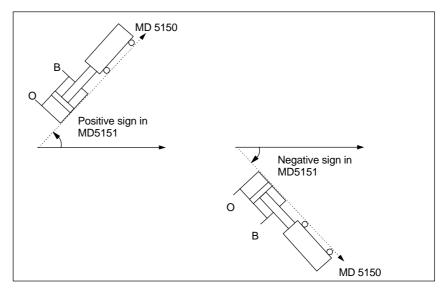


Fig. 4-17 Mounting position of drive referred to A end

Dynamic drive model data

5160	PISTON_POS_		Cross reference:		
	Min. natural frec	quency piston positio	Related to: HLA	Protection level: 3/3	
Unit: mm	Default: 0.0	Minimum: 0.0	Maximum: 3000.0	Data type: FLOAT	Active: Immediately
5161	DRIVE_DAMPI	NG			Cross reference:
	Drive damping			Related to: HLA	Protection level: 3/3
Unit: -	Default: 0.1	Minimum: 0.01	Maximum: 1.0	Data type: FLOAT	Active: Immediately
5162	DRIVE_NATUR	AL_FREQUENCY_	A		Cross reference:
	Natural frequent	cy of drive A	Related to: HLA	Protection level: 3/3	
Unit: Hz	Default: 1.0	Minimum: 1.0	Maximum: 2000.0	Data type: FLOAT	Active: Immediately
5163	DRIVE_NATUR	Cross reference:			
	Natural frequent	cy of drive		Related to: HLA	Protection level: 3/3
Unit: Hz	Default: 1.0	Minimum: 1.0	Maximum: 2000.0	Data type: FLOAT	Active: Immediately
5164	DRIVE_NATUR	Cross reference:			
	Natural frequent	cy of drive B		Related to: HLA	Protection level: 3/3
Unit: Hz	Default: 1.0	Minimum: 1.0	Maximum: 2000.0	Data type: FLOAT	Active: Immediately
5180	CLOSED_LOO	P_SYSTEM_DAMP	ING		Cross reference:
	Selected dampi	ng for closed-loop sy	Related to: HLA	Protection level: 3/3	
			Maximum:	Data type:	Active:

The drive is approximated as a PT2 low pass for the purpose of dimensioning the closed-loop velocity control. The characteristic values "natural frequency" and "damping" are calculated and preset from other drive data by the "Calculate drive model data" function.

With MD 5180: CLOSED_LOOP_SYSTEM_DAMPING can be set to specify the degree of damping to be applied in calculating the control loop during "Calculate controller data".

Example: Damping of 0.9

Slow closed-loop system with infrequent overshoots

Damping of 0.5 Fast closed-loop system with frequent overshoots

4.10 Position measuring system

Description	One measuring system can be connected per axis as a piston rod position sen- sor.
Suitable measuring systems	 Incremental encoder with sinusoidal-cosine voltage signals Absolute measuring systems with EnDat interface and sinusoidal-cosine voltage signals Absolute measuring systems with SSI interface
Incremental encoder	Linear and rotary measuring systems with two 1 Vpp sinusoidal voltage signals in quadrature. The internal interpolation factor of the HLA module is 2048 (high resolution per sine period).
	The sign of the actual-value sensing circuit can be reserved. Signs are reversed by a software function.
Absolute encoder EnDat	Linear and rotary measuring systems with two 1 Vpp sinusoidal voltage signals in quadrature. The internal interpolation factor of the HLA module is 2048 (high resolution per sine period).
	The sign of the actual-value sensing circuit can be reserved. Signs are reversed by a software function.
	An additional serial interface for transmitting the absolute position according to the EnDat protocol.
SSI absolute value encoder ¹⁾	Linear and rotary measuring systems with serial interface for transmitting the absolute position using the SSI protocol.
	The connection for measuring systems with a 24V voltage supply must be made using signal lead 6FX8002-2CC80-1 via which the 24V DC encoder power supply can be fed in. The filter module 6SN1161-1DA00-0AA0 must be used in combination with this lead. No other type of filter may be used.
	Encoders supplied by other manufacturers must be connected via adapter leads supplied by the relevant manufacturer.
	Encoders from the following manufacturers may be used, for example: MTS: Temposonics 25-bit Balluff Micropulse 25-bit Visolux: EDM
	Notice
	The products recommended above are not manufactured by Siemens, but we know that they are suitable for the purpose in principle. However, we can never guarantee the quality of products supplied by other manufacturers.

¹⁾ SSI encoders are likely to have lower noise immunity due to the encoder and the 24 V power supply. The immunity to interference can be improved as follows: By using a separate and immune 24V power supply for the measuring systems

Minimum and

maximum

velocity

The minimum or maximum possible velocity depends on the position measuring system.

• V_{max}: of the position measuring system must not be exceeded.

The maximum measuring velocity must be set in MD 5609: ENC_SPEED_LIMIT (see Subsection 4.13.1).

 V_{max} must not exceed the 350 kHz bar frequency of the connected measuring system.

V_{max,bar}=scale graduation · 350000 s⁻¹

- V_{min}: The number of crossed graduations per velocity controller cycle is small at low velocities. In extreme cases, this can result in uneven movements at low velocities, large scale graduation and short velocity controller cycle.
 - Solution: Select another position measuring system with smaller scale graduations or increase the velocity controller cycle.

Phase error compensation

A phase error on tracks A and B can be corrected with the phase error compensation function.

5008	ENC_PHASE_ERR	OR_CORRECTION			Cross reference: -
	Encoder phase erro	Related to: HLA	Protection level: 3/3		
Unit: Degrees	Default: 0.0	Minimum: -20.0	Maximum: 20.0	Data type: FLOAT	Active: Immediately
5011	ACTUAL_VALUE_	CONFIG			Cross reference: -
	Bit 0= 0: No inversion 1: Actual value Bit 1= 0: No phase er 1: Phase error Bit 3= 0: No absolute 1: Absolute val Bit 4= 0: Rotary mean 1: Linear or rot Bit7= 0: No distance 1: Distance-co Bit 8= 0: No zero man 1: Zero marken	value sensing configuration			Protection level: 3/3
Unit: HEX	Default: 0	Minimum: 0	Maximum: 65535	Data type: UNS.WORD	Active: Power On

Linear scale graduations

5024	DIVISION_LII	DIVISION_LIN_SCALE						
	Linear scale graduations			Related to: HLA	Protection level: 3/3			
Unit: nm	Default: 20000	Minimum: 1000 (0)	Maximum: 5000000	Data type: UNS.DWORD	Active: Power On			

The standard parameterizing machine data provided support only linear measuring systems. ROD encoders must be converted by the user, i.e. the distance traversed by the drive between two (coarse) increments must be entered. Value 0 is automatically entered if MD 5011 bit 4 is set to 0 (no linear measuring system).

Rotary absolute value encoders cannot be implemented until software version HLA 01.01.11 and beyond

5021	ENC_ABS_TURN	Cross reference: -			
	Multi-turn resolution, absolute encoder, motor				Protection level: 3/3
Unit: U	Default: 4096	Minimum: 0000	Maximum: 65535	Data type: WORD	Active: Power On

Number of displayable revolutions of absolute value encoder in motor measuring system. The value is read-only.

5022	ENC_ABS_R	ENC_ABS_RESOL_MOTOR					
	Measuring ste	ps of absolute track in	Related to: HLA	Protection level: 3/3			
Unit: -	Default: 8192	Minimum: 0000	Maximum: 65535	Data type: WORD	Active: Power On		

Resolution of motor absolute value encoder in measuring pulses per revolution. The value is read-only.

5023	ENC_AB	S_DIAGN		Cross reference: -		
Bit 1	$\begin{array}{c} \text{Bit } 0=1:\\ \text{Bit } 1=1:\\ \text{Bit } 2=1:\\ \text{Bit } 3=1:\\ \text{Bit } 4=1:\\ \text{Bit } 5=1:\\ \text{Bit } 5=1:\\ \text{Bit } 6=1:\\ \text{Bit } 7=1:\\ \text{Bit } 9=1:\\ \text{Bit } 9=1:\\ \text{Bit } 10=1:\\ \text{Bit } 10=1:\\ \text{Bit } 11=1:\\ \text{Bit } 12=1:\\ \text{Bit } 13=1:\\ \text{Bit } 13=1:\\ \text{Bit } 14=1:\\ \text{Bit } 15=1:\\ 2 \text{ and } 15: \end{array}$	"Lighting "Signal ar "Faulty cc "Overvolt "Undervo "Overcurr "Battery c "Control c "EnDat ee CDtrack c "Protocol "SSI leve "TIMEOU "CRC err SSI enco "Encoder SSI zero	mplitude too small" ode connection" age" ltage" ent" change necessary" check error" ncoder cannot be use on encoder ERN1387 cannot be interrupted l on data line detected IT reading measured or" der returned alarm	d" defective "	Related to: HLA	Protection level: 3/3
Unit: HEX	Default: 0		Minimum: 0	Maximum: BFFF	Data type: UNS.WORD	Active: Immediately

Diagnostic bits of absolute value encoder, motor measuring system

5025	SERIAL_NO_ENC	SERIAL_NO_ENCODER						
	Serial number of m	otor measuring syste	Related to:	Protection level:				
	(HLA 01/02/04 or la	ater)	HLA	1/1				
Unit:	Default:	Minimum:	Maximum:	Data type:	Active:			
-	0	0	4294967295	UNS. DWORD	Power On			

The serial number of the indirect, absolute measuring system is read from the encoder in set state 3 at boot and entered in MD 5025. (Exception: Linear encoder.) 0 is entered if an incremental measuring system is installed. This encoder ID notifies the NC if the encoder has been replaced and, if it has been replaced, the NC resets the calibration identifier.

5027	ENC_CONFIG	Cross reference: -			
	Configuration of IM encoder (HLA 01/02/04 or later)				Protection level: 2/4
Unit: -	Default: 0	Minimum: 0000H	Maximum: FFFFH	Data type: WORD	Active: Power On

Bit	0 or 1	Description
	= 00	100 kHz
7	= 01	500 kHz
7	= 10	1 MHz
	= 11	2 MHz
9	= 0	SSI encoder with incremental signal (not permitted)
9	= 1	SSI encoder without incremental signal
10	= 0	Gray code
10	= 1	Dual (binary code)
11	= 0	Right-justified format
11	= 1	Fir-tree format (not permitted)
12	= 0	Without parity bit
12	= 1	With parity bit
13	= 0	Odd parity
13	= 1	Even parity
14	= 0	No alarm bit
14	= 1	With alarm bit
15	= 1	With SSI encoder

Table 4-8 Configuration of SSI encoder

5028	NO_TRANSMISSI	NO_TRANSMISSION_BITS				
	Message frame length SSI (HLA 01/02/04 or later)			Related to: HLA	Protection level: 2/4	
Unit: -	Default: 25	Minimum: O	Maximum: 25	Data type: WORD	Active: Power On	

The length defines the total transferred message frame length including all parity or alarm bits.

Example: 24 bits + 1 alarm bit; 25 must be entered.

Every encoder manufacturer has a different name for the alarm bit, e.g. Power Failure Bit.

Actual position value

5040	PISTON_ZER	PISTON_ZERO					
	Piston zero in	relation to machine zero	Related to: HLA	Protection level: 3/3			
Unit: mm	Default: 0.0	Minimum: -1000000.0	Maximum: 100000.0	Data type: FLOAT	Active: Immediately		

In the machine data 5040: between the piston zero (end stop at A end) and machine zero must be set in MD 5040: PISTON_ZERO.

If the actual position is available in machine coordinates in the drive after the reference point approach, it can be applied to calculate the piston position (e.g. for adaptation).

4.11 Pressure sensing system

Sensor adjustment

5550	PRESSURE_	PRESSURE_SENS_A_REF				
	Reference val	Related to: HLA	Protection level: 3/3			
Unit: bar	Default: 200.0	Minimum: 50.0	Maximum: 400.0	Data type: FLOAT	Active: Immediately	
5552	PRESSURE_	SENS_B_REF			Cross reference: -	
	Reference val	ue of pressure sensor	Related to: HLA	Protection level: 3/3		
Unit: bar	Default: 200.0	Minimum: 50.0	Maximum: 400.0	Data type: FLOAT	Active: Immediately	

In MD 5550: PRESSURE_SENS_A_REF and MD 5552:

PRESSURE_SENS_B_REF, the pressure at which the pressure sensor outputs 10 V at the A and B ends of the cylinder is entered in bar.

The pressure sensor should have a range of 0 to 10 V, with 0 bar pressure represented by 0 V and the reference value (MD 5550 or. MD 5552) by 10 V.

Offset adjustment

5551	PRESSURE_	SENS_A_OFFS			Cross reference: -
	Offset adjustm	nent for pressure sense	Related to: HLA	Protection level: 3/3	
Unit: -	Default: 0	Minimum: -32760	Data type: WORD	Active: Immediately	
5553	PRESSURE_	SENS_B_OFFS			Cross reference: -
	Offset adjustm	nent for pressure sense	or B	Related to: HLA	Protection level: 3/3
Unit:	Default:	Minimum:	Maximum:	Data type:	Active:

Bits set to 1 in MD 5551: PRESSURE_SENS_A_OFFS and MD 5553: PRESSURE_SENS_B_OFFS, the pressure sensor offset at the A or B end of the cylinder is adjusted in ADC increments.

The pressure indicator should also display 0 bar at zero pressure. If the velocity controller cycle is altered, the offset must be adjusted again.

Note

For automatic offset adjustment, see Subsection 3.9.2.

4.12 Terminals

ON/OFF sequence

Terminals are provided on connectors X431/X432 of the HLA module and X121 of the MS module for the purpose of implementing the ON/OFF conditions for the HLA module.

The following overview shows the hierarchy of signals for enabling and disabling the HLA.

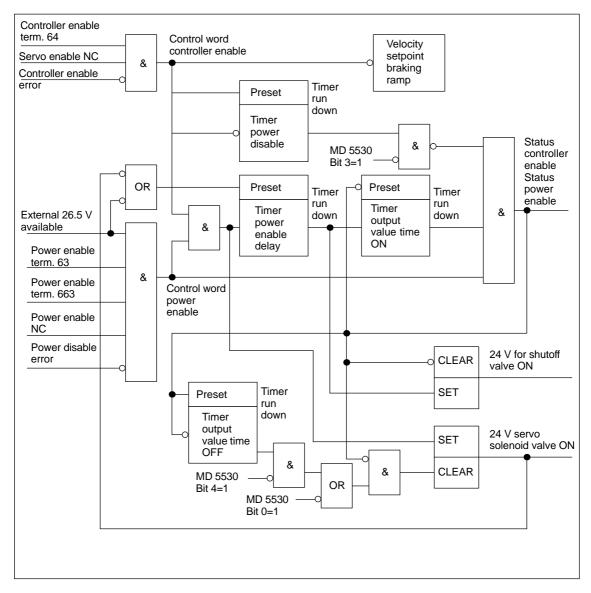


Fig. 4-18 Enabling logic on HLA module

External 26.5 VThe 24 V voltage for the shut-off valve and valve electronics is supplied from an
external source connected via the HLA module.

This voltage source is monitored by the HLA module such that an internal signaling bit "24 V valve supply voltage missing" is set by the hardware when the voltage drops below a specific threshold. While the "Valve supply voltage missing" bit is set, any power enable command will be rejected, thus setting the "velocity controller enable" status bit to zero.

• Failure of 26.5 V supply during operation

The power is disabled and status bit "Velocity controller enable" canceled. The module does not output an error message.

 Recovery of 26.5 V supply voltage or after initial connection of the 26.5V supply voltage

The power is not enabled until the power enabling delay set in MD 5532 has expired.

Warning

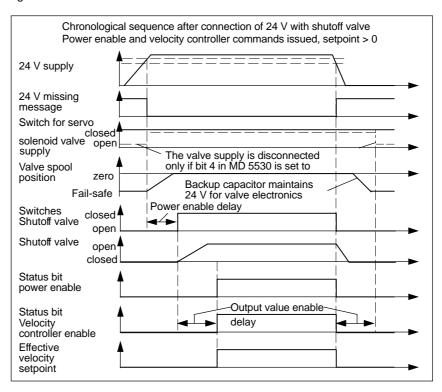
In the event of sudden failure (e.g. open circuit) of the external 26.5 V supply, an axial storage capacitor on the HLA module provides energy to supply the servo solenoid valve until such time as the pressure supply for a configured shut-off valve is disabled.

The machine manufacturer must verify the interaction between valves, making allowance for all tolerances in the controlled system.

The energy content of the storage capacitors is dependent upon

• the tolerances of the capacitors,

The available response time is mainly defined by


- the power required for the current machining step,
- · the response time of the shut-off valves and
- the trip threshold of the servo solenoid valves.

5532	POWER_ENABLE	Cross reference: -			
Power enable delay time				Related to: HLA	Protection level:
Unit: ms	Default: 100	Minimum: 0	Maximum: 300	Data type: UNS.WORD	Active: Immediately

If a shut-off valve is connected (MD 5530, bit 0=1), the switch remains open for that time, i.e. the shut-off valve is closed.

This gives the servo solenoid valve enough time to move into the mid-position from the fail-safe position without pressure. In such cases, the power enabling delay period must be set to the time required by the valve to move from fail-safe to mid-position.

If this operation were to take place under pressure, the drive would move. If no shut-off valve is connected, zero can be entered as the power enabling delay period.

Figs. 4-19 and 4-20 show the system response to 24 V ON and OFF for a configuration with and without shut-off valve.

Fig. 4-19 Chronological sequence after connection of 24 V supply, with shut-off valve

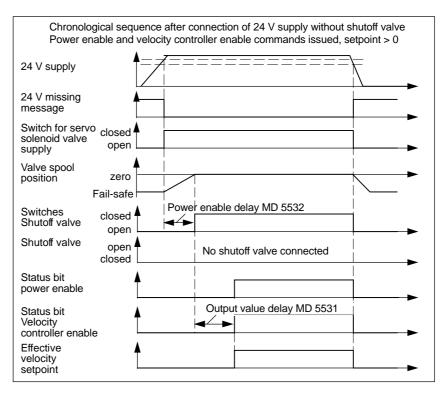


Fig. 4-20 Chronological sequence after connection of 24 V supply, without shut-off valve

Power enableThe power enabling command (corresponding to pulse enable on an electrical
drive) can be issued and/or canceled via the following paths:

- Term. 63 (central power enable)
- Term. 663 (module-specific power enable)
- Control word (from NC)
- Error (ZK1, watchdog)

5530	CYLINDER_SAFE	TY_CONFIG			Cross reference: -
Safet	y configuration	Related to:	Protection level:		
Bit 0=	 0: Without shut-off v 1: With shut-off valve 		HLA	3/3	
Bit 1=	 0: Central shut-off va 1: Axis-specific shut 				
Bit 2=	 0: No valve spool ch 1: Valve spool check 				
Bit 3=	 0: Velocity controller 1: Velocity controller 				
Bit 4=	1: Servo solenoid va	lve supply disconned elevant without shut-c lve supply remains c e (irrelevant without s	ff valve) onnected with PS		
	(PD = Power disab	le)			
Unit: HEX	Default: 4	Minimum: 0	Maximum: 31	Data type: UNS.WORD	Active: Immediately
5531	OUTPUT_ENABL	E_DELAY			Cross reference: -
	Manipulated variable enable delay				Protection level: 3/3
Unit: ms	Default: 300	Minimum: 0	Maximum: 500	Data type: UNS.WORD	Active: Immediately

The manipulated variable delay time is the time which the velocity controller enable continues to disable after the power enable delay time (MD 5532) has expired. This delay time is needed to allow the shut-off valve to open or, in systems without shut-off valve, to allow the valve spool to move from the fail-safe to the zero position.

Disconnecting the shut-off valve supply

If a shut-off valve is set in MD 5530 (bit 0 or bit 1 = 1) and the supply voltage of the servo solenoid valve is to be disconnected when the power is disabled (MD 5530 bit=0), the manipulated variable delay (MD 5531) is the time it takes until the voltage supply of the servo solenoid valve is interrupted. The shut-off valve can be closed during this period.

Actions on PE (ext. 24 V supply available, controllers enabled):

- 24 V supply for servo solenoid valve is switched on immediately (if it is not already connected).
- If 24 V supply for servo solenoid valve was available, then 24 V supply for shut-off valve is switched on immediately, otherwise it is not switched on until power enable delay period has run down.
- After the 24 V supply for the shut-off valve has been switched on, the status word "Velocity controller enable" is not set until the manipulated variable enable delay has run down.

Operating sequence for PD (power disable):

- 24 V supply for shut-off valve is disconnected immediately (shut-off valve closes).
- If MD 5530 bit 4=0 is set, the 24 V supply for the servo solenoid valve is also switched off when the manipulated variable enable delay (MD 5531) runs down (servo solenoid valve moves to fail-safe position).

If MD 5530 bit 4=1 is set, the 24 V supply for the servo solenoid valve remains connected.

- If MD 5530 bit 0=0 is set (no shut-off valve), then the 24 V supply for the servo solenoid valve is switched off immediately (servo solenoid valve moves to fail-safe position).
- Velocity controller enable status bit is reset immediately.
 - Valve setpoint=0 V is output
 - Controller I-components are cleared.
 - Valve spool monitoring is deactivated
- If a **central shut-off valve** is installed, it is left to the user to gate the signals (e.g. using the PLC) such that the central shut-off valve is actuated when the power is disabled.

To prevent errors on other axes, it should be ensured that all axes whose pressure is supplied via the central shut-off valve also receive the power disable command when the central shut-off valve is actuated.

 If a separate shut-off valve (axis-specific shut-off valve) is installed for each axis, this need only be connected to the "shut-off valve" relay output of the relevant axis.

After the power has been disabled, the switch for the 24 V supply is either opened or not (depending on the setting of bit 4 in MD 5530) at the end of the manipulated variable enable delay. The default setting has been selected such that the 24 V valve supply voltage is disconnected (bit 4 = 0), thus moving the valve into the fail-safe position.

This will not be necessary if a shut-off valve is installed and actuated. This function has been integrated for cases where a shut-off valve has been set, but is not actually connected. In such cases, this function prevents the drive from being able to drift after a power disable. After a function test, bit 4 in MD 5530 can be set to 1.

Velocity controller A velocity controller enable/disable can be requested via the following paths: enable

- Terminal 64 (central velocity controller enable)
- Control word (from NC)
- Error (ZK1)

If a velocity controller enable is requested and all the relevant enable conditions are fulfilled, i.e.

- manipulated variable enable delay run down,
- 24 V supply for shut-off and SS valves ON,
- power enable signal set and
- No error

then the "Velocity controller enable" status bit is set.

Mode of operation when "Velocity controller enable" bit is set:

- Valve setpoint is output by the velocity controller
- I-component is enabled
- Valve spool monitor is activated

If a velocity controller disable is requested, a zero velocity setpoint is output.

- The braking time set in MD 5402 acts as a speed setpoint adjustment ramp (acceleration limitation).
- The setting in MD 5402 corresponds to the time required by the braking ramp to decelerate the cylinder from the speed in MD 5401 down to zero. This ramp is effective only when the velocity controller is disabled since, in this case, the acceleration limits programmed in the control are ignored. Otherwise, the control system has the responsibility of limiting acceleration rates.
- If velocity controller disable followed by a power disable is requested (MD 5530 bit 3=0), then the delay set in MD 5404: POWER_DISABLE_DELAY is left to run down after the velocity controller disable request until the power disable signal is set. If MD 5530, bit 3=1, MD 5404 has no meaning (drive continues to operate under closed-loop control with a zero velocity setpoint following a velocity controller disable request).

Velocity controller disable

5402	SPEED_CTRL_	DISABLE_STOPTI	ME		Cross reference: -
	Braking time for	Related to: HLA	Protection level: 3/3		
Unit: ms	Default:Minimum:Maximum:Data type0.00.0120000.0FLOAT				Active: Immediately
5404	POWER_DISA	BLE_DELAY			Cross reference: -
Power disable timer				Related to: HLA	Protection level: 3/3
				112/1	0/0

Setup mode

If the setup mode terminal (term. 112 on mains supply module) is selected, the velocity setpoint is limited to the value programmed in MD 5420.

Function switch

5012	FUNC_SWITC	FUNC_SWITCH					
Bit 2=1: D an Bit 4=1: ZI Bit 14=1: Va	rive signaled as rive signaled as rive signaled as ro d terminals 63, 64 <2 parameterizati alid offset betwee	,	is pending is pending ctual value zero	Related to: HLA	Protection level: 3/3		
Unit: -	Default: 4	Minimum: 0	Maximum: 65535	Data type: UNS.WORD	Active: Immediately		

Only bits 2 and 4 are relevant for the user.

SIMRDY

This LED indicates that the drive unit is ready (SIMODRIVE Ready terminal 72/73 -> device bus; cannot be changed by MD 5012).

4.13 Monitoring functions

4.13.1 Alarms

Power On alarms

5600	ALARM_MASK_	POWER_ON			Cross reference: -	
	Concealable alar Bit 4: "Measuring Bit 5: Measuring Bit 8: "Zero mark	Protection level: 3/3				
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately	
5612	ALARM_REACT	ION_POWER_ON			Cross reference: -	
Config. shutdown response to PO alarms Bit 0= 0: No enable signal cancellation in response to internal errors 1: Enable signal cancellation in response to internal errors					Protection level: 3/3	
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately	
5731	CL1_PO_IMAGE			•	Cross reference: -	
	Image ZK1_PO register Related to: HLA					
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately	

With MD 5600: ALARM_MASK_POWER_ON can be set to conceal Power On alarms. If the relevant bit is set to 0, the corresponding error monitoring function is active. If the bit=1, the error monitoring function is suppressed. The default setting is active for all monitoring functions.

With MD 5612: ALARM_REACTION_POWER_ON is set to configure changeover of the relevant Power On alarm.

Alarm messages, see Chapter 6, numbers 300500...300599.

RESET alarms

5601	ALARM_MASK_F	RESET			Cross reference: -
	Concealable alarm Bit 7: "Valve cor Bit 8: "Velocity c Bit 9: "Encoder l Bit 10: "Piston po Bit 11: "Pressure Bit 12: "Force lim Bit 13: "External v ("26.5 V m	ntroller not respond ontroller at limit" imit frequency exc sition negative" sensing failed" itation OFF"	ceeded"	Related to: HLA	Protection level: 3/3
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately

5613	ALARM_REACTIO	DN_RESET			Cross reference: -
 Config. shutdown response to RESET alarms Bit 0= 0: No enable signal cancellation in response to configuration errors 1: Enable signal cancellation in response to configuration errors 			Related to: HLA	Protection level: 3/3	
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately
5732	CL1_RES_IMAGE				Cross reference: -
	Image ZK1_RES register				Protection level: 3/3
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately

With MD 5601: ALARM_MASK_RESET can be set to conceal Reset alarms. If the relevant bit is set to 0, the corresponding error monitoring function is active. If the bit=1, the relevant error message is suppressed. The default setting is active for all monitoring functions.

With MD 5613: ALARM_REACTION_RESET is set to configure changeover of the relevant Reset alarm.

Alarm messages, see Chapter 6, numbers 300600...300699.

"Limit frequency reached" measuring circuit

5609	ENC_SPEED_LIM		Cross reference: -		
Max. measuring velocity of linear scale				Related to: HLA	Protection level: 3/3
Unit: mm/min	Default: 240 000.0	Minimum: 1.0	Maximum: 240 000.0	Data type: FLOAT	Active: Immediately

The limit frequency of the measured-value conditioning hardware is monitored with respect to A/B signals. The limit frequency is calculated from machine data MD 5005 and MD 5609. It is approximately 100 kHz and is normally specified by the measuring system manufacturer.

Maximum measuring velocity (MD 5609) / increments (MD 5005) = encoder limit frequency

Example: 120 000 mm/min / 20 µm = 100 kHz

Velocity controller at limit

5605	SPEEDCTRL_	Cross reference: -			
Time for velocity controller at limit				Related to: HLA	Protection level: 3/3
Unit: ms	Default: 200.0	Minimum: 20.0	Maximum: 1000.0	Data type: FLOAT	Active: Immediately

5606	SPEEDCTRL_LI	Cross reference: -			
Threshold for velocity controller at limit			Related to: HLA	Protection level: 3/3	
Unit: mm/min	Default: 120 000.0	Minimum: 0.0	Maximum: 120 000.0	Data type: FLOAT	Active: Immediately

A message is activated if the manipulated voltage at the D/A converter is continuously for at the limit a set period and, at the same time, the actual velocity is lower than a set threshold (MD 5606).

Valve spool not responding

5614	VALVE_ERROR_T	VALVE_ERROR_TIME				
Valve spool monitoring timer			Related to: HLA	Protection level: 3/3		
Unit: ms	Default: 50	Minimum: 1	Maximum: 100	Data type: UNS.WORD	Active: Immediately	

The valve spool position is returned for all Rexroth servo solenoid valves from the preferred range (see Subsection 2.3.2). The message "Valve spool is not responding" is output if the valve spool position exits the tolerance field of 10% of maximum stroke around the setpoint for longer than the time set in MD 5614 when the power is enabled. This error message cannot be output if no checkback signal is configured for the valve spool position (MD 5530).

4.13.2 Variable signaling functions

Input bit field for controlling the variable signaling function.

5620	PROG_SIGNAL_F	PROG_SIGNAL_FLAGS				
	Bit 0= 0: Variable s 1: Variable s Bit1= 0: Variable s space X 1: Variable s space Y Bit 2=0: Compar. va	ignaling function bits /ariable signaling function; not active /ariable signaling function; active /ariable signaling function segment; address ice X /ariable signaling function segment; address ice Y ompar. var. sign. fct.; compare without sign Compar. var. sign. fct.; compare with sign		Related to: HLA	Protection level: 3/3	
Unit: HEX	Default: 0	Minimum: 0	Maximum: 7	Data type: UNS.WORD	Active: Immediately	

Note

Bit 1 is **only** effective, if the signal number 0 is selected in MD 1651:PROG_SIGNAL_NR.

Any memory location from address space X or Y in the data RAM can be monitored for violation of a set threshold for the variable signaling function. A tolerance band can be set around this threshold; this is taken into account when the threshold is scanned for violation in either direction. Any violation of the tolerance band is signaled to the PLC. This violation message can be linked to a pickup and/or dropout delay. The signaling function operates in a 4 ms cycle.

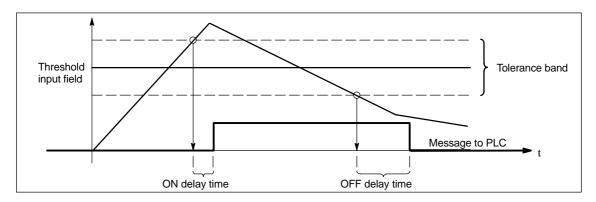


Fig. 4-21 Variable signaling function

Note

The quantity to be monitored can be selected through specification of either a signal number or a physical address, the physical address having relevance **only** for Siemens servicing activities.

The following machine data corresponds to MD 5620:

- MD 5621: PROG_SIGNAL_NR
- MD 5622: PROG_SIGNAL_ADDRESS
- MD 5623: PROG_SIGNAL_THRESHOLD
- MD 5624: PROG_SIGNAL_HYSTERESIS
- MD 5625: PROG_SIGNAL_ON_DELAY
- MD 5626: PROG_SIGNAL_OFF_DELAY

Note

If changes are made to machine data MD 5621 to MD 5624 while monitoring is already active (\pm MD 5620, Bit 0 = 1), they do not automatically reinitialize the PLC message, i.e. reset it to 0. If the message must be re-initialized, the monitoring function must be switched off and on again via MD 5620, bit 0, after the MD setting has been changed.

4.13 Monitoring functions

5621	PROG_SIGNAL	PROG_SIGNAL_NR				
Signal number of variable signaling function			Related to: HLA	Protection level: 3/3		
Unit: -	Default: 0	Minimum: O	Maximum: 100	Data type: UNS. WORD	Active: Immediately	

Enter the signal number of the memory location to be monitored by the variable signaling function.

Table 4-9 Signal number variable signal function

Signal number	Signal designation	Normalization (LSB corresponds to:)
0	No signal	-
1	No signal	-
2	Pressure p(A) (with pressure sensing)	MD 5710 ¹⁾
3	Pressure p(B) (with pressure sensing)	MD 5710 ¹⁾
4	Actual valve spool value	MD 5709 ¹⁾
5	Valve spool setpoint	MD 5709 ¹⁾
6	Actual velocity value	MD 5711 ¹⁾
7	Velocity setpoint (before filter, limitation)	MD 5711 ¹⁾
8	Velocity setpoint (downstream of filter, limitation)	MD 5711 ¹⁾
9	Velocity setpoint reference model	MD 5711 ¹⁾
10	Actual force (with pressure sensing)	MD 5713 ¹⁾
11	Active power	1 inc → 0.01 kW
12	Velocity controller differential	MD 5711 ¹⁾
13	Velocity controller P component	MD 5709 ¹⁾
14	Velocity controller I component	MD 5709 ¹⁾
15	Velocity controller D component	MD 5709 ¹⁾
16	Velocity controller feedforward control component	MD 5709 ¹⁾
17	Friction feedforward control component velocity controller	MD 5709 ¹⁾
18	Velocity controller output (before filter)	MD 5709 ¹⁾
19	Velocity controller output (after filter)	MD 5709 ¹⁾
20	Actual position value	MD 5714 ¹⁾
21	Force setpoint	MD 5713 ¹⁾
22	Force controller control deviation	MD 5713 ¹⁾
23	P component of force controller	MD 5709 ¹⁾
24	I component of force controller	MD 5709 ¹⁾
25	D component of force controller	MD 5709 ¹⁾
26	Feedforward control component force controller	MD 5709 ¹⁾
27	Force controller output	MD 5709 ¹⁾
28	Zero mark signal	-
29	BERO signal	-

1) See Subsection 4.14.3

5622	PROG_SIGNAL_A	PROG_SIGNAL_ADDRESS				
Address of variable signaling function				Related to: HLA	Protection level: 3/3	
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFFFF	Data type: UNS.DWORD	Active: Immediately	

Enter the address of the memory location to be monitored by the variable signaling function.

Note

This machine data is effective **only** if the signal number is set to 0 (see MD 5621).

5623	PROG_SIGNAL_	PROG_SIGNAL_THRESHOLD				
Threshold of variable signaling function			Related to: HLA	Protection level: 3/3		
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFFFF	Data type: UNS.DWORD	Active: Immediately	

Enter the threshold for the memory location address entered in MD 5622: PROG_SIGNAL_ADDRESS which is to be monitored by the variable signaling function. In combination with MD 5624: PROG_SIGNAL_HYSTERESIS, this defines the actual value to be checked by the monitoring function (see diagram under MD 5620, Fig. 4-21).

Note

Depending on machine data MD 5620: PROG_SIGNAL_FLAGS, the numerical value entered in MD 5624 is interpreted as an unsigned value (bit 2 = 0) or a signed value (bit 2 = 1).

5624	PROG_SIGNAL_H	PROG_SIGNAL_HYSTERESIS				
	Hysteresis of variable signaling function			Related to: HLA	Protection level: 3/3	
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFFFF	Data type: UNS.DWORD	Active: Immediately	

Enter the hysteresis (tolerance band) for the memory location address entered in MD 5622: PROG_SIGNAL_ADDRESS which is to be monitored by the variable signaling function. In combination with MD 5623: PROG_SIGNAL_THRESHOLD, this defines the actual value to be checked by the monitoring function (see diagram under MD 5620, Fig. 4-21).

Note

Depending on MD 5620: PROG_SIGNAL_FLAGS, the numerical value entered in MD 5624 is interpreted as an unsigned value (bit 2 = 0) or a signed value (bit 2 = 1).

4.13 Monitoring functions

5625	PROG_SIGNA	PROG_SIGNAL_ON_DELAY				
Pickup delay of variable signaling function			Related to: HLA	Protection level: 3/3		
Unit: -	Default: 0	Minimum: 0	Maximum: 10 000	Data type: UNS.DWORD	Active: Immediately	

Enter the pickup delay for setting the message if the monitored quantity exceeds the set threshold (with hysteresis) (see diagram under MD 5620, Fig. 4-21).

Note

Changing the settings in MD 5625: PROG_SIGNAL_ON_DELAY and MD 5626: PROG_SIGNAL_OFF_DELAY affects a time watchdog that is already running. The monitor is initialized with the new time settings.

5626	PROG_SIGN/	PROG_SIGNAL_OFF_DELAY				
Dropout delay of variable signaling function				Related to: HLA	Protection level: 3/3	
Unit: -	Default: 0	Minimum: 0	Maximum: 10 000	Data type: UNS.WORD	Active: Immediately	

Enter the dropout delay for resetting the message if the monitored quantity drops below the set threshold (with hysteresis) (see diagram under MD 5620, Fig. 4-21).

Note

Changing the settings in MD 5625: PROG_SIGNAL_ON_DELAY and MD 5626: PROG_SIGNAL_OFF_DELAY affects a time watchdog that is already running. The monitor is initialized with the new time settings.

4.14 Service functions

For explanations regarding the

- Measuring functions
 - Measurement of valve control loop
 - Measurement of velocity control loop
 - Position control measurement
- Function generator
- Circularity test
- Servo trace
- DAC configuration

see Subsection 3.11, Start-up functions.

5650	DIAGNOSIS_CON	DIAGNOSIS_CONTROL_FLAGS				
Bit (Bit 1 Bit 2 Bit 1 Bit 1	 Min/max memory Compare signed Conversion of ve Measuring function Conversion of fur identification 	ntrol emory emory segment gned of velocities to forces unctions, function generator of function generator to valve characteristic n		Related to: HLA	Protection level: 3/3	
Bit 13	Offset adjustmen	t valve spool setpoint				
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately	

MD 5650 is important for diagnostic and start-up purposes.

For information about adjusting the pressure sensor and valve setpoint offsets, see Subsection 3.9.2.

To start up the force controller, it is possible to redirect the measuring functions and function generator from the velocity controller to the force controller by setting bit 8 (see Section 4.4).

4.14.1 Min/max display

Note

Machine data MD 5651 to MD 5654 are relevant **only** for internal Siemens functions and **must not be changed**.

5651	MINMAX_SIG	Cross reference: -			
	Signal number of min/max memory			Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: O	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately
5652	MINMAX_AD	DRESS			Cross reference: -
Memory location in min/max memory				Related to: HLA	Protection level: 3/3
Unit:	Default:	Minimum:	Maximum:	Data type:	Active:

4.14 Service functions

5653	MINMAX_MIN_\	Cross reference: -			
	Minimum value o	Related to: HLA	Protection level: 3/3		
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFFFF	Data type: UNS.DWORD	Active: Immediately
5654	MINMAX_MAX_	VALUE			Cross reference: -
	Maximum value	Related to: HLA	Protection level: 3/3		
Unit:	Default:	Minimum: 0	Maximum:	Data type: UNS.DWORD	Active: Immediately

4.14.2 Monitor

Note

Machine data MD 5655 to MD 5659 are relevant **only** for internal Siemens functions and **must not be changed**.

5655	MONITOR_SEG	MENT			Cross reference: -
	Monitor memory	location segment	Related to: HLA	Protection level: 3/3	
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately
5656	MONITOR_ADD	RESS			Cross reference: -
	Monitor memory	location address		Related to: HLA	Protection level: 3/3
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFFFF	Data type: UNS.DWORD	Active: Immediately
5657	MONITOR_DISPLAY				Cross reference: -
	Monitor value dis	play		Related to: HLA	Protection level: 3/3
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFFFF	Data type: UNS.DWORD	Active: Immediately
5658	MONITOR_INPU	T_VALUE			Cross reference: -
	Monitor value inp	ut		Related to: HLA	Protection level: 3/3
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFFFF	Data type: UNS.DWORD	Active: Immediately
5659	MONITOR_INPUT_STROBE				Cross reference: -
	Monitor value tra	nsfer		Related to: HLA	Protection level: 3/3
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately

4.14.3 Diagnostic machine data

Various machine data is provided in the HLA module for diagnostic purposes. NC diagnostic displays are available in a similar way to those used on electrical drives.

5700	TERMINAL_S	TATE			Cross reference: -
	Status of binary inputs Bit 0: 26.5 V supply available Bit 1: Term. 663 available Bit 2: Term. 63 available Bit 3: HW enable aggregate signal set Bit 5: Setup mode selected Bit 6: Term. 64 available Bit 12: 24 V servo solenoid valve ON Bit 13: 24 V shutoff valve ON			Related to: HLA	Protection level: 3/3
Unit: HEX	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately
5704	ACTUAL_PRI	ESSURE_A			Cross reference: -
	Actual pressur	re A		Related to: HLA	Protection level: 3/3
Unit: bar	Default: 0.0	Minimum: -10000.0	Maximum: 10000.0	Data type: FLOAT	Active: Immediately
5705	ACTUAL_PRI	ESSURE_B	Ч		Cross reference: -
	Actual pressure B			Related to: HLA	Protection level: 3/3
Unit: bar	Default: 0.0	Minimum: -10000.0	Maximum: 10000.0	Data type: FLOAT	Active: Immediately
5706	DESIRED_SP	Cross reference: -			
	Velocity setpoint			Related to: HLA	Protection level: 3/3
Unit: mm/min	Default: 0.0	Minimum: -240000.0	Maximum: 240000.0	Data type: FLOAT	Active: Immediately
5707	ACTUAL_SPE	ED			Cross reference: -
	Actual velocity	value		Related to: HLA	Protection level: 3/3
Unit: mm/min	Default: 0.0	Minimum: -240000.0	Maximum: 240000.0	Data type: FLOAT	Active: Immediately
5709	VOLTAGE_LS	B			Cross reference: -
	Significance of voltage representation Defines how many volts [V] correspond to 1 increment of the internal voltage format (valve spool setpoint/actual value).			Related to: HLA	Protection level: 3/3
Unit: V	Default: 0.0	Minimum: -100000.0	Maximum: 100000.0	Data type: FLOAT	Active: Immediately
5710	PRESSURE_I	_SB		1	Cross reference: -
	Defines the pr	f pressure representation essure in [bar] correspondent internal pressure for	onding to 1	Related to: HLA	Protection level: 3/3
Unit: bar	Default: 0.0	Minimum: -240000.0	Maximum: 240000.0	Data type: FLOAT	Active: Immediately

4.14 Service functions

5711	SPEED_LSB				Cross reference: -
	Significance of velocity representation Defines the velocity in [mm/min] corresponding to 1 increment of the internal velocity format.			Related to: HLA	Protection level: 3/3
Unit: mm/min	Default: 0.0	Minimum: -240000.0	Maximum: 240000.0	Data type: FLOAT	Active: Immediately
5713	FORCE_LSB				Cross reference: -
	Defines the for	force representation ce in $[\mu N]$ correspondin the internal force formation		Related to: HLA	Protection level: 3/3
Unit: μN	Default: 0.0	Minimum: -10000000.0	Maximum: 10000000.0	Data type: FLOAT	Active: Immediately
5714	POSITION_LSB Significance of position representation Defines the position in [nm] corresponding to 1 increment of the internal position format.				Cross reference: -
				Related to: HLA	Protection level: 3/3
Unit: nm	Default: 0.0	Minimum: -1000000.0	Maximum: 1000000.0	Data type: FLOAT	Active: Immediately
5715	DESIRED_VALVE_SPOOL_POS				Cross reference: -
	Voltage for valv	ve spool position setpoi	nt	Related to: HLA	Protection level: 3/3
Unit: V	Default: 0.0	Minimum: -10.0	Maximum: 10.0	Data type: FLOAT	Active: Immediately
5716	ACTUAL_VAL	VE_SPOOL_POS			Cross reference: -
	Voltage for act	ual valve spool position	value	Related to: HLA	Protection level: 3/3
Unit: V	Default: 0.0	Minimum: -10.0	Maximum: 10.0	Data type: FLOAT	Active: Immediately
5725	MAX_FORCE	_FROM_NC			Cross reference: -
	in high-speed I	Normalization of force setpoint interface in high-speed PLC data channel. 4000hex corresponds to value in MD 5725.			Protection level: 3/3
Unit: N	Default: 0.0	Minimum: 0.0	Maximum: 10000000.0	Data type: FLOAT	Active: Immediately

The value in MD 5725 equals 100% of the set value from the NC program (FXST[X]=100).

5740	ACTUAL_POS	ACTUAL_POSITION				
Actual position in relation to machine zero			Related to: HLA	Protection level: 3/3		
Unit: mm	Default: 0.0	Minimum: -10000000.0	Maximum: 10000000.0	Data type: FLOAT	Active: Immediately	
5741	ACTUAL_PIST	ON_POSITION			Cross reference: -	
Piston position in relation to piston zero			Related to: HLA	Protection level: 3/3		
Unit: mm	Default: 0.0	Minimum: -10000000.0	Maximum: 10000000.0	Data type: FLOAT	Active: Immediately	

5730	OPERATING_MOD	E			Cross reference: -
B B B B B B B B B B B B B B B B B B B	Operating mode display Bit 0=1: Velocity controller active Bit 1=1: Force limitation active Bit 2=1: Friction torque compensation active Bit 3=1: Velocity controller adaptation active (MD 5413=1) Bit 4=1: Piston position known Bit 8=1: Force limitation 1 set (MD 5241 Bit 0=1) Bit 9=1: Friction torque compensation set (MD 5241 Bit 1=1) Bit 10=1: Force limitation 2 set (MD 5241 Bit 2=1)			Related to: HLA	Protection level: 3/3
Unit: HEX	Default: 1	Minimum: 1	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately
5790	ENC_TYPE			Cross reference: -	
	Measuring circuit type of measuring system 0: IPU (V) unconditioned voltage signals 115: Reserved 16: EnDat encoder 48: SSI encoder			Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: -1	Maximum: 32767	Data type: WORD	Active: Immediately
5720	CRC_DIAGNOSIS			Cross reference: -	
	CRC diagnostic parameter			Related to: HLA	Protection level: 3/3
Unit: -	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS. WORD	Active: Immediately

The purpose of machine data MD 5720 is to display any detected CRC errors (cyclic redundancy check). The counter information is displayed on every read request and is 5 bits wide (bit 4...bit 0 or count 0...31).

Note

The assignment of CRC errors to the respective drives is not assured in all cases. The "wrong" module (if installed) displays the error when the address is incorrect.

5708	ACTUAL_CYL_FC	ACTUAL_CYL_FORCE				
Actual cylinder force			Related to: HLA	Protection level: 3/3		
Unit: N	Default: 0.0	Minimum: -10000000.0	Maximum: 10000000.0	Data type: FLOAT	Active: Immediately	

The cylinder force is calculated from the actual pressures in A and B (provided that pressure sensors are connected at X111/X112) and displayed in MD 5708. This value is irrelevant if no pressure sensor is connected.

5717	DESIRED_CY	DESIRED_CYL_FORCE				
Cylinder force setpoint			Related to: HLA	Protection level: 3/3		
Unit: N	Default: 0.0	Minimum: -10000000.0	Maximum: 10000000.0	Data type: FLOAT	Active: Immediately	

If the force controller (force limitation or friction injection) has been activated in MD 5241, the effective force setpoint is displayed here. This can be specified by:

- the force limitation (MD 5230 or 5231)
- the friction injection (MD 5234 or MD 5235)
- the NC via the "Travel to fixed stop" function

It must be noted that the force controller is activated only in conjunction with friction injection and zero speed or with force limitation and violation of the upper force limit. The voltage setpoint of the velocity controller is otherwise applied, in which case the force setpoint is irrelevant.

Software version

5797	PBL_VERSION	PBL_VERSION				
Data version			Related to: HLA	Protection level: 3/3		
Unit: -	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately	

Output of current data version (machine data list).

5798	FIRMWARE_DATE	IRMWARE_DATE				
	Firmware date			Related to: HLA	Protection level: 3/3	
Unit: -	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS.WORD	Active: Immediately	

Output of coded software release. The display is decimal. The character string has the following format:

DDMMY, in which DD stands for day, MM for month and Y = last digit of year. Example: The code for 01.06.1993 is 1063_{dec}

5799	FIRMWARE_VERS	IRMWARE_VERSION				
Firmware version				Related to: HLA	Protection level:	
Unit: -	Default: 0	Minimum: 0	Maximum: FFFFFF	Data type: UNS.DWORD	Active: Read-only	

Output of current software release. The display is decimal, e.g. 21000. This is the code for SW version 2.10/00.

Processor capacity utilization

5735	PROCESSOR_	PROCESSOR_UTILIZATION				
	Processor capacity utilization			Related to: HLA	Protection level: 3/3	
Unit: %	Default: 0	Minimum: 0	Maximum: FFFF	Data type: UNS. WORD	Active: Read-only	

The processor capacity utilization display provides online information about available computing capacity.

4.15 Parameters table

Default value	The machine data is p	preset to this value during start-up.	
Range of values (minimum and maximum)	Specifies the input limits. If no range of values is specified, the data type deter- mines the input limits and the field is marked "***".		
Changes take effect	POWER ON (po)	"RESET" key on front panel of NCU module or disconnection and reconnection of power supply or "NCK reset" soft key	
	NEW_CONF (cf)	 "Set MD active" soft key on HMI "RESET" key on control unit, Changes at block ends possible in program mode 	
	• RESET	at end of program M2/M30	
	• RESET (re)	"RESET" key on control unit or	
	 Immediately (im) 	after entry of the value	
	The levels of effective	ness have been listed above in order of priority.	
Protection level	(4 to 7) can be cancel	7 have been used. The lock for protection levels 0 to 3 ed by entering the correct password (correct keyswitch r only has access to information protected by one particu- below it.	
	Meanings of numbers 0 or 10: SIEMENS 1 or 11: OEM-HIGH 2 or 12: OEM-LOW 3 or 13: End user 4 or 14: Keyswitch por 5 or 15: Keyswitch por 6 or 16: Keyswitch por 7 or 17: Keyswitch por	sition 3 sition 2 sition 1	

Unit	The unit relates the the m SCALING_FACTOR_US SCALING_FACTOR_US The field is identified with	ER_DEF_MASK and
Index	Selectable data sets asso	ociated with one parameter.
Data type	The following data types	are used in the control system:
	BOOLEAN	Machine data bit (1 or 0)
	• BYTE	Integers (from -128 to +127)
	DOUBLE	Real values or integers (from +/-4.19*10 ⁻³⁰⁷ to +/-1.67*10 ³⁰⁸)
	DWORD	Integers (from -2.147*10 ⁹ to +2.147*10 ⁹)
	STRING	Character string (max. 16 characters) consisting of capital letters with digits and underscore
	UNSIGNED WORD	Integers (from 0 to 65536)
	SIGNED WORD	Integers (from -32768 to 32767)
	UNSIGNED DWORD	Integers (from 0 to 4294967300)
	SIGNED DWORD	Integers (from -2147483650 to 2147483649)
	• WORD	Hex values (from 0000 to FFFF)
	DWORD	Hex values (from 00000000 to FFFFFFF)
	FLOAT DWORD	Real values (from "8.43*10 ⁻³⁷ to "3.37*10 ³⁸)

Version

HLA firmware 1.02.12

MD no.	Name in plaintext	Name in NC	Version	Min.	Мах.	Unit	Data type	Attribute Index Active	Attribute ex Active	Sec-	Firm- ware- Version
5001	Velocity controller cycle	SPEEDCTRL_CYCLE_TIME	4	2	16	31.25μ s	UNS.WORD		Power On	4.3.2	1.01
5002	Monitoring cycle	MONITOR_CYCLE_TIME	3200	128	3200	31.25μ s	UNS.WORD		Power On		1.01
5003	Configuration STS	STS_CONFIG	0330	0	07F0	НЕХ	WORD		Power On		1.01
5004	Configuration structure	CTRL_CONFIG	1000	0	1000	НЕХ	UNS.WORD		Power On	4.3.1	1.01
5005	Encoder resolution for rotary measuring system	ENC_RESOL_MOTOR	2048	128	65535		UNS.WORD		Power On	•	1.01
5008	Encoder phase error correction	ENC_PHASE_ERROR_CORRECTION	0.0	-20.0	20.0	Degrees	FLOAT		immediately	4.10	1.01
5011	Actual-value sensing configuration	ACTUAL_VALUE_CONFIG	0	0	65535	НЕХ	UNS.WORD		Power On	4.10	1.01
5012	Function switch	FUNC_SWITCH	4	0	65535	НЕХ	UNS.WORD		immediately	4.12	1.01
5021	Multi-turn resolution absolute value enc. in motor	ENC_ABS_TURNS_MOTOR	0	0000	65535	n	WORD		Power On	4.10	1.01
5022	Measuring steps of absolute track in motor	ENC_ABS_RESOL_MOTOR	8192	0000	524287		DWORD		Power On	4.10	1.01
5023	Diagnosis meas. circ. motor abs. track	ENC_ABS_DIAGNOSIS_MOTOR	0	0	BFFF		UNS.WORD		immediately	4.10	1.01
5024	Linear scale graduations	DIVISION_LIN_SCALE	20000	1000	500000	ш	UNS.WORD		Power On	4.10	1.01
5025	Serial number of motor measuring system	SERIAL_NO_ENCODER	0	0	4294967295		UNS.WORD		Power On	4.10	1.02.04
5027	Configuration of encoder IM	ENC_KONFIG	0	H0000	FFFH		WORD		Power On	4.10	1.02.04
5028	IM message frame length SSI	NO_TRANSMISSION_BITS	25	0	25		WORD		Power On	4.10	1.02.04
5040	Piston zero in relation to machine zero	PISTON_ZERO	0.0	-1000000.0	100000.0	mm	FLOAT		immediately	4.10	1.01
5041	Machine zero in relation to actual position zero	MACHINE_ZERO_HIGH	0	-2147483647	7FFFFFFF	НЕХ	SIGN.DWORD		immediately	,	1.01
5042	Machine zero in relation to actual position zero	MACHINE_ZERO_LOW	0	0	FFFFFFF	НЕХ	UNS.WORD		immediately	,	1.01
5100	Modulus of elasticity of hydraulic fluid	FLUID_ELASTIC_MODULUS	11000	1000	21000	bar	FLOAT		immediately	4.6	1.01
5101	System pressure	WORKING_PRESSURE	0.0	0.0	700.0	bar	FLOAT		Power On	4.6	1.01
5102	Pilot pressure	PILOT_OPERATION_PRESSURE	0.0	0.0	350.0	bar	FLOAT		immediately	4.6	1.01
5106	Valve code number	VALVE_CODE	0	0	2000		UNS.WORD		immediately	4.7	1.01
5107	Nominal valve flowrate	VALVE_NOMINAL_FLOW	0.0	0.0	1000.0	l/min	FLOAT		immediately	4.7	1.01
5108	Nominal pressure drop of valve	VALVE_NOMINAL_PRESSURE	35.0	1.0	200.0	bar	FLOAT		immediately	4.7	1.01
5109	Nominal voltage of valve	VALVE_NOMINAL_VOLTAGE	10.0	0.5	15.0	~	FLOAT		immediately	4.7	1.01
5110	Knee-point flow rate of valve	VALVE_DUAL_GAIN_FLOW	10.0	0.2	95.0	%	FLOAT		immediately	4.7	1.01
5111	Knee-point voltage of valve	VALVE_DUAL_GAIN_VOLTAGE	10.0	0.2	95.0	%	FLOAT		immediately	4.7	1.01
5112	Valve flow ratio betw. A and B ends	VALVE_FLOW_FACTOR_A_B	1.0	0.5	2.0		FLOAT		immediately	4.7	1.01

MD no.	Name in plaintext	Name in NC	Version	Min.	Max.	Unit	Data type	Attribute Index Active	Attribute ex Active	Sec- F	Firm- ware- Version
5113	Valve configuration	VALVE_CONFIGURATION	0	0	-	НЕХ	UNS.WORD		immediately	4.7	1.01
5114	Natural frequency of valve	VALVE_NATURAL_FREQUENCY	150.0	1.0	1000.0	Hz	FLOAT		immediately	4.7	1.01
5115	Valve damping	VALVE_DAMPING	0.8	0.4	1.0		FLOAT		immediately	4.7	1.01
5131	Cylinder piston rod diameter	CYLINDER_PISTON_DIAMETER	0.0	0.0	2500	mm	FLOAT		Power On	4.8	1.01
5132	Cylinder piston rod diameter A	CYLINDER_ROD_A_DIAMETER	0.0	0.0	2400	mm	FLOAT		Power On	4.8	1.01
5133	Cylinder piston rod diameter B	CYLINDER_ROD_B_DIAMETER	0.0	0.0	2400	mm	FLOAT		Power On	4.8	1.01
5134	Piston stroke	PISTON_STROKE	0.0	0.0	3000.0	mm	FLOAT		immediately	4.8	1.01
5135	Cylinder dead voltage A end	CYLINDER_DEAD_VOLUME_A	0.0	0.0	200000.0	ccm	FLOAT		immediately	4.8	1.01
5136	Cylinder dead voltage B end	CYLINDER_DEAD_VOLUME_B	0.0	0.0	200000.0	ccm	FLOAT		immediately	4.8	1.01
5140	Valve-cylinder connection configuration	VALVE_CYLINDER_CONNECTION	0	0	~	НЕХ	UNS.WORD		immediately	4.9	1.01
5141	Pipe length at A end	PIPE_LENGTH_A	0.0	0.0	10000.0	mm	FLOAT		immediately	4.9	1.01
5142	Pipe length at B end	PIPE_LENGTH_B	0.0	0.0	10000.0	mm	FLOAT		immediately	4.9	1.01
5143	Internal pipe diameters at A and B	PIPE_INNER_ DIAMETER_A_B	5.0	0.0	100.0	шш	FLOAT		immediately	4.9	1.01
5150	Moved drive mass	DRIVE_MASS	0.0	0.0	50000.0	kg	FLOAT		immediately	4.9	1.01
5151	Cylinder mounting position referred to A end	CYLINDER_A_ORIENTATION	0.0	0.06-	0.06	Degrees	; FLOAT		immediately	4.9	1.01
5152	Cylinder mounting method	CYLINDER_FASTENING	0	0	1		UNS.WORD		immediately	4.9	1.01
5160	Min. natural frequency piston position	PISTON_POS_MIN_NAT_FREQ	0.0	0.0	3000.0	mm	FLOAT		immediately	4.9	1.01
5161	Drive damping	DRIVE_DAMPING	0.1	0.01	1.0		FLOAT		immediately	4.9	1.01
5162	Natural frequency of drive A	DRIVE_NATURAL_FREQUENCY_A	1.0	1.0	2000.0	Hz	FLOAT		immediately	4.9	1.01
5163	Natural frequency of drive	DRIVE_NATURAL_FREQUENCY	1.0	1.0	2000.0	zΗ	FLOAT		immediately	4.9	1.01
5164	Natural frequency of drive B	DRIVE_NATURAL_FREQUENCY_B	1.0	1.0	2000.0	zΗ	FLOAT		immediately	4.9	1.01
5180	Selected damping for closed-loop system	CLOSED_LOOP_SYSTEM_DAMPING	0.7	0.2	1.0		FLOAT		immediately	4.9	1.01
5200	Number of control output filters in velocity controller	NUM_OUTPUT_VCTRL_FILTERS	0	0	2	•	UNS.WORD	07	immediately	4.3.2	1.01
5201	Control output filter type in velocity controller	OUTPUT_VCTRL_FILTER_CONFIG	0	0	3		UNS.WORD	07	immediately	4.3.2	1.01
5202	Natur. freq. control output filter 1 velocity controller	OUTPUT_VCTRL_FIL_1_FREQ	1000.0	10.0	8000.0	Hz	FLOAT	07	immediately	4.3.2	1.01
5203	Damping control output filter 1 velocity controller	OUTPUT_VCTRL_FIL_1_DAMP	1.0	0.05	1.0		FLOAT	07	immediately	4.3.2	1.01
5204	Natur. freq. control output filter 2 velocity controller	OUTPUT_VCTRL_FIL_2_FREQ	1000.0	10.0	8000.0	Hz	FLOAT	07	immediately	4.3.2	1.01
5205	Damping control output filter 2 velocity controller	OUTPUT_VCTRL_FIL_2_DAMP	1.0	0.05	1.0		FLOAT	07	immediately	4.3.2	1.01

MD no.	Name in plaintext	Name in NC	Version	Min.	Max.	Unit	Data type	Attribute Index Active	Attribute ex Active	Sec- V	Firm- ware- Version
5210	Blocking freq. control output filter 1 vel. controller	OUTPUT_VCTRL_FIL_1_SUP_FREQ	3500.0	1.0	7999.0	Ηz	FLOAT	07	immediately	-	1.01
5211	Bandwidth control output filter 1 velocity controller	OUTPUT_VCTRL_FIL_1_BW	500.0	5.0	7999.0	Ηz	FLOAT	07	immediately	4.3.2	1.01
5212	Num. bandwith contr. output filter vel. controller	OUTPUT_VCTRL_FIL_1_BW_NUM	0.0	0.0	7999.0	Ηz	FLOAT	07	immediately	4.3.2	1.01
5213	Blocking freq. control output filter 2 vel. controller	OUTPUT_VCTRL_FIL_2_SUP_FREQ	3500.0	1.0	7999.0	Hz	FLOAT	07	immediately	4.3.2	1.01
5214	Bandwidth control output filter 2 velocity controller	OUTPUT_VCTRL_FIL_2_BW	500.0	5.0	7999.0	Hz	FLOAT	07	immediately	4.3.2	1.01
5215	Num. bandwith contr. output filter 2 veloc. controller	OUTPUT_VCTRL_FIL_2_BW_NUM	0.0	0.0	7999.0	Hz	FLOAT	07	immediately	4.3.2	1.01
5230	Force limitation tolerance threshold about weight	FORCE_LIMIT_THRESHOLD	10000.0	0.0	10000000.0	z	FLOAT	07	immediately	4.4.1	1.01
5231	Weight force limitation	FORCE_LIMIT_WEIGHT	0.0	-10000000.0 10000000.0	100000000.0	z	FLOAT	07	immediately	4.4.1	1.01
5232	Velocity threshold for static friction	STICTION_SPEED_THRESHOLD	10.0	0.0	500.0 r	mm/min	FLOAT		immediately 4.4.2		1.01
5233	Cutoff limit static friction	STICTION_COMP_THRESHOLD	40.0	3.0	100.0	%	FLOAT		immediately	4.4.2	1.01
5234	Friction force at velocity >0	STICTION_FORCE_POS	100.0	-100000000.0	1000000000	z	FLOAT		immediately	4.4.2	1.01
5235	Friction force at velocity <0	STICTION_FORCE_NEG	-100.0	-100000000.0	100000000.0	z	FLOAT		immediately	4.4.2	1.01
5240	Force controlled controlled-system gain	FORCECONTROLLED_SYSTEM_GAIN	0.0	0.0	100000000.0 N/V	Ň	FLOAT		immediately	4.4.3	1.01
5241	Force controller configuration	FORCECTRL_CONFIG	0	0	9	НЕХ	UNS.WORD	07	immediately	4.4	1.01
5242	Force controller P gain	FORCECTRL_GAIN	0.0	0.0	10000.0		FLOAT	07	immediately	4.4.3	1.01
5243	Reduction of force controller P component	FORCECTRL_GAIN_RED	40.0	0.1	100.0	%	FLOAT		immediately	4.4.3	1.01
5244	Force controller reset time	FORCECTRL_INTEGRATOR_TIME	40.0	0.0	2000.0	ms	FLOAT	07	immediately	4.4.3	1.01
5245	Force controller smoothing time constant	FORCECTRL_PT1_TIME	0.5	0.25	100.0	sm	FLOAT	07	immediately	4.4.3	1.01
5246	Force controller D-action time	FORCECTRL_DIFF_TIME	0.0	-10000.0	10000.0	sm	FLOAT	07	immediately	4.4.3	1.01
5247	Feedforward control factor for force controller	FORCE_FFW_WEIGHT	100.0	0.0	120.0	%	FLOAT		immediately	4.4.3	1.01
5260	No. of force controller feedforward control filters	NUM_FFW_FCTRL_FILTERS	0	0	1	-	UNS.WORD	07	immediately	4.4.3	1.01
5261	Type of feedforward control filter in force controller	FFW_FCTRL_FILTER_TYPE	0	0	-		UNS.WORD	07	immediately	4.4.3	1.01
5264	PT2-natur. freq. feedforward control filter1	FFW_FCTRL_FIL_1_FREQ	2000.0	10.0	8000.0	Hz	FLOAT	07	immediately	4.4.3	1.01
5265	PT2 damping for feedforward control filter 1	FFW_FCTRL_FIL_1_DAMP	0.7	0.2	1.0	ı	FLOAT	07	immediately	4.4.3	1.01
5268	Blocking frequency of feedforward control filter 1	FFW_FCTRL_FIL_1_SUP_FREQ	3500.0	10.0	7999.0	Hz	FLOAT	07	immediately	4.4.3	1.01
5269	Bandwidth of feedforward control filter 1	FFW_FCTRL_FIL_1_BW	500.0	5.0	7999.0	Hz	FLOAT	07	immediately	4.4.3	1.01
5270	Numerator bandwidth feedforward control filter 1	FFW_FCTRL_FIL_1_BW_NUM	0.0	0.0	7999.0	Hz	FLOAT	07	immediately	4.4.3	1.01
5280	Number of control output filters	NUM_OUTPUT_FILTERS	0	0	-		UNS.WORD	07	immediately	4.5.2	1.01

				:	:			Att	Attribute	_	Firm-
MD no.	Name in plaintext	Name in NC	Version	MIN.	Max.	Onit	Data type	Index	Index Active	Sec-	ware- Version
5281	Type of control output filter	OUTPUT_FILTER_TYPE	0	0	-	ı	UNS.WORD	07	immediately	4.5.2	1.01
5284	Natural frequency of control output filter 1	OUTPUT_FIL_1_FREQ	1000.0	10.0	8000.0	Hz	FLOAT	07	immediately	4.5.2	1.01
5285	Damping of control output filter 1	OUTPUT_FIL_1_DAMP	1.0	0.05	1.0		FLOAT	07	immediately	4.5.2	1.01
5288	Blocking frequency of control output filter 1	OUTPUT_FIL_1_SUP_FREQ	3500.0	1.0	7999.0	Hz	FLOAT	07	immediately	4.5.2	1.01
5289	Bandwidth of control output filter 1	OUTPUT_FIL_1_BW	500.0	5.0	7999.0	Hz	FLOAT	07	immediately	4.5.2	1.01
5290	Numerator bandwidth control output filter 1	OUTPUT_FIL_1_BW_NUM	0.0	0.0	7999.0	Hz	FLOAT	07	immediately	4.5.2	1.01
5401	Maximum useful velocity	DRIVE_MAX_SPEED	0.0	0.0	120000.0	mm/min	FLOAT		Power On	4.3.1	1.01
5402	Braking time for controller disable	SPEED_CTRL_DISABLE_STOPTIME	0.0	0.0	120000.0	ms	FLOAT		immediately	4.12	1.01
5404	Power disable timer	POWER_DISABLE_DELAY	100	0	100000	ms	FLOAT		immediately	4.12	1.01
5406	P gain of velocity controller A	SPEEDCTRL_GAIN_A	0.0	-100.0	1000.0	%	FLOAT	07	immediately	4.3.2	1.01
5407	P gain of velocity controller	SPEEDCTRL_GAIN	0.0	-100.0	1000.0	%	FLOAT	07	immediately	4.3.2	1.01
5408	P gain of velocity controller_B	SPEEDCTRL_GAIN_B	0.0	-100.0	1000.0	%	FLOAT	07	immediately	4.3.2	1.01
5409	Reset time of velocity controller	SPEEDCTRL_INTEGRATOR_TIME	0.0	0.0	2000.0	ms	FLOAT	07	immediately	4.3.2	1.01
5413	Selection of velocity controller adaptation	SPEEDCTRL_ADAPT_ENABLE	0	0	1	-	UNS.WORD		immediately	4.3.2	1.01
5414	Natural frequency of reference model	SPEEDCTRL_REF_MODEL_FREQ	150.0	0.0	1000.0	Hz	FLOAT	07	immediately	4.3.2	1.01
5415	Reference model damping	SPEEDCTRL_REF_MODEL_DAMPING	0.9	0.4	1.0	-	FLOAT	07	immediately	4.3.2	1.01
5420	Max. velocity for setup mode	DRIVE_MAX_SPEED_SETUP	10.0	0.0	120000.0	mm/min	FLOAT		immediately	4.3.1	1.01
5421	Time constant of integrator feedback	SPEEDCTRL_INTEGRATOR_FEEDBK	0.0	0.0	1000.0	ms	FLOAT	07	immediately	4.3.2	1.01
5422	Velocity threshold for integrator feedback	FEEDBK_SPEED_THRESHOLD	10.0	0.0	120000.0	mm/min	FLOAT		immediately	4.3.2	1.01
5430	Velocity controller smoothing time constant	SPEEDCTRL_PT1_TIME	0.25	0.25	100.0	ms	FLOAT	07	immediately	4.3.2	1.01
5431	Velocity controller A D-action time	SPEEDCTRL_DIFF_TIME_A	0.0	-100.0	100.0	ms	FLOAT	07	immediately	4.3.2	1.01
5432	Velocity controller D-action time	SPEEDCTRL_DIFF_TIME	0.0	-100.0	100.0	ms	FLOAT	07	immediately	4.3.2	1.01
5433	Velocity controller B D-action time	SPEEDCTRL_DIFF_TIME_B	0.0	-100.0	100.0	ms	FLOAT	07	immediately	4.3.2	1.01
5435	Servo gain	CONTROLLED_SYSTEM_GAIN	0.0	0.0	20000.0	mm/Vmin	FLOAT	07	immediately	4.3.1	1.01
5440	Positive velocity setpoint limit	POS_DRIVE_SPEED_LIMIT	0.0	0.0	120000.0	mm/min	FLOAT		immediately	4.3.1	1.01
5441	Neg. velocity setpoint limit	NEG_DRIVE_SPEED_LIMIT	0.0	0.0	120000.0	mm/min	FLOAT		immediately	4.3.1	1.01
5460	Gradient of friction compensation characteristic	FRICTION_COMP_GRADIENT	0.0	0.0	400.0	%	FLOAT		immediately	4.3.1	1.01
5461	Effective range of friction compensation	FRICTION_COMP_OUTPUT_RANGE	0.1	0.1	10.0	%	FLOAT		immediately	4.3.1	1.01

348 Pieton sufficie adaptation factor, pasitive REA. FACTOR. POS. OUTPUT 100 100 2000 56 FLOAT 0.7 Immediate 5448 Pieton suffice adaptation factor, negative REA. FACTOR. NEG. OUTPUT 100 100 200 56 FLOAT 0.7 Immediate 5448 Romeponit compensation pas, vilage POS DUAL, GANL COMP. SUODE, VULTAGE 100 200 56 FLOAT 0.7 Immediate 5448 Romeponit compensation pas, vilage DSS DUAL, GANL COMP. SUODE, VULTAGE 100 202 560 56 FLOAT 0.7 Immediate 5418 Romeofine MEE. DUAL, GANL COMP. SUOTAGE 100 <	MD no.	Name in plaintext	Name in NC	Version	Min.	Мах.	Unit	Data type	Atti Index	Attribute x Active	Sec- tion	Firm- ware- Version
Perton entrare adaptation factor, regime RAE, FACTOR, NEG, OUTPUT 10.0 200.0 % FLOAT 07 Keeppoint compensation pose flow POS_DUAL, GAN, COMP, FLOW 10.0 0.20 56.0 % FLOAT 07 Keeppoint compensation pose flow POS_DUAL, GAN, COMP, FLOW 10.0 0.20 56.0 % FLOAT 07 Keeppoint compensation mog flow Rec. DUAL, GAN, COMP, FLOW 10.0 0.20 56.0 % FLOAT 07 Keeppoint compensation mog flow Rec. DUAL, GAN, COMP, FLOW 10.0 0.02 56.0 % FLOAT 07 Keeppoint compensation mog flow Rec. DUAL, GAN, COMP, FLOW 10.0 0.00 10.	5462	Piston surface adaptation factor, positive	AREA_FACTOR_POS_OUTPUT	10.0	10.0	200.0	%	FLOAT	07	immediately	4.5.1	1.01
Non-expension pos. (non-position) POS_DUAL_GAN_COMP_FLOW (10.0 0.2 68.0 % (LOAT) 07 Kene-point compensation pos. voltage POS_DUAL_GAN_COMP_FLOW 10.0 22.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0 55.0 50.0	5463	Piston surface adaptation factor, negative	AREA_FACTOR_NEG_OUTPUT	10.0	10.0	200.0	%	FLOAT	07	immediately	4.5.1	1.01
None-point compensation pos. voltage PGS_DUAL_GAN_COMP_SNOOTH_RANGE 10.0 0.20 6% FLOAT 0.7 Reepoint compensation pes, voltage DUAL_GAN_COMP_SNOOTH_RANGE 25 0.00 200 % FLOAT 0.7 Kerepoint compensation reg, flow NEG_DUAL_GAN_COMP_SNOOTH_RANGE 255 0.00 2% FLOAT 0.7 Kerepoint compensation reg, voltage NEG_DUAL_GAN_COMP_SNOOTH_RANGE 100 0.2 5%0 % FLOAT 0.7 Menopoint compensation reg, voltage NEG_DUAL_GAN_COMP_SNOOTH_RANGE 100 0.2 5%0 % FLOAT 0.7 Menopoint compensation reg, voltage NEG_DUAL_GAN_COMP_ZNON 0.0 100 10	5464	Knee-point compensation pos. flow	POS_DUAL_GAIN_COMP_FLOW	10.0	0.2	95.0	%	FLOAT	07	immediately	4.5.1	1.01
International compensation DUAL_GAIN_COMP_SMOOTH_RANGE 2.5 0.0 2.0 % FLOAT 07 Keeponic compensation neg flow REG_DUAL_GAIN_COMP_SMOOTH_RANGE 10.0 0.2 95.0 % FLOAT 07 Keeponic compensation neg flow REG_DUAL_GAIN_COMP_SMOOTH_RANGE 10.0 0.2 95.0 % FLOAT 07 Keeponic compensation neg flow NEG_DUAL_GAIN_COMP_SMOOTH_RANGE 10.0 0.2 95.0 % FLOAT 07 Manipulated Volgge finitation positive OUTPUT_VOLTAGE_NOS.LIMIT 10.0 0.0 10.0 V FLOAT 07 Manipulated Volgge finitation positive OUTPUT_VOLTAGE_NOS.LIMIT 10.0 0.0 10.0 V FLOAT 07 Manipulated Volgge finitation positive OUTPUT_VOLTAGE_NOS.LIMIT 10.0 0.0 10.0 V FLOAT 07 Manipulated Volgge finitation positive OUTPUT_VOLTAGE_NOS.LIMIT 10.0 0.0 10.0 V FLOAT 07 Manipulated Volgge finitation positive OUTPU	5465	Knee-point compensation pos. voltage	POS_DUAL_GAIN_COMP_VOLTAGE	10.0	0.2	95.0	%	FLOAT	07	immediately	4.5.1	1.01
Kinependiation compensation neg, flow NEG_DUAL_GANLCOMP_FLOW 10.0 0.2 95.0 % FLOAT 07 Kinependiation neg, roluage NEG_DUAL_GANLCOMP_FLOW 10.0 0.2 95.0 % FLOAT 07 Kinependiation neg, roluage NEG_DUAL_GANLCOMP_RCATION 0.0 4000 WORD 07 Manipulated valtage initiation positive OUTPUT_VOLTAGE_INVERSION 0.0 10.0 0.1 0.0 10.0 0.7 WORD 07 Manipulated valtage initiation positive OUTPUT_VOLTAGE_INVERSION 0.0 10.0 0.1 0.0 0.7 NORD 0.7 Manipulated valtage initiation positive OUTPUT_VOLTAGE_INVERSION 0.0 0.0 10.0 0.7 NORD 0.7 Manipulated valtage initiation positive DUTPUT_VOLTAGE_INVERSION 0.0 0.0 10.0 0.7 NORD 0.7 Manipulated valtage initiation positive DOLTPUT_VOLTAGE_INVERSION 0.0 0.0 0.0 0.7 0.7 0.7 Monepedint compensation neg, libw in ze	5466	Rounding range for knee-point compensation	DUAL_GAIN_COMP_SMOOTH_RANGE	2.5	0.0	20.0	%	FLOAT	07	immediately	4.5.1	1.01
Keepenit compensation neg, voltage NEG_DUL_GAIN_COMP_VOLTAGE 100 0.2 55.0 % FLOAT 0.7 Offset compensation neg, voltage imitation positive OTFUL_VOLTAGE_POS_LIMIT 10.0 0.00 10.0 V FLOAT 07 Menipulated voltage imitation positive OUTPUL_VOLTAGE_INCESION 0.0 10.0 V FLOAT 07 Menipulated voltage imitation negative OUTPUL_VOLTAGE_INVERSION 0.0 10.0 V FLOAT 07 Menipulated voltage imitation negative OUTPUL_VOLTAGE_INVERSION 0.0 10.0 V FLOAT 07 Menepoint compensation negative OUTPUL_VOLTAGE_INVERSION 0.0 10.0 V FLOAT 07 Menepoint compensation negative into a point is zero range POS_DUAL_GANL COMP_Z.FLOW 0.0 <td>5467</td> <td>Knee-point compensation neg. flow</td> <td>NEG_DUAL_GAIN_COMP_FLOW</td> <td>10.0</td> <td>0.2</td> <td>95.0</td> <td>%</td> <td>FLOAT</td> <td>07</td> <td>immediately</td> <td>4.5.1</td> <td>1.01</td>	5467	Knee-point compensation neg. flow	NEG_DUAL_GAIN_COMP_FLOW	10.0	0.2	95.0	%	FLOAT	07	immediately	4.5.1	1.01
Offere compensation OFFET_COMPENSATION 0 40000	5468	Knee-point compensation neg. voltage	NEG_DUAL_GAIN_COMP_VOLTAGE	10.0	0.2	95.0	%	FLOAT	07	immediately	4.5.1	1.01
Manipulated voltage limitation positive OUTPUT_VOLTAGE_FOS_LIMIT 10.0 0.0 V ELOAT 07 Manipulated voltage limitation positive OUTPUT_VOLTAGE_INET 10.0 0.0 10 V ELOAT 07 Manipulated voltage limitation negative OUTPUT_VOLTAGE_INVERSION 0.01 0.0 10 V ELOAT 07 Manipulated voltable inversion OUTPUT_VOLTAGE_INVERSION 0.01 0.01 0.01 V ELOAT 07 Keep-point compensation pos. It is zero range POS_DUAL_GANLCOMP_Z.FLOW 0.01 0	5470	Offset compensation	OFFSET_COMPENSATION	0	-4000	4000		WORD		immediately	4.5.1	1.01
Manipulated voltage limitation negativeOUTPUT_VOLTAGE_NEG_LINIT10.00.010.010.010.010.00.0Manipulated variable inversionOUTPUT_VOLTAGE_INVERSION0.00.010.00.00.00.0Kneepoint compensation pos. flow in zero rangePOS_DUAL_GAIN_COMP_Z_FLOW0.010.0095.0%FLOAT0.7Kneepoint compensation pos. flow in zero rangePOS_DUAL_GAIN_COMP_Z_FLOW0.010.0095.0%FLOAT0.7Kneepoint compensation rounding in zero rangeDUAL_GAIN_COMP_Z_FLOW0.010.0095.0%FLOAT0.7Kneepoint compensation neg. flow in zero rangeDUAL_GAIN_COMP_Z_FLOW0.010.0095.0%FLOAT0.7Kneepoint compensation neg. flow in zero rangeDUAL_GAIN_COMP_Z_FLOW0.010.0290.0%FLOAT0.7Kneepoint compensation neg. flow in zero rangeNEG_DUAL_GAIN_COMP_Z_FLOW100.00.2100.0%FLOAT0.7Kneepoint compensation neg. flow in zero rangeNEG_DUAL_GAIN_COMP_Z_FLOW100.00.2100.0%FLOAT0.7Kneepoint compensation neg. flow saturationNEG_DUAL_GAIN_COMP_Z_FLOW100.00.2100.0%FLOAT0.7Kneepoint compensation neg. flow saturationNEG_DUAL_GAIN_COMP_Z_FLOW100.00.2100.0%FLOAT0.7Kneepoint compensation neg. flow saturationNEG_DUAL_GAIN_COMP_Z_FLOW100.00.2100.0%FLOAT0.7<	5474	Manipulated voltage limitation positive	OUTPUT_VOLTAGE_POS_LIMIT	10.0	0.0	10.0	>	FLOAT	07	immediately	4.5.3	2.04
Manipulated variable inversion OUTPUT_VOLTAGE_INVERSION 0 1 · UNS.WORD · Kneepoint compensation pos. flow in zero range POS_DUAL_GAIN_COMP_Z_FLOW 0.01 0.01 95.0 % FLOAT 0.7 Kneepoint compensation pos. volt in zero range POS_DUAL_GAIN_COMP_Z_NOTH_Z_R 0.01 0.01 95.0 % FLOAT 0.7 Kneepoint compensation rounding in zero range DVAL_GAIN_COMP_Z_NOTH_Z_R 0.01 0.01 95.0 % FLOAT 0.7 Kneepoint compensation reg. flow in zero range DVS_DUAL_GAIN_COMP_Z_NOUT 0.01 0.01 95.0 % FLOAT 0.7 Kneepoint compensation reg. flow in zero range DVS_DUAL_GAIN_COMP_Z_NOUT 0.01 0.01 0.01 0.01 0.01 0.01 0.7 Kneepoint compensation reg. volt in zero range DVS_DUAL_GAIN_COMP_Z_NOUT 1000 0.22 0.07 0.7 0.7 Kneepoint compensation reg. volt in zero range DVS_DUAL_GAIN_COMP_Z_NOUT 1000 0.22 0.07 0.7 0.7 Kneepoint compensation reg. volt in zero v	5475	Manipulated voltage limitation negative	OUTPUT_VOLTAGE_NEG_LIMIT	10.0	0.0	10.0	>	FLOAT	07	immediately	4.5.3	1.01
Kneepoint compensation pos. flow in zero rangePOS_DUAL_GAIN_COMP_Z_FLOW0.010.010.050.0.00.07Kneepoint compensation pos. volt: in zero rangeDOS_DUAL_GAIN_COMP_Z_VOUT0.000.000.000.050.070.07Kneepoint compensation rounding in zero rangeDVAL_GAIN_COMP_Z_FLOW0.010.010.070.070.07Kneepoint compensation neg. flow in zero rangeNEG_DUAL_GAIN_COMP_Z_FLOW0.010.010.050.070.07Kneepoint compensation neg. volt: in zero rangeNEG_DUAL_GAIN_COMP_Z_FLOW0.010.070.070.07Kneepoint compensation neg. volt: in zero rangeNEG_DUAL_GAIN_COMP_Z_FLOW0.010.070.070.07Kneepoint compensation neg. voltage saturationNEG_DUAL_GAIN_COMP_S_FLOW0.000.020.000.070.07Kneepoint compensation neg voltage saturationNEG_DUAL_GAIN_COMP_S_VOUT10000.0210000.070.07Kneepoint compensation neg voltage saturationNUMSFEED_FILTER_V100	5476	Manipulated variable inversion	OUTPUT_VOLTAGE_INVERSION	0	0	-		UNS.WORD		immediately	4.5.3	1.01
Kneepoint compensation pos. volt. in zero rangePOS_DUAL_GAIN_COMP_Z_VOLT0.00.00.00.00.00.00.00.00.0Kneepoint compensation rounding in zero rangeDUAL_GAIN_COMP_ZMOTH_Z_R0.00.00.00.00.00.00.0Kneepoint compensation neg. flow in zero rangeNEG_DUAL_GAIN_COMP_Z.FLOW0.010.00.00.00.00.0Kneepoint compensation neg. flow in zero rangeNEG_DUAL_GAIN_COMP_Z.VOLT0.00.00.00.00.00.0Kneepoint compensation neg. flow saturationPOS_DUAL_GAIN_COMP_S.FLOW100.00.00.00.00.00.0Kneepoint compensation neg. flow saturationNEG_DUAL_GAIN_COMP_S.FLOW100.00.00.00.00.00.0Kneepoint compensation neg. voltage saturationNEG_DUAL_GAIN_COMP_S.VOLT100.00.2100.00.00.00.0Kneepoint compensation neg. voltage saturationNEG_DUAL_GAIN_COMP_S.VOLT100.00.2100.00.00.00.0Kneepoint compensation neg. voltage saturationNEG_DUAL_GAIN_COMP_S.VOLT100.00.2100.00.00.00.0Kneepoint compensation neg. voltage saturationNEG_DUAL_GAIN_COMP_S.VOLT100.00.2100.00.00.0Kneepoint compensation neg. voltage saturationNeG_DUAL_GAIN_COMP_S.VOLT100.00.2100.00.00.0Kneepoint compensation neg. voltage saturationNeG_DUAL_GAIN_COMP_S.VOLT100.00.210	5480	Knee-point compensation pos. flow in zero range	POS_DUAL_GAIN_COMP_Z_FLOW	0.01	0.01	95.0	%	FLOAT	07	immediately	4.5.1	1.01
Kneepoint compensation rounding in zero rangeDUAL_GAIN_COMP_ZFLOW0.00.010.0 $\%$ $FLOAT$ 07 Kneepoint compensation neg. flow in zero rangeNEG_DUAL_GAIN_COMP_ZFLOW0.01 95.0 $\%$ $FLOAT$ 07 Kneepoint compensation neg. out. in zero rangeNEG_DUAL_GAIN_COMP_Z_FLOW0.01 95.0 $\%$ $FLOAT$ 07 Kneepoint compensation neg. out. in zero rangeNCG_DUAL_GAIN_COMP_Z_FLOW 100.0 0.0 95.0 $\%$ $FLOAT$ 07 Kneepoint compensation neg. of wasturationPOS_DUAL_GAIN_COMP_S_FLOW 100.0 0.2 100.0 $\%$ $FLOAT$ 07 Kneepoint compensation neg. flow saturationNCG_DUAL_GAIN_COMP_S_FLOW 100.0 0.2 100.0 $\%$ $FLOAT$ 07 Kneepoint compensation neg. flow saturationNCG_DUAL_GAIN_COMP_S_VOLT 100.0 0.2 100.0 $\%$ $FLOAT$ 07 Vneepoint compensation neg. flow saturationNCG_DUAL_GAIN_COMP_S_VOLT 100.0 0.2 100.0 $\%$ $FLOAT$ 07 Vneepoint compensation neg. flow saturationNCG_DUAL_GAIN_COMP_S_VOLT 100.0 0.2 100.0 $\%$ $FLOAT$ 07 Vneepoint compensation neg. flow saturationNCG_DUAL_GAIN_COMP_S_FLOW 100.0 0.2 100.0 $\%$ $VOAT$ 07 Vneepoint compensation neg. flow saturationNCG_DUAL_GAIN_COMP_S_FLOW 100.0 0.2 100.0 $\%$ $VOAT$ 07 Vneepoint compensation neg. flow saturation<	5481	Knee-point compensation pos. volt. in zero range	POS_DUAL_GAIN_COMP_Z_VOLT	0.0	0.0	95.0	%	FLOAT	07	immediately	4.5.1	1.01
Kneepoint compensation neg, flow izero rangeNEG_DUAL_GAIN_COMP_Z_FLOW 0.01 0.01 0.50 0.6 $FLOAT$ 0.7 Kneepoint compensation neg, volt, in zero rangeNEG_DUAL_GAIN_COMP_Z_VOLT 0.0 0.0 0.50 0.6 $FLOAT$ 0.7 Kneepoint compensation pos. flow saturationPOS_DUAL_GAIN_COMP_Z_FLOW 100.0 0.2 100.0 0.6 $FLOAT$ 0.7 Kneepoint compensation pos. flow saturationPOS_DUAL_GAIN_COMP_S_FLOW 100.0 0.2 100.0 0.6 $FLOAT$ 0.7 Kneepoint compensation neg, voltage saturationPOS_DUAL_GAIN_COMP_S_FLOW 100.0 0.2 100.0 0.6 10.7 0.7 Kneepoint compensation neg, voltage saturationNEG_DUAL_GAIN_COMP_S_FLOW 100.0 0.2 100.0 0.6 10.7 0.7 Vneepoint compensation neg, voltage saturationNEG_DUAL_GAIN_COMP_S_FLOW 100.0 0.2 100.0 0.7 0.7 Vibe of velocity filterNUMEret of compensation neg, voltage saturationNUM_SPEED_FILTER_ITANE 0.7 0.7 0.7 0.7 Vibe of velocity filterSPEED_FILTER_I_TER_I 0.7 0.0 0.0 0.0 0.0 0.7 0.7 Vibe of velocity filterSPEED_FILTER_I_LER_I_LER 0.7 0.7 0.7 0.7 0.7 0.7 Vibe of velocity filterSPEED_FILTER_I_LER_I_LER 0.7 0.7 0.7 0.7 0.7 0.7 Vibe of velocity filterSPEED_FILTER_I_LER_I_LER 0.7 <td>5482</td> <td>Knee-point compensation rounding in zero range</td> <td>DUAL_GAIN_COMP_SMOOTH_Z_R</td> <td>0.0</td> <td>0.0</td> <td>10.0</td> <td>%</td> <td>FLOAT</td> <td>07</td> <td>immediately</td> <td>4.5.1</td> <td>1.01</td>	5482	Knee-point compensation rounding in zero range	DUAL_GAIN_COMP_SMOOTH_Z_R	0.0	0.0	10.0	%	FLOAT	07	immediately	4.5.1	1.01
Knee-point compensation neg. volt. in zero rangeNeG_DUAL_GAIN_COMP_Z_VOLT0.096.096.0%FLOAT07Knee-point compensation pos. flow saturationPOS_DUAL_GAIN_COMP_S_FLOW100.00.2100.0%FLOAT07Knee-point compensation pos. voltage saturationNOS_DUAL_GAIN_COMP_S_VOLT100.00.2100.0%FLOAT07Knee-point compensation neg. flow saturationNGS_DUAL_GAIN_COMP_S_VOLT100.00.2100.0%FLOAT07Knee-point compensation neg. voltage saturationNGS_DUAL_GAIN_COMP_S_VOLT100.00.2100.0%FLOAT07Number of velocity filtersNUM_SPEED_FILTER_TYPE0000100707Type of velocity filterSPEED_FILTER_TYPE0000000707Type of velocity filterSPEED_FILTER_TTYPE0000000707Type of velocity filterSPEED_FILTER_TTYPE0000000707Type of velocity filterSPEED_FILTER_TTYPE00000000707Type of velocity filterSPEED_FILTER_TTYPE0000000007Type of velocity filterSPEED_FILTER_TTYPE0000000000Type of velocity filterSPEED_FILT	5483	Knee-point compensation neg. flow in zero range	NEG_DUAL_GAIN_COMP_Z_FLOW	0.01	0.01	95.0	%	FLOAT	07	immediately	4.5.1	1.01
Knee-point compensation pos. flow saturationPOS_DUAL_GAIN_COMP_S_FLOW100.00.2100.0 $\%$ FLOAT0.7Knee-point compensation pos. voltage saturationPOS_DUAL_GAIN_COMP_S_VOUT100.00.2100.0 $\%$ FLOAT0.7Knee-point compensation neg. flow saturationNEG_DUAL_GAIN_COMP_S_FLOW100.00.2100.0 $\%$ FLOAT0.7Knee-point compensation neg. flow saturationNEG_DUAL_GAIN_COMP_S_VOUT100.00.2100.0 $\%$ FLOAT0.7Number of velocity filterNUM_SPEED_FILTER_TYPE00.2100.0 $\%$ FLOAT0.7Type of velocity filterSPEED_FILTER_TYPE000257 ψ VINS.WORD0.7Type of velocity filterSPEED_FILTER_1_TIME0.00.00.010.0800.0MasFLOAT0.7Type of velocity filterSPEED_FILTER_1_TIME0.00.00.010.0800.0MasFLOAT0.7Type of velocity filterSPEED_FILTER_1_TIME0.00.00.010.0800.0MasFLOAT0.7Type of velocity filterSPEED_FILTER_1_TER_1_TIME0.00.00.010.0800.0MasFLOAT0.7Type of velocity filterSPEED_FILTER_1_TER_1_TIME0.00.00.010.07999.0MasFLOAT0.7Totatrait frequency for velocity filterSPEED_FILTER_1_SUPPR_FREQUENCY0.00.010.07999.0MasFLOAT0.7<	5484	Knee-point compensation neg. volt. in zero range	NEG_DUAL_GAIN_COMP_Z_VOLT	0.0	0.0	95.0	%	FLOAT	07	immediately	4.5.1	1.01
Knee-point compensation pos. voltage saturationPOS_DUAL_GAIN_COMP_S_VOLT100.00.2100.0 $\%$ FLOAT07Knee-point compensation neg. flow saturationNEG_DUAL_GAIN_COMP_S_FLOW100.00.2100.0 $\%$ FLOAT07Knee-point compensation neg. voltage saturationNEG_DUAL_GAIN_COMP_S_VOLT100.00.2100.0 $\%$ FLOAT07Number of velocity filtersNUM_SPEED_FILTER_TYPE00.2100.0 $\%$ FLOAT07Type of velocity filterNUM_SPEED_FILTER_TYPE0001 \cdot UNS.WORD07Type of velocity filterSPEED_FILTER_TTYPE00.0001 \cdot UNS.WORD07Type of velocity filterSPEED_FILTER_1_INEE0.00.0001 \cdot UNS.WORD07Totatural frequency for velocity filterSPEED_FILTER_1_TIME0.00.00.000 \cdot \cdot 07Totatural frequency for velocity filterSPEED_FILTER_1_INEE0.00.00.00.0 \cdot \cdot 07 07 PT2 damping for velocity filterSPEED_FILTER_1_SUPPR_FREQUENCY0.00.00.0 \cdot \cdot 07 07 Band-stop filter blocking frequency for velocity filterSPEED_FILTER_1_SUPPR_FREQUENCY0.00.0 \cdot \cdot 07 07 Band-stop filter bandwidth for velocity filterSPEED_FILTER_1_SUPPR_FREQUENCY0.0 0.0 \cdot \bullet <	5485	Knee-point compensation pos. flow saturation	POS_DUAL_GAIN_COMP_S_FLOW	100.0	0.2	100.0	%	FLOAT	07	immediately	4.5.1	1.01
Knee-point compensation neg. flow saturationNeG_DUAL_GAIN_COMP_S_FLOW100.0 0.2 100.0 $\%$ $FLOAT$ 07 Knee-point compensation neg. voltage saturationNEG_DUAL_GAIN_COMP_S_VOLT100.0 0.2 100.0 $\%$ $FLOAT$ 07 Number of velocity filtersNUM_SPEED_FILTER_TYPE0 0.2 100.0 $\%$ $FLOAT$ 07 Type of velocity filterSPEED_FILTER_TYPE0 0.2 0.0 257 v $NNSWORD$ 07 Type of velocity filterSPEED_FILTER_1_TIME 0.0 0.0 257 v $NNSWORD$ 07 Type of velocity filterSPEED_FILTER_1_TIME 0.0 0.0 0.0 0.0 0.0 07 07 PT2 natural frequency for velocity filterSPEED_FILTER_1_DAMPING 0.7 0.0 10.0 800.0 HZ $FLOAT$ 07 PT2 damping for velocity filterSPEED_FILTER_1_SUPPR_FREQ 0.7 0.2 1.0 0.0 1.0 07 07 Band-stop filter blocking frequency for velocity filterSPEED_FILTER_1_SUPPR_FREQ 0.7 0.2 1.0 0.7 07 07 Band-stop filter blocking frequency for velocity filterSPEED_FILTER_1_SUPPR_FREQ 0.7 0.2 10.0 10.0 10.0 10.0 PT2 damping for velocity filterSPEED_FILTER_1_SUPPR_FREQ 0.7 0.2 1.0 10.0 10.0 10.0 Pud-stop filter blocking filterSPED_FILTER_1_SUPPR_FREQ 0.7 <	5486	Knee-point compensation pos. voltage saturation	POS_DUAL_GAIN_COMP_S_VOLT	100.0	0.2	100.0	%	FLOAT	07	immediately	4.5.1	1.01
Knee-point compensation neg. voltage saturationNeg_DUAL_GAIN_COMP_S_VOLT100.0 0.2 100.0 $\%$ FLOAT 07 Number of velocity filtersNUM_SPEED_FILTERSNUM_SPEED_FILTER_TYPE001 \cdot UNS.WORD 07 Type of velocity filterSPEED_FILTER_TYPE00257 \cdot UNS.WORD 07 Type of velocity filterSPEED_FILTER_1_TIME0.00.0500.0msFLOAT 07 PT1 time constant for velocity filterSPEED_FILTER_1_TIME0.00.00.0msFLOAT 07 PT2 natural frequency for velocity filterSPEED_FILTER_1_TAMPING0.70.010.0800.0MsFLOAT 07 PT2 damping for velocity filterSPEED_FILTER_1_SUPPR_FREQUENCY 0.7 0.2 10.0799.0MzFLOAT 07 Band-stop filter blocking frequency for velocity filterSPEED_FILTER_1_SUPPR_FREQUENCY 0.0 0.0 7999.0MzFLOAT 07 Band-stop filter bandwidth for velocity filterSPEED_FILTER_1_BANDWIDTH 50.0 5.0 7999.0MzFLOAT 07 Numerator bandwidth for velocity filterSPEED_FILTER_1_BANDWIDTH 50.0 5.0 7999.0 Mz FLOAT 07 Numerator bandwidth for velocity filterSPEED_FILTER_1_BW_NUMERATOR 0.0 0.0 0.0 0.0 0.0 07 07 Numerator bandwidth for velocity filterSPEED_FILTER_1_BW_NUMERATOR 0.0 0.0	5487	Knee-point compensation neg. flow saturation	NEG_DUAL_GAIN_COMP_S_FLOW	100.0	0.2	100.0	%	FLOAT	07	immediately	4.5.1	1.01
Number of velocity filtersNUM_SPEED_FILTERS001 \cdot UNS.WORD07Type of velocity filterSPEED_FILTER_TYPE00257 \cdot UNS.WORD07Type of velocity filterSPEED_FILTER_TYPE000257 \cdot UNS.WORD07PT1 time constant for velocity filter 1SPEED_FILTER_1_TIME0.00.00.0500.0msFLOAT07PT2 natural frequency for velocity filter 1SPEED_FILTER_1_EMPING0.70.010.08000.0HzFLOAT07PT2 damping for velocity filter 1SPEED_FILTER_1_SUPPR_FREQUENCY0.00.70.21.07999.0Hz07Band-stop filter blocking frequency for velocity filter 1SPEED_FILTER_1_SUPPR_FREQUENCY 0.0 0.0 0.0 10.0 7999.0 Hz 10.0 07 Band-stop filter bandwidth for velocity filter 1SPEED_FILTER_1_BANDWDTH 50.0 50.0 10.0 10.0 10.0 10.0 Numeator bandwidth for velocity filter 1SPEED_FILTER_1_BW_NUMERATOR 0.0 0.0 10.0 10.0 10.0 10.0 10.0 Numeator bandwidth for velocity filter 1SPEED_FILTER_1_BW_NUMERATOR 0.0 0.0 10.0 10.0 10.0 10.0 10.0 Numeator bandwidth for velocity filter 1SPEED_FILTER_1_BW_NUMERATOR 0.0 0.0 10.0 10.0 10.0 10.0 10.0 Numeator bandwidth for velocity filter 1	5488	Knee-point compensation neg. voltage saturation	NEG_DUAL_GAIN_COMP_S_VOLT	100.0	0.2	100.0	%	FLOAT	07	immediately	4.5.1	1.01
Type of velocity filterSPEED_FILTER_TYPE0 257 .UNS.WORD 07 PT1 time constant for velocity filter 1SPEED_FILTER_1_TIME 0.0 0.0 500.0 ms $FLOAT$ 07 PT2 natural frequency for velocity filter 1SPEED_FILTER_1_TREQUENCY 0.0 0.0 0.0 Hz $FLOAT$ 07 PT2 damping for velocity filter 1SPEED_FILTER_1_DAMPING 0.7 0.2 1.0 $R00.0$ Hz $FLOAT$ 07 Band-stop filter blocking frequency for velocity filter 1SPEED_FILTER_1_SUPPR_FREQ 3500.0 10.0 7999.0 Hz $FLOAT$ 07 Band-stop filter bandwidth for velocity filter 1SPEED_FILTER_1_SUPPR_FREQ 3500.0 10.0 7999.0 Hz $FLOAT$ 07 Numerator bandwidth for velocity filter 1SPEED_FILTER_1_BW_NUMERATOR 0.0 0.0 0.0 10.0 7999.0 Hz $FLOAT$ 07	5500	Number of velocity filters	NUM_SPEED_FILTERS	0	0	٢		UNS.WORD	07	immediately	4.3.1	1.01
PT1 time constant for velocity filter 1 SPEED_FILTER_1_TIME 0.0 0.0 500.0 ms FLOAT 07 PT2 natural frequency for velocity filter 1 SPEED_FILTER_1_FREQUENCY 2000.0 10.0 8000.0 Hz FLOAT 07 PT2 natural frequency for velocity filter 1 SPEED_FILTER_1_EAMPING 07 0.2 1.0 PL2 PLOAT 07 Band-stop filter blocking frequency for velocity filter 1 SPEED_FILTER_1_SUPPR_FREQ 3500.0 10.0 7999.0 Hz FLOAT 07 Band-stop filter blocking frequency for velocity filter 1 SPEED_FILTER_1_SUPPR_FREQ 3500.0 10.0 7999.0 Hz FLOAT 07 Numerator bandwidth for velocity filter 1 SPEED_FILTER_1_BANDWIDTH 500.0 5.0 7999.0 Hz FLOAT 07	5501	Type of velocity filter	SPEED_FILTER_TYPE	0	0	257		UNS.WORD	07	immediately	4.3.1	1.01
PT2 natural frequency for velocity filter 1SPEED_FILTER_1_FREQUENCY2000.010.08000.0HzFLOAT07PT2 damping for velocity filter 1SPEED_FILTER_1_DAMPING0.70.21.0-FLOAT07Band-stop filter blocking frequency for velocity filter 1SPEED_FILTER_1_SUPPR_FREQ3500.010.07999.0HzFLOAT07Band-stop filter bandwidth for velocity filter 1SPEED_FILTER_1_BANDWIDTH500.05.07999.0HzFLOAT07Numerator bandwidth for velocity filter 1SPEED_FILTER_1_BW_NUMERATOR0.00.00.0HzFLOAT07	5502	PT1 time constant for velocity filter 1	SPEED_FILTER_1_TIME	0.0	0.0	500.0	ms	FLOAT	07	immediately	4.3.1	1.01
PT2 damping for velocity filter 1 SPEED_FILTER_1_DAMPING 0.7 0.2 1.0 - FLOAT 07 Band-stop filter blocking frequency for vel. filter 1 SPEED_FILTER_1_SUPPR_FREQ 3500.0 10.0 7999.0 Hz FLOAT 07 Band-stop filter blocking frequency for velocity filter 1 SPEED_FILTER_1_SUPPR_FREQ 3500.0 10.0 7999.0 Hz FLOAT 07 Numerator bandwidth for velocity filter 1 SPEED_FILTER_1_BW_NUMERATOR 0.0 0.0 7999.0 Hz FLOAT 07	5506	PT2 natural frequency for velocity filter 1	SPEED_FILTER_1_FREQUENCY	2000.0	10.0	8000.0	Ηz	FLOAT	07	immediately	4.3.1	1.01
Band-stop filter blocking frequency for vel. filter 1 SPEED_FILTER_1_SUPPR_FREQ 3500.0 10.0 7999.0 Hz FLOAT 07 Band-stop filter bandwidth for velocity filter 1 SPEED_FILTER_1_BANDWIDTH 500.0 5.0 7999.0 Hz FLOAT 07 Numerator bandwidth for velocity filter 1 SPEED_FILTER_1_BW_NUMERATOR 0.0 0.0 7999.0 Hz FLOAT 07	5507	PT2 damping for velocity filter 1	SPEED_FILTER_1_DAMPING	0.7	0.2	1.0		FLOAT	07	immediately	4.3.1	1.01
Band-stop filter bandwidth for velocity filter 1 SPEED_FILTER_1_BANDWIDTH 500.0 5.0 7999.0 Hz FLOAT 07 Numerator bandwidth for velocity filter 1 SPEED_FILTER_1_BW_NUMERATOR 0.0 0.0 7999.0 Hz FLOAT 07 07	5514	Band-stop filter blocking frequency for vel. filter 1	SPEED_FILTER_1_SUPPR_FREQ	3500.0	10.0	0.6667	Ηz	FLOAT	07	immediately	4.3.1	1.01
Numerator bandwidth for velocity filter 1 SPEED_FILTER_1_BW_NUMERATOR 0.0 7999.0 Hz FLOAT 07	5515	Band-stop filter bandwidth for velocity filter 1	SPEED_FILTER_1_BANDWIDTH	500.0	5.0	7999.0	Hz	FLOAT	07	immediately	4.3.1	1.01
	5516	Numerator bandwidth for velocity filter 1	SPEED_FILTER_1_BW_NUMERATOR	0.0	0.0	7999.0	Hz	FLOAT	07	immediately	4.3.1	1.01

4-171

MD no.	Name in plaintext	Name in NC	Version	Min.	Max.	Unit	Data type	Attribute Index Active	Attribute ex Active	Sec-	Firm- ware- Version
5520	Band-stop filter natural frequency for vel. filter 1	SPEED_FILTER_1_BS_FREQ	100.0	1.0	141.0	%	FLOAT	07	immediately	4.3.1	1.01
5522	Time constant for velocity actual value filter	ACT_SPEED_FILTER_TIME	0	0	0		FLOAT		Power On		1.01.08
5530	Safety configuration	CYLINDER_SAFETY_CONFIG	4	0	ЗF	НЕХ	UNS.WORD		immediately	4.12	1.01
5531	Manipulated variable enable delay	OUTPUT_ENABLE_DELAY	300	0	500	sm	UNS.WORD		immediately	4.12	1.01
5532	Power enable delay time	POWER_ENABLE_DELAY	100	0	300	ms	UNS.WORD		immediately	4.12	1.01
5550	Reference value of pressure sensor A at 10 V	PRESSURE_SENS_A_REF	200.0	50.0	6000.0	bar	FLOAT		immediately	4.11	1.01
5551	Offset adjustment for pressure sensor A	PRESSURE_SENS_A_OFFS	0	-32760	32760	I	MORD		immediately	4.11	1.01
5552	Reference value of pressure sensor B at 10 V	PRESSURE_SENS_B_REF	200.0	50.0	6000.0	bar	FLOAT		immediately	4.11	1.01
5553	Offset adjustment for pressure sensor B	PRESSURE_SENS_B_OFFS	0	-32767	32767		WORD		immediately	4.11	1.01
5600	Concealable alarms (Power On)	ALARM_MASK_POWER_ON	0	0	FFFF	НЕХ	UNS.WORD		immediately	4.13	1.01
5601	Concealable alarms (Reset)	ALARM_MASK_RESET	0	0	FFFF	НЕХ	UNS.WORD		immediately	4.13	1.01
5605	Time for velocity controller at limit	SPEEDCTRL_LIMIT_TIME	200.0	20.0	1000.0	ms	FLOAT		immediately	4.13	1.01
5606	Threshold for velocity controller at limit	SPEEDCTRL_LIMIT_THRESHOLD	120000.0	0.0	120000.0	mm/min	FLOAT		immediately	4.13	1.01
5609	Max. measuring speed of linear scale	ENC_SPEED_LIMIT	240000.0	1.0	240000.0	mm/min	FLOAT		immediately	4.13	1.01
5610	Diagnostic functions	DIAGNOSIS_ACTIVATION_FLAGS	0	0	ю	НЕХ	UNS.WORD		Power On		1.01
5612	Config. shutdown response to PO alarms	ALARM_REACTION_POWER_ON	0	0	FFFF	НЕХ	UNS.WORD		immediately	4.13	1.01
5613	Config. shutdown response to RESET alarms	ALARM_REACTION_RESET	0	0	FFF	НЕХ	UNS.WORD		immediately	4.13	1.01
5614	Valve spool monitoring timer	VALVE_ERROR_TIME	50	-	100	ms	UNS.WORD		immediately	4.13	1.01
5620	Bits of variable signaling functions	PROG_SIGNAL_FLAGS	0	0	7	НЕХ	UNS.WORD		immediately	4.13	1.01
5621	Signal number of variable signaling functions	PROG_SIGNAL_NR	0	0	100		UNS.WORD		immediately	4.13	1.01
5622	Address to be monitored by variable sign. funct.	PROG_SIGNAL_ADDRESS	0	0	FFFFF	НЕХ	UNS.WORD		immediately	4.13	1.01
5623	Threshold for variable signaling functions	PROG_SIGNAL_THRESHOLD	0	0	FFFFF	НЕХ	UNS.WORD		immediately	4.13	1.01
5624	Hysteresis for variable signaling functions	PROG_SIGNAL_HYSTERESIS	0	0	FFFFF	НЕХ	UNS.WORD		immediately	4.13	1.01
5625	Dropout delay for variable signaling function	PROG_SIGNAL_ON_DELAY	0	0	10000	-	UNS.WORD		immediately	4.13	1.01
5626	Dropout delay for variable signaling function	PROG_SIGNAL_OFF_DELAY	0	0	10000	-	UNS.WORD		immediately	4.13	1.01
5648	Valve identification parameter 1	VALVE_ID_PARAMS1	0	0	7999		UNS.WORD		immediately	•	1.01.12
5649	Valve identification parameter 2	VALVE_ID_PARAMS2	0	0	7999		UNS.WORD		immediately	•	1.01.12
5650	Diagnostic control	DIAGNOSIS_CONTROL_FLAGS	0	0	FFF	HEX	UNS.WORD		immediately	4.14	1.01

© Siemens AG, 2003. All rights reserved SINUMERIK 840D/SIMODRIVE 611 digital, HLA Module (FBHLA) - 10.03 Edition

MD no.	. Name in plaintext	Name in NC	Version	Min.	Max.	Unit	Data type	Attribute Index Active	Attribute ex Active	Sec-	Firm- ware- Version
5651	Signal number of min/max memory	MINMAX_SIGNAL_NR	0	0	FFFF		UNS.WORD		immediately	4.14	1.01
5652	Memory location of min/max memory	MINMAX_ADDRESS	0	0	FFFFF	НЕХ	UNS.WORD		immediately	4.14	1.01
5653	Minimum value of min/max memory	MINMAX_MIN_VALUE	0	0	FFFFF	НЕХ	UNS.WORD		immediately	4.14	1.01
5654	Maximum value of min/max memory	MINMAX_MAX_VALUE	0	0	JJJJJJ	НЕХ	UNS.WORD		immediately	4.14	1.01
5655	Monitor memory location segment	MONITOR_SEGMENT	0	0	FFFF	НЕХ	UNS.WORD		immediately	4.14	1.01
5656	Monitor memory location address	MONITOR_ADDRESS	0	0	FFFFF	HEX	UNS.WORD		immediately	4.14	1.01
5657	Monitor value display	MONITOR_DISPLAY	0	0	FFFFF	НЕХ	UNS.WORD		immediately	4.14	1.01
5658	Monitor value input	MONITOR_INPUT_VALUE	0	0	FFFFF	НЕХ	UNS.WORD		immediately	4.14	1.01
5659	Monitor value transfer	MONITOR_INPUT_STROBE	0	0	1111	НЕХ	UNS.WORD		immediately	4.14	1.01
5700	Status of binary inputs	TERMINAL_STATE	0	0	JJJJ	НЕХ	UNS.WORD		immediately	4.14	1.01
5704	Actual pressure A	ACTUAL_PRESSURE_A	0.0	-10000.0	10000.0	bar	FLOAT		immediately	4.14	1.01
5705	Actual pressure B	ACTUAL_PRESSURE_B	0.0	-10000.0	10000.0	bar	FLOAT		immediately	4.14	1.01
5706	Velocity setpoint	DESIRED_SPEED	0.0	-240000.0	240000.0	mm/min	FLOAT		immediately	4.14	1.01
5707	Actual velocity value	ACTUAL_SPEED	0.0	-240000.0	240000.0	mm/min	FLOAT		immediately	4.14	1.01
5708	Actual cylinder force	ACTUAL_CYL_FORCE	0.0	-1000000.0 10000000.0	10000000.0	z	FLOAT		immediately	4.14	1.01
5709	Significance of voltage representation	VOLTAGE_LSB	0.0	-100000.0	100000.0	>	FLOAT		immediately	4.14	1.01
5710	Significance of pressure representation	PRESSURE_LSB	0.0	-240000.0	240000.0	bar	FLOAT		immediately	4.14	1.01
5711	Significance of velocity representation	SPEED_LSB	0.0	-240000.0	240000.0	mm/min	FLOAT		immediately	4.14	1.01
5713	Significance of force representation	FORCE_LSB	0.0	-10000000.0 10000000.0	10000000.0	μN	FLOAT		immediately	4.14	1.01
5714	Significance of position representation	POSITION_LSB	0.0	-1000000.0	1000000.0	шu	FLOAT		immediately	4.14	1.01
5715	Voltage for valve spool position setpoint	DESIRED_VALVE_SPOOL_POS	0.0	-10.0	10.0	>	FLOAT		immediately	4.14	1.01
5716	Voltage for actual valve spool position	ACTUAL_VALVE_SPOOL_POS	0.0	-10.0	10.0	>	FLOAT		immediately	4.14	1.01
5717	Cylinder force setpoint	DESIRED_CYL_FORCE	0.0	-10000000.0	10000000.0	z	FLOAT		immediately	4.14	1.01
5720	CRC diagnostic parameter	CRC_DIAGNOSIS	0	0	FFF		UNS.WORD		immediately	4.14	1.01
5725	Normalization of force setpoint interface	MAX_FORCE_FROM_NC	0.0	0.0	10000000.0	z	FLOAT		immediately	4.14	1.01
5730	Operating mode display	OPERATING_MODE	-	Ļ	JJJJ	НЕХ	UNS.WORD		immediately	4.14	1.01
5731	Image ZK1_PO register	CL1_PO_IMAGE	0	0	FFFF	НЕХ	UNS.WORD		immediately	4.14	1.01
5732	Image ZK1_RES register	CL1_RES-IMAGE	0	0	4 4 4	HEX	UNS.WORD		immediately	4.14	1.01

MD no.	Name in plaintext	Name in NC	Version	Min.	Мах.	Unit	Data type	Attribute Index Active	Attribute ex Active	Firm- Sec- ware- tion Versio	Firm- ware- Version
5735	Processor capacity utilization	PROCESSOR_UTILIZATION	0	0	FFFF	%	UNS.WORD		immediately	4.14	1.01
5740	Actual position in relation to machine zero	ACTUAL_POSITION	0.0	-10000000.0	10000000.0	mm	FLOAT		immediately	4.14	1.01
5741	Piston position in relation to piston zero	ACTUAL_PISTON_POSITION	0.0	-10000000.0	10000000.0	mm	FLOAT		immediately	4.14	1.01
5790	Measuring circuit type of measuring system	ENC_TYPE	0	-1	32767		WORD		immediately	4.14	1.01
5797	Data version	PBL_VERSION	0	0	FFFF		UNS.WORD		immediately	4.14	1.01
5798	Firmware date	FIRMWARE_DATE	0	0	FFFF		UNS.WORD		immediately	4.14	1.01
5799	Firmware version	FIRMWARE_VERSION	0	0	FFFFF		UNS.WORD		immediately	4.14	1.01

Hardware Drive Functions

5.1 Interface overview

5 Hardware Drive Functions

5.1 Interface overview

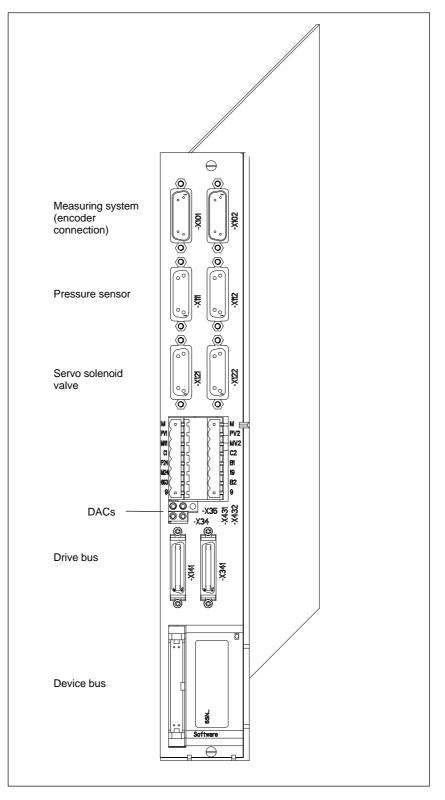


Fig. 5-1 HLA closed-loop control plug-in module (2-axis)

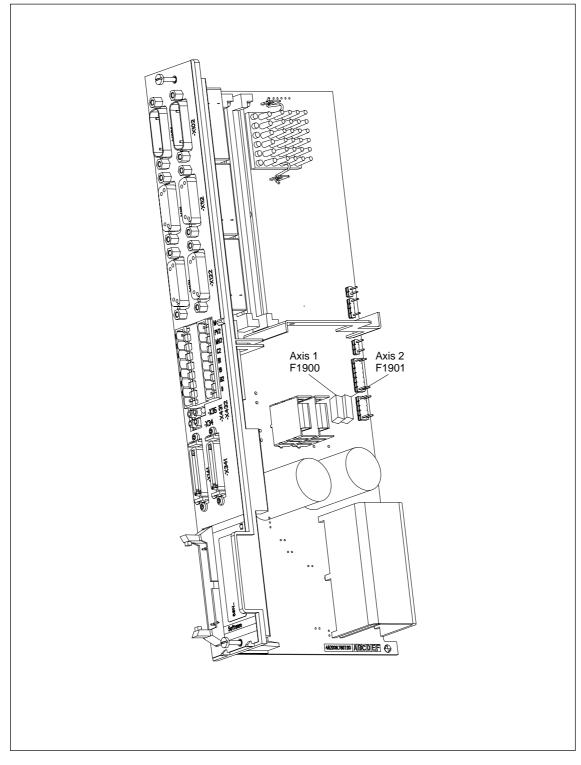


Fig. 5-2 Location diagram of HLA closed-loop control module

5.1 Interface overview

5.1.1 Measuring system

Measuring systems

One position encoder for each axis can be evaluated on the module.

- X101: Axis 1
- X102: Axis 2

The measuring system must always be plugged into the connector of the associated axis.

See Section 7.1 for further details.

Table 5-1 Connectors X

Connectors X101, X102; 15-pole male sub D connector (two-tier) in each case

Pin	X101	X102	Function
1	PENC0	PENC2	Encoder power supply
2	M (GND)	M (GND)	Encoder power supply ground
3	AP0	AP2	Incremental signal A
4	AN0	AN2	Inverse incremental signal A
5	BMIDAT0	BMIDAT2	Data signal EnDat or SSI interface
6	BP0	BP2	Incremental signal B
7	BN0	BN2	Inverse incremental signal B
8	XBMIDAT0	XBMIDAT2	Inverse data signal EnDat or SSI interface
9	PSENSE0	PSENSE2	Remote Sense encoder power supply (P)
10	RP0	RP2	Incremental signal R
11	MSENSE0	MSENSE2	Remote Sense encoder power supply (M)
12	RN0	RN2	Inverse incremental signal R
13	M (GND)	M (GND)	Ground (for internal shields)
14	BMICLK0	BMICLK2	Clock signal EnDat or SSI interface
15	XBMICLK0	XBMICLK2	Inverse clock signal, EnDat interface

02.99

5.1.2 Pressure sensor system

Connection for 2 pressure sensors per axis

- X111: Axis 1 (sensor 1A, 1B)
- X112: Axis 2 (sensor 2A, 2B)

 Table 5-2
 Connectors X111, X112; 15-pin female sub D connector in each case

Pin	X111	X112	Function
1	P24DS	P24DS	Supply of pressure sensor with external +24 V voltage
2	P24DS	P24DS	Supply of pressure sensor with external +24 V voltage
3	-	-	Not assigned
4	-	-	Not assigned
5	M24EXT	M24EXT	Supply of pressure sensor with external 0 V voltage
6	-	-	Not assigned
7	-	-	Not assigned
8	-	-	Not assigned
9	M24EXT	M24EXT	Supply of pressure sensor with external 0 V voltage
10	M24EXT	M24EXT	Extra pin for jumper between pins 10-11 with 3-wire connection
11	PIST1BN	PIST2BN	Analog actual-value signal, reference ground
12	PIST1BP	PIST2BP	Analog actual-value signal, max. range 010 V
13	M24EXT	M24EXT	Extra pin for jumper between pins 13-14 with 3-wire connection
14	PIST1AN	PIST2AN	Analog actual-value signal, reference ground
15	PIST1AP	PIST2AP	Analog actual-value signal, max. range 010 V

The inputs are differential with 40 k Ω input resistance. The input voltage range is 0...+10 V.

The supply output has an electronic short-circuit protector. The supply output is designed for a total current (4 sensors) of 200 mA.

Pressure sensor power supply via 26.5 V \pm 2% according to external supply.

5.1 Interface overview

5.1.3 Servo solenoid valve

- X121: Axis 1
- X122: Axis 2

Table 5-3 Connectors X121, X122; both are 15-pin subminiature D female connectors

Pin	X121	X122	Function
1	P24RV1	P24RV2	+24 V switched
2	P24RV1	P24RV2	+24 V switched
3	P24RV1	P24RV2	+24 V switched
4	P24RV1	P24RV2	+24 V switched
5	M (GND)	M (GND)	Functional ground
6	USOLL1N	USOLL2N	Analog setpoint output, reference ground
7	USOLL1P	USOLL2P	Analog setpoint output +/-10 V
8	M (GND)	M (GND)	Functional ground
9	M24EXT	M24EXT	24 V external ground
10	M24EXT	M24EXT	24 V external ground
11	M24EXT	M24EXT	24 V external ground
12	-	-	Not assigned
13	M (GND)	M (GND)	Functional ground
14	UIST1N	UIST2N	Analog valve actual-value input, reference ground
15	UIST1P	UIST2P	Analog valve actual-value input, +/-10 V

The analog valve actual value inputs are differential with 100 $\mbox{k}\Omega$ input resistance.

The current ratings of the 24 V outputs on the servo solenoid value are

- for an ambient temperature of 40 °C
 2.0 A
- for an ambient temperature of 55 °C 1.5 A

for the mean current value with a load cycle of 10 s duration.

The temperature corner points may be interpolated linearly.

The short-term current rating of the servo solenoid valve outputs is 3.0 A (200 ms).

In the event of overload, fuse F1900 or F1901 on the HLA closed-loop control plug-in module (for position, see Fig. 5-2) will blow.

Fuse

The switched 24 V outputs for axes 1 and 2 are protected by miniature fuses; fuse type F1900 for axis 1 and F1901 for axis 2.

Value: 2.5 AF/250 V; 5x20 mm UL

From: Wickmann-W erke GmbH Annenstraße 113 58453 Witten or PO Box 2520 58415 Witten

Order No.: 194

5.1.4 Terminals

Shut-off valves (axis-specific), external 26.5 V supply, enabling, BERO inputs

- X431: Axis 1
- X432: Axis 2

 Table 5-4
 Connector X431; 8-pin Phoenix Combicon connector

Pin	X431	Type ¹⁾	Function	Typ. voltage/ Limit values
1	M (GND)	I	Functional ground	
2	PV1	0	+24V shut-off valve axis 1	max. 2.0 A
3	MV1	0	Ground for shut-off valve for axis 1	
4	C1	-	Reserved, do not use!	
5	P24	I	Input for +24 V external	$26.5~V~\pm2\%$
6	M24	I	Input for 0 V external	
7	663	I	Module-specific enable signal	21 V30 V
8	9	0	Internal +24 V enable voltage, term. 9	

Table 5-5 Connector X432; 8-pin Phoenix Combicon connector

Pin	X432	Type ¹⁾	Function	Typical voltage/ limit values
1	M (GND)	I	Functional ground	
2	PV2	0	+24V shut-off valve axis 2	max. 2.0 A
3	MV2	0	Ground for shut-off valve for axis 2	
4	C2	-	Reserved, do not use!	
5	B1	I	BERO input, axis 1	13 V30 V
6	19	0	Internal enable voltage ground, term.19	
7	B2	I	BERO input, axis 2	13 V30 V
8	9	0	Internal +24 V enable voltage, term. 9	

Max. terminal cross-section 2.5 mm².

The +24 V outputs for shut-off valves for axes 1 and 2 are short-circuit-proof. The energy absorbed when inductive loads are disconnected must be limited to 1.7 J by the user (see also Subsection 2.4.2). When the supply polarity is reversed, the outputs are not protected against overload.

Warning

If the polarity of the 24 V supply is reversed, then the shut-off valves will open immediately, even if the NC or closed-loop control is not in operation!

¹⁾ I=Input; O=Output

5.1 Interface overview

Note

Each of the shut-off valves must be connected directly via 2 leads to pins 2/3 of X431 or X432!

A current-compensated interference suppression coil is inserted at the input for the external incoming supply terminal P24, terminal M24 (pins 5 and 6 of X431).

Terminal M24 and terminal MV1/MV2 must therefore not be reversed or short-circuited.

The internal enabling voltage (terminal 9) is provided in order to supply the BEROs and terminal 663, and must **not** be used to supply hydraulics components. The hydraulics components must be supplied via incoming supply P24. The voltages may not be connected in parallel.

Enabling inputs Module-specific enabling commands are issued by terminal 663. As no power section is installed, no relay is available. The input is therefore evaluated via optocouplers in the HLA module and also acts on the shut-off valves. The enable voltage can be picked off at terminal 9.

Terminal 663 is referenced to the internal enabling voltage (ground, terminal 19).

5.1.5 Test sockets (diagnostics)

Test sockets

The start-up tool or an MMC102/103 can be used to assign internal signals to the test sockets on the 611D drive (in conjunction with SINUMERIK 840D), where the signals are then available as analog values (see also Section 3.11).

O	O
DAC1	DAC2
O	O
DAC3	Ground

Functionality

Three 8-bit digital/analog converter (DAC) channels are available on the 611D hydraulics module. An analog image of various drive signals can be connected through to a test socket via these converters.

Only a window of the 24-bit wide drive signals can be displayed with the 8 bits (=1 byte) of the DAC, see Fig. 5-3. For this reason, the shift factor must be set to determine how fine the quantization of the selected signal must be. The normalization factor is calculated as the parameters are set and displayed as user info, e.g. 1V = 22.5A.

Bit	23	3					16	1	5				8	7	,			0	(LSB)
]
									i i					i i					
DAC with SF0						I			1 1 1										
DAC with SF1						T		İ	j					- - - -					
DAC with SF8]					1 1 1
DAC with SF16																Γ	T		j
LSB = Least Sig	nifi	car	t B	sit	SF	= \$	Shi	ft Fa	act	or									-

Fig. 5-3 Representation of the shift factor

Activating the
analog outputThe display for activating and setting the parameters of the DAC outputs is
called up from the basic machine display by pressing the Start-up /
Drive/Servo / Configur. DAC soft keys.

Use the **Start** soft key.to activate the configuration. Active DACs are identified (active/inactive) on the left of the display. The output is ended with **Stop** (active/inactive).

The selected signals are active after POWER ON.

Output voltage
rangeThe DAC operates on a voltage of between 0 V and +5 V. The 2.5 V output volt-
age corresponds to the zero point of the displayed signal. A two's complement
is used in the digital/analog conversion, see Fig. 5-3.

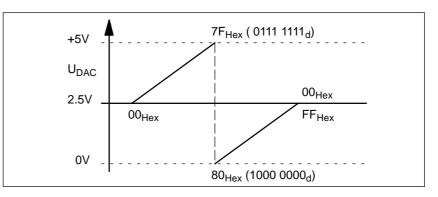


Fig. 5-4 Analog output voltage range

5.1.6 Bus interfaces

Drive bus

(see SIMODRIVE 611A/D)

- X141: Input
- X341: Output

A bus terminator must be plugged into the last module.

Device bus

(see SIMODRIVE 611A/D)

X151: Device bus

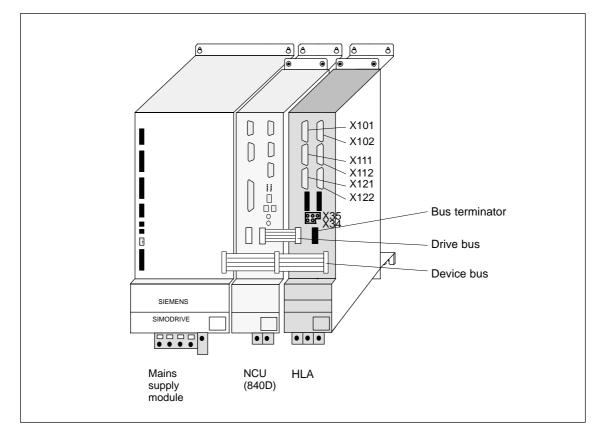
5.2 System environment

System environment

Mains connection

5.2

The SINUMERIK 840D and HLA module are supplied via the device bus from the SIMODRIVE mains supply module or the SIMODRIVE monitoring module (may only be installed in conjunction with a mains supply module as an extended power supply). No provision has been made for any other type of voltage supply and failure to use the supply provided could damage the unit.


Note

It is not permissible to operate an HLA module on its own on a SIMODRIVE monitoring module!

Power is supplied to downstream electrical axes via the DC link busbars (40 mm^2) of the carrier module.

For information about the electrical supply conditions for the power supply or monitoring module, as well as recommended circuits, technical data and setting options, please see Chapter 2 and

References: /PJ2/ SIMODRIVE Planning Guide

Fig. 5-5 Component layout for hydraulic drive

5.3 **Notes**

5.3.1 Climatic and mechanical environmental conditions in operation

Note

The following information refers to the electrical section of the HLA.

Relevant	
standards	

IEC 68-2-1, IEC 68-2-2, IEC 68-2-3

conditions

Climatic ambient

If the specified values cannot be maintained, then a heat exchanger or air conditioner must be provided.

Table 5-6 Climatic ambient conditions

Temperature range	Lower limit temperature	0°C
	Upper limit temperature	+55°C ¹⁾
Dew-point temperature td and relative air humidity U	Annual average	U = 75%, td = 17°C
	On 30 days (24 hours) in year (days distributed over the annual period)	U = 95%, td = 24°C
	On other days (<24 hours) (observing the yearly aver- age)	U = 85%, td = 20°C
Condensation		not permissible
Temperature rate of change	Within one hour	10 K
	Within three minutes	1 K
Atmospheric pressure	When operated at an alti- tude of 1500m above mean sea level. For greater alti- tudes, the upper limit tem- perature must be reduced by 3.5°C/500m.	86 kPa to 108 kPa

Table 5-7 Mechanical environmental conditions

Vibration resistance (to IEC 68-2-6)	Frequency range 10 - 58 Hz Over 58 - 500 Hz	Constant deflection 0.075 mm Ampl. of acceleration 9.8 m/s ²
Shock resistance in	Acceleration	5 g
operation (test group E, test Ea to IEC 68, part 2-27)	Duration of nominal shock	11 ms for device without disk drive 30 ms for device with disk drive

1) Current reduction above 40°C at the servo solenoid valve output, see Subsection 5.1.3.

5.3.2 Transport and storage conditions

	Note						
	The following information refers to the electrical section of the HLA.						
Relevant standards	IEC 68-2-1, IEC 68-2-2, IEC 68-2-3						
Originally packaged modules	The following data applies	to modules in their original	packaging:				
	Table 5-8 Climatic cond	litions					
	Temperature range	Lower limit temperature	-40 °C				
		Upper limit temperature	+70°C				
	Dew-point temperature td and relative air humidity U	Annual average	U = 75%, td = 17°C				
		On 30 days (24 hours) in year (days distributed over the annual period)	U = 95%, td = 24°C				
		On 30 days (24 hours) in year (days distributed over the annual period)	U = 85%, td = 20°C				
Condensation		As regards condensation, the following conditions may apply simultaneously:	Seldom, brief, slight				
		Max. condensation period	3 hours				
		Frequency of condensation	Annual average 3/Max.: 10				
		Shortest sequence of con- densation cycles	1 day				
	Temperature rate of change	Within one hour	20 K				
	Air pressure	The specified values apply to a transportation altitude of up to 3265 m above sea level	66 kPa to 108 kPa				

 Table 5-9
 Mechanical conditions during transportation in original packaging

Vibration resistance (to	Frequency range	Const. Deflection
IEC 68-2-6)	5 - 9 Hz	3.5 mm
		Ampl. of acceleration
	Over 9 - 500 Hz	10 m/s ²

5.3.3 Stress caused by contaminants

Relevant standards

DIN 40046, parts 36 and 37

Table 5-10 Function-impairing gases

Sulfur dioxide (SO ₂) Test conditions:	Degree of severity	$10 \text{ cm}^3/\text{m}^3 \pm 0.3 \text{ cm}^3/\text{m}^3$
	Temperature	25 °C ±2 °C
	Relative humidity	75% ±5%
	Test duration	4 days
Hydrogen sulfide (H ₂ S) Test conditions:	Degree of severity	$1 \text{ cm}^3/\text{m}^3 \pm 0.3 \text{ cm}^3/\text{m}^3$
	Temperature	25 °C ±2 °C
	Relative humidity	75% ±5%
	Test duration	4 days

Function-impairing dust

When working in areas where there is an unacceptably high dust hazard, the control must be operated in a cabinet with a heat exchanger or in a cabinet with a suitable air intake.

Notes

6

Hydraulics Diagnostics

Fault responses.	When a fault occurs, the system responds with either a power disable or veloc- ity controller disable depending on the type of fault.
	The power is disabled in response to errors which might make operation under closed-loop control impossible, such as
	velocity controller at limit,
	measuring system faults,
	RAM check error,
	• drive computer crash, etc.
Scope	The following alarms relate specifically to the hydraulics module:
	Other alarms may also occur and are described in:
	References: /DA/, Diagnostics Guide
	For special cases arising in conjunction with an integrated PLC, please refer to documentation of the SIMATIC S7-300 System.
Sorting	The alarms are listed in ascending order of alarm number. There are gaps in the sequence.
Structure of alarm description	Each alarm, consisting of an alarm number and alarm text, is described with 4 categories:
-	Explanation
	Response
	Remedy
	Program continuation.
Safety	

 \bigwedge

Danger

Please check the situation in the plant on the basis of the description of the active alarm(s). Eliminate the causes for the occurrence of the alarms and acknowledge in the manner indicated. Failure to observe this warning will place your machine, workpiece, stored settings and possibly even your own safety at risk.

300 000 to 300 499

For a description of the **alarms with error numbers 300 000 to 300 499**, please refer to documentation **References:** /DA/, Diagnostics Guide

300 500	Axis %1, drive %2 system error, error codes %3, %4
Explanation	%1 = NC axis number %2 = drive number %3 = error code 1 %4 = error code 2
	The drive has signaled a system error. For an exact breakdown of error codes, see /FBA/ DB1, Operational Messages/Alarm Responses.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Please inform the authorized personnel/service department. Reinitialize the drive.
	The search for the precise cause of error can only be performed by the develop- ment team. The displayed error codes are always needed for this.
	SIEMENS AG, After-Sales Support for A&D MC Products, Hotline.
Continue program	Switch control system OFF and ON again.
300 504	Axis %1, drive %2 measuring circuit fault in motor measuring system
Explanation	%1 = NC axis number %2 = drive number
	Signal level of motor encoder too small or noisy. SSI encoder: Parameter setting error (bit 9 of MD 5027 Bit 9 not set)
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC start disable. NC stopped in response to alarm. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Please inform the authorized personnel/service department. Check encoder, encoder leads and connectors between drive motor and 611D module: check for temporary interruptions (loose contact) - e.g. caused by movements in cable tow.
	Replace motor, encoder and/or cable if necessary
	Check shield bond to front plate of closed-loop plug-in module (top screw)
	Replace the control module.
	• Check distance between gear wheel and sensor on gear wheel encoders (The HLA module does not feature a gear wheel encoder. This is a measuring system connected to the hydraulic equipment.).
Continue program	Switch control system OFF and ON again.

300 506	Axis %1, drive %2, no sign of life from NC	
Explanation	%1 = NC axis number %2 = drive number	
	Upon servo enable, the NC must update the sign-of-life monitoring in each posi- tion control cycle. In case of error, sign-of-life monitoring has not been updated.	
	 Cause: a) NC no longer updates its sign of life in response to an alarm (e.g. 611D alarm) b) Communication error on drive bus c) Hardware error on drive module d) NC error e) On the 840D: Value of the machine data MD10082: MN_CTRLOUT_LEAD_TIME (offset in setpoint transfer time) is too high 	
	The alarm can be reconfigured using MD 11412: ALARM_REAC- TION_CHAN_NOREADY (channel not ready).	
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.	
Remedy	Please inform the authorized personnel/service department.	
	 For a) Determine whether the sign-of-life monitoring failure is a sequential fault. A sequential fault is caused by: A fault/alarm on axis x in an n-axis structure, for example. If this error description has occurred, the above error message is output for all n axes, even though the fault/alarm has only occurred on axis x. ==>Rectify error on axis x ==>The signs of life for the other axes are irrelevant. 	
	For b) Check plug-in connection, take measures to suppress RI (check shielding/ground connections)	
	For c) Replace closed-loop control module	
	For d) See NC error diagnosis, replace NC hardware if necessary	
	For e) Set machine data 840D MD10082: CTRLOUT_LEAD_TIME (offset in setpoint transfer time) to correct value using machine data MD10083: CTRLOUT_LEAD_TIME_MAX (maximum settable offset in setpoint transfer time).	
Continue program	Switch control system OFF and ON again.	

300 508	Axis %1, drive %2 zero mark monitoring motor measuring system
Explanation	%1 = NC axis number %2 = drive number
	Error in modulo (16/10) incrementation of encoder mark number on zero marker crossings. Increments have been lost or extra increments trapped.
	The alarm can be reconfigured using MD 11412: ALARM_REACTION_CHAN_NOREADY (channel not ready).
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Please inform the authorized personnel/service department. Use original Siemens pre-assembled encoder cables (high degree of shield protection). Check encoder, encoder cable for cable break and shield bonding point. Check shielding surface on front panel (top screw), replace closed-loop control module. Check distance between gear wheel and sensor on gear wheel encoders. If a BERO is installed, it is not the BERO signal which is monitored, but the zero marker of the encoder.
Continue program	Switch control system OFF and ON again.
300 511	Axis %1, drive %2 measuring function active
Explanation	%1 = NC axis number %2 = drive number
	The measuring function (e.g. frequency response measurement) was active as the power supply was switched on (power-up). The measuring function may be have been started illegally internally.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Stop the measuring function Reset NCK
Continue program	Switch control system OFF and ON again.

300 701	Start-up required for axis %1, drive %2
Explanation	%1 = NC axis number %2 = drive number
	This alarm occurs during initial start-up when there is no valid 611D machine data available.
Response	NC not ready. Mode group not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Please inform the authorized personnel/service department.
	Reset motor data.
	Back up boot drive.
	Power up system again
Continue program	Switch control system OFF and ON again.
300 702	Axis %1, drive %2 drive basic clock cycle invalid
Explanation	%1 = NC axis number %2 = drive number
	The drive basic clock cycle set on the NC is too high for the drive.
Response	NC not ready. Mode group not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	No remedial action is required. After the system has powered up again, the NCK machine data relevant to the drive basic clock cycle, i.e. MD 10050: SYSCLOCK_CYCLE_TIME (basic system cycle) and MD 10080: SYSCLOCK_SAMPL_TIME_RATIO (scale factor of position controller cycle for actual value sensing) are automatically altered so that the relevant limits are applied.
Continue program	Switch control system OFF and ON again.
300 707	Axis %1, drive %2 drive basic clock cycle axially unequal
Explanation	%1 = NC axis number %2 = drive number
	The drive basic clock cycle is different for the two axes on a 2-axis module.
	This alarm can only occur with OEM users who have the 611D drive without the standard NCK interface. In this instance, it is possible to transfer different axial drive clock cycles to the 611D modules.

Response	NC not ready. Mode group not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Please inform the authorized personnel/service department. Set the drive basic clock cycle to the same value for both axes.
Continue program	Switch control system OFF and ON again.
300 710	Axis %1, drive %2 position controller clock cycle axially unequal
Explanation	%1 = NC axis number %2 = drive number
	The position controller clock cycle is different for the two axes on a 2-axis module.
	This alarm can only occur with OEM users having the 611D drives without the standard NCK interface. In this instance, it would be possible to transfer different axial position controller clock cycles to the 611D module.
Response	NC not ready. Mode group not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Please inform the authorized personnel/service department. Set the position controller cycle to the same value for both axes.
Continue program	Switch control system OFF and ON again.
300 713	Axis %1, drive %2 lead time for position controller invalid
Explanation	%1 = NC axis number %2 = drive number
	The position controller computing time reduction specified by the NC must be shorter than the position controller cycle. The offset must be an integer multiple of the speed controller cycle.
Response	NC not ready. Mode group not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Please inform the authorized personnel/service department. MD 10082: CTROUT_LEAD_TIME (offset in setpoint transfer time).
Continue program	Switch control system OFF and ON again.

300 754	Axis %1, drive %2 signal number var. signaling function invalid
Explanation	%1 = NC axis number %2 = drive number
	The signal number for output of the appropriate signaling function is illegal. The permissible signal number range starts at 0 and ends at 29.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Please inform the authorized personnel/service department. Enter the correct signal number.
Continue program	Clear alarm on all channels by pressing RESET. Restart part program.
300 770	Axis %1, drive %2 format error
Explanation	%1 = NC axis number %2 = drive number
	The calculated filter coefficients of a bandstop filter are beyond the range of the internal format.
	The alarm can be reconfigured using MD 11412: ALARM_REACTION_CHAN_NOREADY (channel not ready).
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Please inform the authorized personnel/service department. Change the filter setting. The hotline can help you to trace the exact cause of the fault. Call the SIEMENS AG, SIMODRIVE Hotline.
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.
300 799	Axis %1, drive %2 save and boot necessary
Explanation	%1 = NC axis number %2 = drive number
	After drive machine data have been modified, parameters need to be re-calcu- lated. Press the CALCULATE soft key to start the calculation routine. After cal- culating the control parameters, it is necessary to save the machine data and to reboot.
	The alarm can be reconfigured using MD 11412: ALARM_REACTION_CHAN_NOREADY (channel not ready).

Response	Under certain circumstances it can be switched over across the entire channel via MD. NC not ready. Mode group not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	The newly calculated data must be saved (soft key: SAVE). The new parameter settings become operative when the system is next booted!
Continue program	Switch control system OFF and ON again.
300 854	Axis %1, drive %2 signal number var. signaling function invalid
Explanation	%1 = NC axis number %2 = drive number
	The signal number for output of the appropriate signaling function is illegal. The signal number range is between 0 and 29.
Response	Alarm display Interface signals are set
Remedy	Enter the correct signal number.
Continue program	Alarm display with cause of the alarm disappears. No further operator action required.
310 505	Axis %1, drive %2 meas. circuit error abs. track, code %3
Explanation	%1 = NC axis number %2 = drive number %3 = detailed error code
	Absolute encoder (EQN 1325) Monitoring of encoder hardware and EnDat or SSI interface.
	- Error in SSI encoder parameters (MD 5028)
	- SSI encoder: Fault in 24 V voltage supply

- SSI encoder: Break in data or clock pulse cable

More precise diagnosis via error code MD 5023: ENC_ABS_DIAGNOSIS_MO-TOR (diagnosis of absolute track in motor meas. circuit):

Bit no.	Meaning	Note
Bit 0	Lighting failed	
Bit 1	Signal amplitude too small	
Bit 2	Faulty code connection	
Bit 3	overvoltage	
Bit 4	Undervoltage	
Bit 5	Overcurrent	
Bit 6	Battery change necessary	
Bit 7	CRC error (evaluate bit 13 as well)	See 1)

Note

Bit no.

Meaning

	Bit 8	Encoder cannot be use Illegal assignment betw tracks	d een absolute and incremental	
	Bit 9	C/D track on ERN1387 encoder faulty or EQN encoder connected		
	Bit 10	Protocol cannot be interrupted		
	Bit 11	SSI level in data line detected		
	Bit 12	TIMEOUT while reading	g measured value	See 2)
	Bit 13	CRC error (evaluate bit	7 as well)	See 1)
	Bit 14	Incorrect IPU submodu	le for direct measuring signal	See 3)
	Bit 15	Encoder faulty		see 2) 3)
	1) CRC error	:: Bits 7 and 13 0 1 1 0 1 1	Meaning: CRC error from SIDA-ASIC Check byte error Error in correction of absolut increment track	e track via
	2)	Bit 12 and Bit 15:	Zero-level monitoring SSI	
	3)	Bit 14 and Bit 15:	Idle-level monitoring SSI	
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC start disable. NC stopped in response to alarm. The NC switches to follow-up mode. Alarm display. Interface signals are set.			
Remedy	Please info	orm the authorized per	sonnel/service department.	
	 Check encoder, encoder leads and connectors between drive motor and 611D module: check for temporary interruptions (loose contact) - e.g. caused by movements in cable tow. 			
	Replace motor and cable if necessary			
	Incorrect cable type			
		ller hardware not suita with EPROM)	ble for EnDat interface (e.g. cl	osed-loop control
Continue program	Switch con	trol system OFF and 0	DN again.	

310 606	Axis %1, drive %2 No external voltage supply to valve
Explanation	%1 = NC axis number %2 = drive number
	The external 26.5 V supply (X431: P24, M24) is monitored for violation of a lower limit in the control.
	Cause: Voltage dips or voltage outside the permissible range.
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Check the following monitoring criteria:
	- Voltage range (average) 26.0 V to 27.0 V
	- Ripple factor 240 mVp-p
	- No voltage dips
Continue program	
310 607	Axis %1, drive %2 valve is not responding
Explanation	%1 = NC axis number %2 = drive number
	The valve is not responding to the valve slide setpoint.
	Cause: Valve is not connected or has no valve spool checkback signal.
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Valve without valve spool checkback: MD 5530: Reset bit 2; Check valve connection.
Continue program	Cancel alarm in all channels of this mode group by pressing RESET. Restart part program.
310 608	Axis %1, drive %2 velocity controller at limit
Explanation	%1 = NC axis number %2 = drive number
	The speed controller output has been at its limit for an impermissibly long time (MD 5605: SPEEDCTRL_LIMIT_TIME (speed controller limit threshold).

	Monitoring function is active only if the velocity setpoint is lower than MD 5606: SPEEDCTRL_LIMIT_THRESHOLD (speed controller limit threshold).
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	
	• Is the drive blocked?
	 Is the encoder connected? (check encoder cable).
	Check shield on the encoder cable.
	Encoder defective?
	Check the encoder bar number.
	Replace the control module.
	 Modify machine data MD 5605: SPEEDCTRL_LIMIT_TIME and MD 5606: SPEEDCTRL_LIMIT_THRESHOLD to match the mechanical and dynamic features of the axis.
Continue program	Cancel alarm in all channels of this mode group by pressing RESET. Restart part program.

310 609	Axis %1, drive %2 encoder limit frequency exceeded
Explanation	%1 = NC axis number
	%2 = drive number
Posponso	Actual velocity is exceeding encoder limit frequency fg,max = 650 kHz.
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm.
	NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	
	The wrong encoder may be in use.
	 Does MD 5005: ENC_RESOL_MOTOR (encoder resolution for motor measuring system) tally with the encoder resolution?
	 Is the encoder cable connected correctly?
	 Is the shield of the encoder cable bonded over a large area?
	Replace the encoder.
	Replace the 611D hydraulics module.
Continue program	Cancel alarm in all channels of this mode group by pressing RESET. Restart part program.
310 610	Axis %1, drive %2 incorrect piston position
Explanation	%1 = NC axis number %2 = drive number
	Error is triggered when actual position value of drive is negative. Cause: Position actual value on drive side is counted in the wrong direction. Incorrect piston zero adjustment. If the drive is referenced and the offset between the piston zero (piston stop at A end) and machine zero positions has been entered for MD 5040, then the piston position in MD 5741 must only display positive values (from zero to maxi- mum piston stroke).
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD.
	Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	 Correct counting direction of actual position value at drive end if: Pos. setpoint voltage (e.g. function generator) →Cylinder piston moves from A to B If not: Invert control signal (change MD 5476 bit 0) Cylinder piston moves from A to B →v_act (MD 5707) > 0 If not: Invert actual value (change MD 5011 bit 0) Check piston zero position adjustment and correct if necessary: Set MD 5012 bits 14 and 15 to zero, save boot file, perform NCK Reset followed by reference point approach and then adjust the piston position.
Continue program	Cancel alarm in all channels of this mode group by pressing RESET. Restart part program.

310 611	Axis %1, drive %2 pressure sensor has failed
Explanation	%1 = NC axis number %2 = drive number
	Power limitation or friction compensation is activated: MD 5241: bit 0 or bit 1 is set and both actual pressure values are less than 2% of the system pressure in MD 5101: WORKING_PRESSURE. Cause: Defect in pressure sensor or connecting lead.
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Check connections for both pressure sensors. If there are no pressure sensors:
	Deactivate force limitation: MD 5241: Reset bit 0
	Deactivate friction compensation: MD 5241: Reset bit 1
Continue program	Cancel alarm in all channels of this mode group by pressing RESET. Restart part program.
310 612	Axis %1, drive %2 force limitation off
Explanation	%1 = NC axis number %2 = drive number
	The force limitation is switched off. Cause: The force limitation is switched off, even though
	The NC has defined a force limit or
	• Travel to fixed stop is selected.
Response	Mode group not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Activate force limitation: MD 5241: Set bit 0
Continue program	Cancel alarm in all channels of this mode group by pressing RESET. Restart part program.

310 701	Axis %1, drive %2 invalid velocity controller cycle
Explanation	%1 = NC axis number %2 = drive number
	An illegal value was entered for the velocity controller cycle for drive MD 5001: SPEEDCTRL_CYCLE_TIME.
Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Permissible: 62,5 μ s \leq T \leq 500 μ s
Continue program	Switch control system OFF and ON again.
310 702	Axis %1, drive %2 invalid position controller clock cycle
Explanation	%1 = NC axis number %2 = drive number
	The monitoring function on the 611D module has detected a position controller clock cycle that is not within the permissible tolerance range.
	The general conditions for obtaining a permissible clock cycle are:
	1. Minimum cycle period: 250 μs
	2. Maximum pulse rate: 4 s
	The position controller pulse rate must be a multiple of the speed controller cycle given in the drive MD 5001: SPEEDCTRL_CYCLE_TIME.
Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Change the position controller clock cycle on the NC
Continue program	Switch control system OFF and ON again.
310 703	Axis %1, drive %2 invalid monitoring cycle

Explanation %1 = NC axis number %2 = drive number Monitoring cycle MD 5002: MONITOR_CYCLE_TIME (monitoring cycle) is invalid.

Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	See drive functions "FB / DB1" MD1002
Continue program	Switch control system OFF and ON again.
310 704	Axis %1, drive %2 velocity controller clock cycle axially unequal
Explanation	%1 = NC axis number %2 = drive number
	The speed controller cycle MD 5001: SPEEDCTRL_CYCLE_TIME must be identical for both axes.
Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Set velocity controller clock cycle in MD 5001: SPEEDCTRL_CYCLE_TIME to an identical value for both axes.
Continue program	Switch control system OFF and ON again.
310 705	Axis %1, drive %2 monitoring cycle axially unequal
Explanation	%1 = NC axis number %2 = drive number
	On 2-axis modules, the monitoring cycle set in MD 5002: MONITOR_CYCLE_TIME (monitoring cycle) must be identical for both axes.
Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	MD 5002: MONITOR_CYCLE_TIME (monitoring cycle) to an identical value for both axes.
Continue program	Switch control system OFF and ON again.

310 706	Axis %1, drive %2 maximum useful velocity invalid
Explanation	%1 = NC axis number %2 = drive number
	Because of the high maximum motor speed in the drive MD 5401: DRIVE_MAX_SPEED and the velocity controller clock cycle in MD 5001: SPEEDCTRL_CYCLE_TIME may cause a format overflow.
Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Reduce maximum useful velocity setting in MD 5401: DRIVE_MAX_SPEED or set a smaller speed controller cycle in MD 5001: SPEEDCTRL_LIMIT_TIME. MD 5024: Scale graduations: enter a higher value
Continue program	Switch control system OFF and ON again.
310 707	Axis %1, drive %2 STS configuration axially unequal
Explanation	%1 = NC axis number %2 = drive number
	The configuration of the control block MD 5003: STS_CONFIG (STS configura- tion) must be set to an identical value for both axes.
Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Check drive MD 5003: STS_CONFIG (STS configuration) and set the bits for the two axes on the module identically. (Do not change the default setting - it represents the optimum configuration).
Continue program	Switch control system OFF and ON again.
310 708	Axis %1, drive %2 no. of encoder marks motor measuring system invalid
Explanation	%1 = NC axis number %2 = drive number
	The number of encoder marks of the motor measuring system in the drive MD 5005: ENC_RESOL_MOTOR (no. of encoder marks motor measuring system) is either zero or greater than the maximum input limit.

Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Match the number of encoder marks for the motor measuring system set in MD 5005: ENC_RESOL_MOTOR (no. of encoder marks motor measuring system) to the bar number of the connected encoder. (Default setting for motor measuring system: (Default setting for motor measuring system: 2048 incr./rev.).
Continue program	Switch control system OFF and ON again.
310 709	Axis %1, drive %2 error in piston diameter or piston rod diameter
Explanation	%1 = NC axis number %2 = drive number
	The piston diameter in drive MD 5131: CYLINDER_PISTON_DIAMETER is less than zero
	Or
	the piston rod diameter set in drive MD 5132: CYLINDER_PISTON_ROD_A_DIAMETER is greater than the piston diameter set in drive MD 5131: CYLINDER_PISTON_DIAMETER
	Or
	the piston rod diameter set in drive MD 5133: CYLINDER_PISTON_ROD_B_DIAMETER is greater than the piston diameter set in drive MD 5131: CYLINDER_PISTON_DIAMETER
Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Enter a valid piston diameter setting in drive MD 5131: Enter CYLINDER_PISTON_DIAMETER (0 < D \leq 500 mm).
	Or
	set the piston rod diameter in drive MD 5132: CYLINDER_PISTON_ROD_A_DIAMETER to a lower value than the piston di- ameter in drive MD 5131: CYLINDER_PISTON_DIAMETER.
	Or
	set the piston rod diameter in drive MD 5133: CYLINDER_PISTON_ROD_B_DIAMETER to a lower value than the piston di- ameter in drive MD 5131: CYLINDER_PISTON_DIAMETER.
Continue program	Switch control system OFF and ON again.

310 710	Axis %1, drive %2 distance-coded scale is set incorrectly
Explanation	%1 = NC axis number %2 = drive number
	When a distance-coded scale (MD 5011 bit 7=1) is selected, a linear measuring system must also be configured (MD 5011 bit 4=1).
Response	Mode group not ready. Channel not ready. NC stopped in response to alarm. NC start disable. Alarm display. Interface signals are set.
Remedy	MD 5011: ACTUAL_VALUE_CONFIG (configuration of actual-value sensing) and configure if necessary.
Continue program	Switch control system OFF and ON again.
310 750	Axis %1, drive %2 feedforward control gain too high
Explanation	%1 = NC axis number %2 = drive number
	The feedforward control gain is calculated from the reciprocal of the controlled system gain in drive MD 5435: CONTROLLED_SYSTEM_GAIN.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	
	 Increase the speed controller cycle time in MD 5001: SPEEDCTRL_CYCLE_TIME.
	 Reduce the force controller feedforward factor in MD 5247: FORCE_FFW_WEIGHT.
	 Increase the controlled system gain setting in MD 5435: CON- TROLLED_SYSTEM_GAIN.
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.
310 751	Axis %1, drive %2 proportional gain of velocity controller too high
Explanation	%1 = NC axis number %2 = drive number
	The P gain for the velocity controller is too high:
	 MD 5406: SPEEDCTRL_GAIN_A (gain at cylinder edge A end) Or
	 MD 5407: SPEEDCTRL_GAIN (gain for piston position with lowest natural frequency) Or
	 MD 5408: SPEEDCTRL_GAIN_B (gain at cylinder edge B end)

Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Enter a lower value for the P gain of the velocity controller:
	MD 5406: SPEEDCTRL_GAIN_A (gain at cylinder edge A end)
	Or
	 MD 5407: SPEEDCTRL_GAIN (gain for piston position with lowest natural frequency)
	Or
	MD 5408: SPEEDCTRL_GAIN_B (gain at cylinder edge B end)
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.
310 752	Axis %1, drive %2 l-action gain of velocity controller invalid
Explanation	%1 = NC axis number %2 = drive number
	The integral gain in MD 5409: SPEEDCTRL_INTEGRATOR_TIME cannot be represented.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.
310 753	Axis %1, drive %2 D component of velocity controller invalid
Explanation	%1 = NC axis number %2 = drive number
	The D component of the velocity controller is too high:
	MD 5431: SPEEDCTRL_DIFF_TIME_A (gain at cylinder edge A end) or
	 MD 5432: SPEEDCTRL_DIFF_TIME (gain for piston position with lowest natural frequency) or
	MD 5433: SPEEDCTRL_DIFF_TIME_B (gain at cylinder edge B end)

Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Enter a lower value for the D component of the velocity controller:
	 MD 5431: SPEEDCTRL_DIFF_TIME_A (gain at cylinder edge A end) or
	 MD 5432: SPEEDCTRL_DIFF_TIME (gain for piston position with lowest natural frequency) or
	 MD 5433: SPEEDCTRL_DIFF_TIME_B (gain at cylinder edge B end)
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.
310 754	Axis %1, drive %2 friction compensation gradient too high
Explanation	%1 = NC axis number %2 = drive number
	Reduce the friction compensation gradient component MD 5460: FRICTION_COMP_GRADIENT is too high.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Reduce the friction compensation gradient component MD 5460: FRICTION_COMP_GRADIENT.
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.
310 755	Axis %1, drive %2 area adaptation too high
Explanation	%1 = NC axis number %2 = drive number
	 The positive area adaptation factor set in drive MD 5462: AREA_FACTOR_POS_OUTPUT is too high or
	 the negative area adaptation factor set in drive MD 5463: AREA_FACTOR_NEG_OUTPUT is too high.

Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	
	 Select a lower setting for the positive area adaptation factor in MD 5462 AREA_FACTOR_POS_OUTPUT or
	 select a lower setting for the negative area adaptation factor in MD 5463 AREA_FACTOR_NEG_OUTPUT.
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.
310 756	Axis %1, drive %2 controlled-system gain is less than/equal to zero
Explanation	%1 = NC axis number %2 = drive number
	The controlled system gain setting in drive MD 5435: CONTROLLED_SYSTEM_GAIN is less than or equal to zero.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Enter a valid controlled system gain setting in drive MD 5435: CONTROLLED_SYSTEM_GAIN (see drive model data calculation).
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.
310 757	Axis %1, drive %2 blocking frequency > Shannon frequency
Explanation	%1 = NC axis number %2 = drive number
	The bandstop frequency set for a velocity or control output filter is higher than the Shannon sampling frequency defined by the sampling theorem.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.

Remedy	The blocking frequency
,	drive MD 5514: SPEED_FILTER_1_SUPPR_FREQ or
	 drive MD 5210: OUTPUT_VCTRL_FIL_1_SUP_FREQ or
	 drive MD 5213: OUTPUT_VCTRL_FIL_2_SUP_FREQ or
	drive MD 5268: FFW_FCTRL_FIL_1_SUP_FREQ or
	drive MD 5288: OUTPUT_FIL_1_SUP_FREQ
	must be lower than the reciprocal of two velocity controller clock cycles in MD 5001: SPEEDCTRL_CYCLE_TIME, i.e. less than 1/(2*MD 5001*31.25 microsec).
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.
310 758	Axis %1, drive %2 natural frequency > Shannon frequency
Explanation	%1 = NC axis number %2 = drive number
	The natural frequency of a velocity filter is higher than the Shannon sampling frequency defined by the sampling theorem.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	The natural frequency in Hz of a velocity must be less than the reciprocal of two velocity controller clock cycles.
	Speed filter:
	MD 5520 * 0.01 * MD 5514 < 1 / (2 * MD 5001 * 31.25 microsec)
	 BSF natural frequency MD 5520: SPEED_FILTER_1_BS_FREQ
	 BSF blocking frequency MD 5514: SPEED_FILTER_1_SUPPR_FREQ
	 Set an identical speed controller cycle MD 5001: SPEEDCTRL_CYCLE_TIME
Continue program	Cancel alarm in all channels by pressing RESET. Restart part program.

310 759	Axis%1, drive%2 numerator bandwidth exceeds double blocking fre- quency
Explanation	%1 = NC axis number %2 = drive number
	The numerator bandwidth of a velocity or control output filter is greater than 2x the blocking frequency.
	The error message is only generated for the general bandstop if the following applies:
	• Speed filter 1:
	MD 5516 > 0.0 or
	MD 5520 <> 100.0
	Control output filter 1 in velocity controller:
	MD 5212 > 0.0
	Control output filter 2 in velocity controller:
	MD 5215 > 0.0
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	The numerator bandwidth must be less than twice the blocking frequency.
·	Speed filter 1:
	 BSF bandwidth numerator drive MD 5516: SPEED_FILTER_1_BW_NUMERATOR
	- BSP blocking frequency drive MD 5514: SPEED_FILTER_1_SUPPR_FREQ
	MD 5516 \leq 2 * MD 5514
	Control output filter 1 in velocity controller:
	 BSF numerator bandwidth drive MD 5212: OUTPUT_VCTRL_FIL_1_BW_NUM
	 BSP blocking frequency drive MD 5210: OUTPUT_VCTRL_FIL_1_SUP_FREQ
	MD 5212 \leq 2 * MD 5210
	Control output filter 2 in velocity controller:
	- BSF numerator bandwidth drive MD 5215: OUTPUT_VCTRL_FIL_2_BW_NUM
	 BSP blocking frequency drive MD 5213: OUTPUT_VCTRL_FIL_2_SUP_FREQ
	MD 5215 \leq 2 * MD 5213
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.

310 760	Axis %1, drive %2 denominator bandwidth exceeds double natural fre- quency
Explanation	%1 = NC axis number %2 = drive number
	The denominator bandwidth of a velocity filter is greater than 2x the natural frequency.
	The error message is only generated for the general bandstop if the following applies:
	Speed filter 1:
	MD 5516 > 0.0 or
	MD 5520 <> 100.0
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	The denominator bandwidth of a velocity filter must be less than twice the natural frequency.
	Speed filter 1:
	 BSP bandwidth drive MD 5515: SPEED_FILTER_1_BANDWIDTH
	 BSP blocking frequency drive MD 5514: SPEED_FILTER_1_SUPPR_FREQ
	 BSP natural frequency drive MD 5520: SPEED_FILTER_1_BS_FREQ
	MD 5515 ≤ 2 * MD 5514 * 0.01 * MD 5520
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.
310 761	Axis %1, drive %2 proportional gain of force controller too high
Explanation	%1 = NC axis number %2 = drive number
	The P gain of the force controller in MD 5242: FORCECTRL_GAIN is too high.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Enter a lower value for the force controller P gain in MD 5242: FORCECTRL_GAING.
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.

310 762	Axis %1, drive %2 l-action gain of force controller invalid
Explanation	%1 = NC axis number %2 = drive number
	The integral gain in MD 5244: FORCECTRL_INTEGRATOR_TIME cannot be represented.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.
310 763	Axis %1, drive %2 D component of force controller invalid
Explanation	%1 = NC axis number %2 = drive number
	The D component of the force controller MD 5246: FORCECTRL_DIFF_TIME is too high.
Response	NC not ready. Under certain circ. it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Enter a smaller value for the D component of the force controller MD 5246: FORCECTRL_DIFF_TIME.
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.
310 764	Axis %1, drive %2 force controller controlled-system gain is less than/ equal to zero
Explanation	%1 = NC axis number %2 = drive number The controlled-system gain setting for the force controller in drive MD 5240
Response	FORCECONTROLLED_SYSTEM_GAIN is less than or equal to zero. NC not ready. Under certain circ. it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	Enter a valid controlled-system gain setting in drive MD 5240 FORCECONTROLLED_SYSTEM_GAIN (see Calculate Model Data).
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.

310 771	Axis %1, drive %2 gradient in fine range of valve characteristic is less than/equal to zero
Explanation	%1 = NC axis number %2 = drive number
	The gradient in the fine area of the valve characteristic is less than or equal to zero.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	The gradient in the fine area is calculated as follows:
	 positive quadrant: (MD 5464-MD 5480)/(MD 5465-MD 5481)
	 negative quadrant: (MD 5467-MD 5483)/(MD 5468-MD 5484)
	Enter a valid combination in the above drive MD.
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.
310 772	Axis %1, drive %2 gradient in coarse range of valve characteristic is less than/equal to zero
Explanation	%1 = NC axis number %2 = drive number
	The gradient in the coarse area of the valve characteristic is less than or equal to zero.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	The gradient in the coarse range is calculated according to the:
	 positive quadrant: (MD 5485-MD 5464)/(MD 5486-MD 5465)
	 negative quadrant: (MD 5487-MD 5467)/(MD 5488-MD 5468)
	Enter a valid combination in the above drive MD.
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.

310 773	Axis %1, drive %2 gradient at end of saturation range of valve characteris- tic is less than/equal to zero
Explanation	%1 = NC axis number %2 = drive number
	The gradient at the end of the saturation range of the valve characteristic is less than/equal to zero. The saturation range is rounded by a parabola function. The parabola has a maximum in the saturation region and therefore cannot be inverted.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	The gradient at the end of the saturation region is calculated according to the:
	 Positive quadrant: 2 · (1.0-MD 5485)/(1.0-MD 5486) -(MD 5485-MD 5464)/(MD 5486-MD 5465)
	 Negative quadrant: 2 · (1.0-MD 5487)/(1.0-MD 5488) -(MD 5487-MD 5467)/(MD 5488-MD 5468)
	Enter a valid combination in the above drive MD.
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.
310 774	Axis %1, drive %2 overlap between zero and breakpoint ranges of valve characteristic
Explanation	%1 = NC axis number %2 = drive number
	The zero range and breakpoint range of the valve characteristic are overlap- ping.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	The zero and breakpoint ranges overlap if:
	 positive quadrant: (MD 5481+MD 5482)>(MD 5465-MD 5466)
	 negative quadrant: (MD 5484+MD 5482)>(MD 5468-MD 5466)
	Enter a valid combination in the above drive MD.
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.

310 775	Axis %1, drive %2 overlap between breakpoint range and saturation re- gion of valve characteristic
Explanation	%1 = NC axis number %2 = drive number
	The breakpoint range and saturation region of the valve characteristic are over- lapping.
Response	NC not ready. Under certain circumstances it can be switched over across the entire channel via MD. Channel not ready. NC stopped in response to alarm. NC start disable. The NC switches to follow-up mode. Alarm display. Interface signals are set.
Remedy	The breakpoint range and saturation region overlap if:
	 positive quadrant: (MD 5465+MD 5466)>MD 5486
	 negative quadrant: (MD 5468+MD 5466)>MD 5488
	Enter a valid combination in the above drive MD.
Continue program	Cancel alarm on all channels by pressing RESET. Restart part program.
311 710	Axis %1, drive %2 resolution invalid for SSI motor measuring system
Explanation	%1 = NC axis number
	%2 = drive number The motor measuring system is incorrectly configured for an SSI encoder:
	MD 5022 ENC_ABS_RESOL_MOTOR must not be zero.
Response	NC not ready. Channel not ready. NC stopped in response to alarm. NC start disable. Alarm display. Interface signals are set.
Remedy	Set MD 5022 to the correct value
	Rotary encoder: Single-turn resolution (increments per revolution) Linear encoder: Resolution of one increment (in nanometers)
Continue program	Switch control system OFF and ON again.

311 711	Axis %1, drive %2 message frame length invalid for SSI motor measuring system
Explanation	%1 = NC axis number %2 = drive number
	The motor measuring system is incorrectly configured for an SSI encoder.
Response	Mode group not ready. Channel not ready. NC stopped in response to alarm. NC start disable. Alarm display. Interface signals are set.
Remedy	Check the following MD and correct if necessary
	MD 5028 MD 5021 (Multi-turn): Number of resolvable revolutions MD 5022 (Single-turn): Number of increments per revolution MD 5027 Bit 12: Parity bit MD 5027 Bit 14 Alarm bit
	Example: SSI encoder with 25-bit long message frame, 12 bits multi-turn, 12 bits single- turn, 1 alarm bit, no parity bit: MD 5028 = 25 MD 5021 = 4096 MD 5028 = 4096 MD 5027 bit 12 = 0 MD 5027 bit 14 = 1
Continue program	Switch control system OFF and ON again.
311 712	Axis %1, drive %2 Invalid multi-turn SSI motor measuring system
Explanation	%1 = NC axis number %2 = drive number
	The motor measuring system is incorrectly configured for a linear SSI motor measuring system. A linear measuring system cannot have any multiturn information.
Response	Mode group not ready. Channel not ready. NC stopped in response to alarm. NC start disable. Alarm display. Interface signals are set.
Remedy	Set MD 5021 to 0.
Continue program	Switch control system OFF and ON again.

311 716	Axis %1 drive %2 SSI measuring system not possible without incremental signals
Explanation	%1 = NC axis number %2 = drive number
	SSI encoders without incremental signals cannot be used with the existing module.
Response	Mode group not ready. Channel not ready. NC stopped in response to alarm. NC start disable. Alarm display. Interface signals are set.
Remedy	Use a new module (order no.: 6SN1115-0BA1 1-0AA1)
Continue program	Switch control system OFF and ON again.
311 717	Axis %1, drive %2 SSI transmission time-out
Explanation	%1 = NC axis number %2 = drive number The SSI transmission must be able to complete within one position controller
	cycle. It cannot do so.
Response	Mode group not ready. Channel not ready. NC stopped in response to alarm. NC start disable. Alarm display. Interface signals are set.
Remedy	Increase the position controller cycle or the SSI data transfer rate, MD 5011 bits 14 and 15.
	Transfer rates of 100 kHz, 500 kHz, 1 MHz and 2 MHz are possible.
	Attention: It might not be possible to increase the frequency with the length of encoder cable used.
Continue program	Switch control system OFF and ON again.

Peripherals/Accessories

7.1 Measuring systems

7.1.1 Encoders, linear scales

Note

For connector assignments, see Subsection 5.1.1.

Encoder specification

The HLA module is designed to evaluate

- Incremental measuring systems with sinusoidal signals (A, B) and a reference signal (R) Or
- Absolute measuring systems with sinusoidal signals (A, B) and EnDat interface for absolute position sensing

with the following signal limit data:

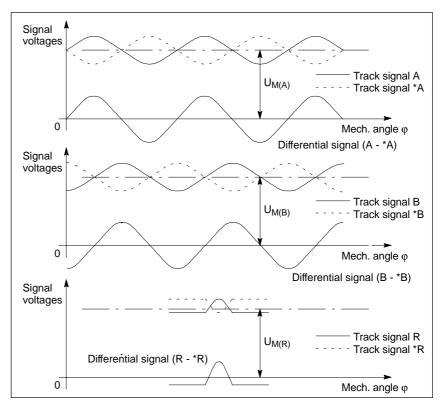


Fig. 7-1 Required signal chart of measuring system signals for data definition

7 Peripherals/Accessories

7.1 Measuring systems

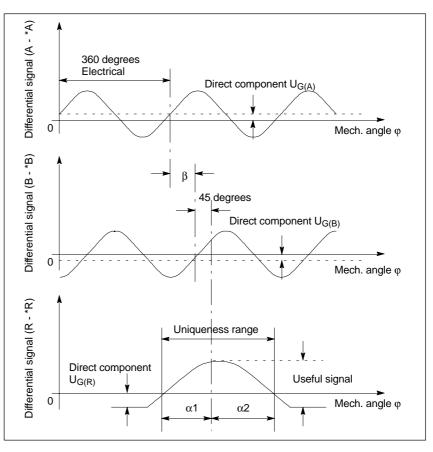


Fig. 7-2 Required signal chart of measuring system signals (incremental and reference) after differential amplification for data function

Table 7-1 Limit data for measuring system signals

Parameters	Description	min.	typ.	max.	Unit
Mean voltage	U _{M(A)} ; U _{M(B)} ; U _{M(R)}	1.75		3.25	V
Amplitude	A - *A; B - *B	350	500	600	mv
Ratio	(A - *A)/(B - *B)	0.9	1.0	1.1	-
Dynamic change in amplitude	Δ(A - *A)/360° el.; Δ(B - *B)/360° el.	-	-	0.3	mV/360° el.
Direct component	U _{G(A)} /amplitude (A - *A); U _{G(B)} /amplitude (B - *B);	-0.2	0	+0.2	
Dynamic change in direct component	ΔU _{G(A)} /360° el.; ΔU _{G(B)} /360° el.	-	-	1	mV/360° el.
Signal frequency	fs	-	-	200	kHz
Phase shift	β	85	90	95	Degrees
Harmonic distortion ¹⁾	k	-	-	1	%
Useful signal	R - *R	300	-	1500	mV
DC voltage	U _{direct(R)}	-150	-	-500	mV
Uniqueness range	α1; α2	50	-	270	Degrees

1) Definition for harmonic distortion: k =

$$\sqrt{U1^2+U2^2+...Un^2}$$

 $\sqrt{U0^2+U1^2+...Un^2}$

U0: Fundamental component U1...Un: Harmonic components

If signals which do not conform to this specification are used, problems such as speed ripple, positioning inaccuracy or other malfunctions may be encountered.

7.1.2 Connection diagrams

Connection

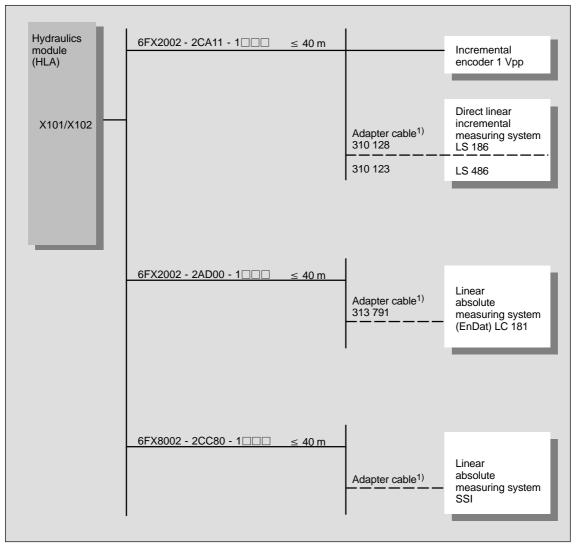


Fig. 7-3 Example showing connection options for measuring system cable

Adapter cable can be ordered from supplier of linear scale. MTS: Order code 252 882 Balluff: BKS-S 32M/SA1-□□ Visolux: ASK EDM-SSI-SIMODRIVE

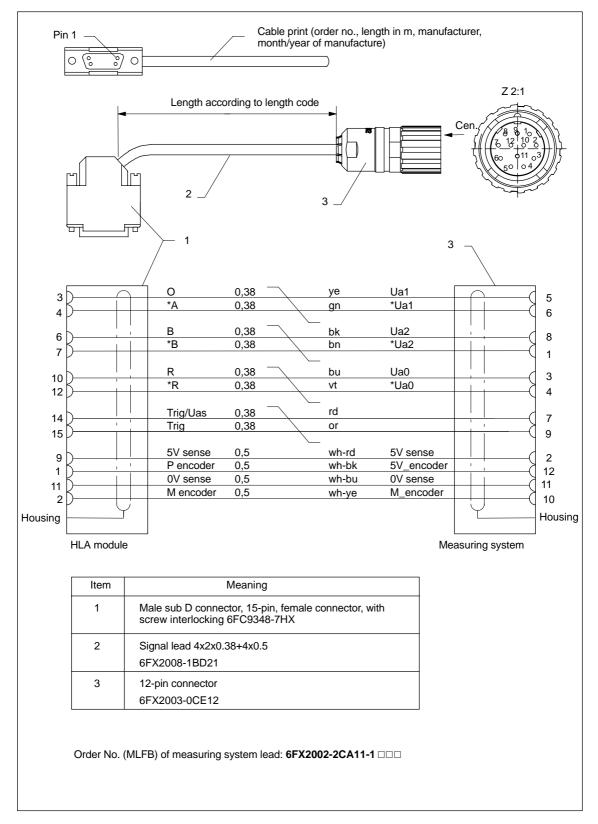


Fig. 7-4 Measuring system lead for encoder with voltage signals (X101/X102)

7 Peripherals/Accessories

7.1 Measuring systems

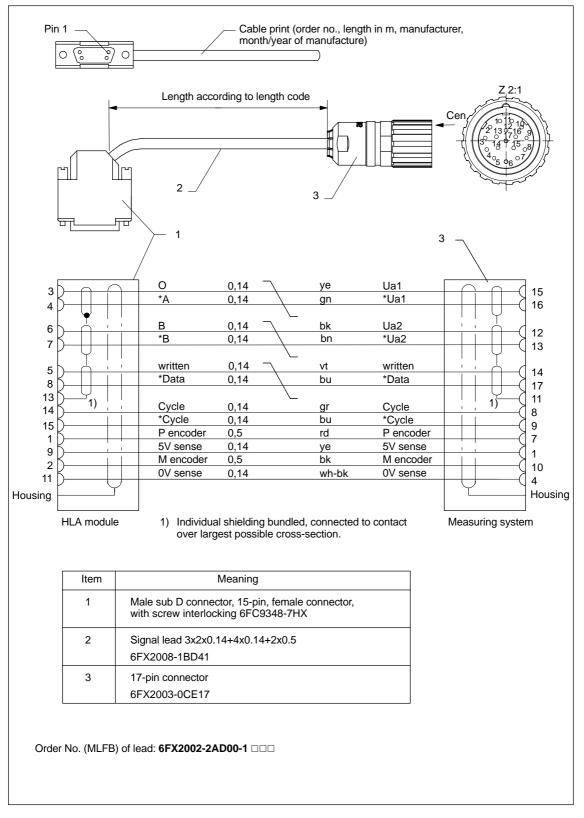


Fig. 7-5 Measuring system lead for encoder with voltage signals + EnDat (X101/X102)

Fig. 7-6 Measuring system lead for SSI encoder

7.2 BERO (X432)

Only BEROs of type 3-wire PNP NO contact may be used.

We recommend the following BERO models:

SIEMENS BERO M30 3RG 4014-0AG01 BERO M12 3RG 4012-3AG01

Note

The BERO cable must be shielded.

Table 7-2	Pin assignment X432
	r in assignment 7452

Terminal name	Type ¹⁾	Signal designation
B1/B2	Ι	BERO (external reference system) axis 1/2
19	0	Power supply for BERO ground external
9	0	Power supply for BERO 24 V external

1) I: Input, O: Output

7.3 Pressure sensor

7.3.1 Sensor equipment

Note

For connector assignments, see Subsection 5.1.2.

General The task of pressure sensors is to convert the mechanical "pressure" variable into the electrical "voltage" or "current" variable.

The pressure sensors from the Bosch Rexroth product range are suitable for pressure monitoring and control applications in mechanical engineering, injection molding machines, presses and many other areas.

The most important features of the sensors are

- pressure sensor element consisting of high-quality steel membrane (spring material), coated with thin-layer strain gauges in full-bridge connection.
- · integrated electronic circuitry with temperature compensation
- signal output proportional to pressure
- zero point and sensitivity are calibrated exactly by manufacturer

Note

Pressure sensor cables with pre-assembled sensor end are not available. The following cable information is intended only as an example.

Instructions for use	 Sensor must be mounted in vertical position with connector pointing down- wards.
	 The sensor must be installed in the hydraulic system in such a way as to prevent air cushions developing between the sensor membrane and the pressure medium.
	 Pressure medium: Hydraulic fluid; other fluids only after consultation with Bosch Rexroth.
Selection of pressure sensor (recommended types)	Sensors with a signal voltage of U=010 V are available in the following vari- ants for the HLA module:

7.3 Pressure sensor

Signal	Pressure range	Male connector	Rexroth order no.
010 V	100 bar	Rectangular connector,	0811 405 554
	210 bar	4-pin	0811 405 540
	350 bar		0811 405 547
	210 bar	7-pin circular connector	0811 405 531
	350 bar		0811 405 532

Table 7-3	Recommended types of pressure sensor
-----------	--------------------------------------

Dimensions/termin al assignments

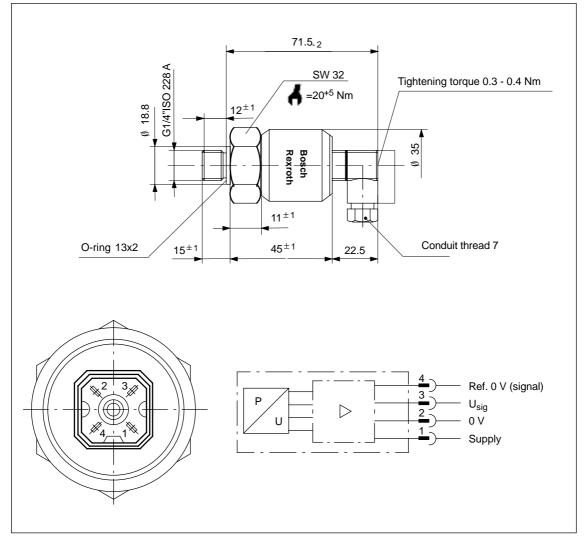


Fig. 7-7 Rexroth pressure sensors, order nos. 0811 405 540, 0811 405 547 and 0811 405 554

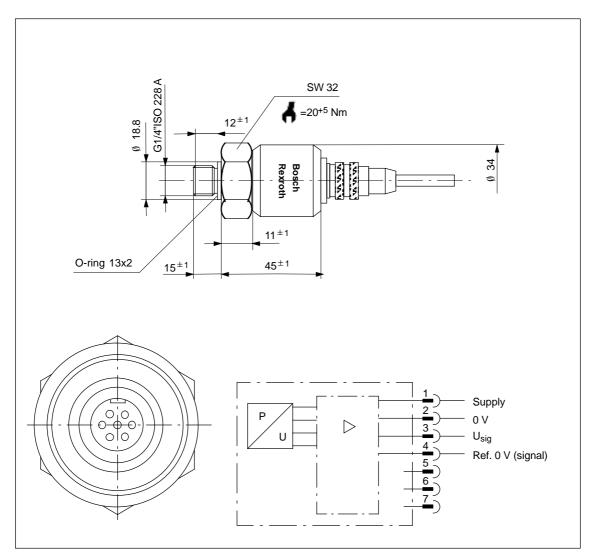


Fig. 7-8 Rexroth pressure sensors, order nos. 0811 405 531 and 0811 405 532

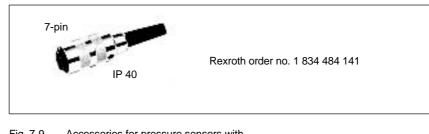


Fig. 7-9 Accessories for pressure sensors with order nos. 0811 405 531 and 0811 405 532

7.3 Pressure sensor

Characteristics

Characteristic	Value range
Signal voltage	010 V
Supply voltage	
0811 405 540	1328 V DC
0811 405 547	1328 V DC
0811 405 5554	1328 V DC
0811 405 531	1228 V DC
0811 405 532	1228 V DC
"Dynamic" overload capability	2 x p _{nom} (up to 20 x 10 ⁶ load cycle)
"Static" overload capability	3 x p _{nom} (up to 10 x 0.5 sec each)
Burst pressure	>1500 bar
Linearity deviation with hysteresis Zero point scatter Sensitivity scatter Temperature coefficient of zero point Temperature coefficient of sensitivity	<±0.5% <±0.5% <±0.5% <±0.2%/10 °C <±0.25%/10 °C
Measurement temperature range (compen- sated) Operating temperature range Storage temperature range	+10 to +70 °C -10 to +80°C -30 to +90°C
Hydraulic dead volume Measuring frequency (-3 dB) Natural frequency Max. acceleration	Approx. 0.5 cm ³ ≈1 kHz ≥ 10 kHz ≈25 g (g=9.81 ms ²)
Connecting piece material (hydraulic) Membrane material	X 5 Cr Ni 18 10 X 5 Cr Ni Cu Nb 17 4
Hydraulic connection	G 1/4 (ISO 228)

Table 7-4 Characteristics of pressure sensors

Accessories

A 4-pin square connector is supplied with the following pressure sensors with order nos.: 0811 405 540

0811	405 540	
0811	405 547	
0811	405 554.	

For replacement purposes, it can be ordered under order no.: 1 834 484 061 or 1 834 484 063 from Bosch Rexroth AG.

7.3.2 Connection diagrams

Note

The following cable data for hydraulic systems is tailored specifically to Bosch Rexroth products. If hydraulics components supplied by other manufacturers are used, the pin assignments of the hydraulic-end connections might be different!

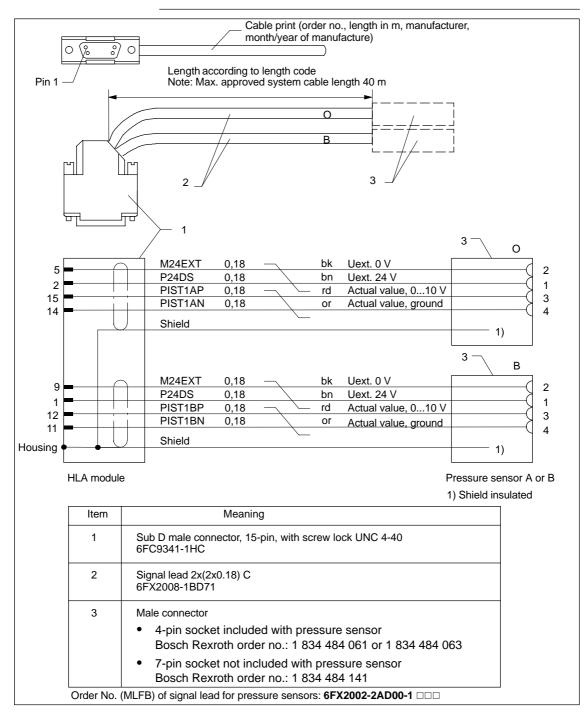


Fig. 7-10 Signal lead for pressure sensors (X111/X112)

7.4 Connection diagrams for servo solenoid valves

Note

The following cable data for hydraulic systems is designed for directly and pilot actuated Bosch Rexroth servo solenoid valves (see Subsection 2.3.2).

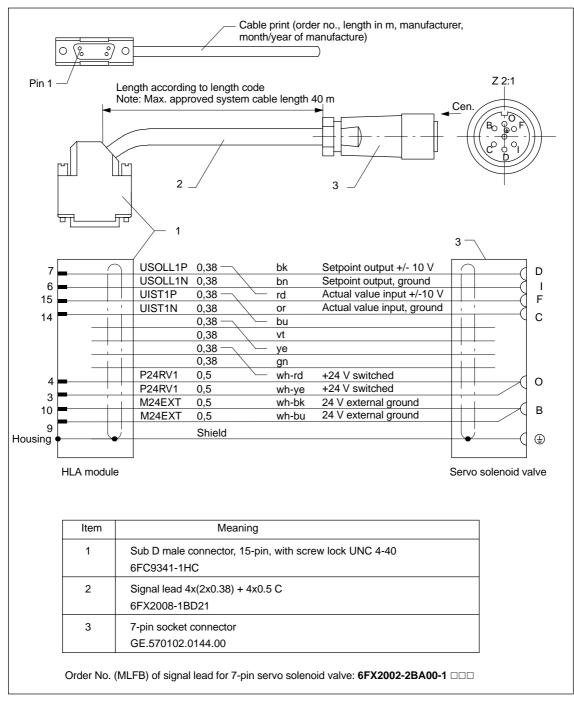


Fig. 7-11 7-pin signal lead for servo solenoid valve (X121/X122) - standard version

The pin assignments on valves supplied by other manufacturers may deviate from the assignments shown in Fig. 7-11. Cables must be assembled by the customer!

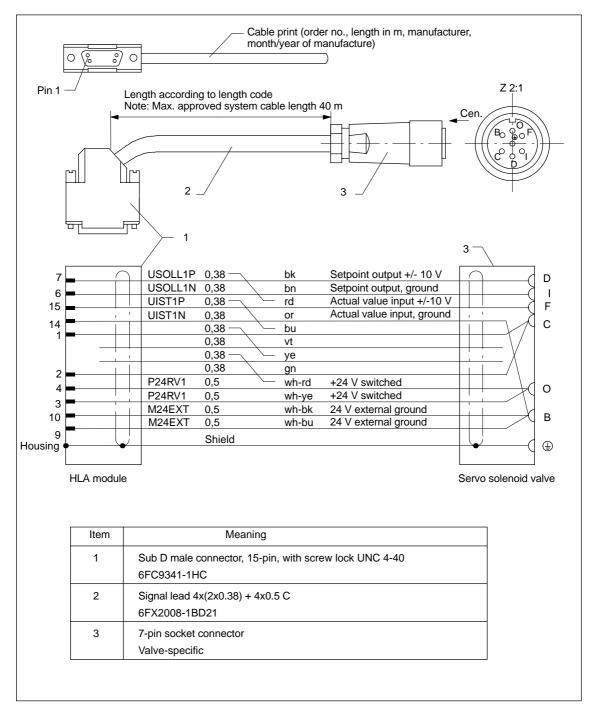


Fig. 7-12 Interconnection diagram for 7-pin servo solenoid valve (X121/X122) - connection option 2 (customized)

The following cable data for hydraulic systems is designed for directly and pilot actuated Bosch Rexroth HR servo solenoid valves (see Subsection 2.3.2).

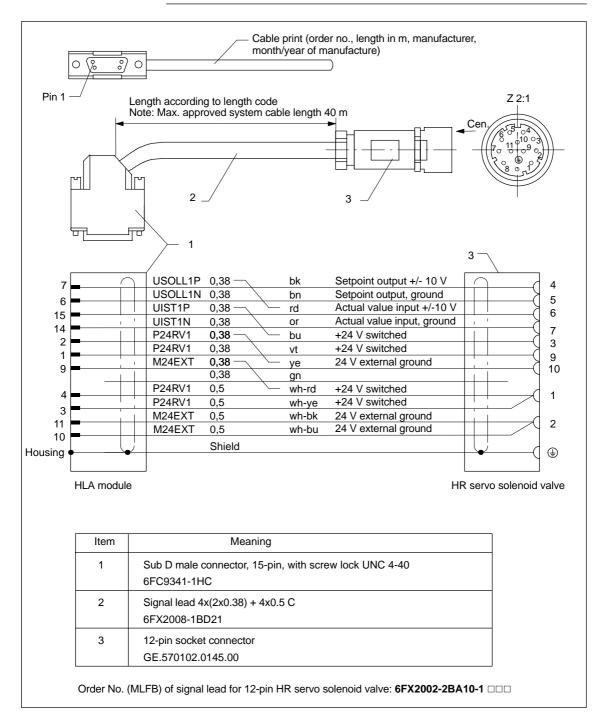


Fig. 7-13 12-pin signal lead for HR servo solenoid valve (X121/X122)

The following data for the connectors on the servo solenoid or HR servo solenoid valve signal leads only applies to spare parts orders or where the cables are to be made up by the customer. The cables are normally supplied fully pre-assembled by Siemens.

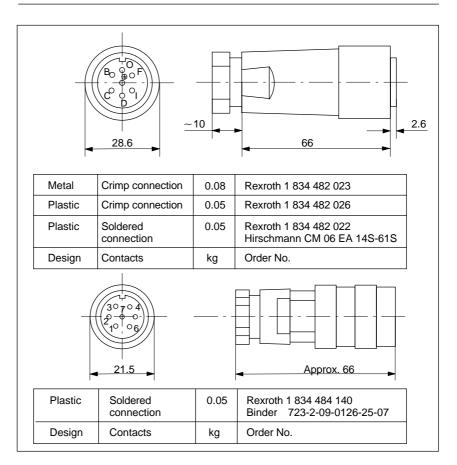


Fig. 7-14 Dimension diagram of circular, 7-pin connector

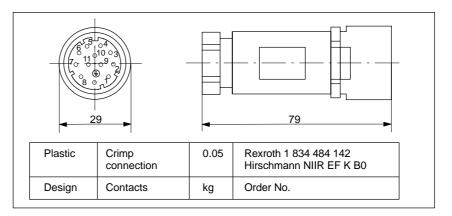


Fig. 7-15 Dimension diagram of circular, 12-pin connector

7 Peripherals/Accessories7.4 Connection diagrams for servo solenoid valves

Notes

8

Service

8.1 Areas of responsibility at Siemens/Bosch Rexroth

The areas of responsibility with respect to Sales and Servicing as shown in Table 8-1 below have been agreed between Siemens AG and Bosch Rexroth AG.

Siemens	Bosch Rexroth
"Electrical" equipment/ configuring	"Hydraulic" equipment/ configuring
HMI/MMC	Power units
NC/PLC	Valves
Mains supply module	Cylinder
Closed-loop control modules	Hydraulic connections
Power sections	Pressure sensing system
Motors	Encoder sensors
Cabling	
Hydraulic drive module	
Connecting cable for valves and pressure switches (see Subsection 7.3.2)	

Table 8-1 Areas of responsibility for sales and servicing

Note

Neither company bears sole responsibility for the overall installation.

Siemens and Bosch Rexroth shall not be responsible unless they have actually supplied the components listed in Table 8-1 or have explicitly certified that components supplied by other manufacturers are compatible with the system.

8.2 Hotline and contacts

Siemens AG	Configuration and servicing for SIMODRIVE, central hotline			
	Europe and Africa time zone			
	Phone.: +49 (0) 180 5	050-222		
	FAX: +49 (0) 180 5050)-223		
	E-mail: techsupport@ad.siemens.de			
	America time zone			
	Phone.: +1 800 333-74	421		
	FAX: +1 423 262-2200)		
	E-mail: isd-callcenter@	sea.siemens.com		
	Asia/Australia time zo	one		
	Phone.: +65 740-7000			
	FAX: +65 740-7001			
	E-mail: drives.support@sae.siemens.com.sg			
	Internet address			
	Up-to-date information about the products can be found on the Internet at the following address:			
	http://www.siemens.com			
Bosch Rexroth AG	Servicing			
	7.00 am - 5.00 pm	Phone: +49 (0)9352 / 18-1164 FAX: +49 (0)9352 / 18-3363		
	5.00 pm - 7.00 am	Phone: +49 (0)173 / 3636036 (standby)		
	E-mail: support.bri@boschrexroth.de			
	Internet address			
	Up-to-date information about the products can be found on the Internet at the following address:			

following address:

http://www.boschrexroth.de

A

Hydraulics

A.1 Servo solenoid valves

A.1.1 General

The servo solenoid valve is the final control element in the electro-hydraulic control loop. It converts the electrical manipulated variable U=-10...+10 V into the hydraulic variables pressure p and flow rate Q, and thus into a cylinder movement.

Sliding spool principle These valves are of the sliding-spool type. A valve spool with 4 control edges moves inside a steel sleeve, the control bore of which is connected to the 4 ports in the valve casing. The main stages of pilot-controlled valves do not typically have the steel sleeve, in which case the control geometry is represented directly by the valve casing.

The ports in the valve casing are:

- P: Pressure port (inlet)
- T: Tank port (return)
- A and B: Working ports (cylinder)

The valve spool slides steplessly through 3 switching positions (continuous valve).

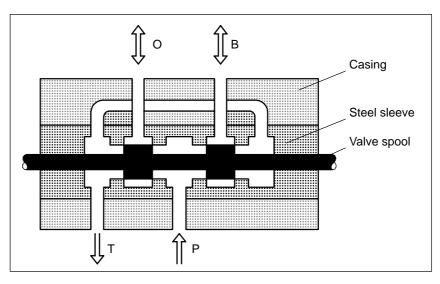


Fig. A-1 Sliding spool principle

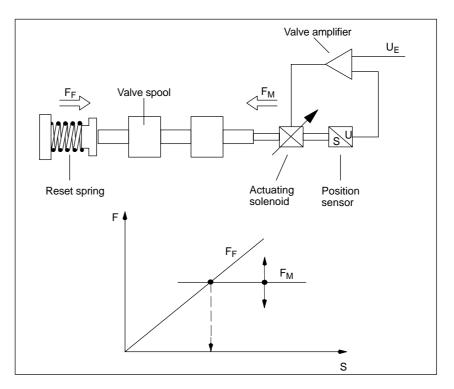
Solenoid actuation with valve spool position control

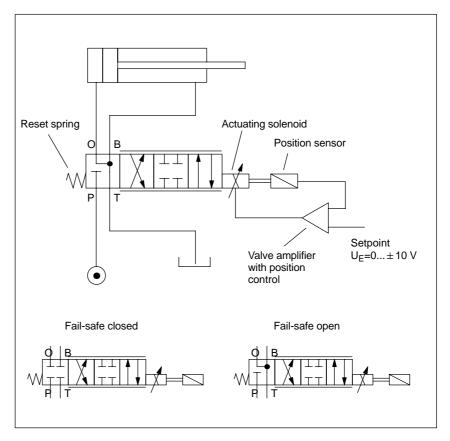
On size 6 and 10 standard servo solenoid valves, the valve spool is actuated directly by a stepless actuating solenoid. This converts a current I into a force F, which is compared to the force of the reset spring. This comparison of forces finally produces a travel s, and thus an opening cross-section at the control edges of the valve spool.

To compensate for disturbance forces acting on the valve spool (flow forces) and to reduce the hysteresis and response sensitivity or range of inversion, the position of the armature, and therefore the spool travel, is scanned and applied to a position control loop as an actual value. Any deviations from the spool position setpoint are thus continuously corrected. This method is particularly successful in reducing the valves' sensitivity to dirt.

Very small control deviations, such as those caused when the valve spool sticks, can be corrected by mobilizing the entire available magnetic force.

A wear-resistant, proximity-type differential transformer (LVDT) is used as the spool travel sensor.




Fig. A-2 Solenoid actuation with valve spool position control

Graphical symbol

The operating principle of the servo solenoid valve is represented by a symbol in the hydraulic circuit diagram. The symbol comprises a series of different boxes denoting the valve positions.

The three stepless-transition valve positions are represented by additional lines. The symbol also indicates how the valve is actuated. In this case, by direct solenoid actuation with spring return at one end.

If the valve has a fail-safe position, then the valve spool moves into a fourth (safety) position when the valve is not powered. There are two alternative positions.

The symbol also illustrates the principle of position control applied to the valve spool.

Fig. A-3 Graphical symbol

 Zero overlap in mid-position
 A continuous valve must have zero overlap around its mid-position if it is to be used in a position control loop.

A positive overlap will be perceived negatively in the form of a dead zone of the final control element.

In contrast, a negative overlap results in a marked increase in oil leakage.

To achieve zero overlap, valve spools, spool housings and spool sleeves must be manufactured with extreme precision and made of wear-resistant materials. The production costs incurred are correspondingly high.

To maintain the zero overlap over prolonged operating periods, it is essential to ensure that a clean pressure medium is used (to prevent erosion of control edges).

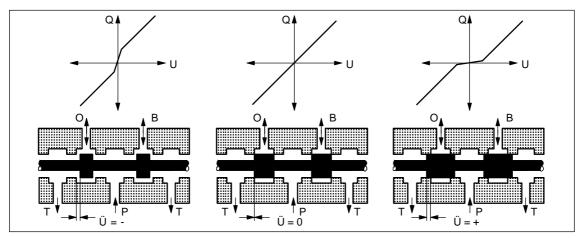


Fig. A-4 Zero overlap in mid-position

Pressure intensification

The quality of zero overlap in the mid-position is represented by the pressure intensification characteristic.

This states what percentage of the control spool deflection from the hydraulic zero point is needed to achieve a pressure differential of 80% system pressure at the closed load ports. The values of this characteristic are typically in the 1...3% range.

The following graphical representation of the measurement, which covers all 4 control edges, shows this clearly.

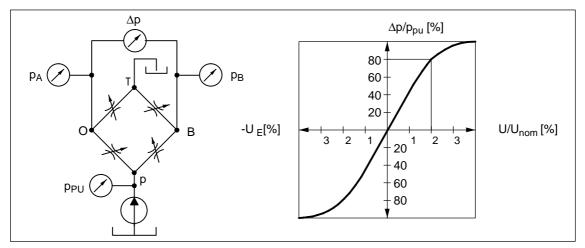
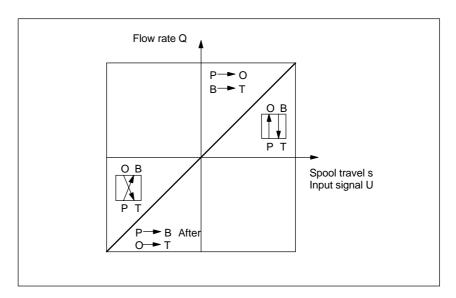


Fig. A-5 Pressure amplification


10.03

Flow characteristic, linear

The stepless spool movement, and thus the change in throttle cross-section at the control edges, results in a corresponding flowrate, which is represented as a function of the spool travel s or of the electrical input signal U (manipulated variable). The flow is dependent on the on the pressure drop, in addition to the opening cross-section,

$$Q \sim \sqrt{\Delta p}$$

as defined by the law of flow.

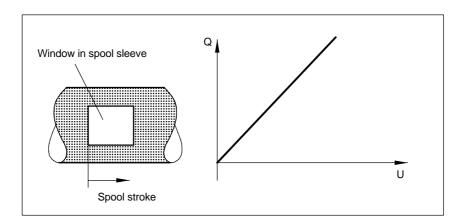


Fig. A-7 Control window in spool sleeve

Flow characteristic, with knee

Valves with a knee-shaped flow characteristic give the drive greater manipulated variable resolution in the lower signal range (better processing quality) and, at the same time, offer sufficient flow rate in the upper range (high rapid traverse velocity).

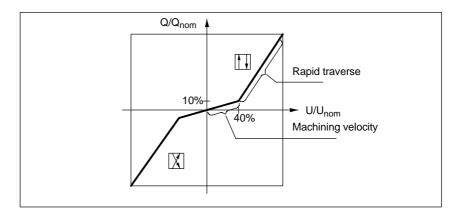


Fig. A-8 Flow characteristic with knee, example 40% - knee

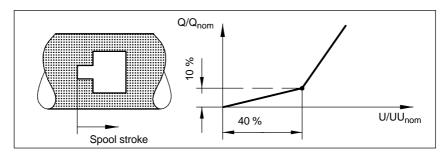


Fig. A-9 Stepped control window in spool sleeve, example 40% - knee

Linearization of knee-shaped flow characteristic

The knee-shaped characteristic of the valve is linearized in the HLA module to match it to the closed-loop control of the overall drive (cylinder). No steady-state operating point should be defined in the knee-point area.

The corresponding valve data are stored in the HLA module and automatically parameterized when the order number is entered.

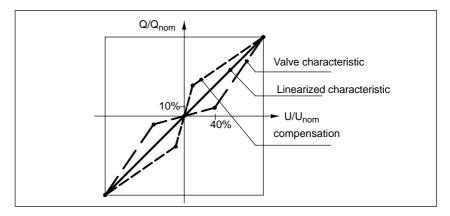


Fig. A-10 Electrical valve knee compensation

Nominal flowrate This expresses the flow rate with fully opened valve in relation to a specific pressure drop per control edge.

Typical nominal flow rate for directly-controlled servo solenoid valves (nominal pressure drop of 35 bar per control edge):

- Size 6: Q=4...40 l/min
- Size 10: Q=50...100 l/min

Typical nominal flow rate for pilot-controlled servo solenoid valves (nominal pressure drop of 5 bar per control edge):

- Size 10: Q=55...85 l/min
- Size 16: Q=120...200 l/min

See Subsection 2.3.2 for a description.

The flow under other pressure conditions is calculated according to the law of flow by the following formula:

$$Q_X = Q_{nom} \cdot \sqrt{\frac{\Delta p_X}{\Delta p_{nom}}}$$

Asymmetric flow characteristic

Dynamic response

The dynamic characteristics provide information on the servo solenoid valve's ability to respond to rapid signal changes.

One simple expression of the dynamic response is the actuating time. This is the time that the valve spool requires in order to adjust to a jump in the valve spool setpoint of typically 0 to 100%.

More exact information about the dynamic response is provided by the Bode diagram or frequency response. In this case, a sinusoidal setpoint is applied to the valve. The amplitude ratio and phase shift curves are then determined via the frequency from the actual and setpoint values of the valve spool. The valve frequency response is highly dependent on the setpoint amplitude, which should therefore be specified as a parameter. The dynamic response of servo solenoid valves is of particular interest in the range of smaller signal amplitudes of 5 to 20% * U_{nom} .

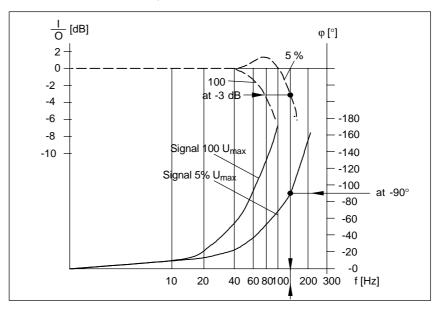


Fig. A-11 Dynamic response of valve

Hysteresis,	These three terms define similar properties.
response sensitivity, range of inversion	Hysteresis means the greatest difference in the input signal for identical output signals on passing through a complete signal range.
	For a servo solenoid valve, the hysteresis is caused by:

- mechanical friction,
- magnetic hysteresis of the electromagnetic signal transducer and
- the play between transmission elements.

The position control corrects the hysteresis.

The hysteresis for Rexroth servo solenoid valves is less than 0.2% and is compensated for in the closed control loop.

The terms Response sensitivity and Range of inversion refer to the signal level required to set a valve in motion again after it has stopped. The values of these characteristics correspond to about half the hysteresis.

To overcome residual hysteresis or initial valve friction, a friction compensation function can be activated in the HLA module.

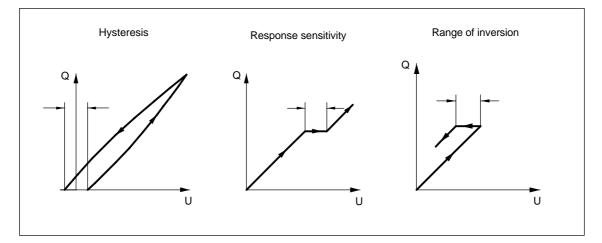


Fig. A-12 Hysteresis, response sensitivity and range of inversion of servo solenoid valve

Filtration grade

To maximize the service life of the control edges, thus ensuring the quality of zero overlap, a degree of purity of the hydraulic medium (fluid) must be maintained.

The objective is contamination class 7...9 to NAS 1638. This can normally be achieved with a pressure filter β_{10} =75.

A.1.2 Directly-controlled servo solenoid valves, sizes 6 and 10

The standard series of Bosch Rexroth size 6 and 10 servo solenoid valves shown in the following diagram are based on the same principle.

The valve spool in its steel sleeve is pushed against the reset spring directly by the actuating solenoid. The armature axis of the solenoid is mechanically coupled to the ferrite core of the position sensor integrated in the solenoid.

This sensor is a proximity-type, wear-resistant differential transformer (LVDT).

The housing of the integrated valve amplifier (On Board Electronic OBE) is bolted directly onto the solenoid/position sensor module.

Electrical power is supplied and the setpoint injected via a 7-pin connector.

If the valve is operating around the mid-position, the solenoid is energized by about 50%. When the power supply is switched off, it assumes a 4th position, known as the fail-safe position. On connection and disconnection of the supply, it slides through the crossed position.

The valves are available with a variety of nominal flow rates and two different fail-safe positions.

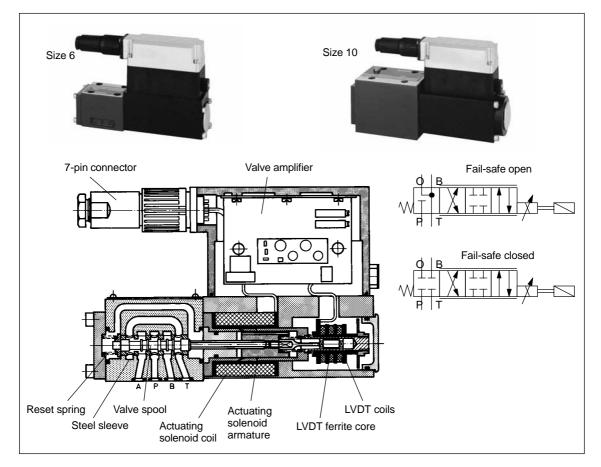


Fig. A-13 Directly-controlled servo solenoid valves, sizes 6 and 10 (Rexroth)

Mechanical

structure

Valve amplifier The functions of the integral valve amplifier are implemented with analog circuits, and are illustrated in the block diagram (see Fig. A-14).

The main amplifier functions are:

- Supply and evaluation of the position sensor (AC/DC converter)
- Comparison of setpoint input signal with spool actual value
- Formation of manipulated variable via a PID controller for the output stage
- Timing output stage with pulse length modulation

The amplifier is calibrated to match the valve at the factory. The zero-point is adjusted via the NC during start-up.

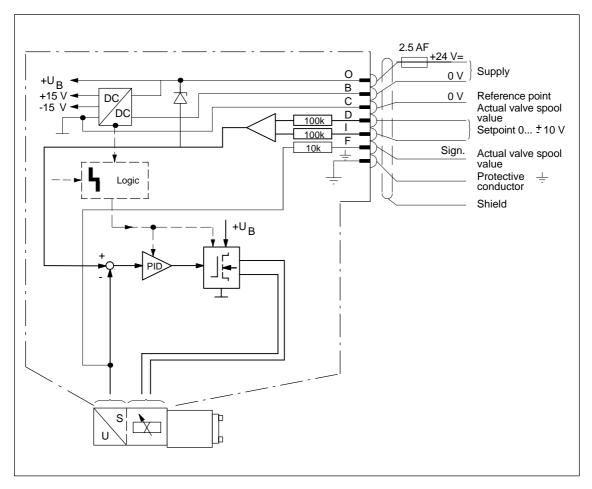


Fig. A-14 Valve amplifier block diagram for directly-controlled servo solenoid valves, sizes 6 and 10 (Rexroth)

A.1.3 Pilot-controlled servo solenoid valves, sizes 10 and 16

The principle of pilot control is applied in order to control higher flow rates.

Mechanical structure	A size 10 or 16 directional control valve with suitable control edges is used as the main stage on the valve spool. Like the piston rod of a cylinder, this stage is hydraulically clamped and positioned by a size 6 pilot valve (see Subsection A.1.2).
	The position of the main spool is scanned by another position sensor and the corresponding actual value applied to a second, subordinate position control loop.
Inlet and outlet of hydraulic fluid	The control fluid can be supplied and removed either internally via ports P and T or, as often is the case in practice, externally via additional ports X and Y. The unit is converted using suitable plugs.
Valve positions	Pilot-actuated servo solenoid valves have only three stepless-transition valve positions.
	The 4th fail-safe position is omitted. If the supply voltage is disconnected, the spring force of the main spool causes the valve to assume an indifferent mid-position.
Valve amplifier	The integral valve amplifier is mounted on the pilot valve assembly and contains both position control loops. A cable is used to connect the position sensor on the main stage to the amplifier.

A.1 Servo solenoid valves

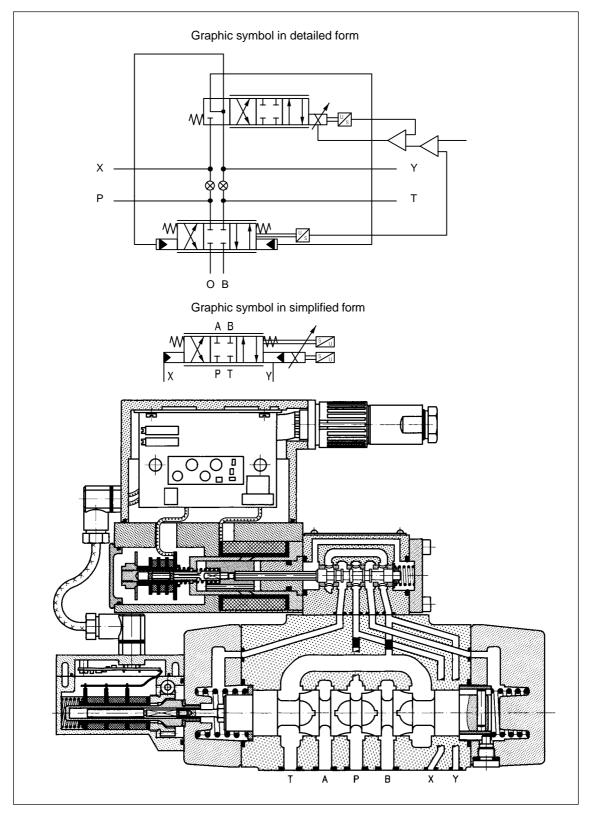


Fig. A-15 Directly-controlled servo solenoid valves, sizes 10 and 16 example of an external control fluid port (Rexroth)

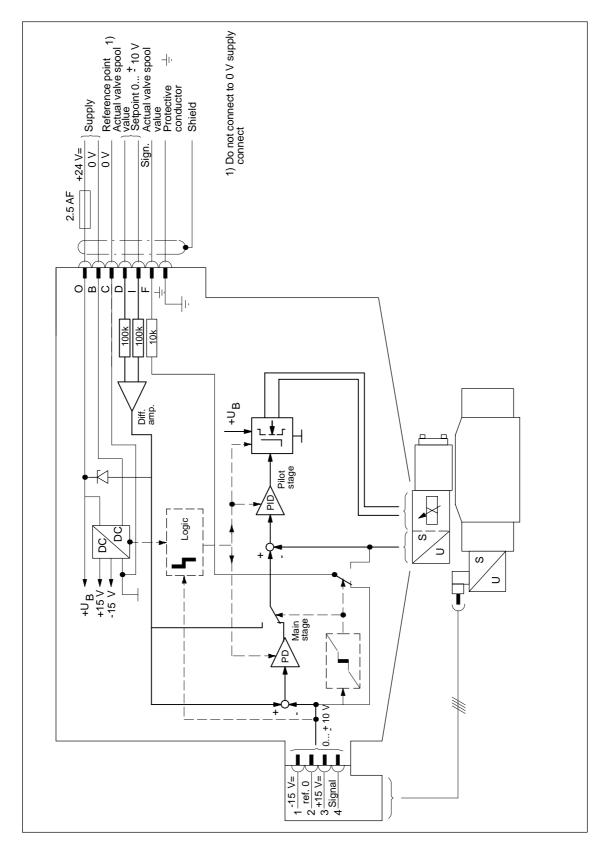


Fig. A-16 Valve amplifier block diagram for pilot-controlled servo solenoid valves, sizes 10 and 16 (Rexroth)

A.1.4 HR servo solenoid valves

General	The HR (High Response) series of servo solenoid valves from Bosch Rexroth offers particularly good dynamic and static characteristics, making it the ideal addition to the range for highly sophisticated applications.
	At the heart of the series is the 4WRREH 6 valve. This is also used as a pilot valve in type 4WRVE pilot-controlled HR servo solenoid valves.
	Both valve stages on pilot-actuated valves operate under position control.
Features	In contrast to the other valves, the HR servo solenoid valve has the following features:
	Significantly better dynamic response
	More compact dimensions
	A higher hydraulic switching capacity.
	The HR valve comprises the following components:
	• Elementary constraints and the second se

- Flow-force-compensated hydraulic section with wear-resistant steel sleeve and spring centered control spool
- Double-stroke solenoid with inductive position encoder (LVDT) and
- Integrated electronics (OBE)

HR valves do not have the fail-safe position provided on other servo solenoid valves. Many applications therefore require external non-return valves, such as those available as sandwich-plate valves.

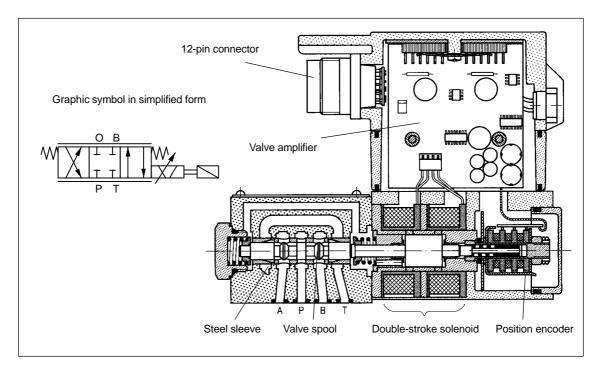


Fig. A-17 Directly-controlled HR servo solenoid valve (Rexroth)

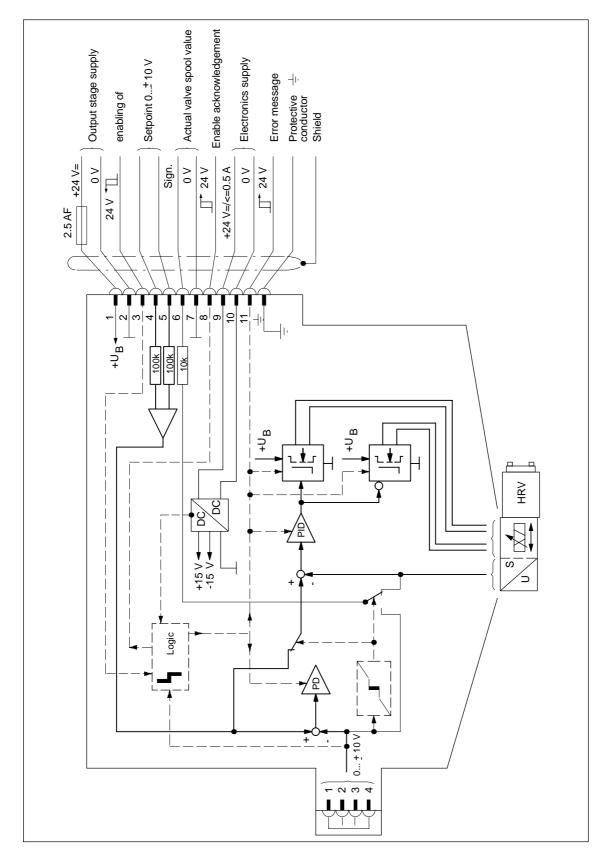


Fig. A-18 Valve amplifier block diagram for directly-controlled HR servo solenoid valves (Rexroth)

A.2 Cylinder

General	The cylinder acts as the drive element in the electro-hydraulic control loop.
	It converts the flowrate into rectilinear motion. In this case, high velocities are required for rapid traverse movements as well as slow velocities for machining operations
Through-rod or differential cylinder	On a through-rod cylinder, a piston rod of the same diameter is mounted at both ends as a power transmission element. Consequently, the piston areas at the A and B ends are identical. Likewise, at a constant piston speed, the incoming flow is equal to the displaced flow in the settled state. The through-rod cylinder acts symmetrically both when traveling in and when traveling out.
	In contrast to the through-rod cylinder, a differential cylinder has either a power- transmission piston rod at one end only or the piston rods at its two ends have different diameters. In the latter case, the piston areas at the A and B ends are different. Furthermore, at a constant piston speed, the displaced flow is not the same as the incoming flow. The maximum piston travel-in and travel-out speeds are not the same on a differential cylinder (see Section 4.7).
	This asymmetry can, however, be compensated by means of the piston area adaptation function (MD 5112: VALVE_FLOW_FACTOR_A_B) on the HLA module.
	Apart from the piston diameter, it is necessary to specify the rod diameters at the A and B ends. On a differential cylinder, both rod diameters are different, one of the rods might even have a zero diameter. The maximum piston stroke and cylinder dead volume are also required.

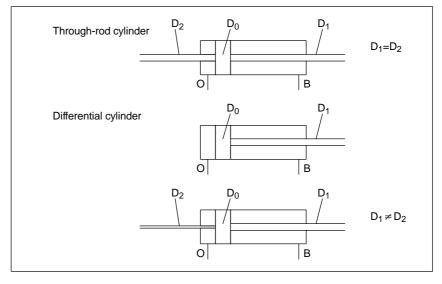
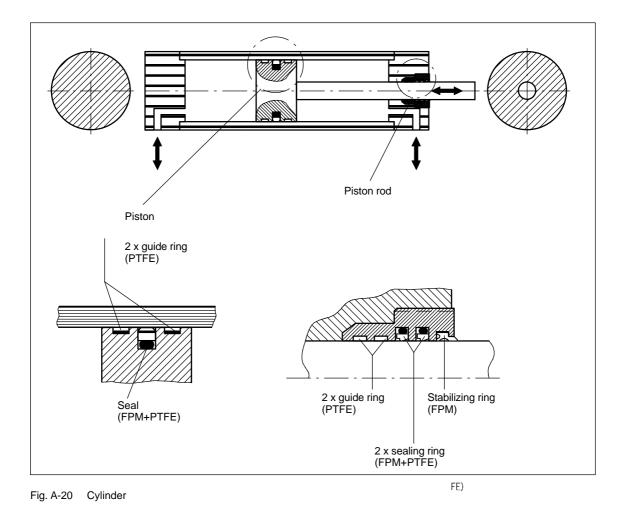



Fig. A-19 Cylinder principle

Quality of seals The quality of the seals and guides on the piston, and the piston rod itself, must be particularly high in order to minimize the friction.

Transitions from static to sliding friction have a particularly adverse affect on the quality of control accuracy. A friction compensation setting has been provided in the HLA module (MD 5460: FRICTION_COMP_RADIENT).

Dead volume The dead volume is the volume between the cylinder and servo solenoid valve that is not displaced by one piston stroke. It reduces the natural frequency of the drive and should be avoided wherever possible.

Cylinder pipework should be kept as short as possible, i.e. the servo solenoid valve should be mounted directly on the cylinder.

The dead volume is set in the HLA module (MD 5135, MD 5136 and MD 5141...5143).

Notes		

B

Abbreviations

ANA	Analog drive (drive configuration)
ARM (MSD)	Asynchronous Rotary Motor
AS	Automation System
AT	Advanced Technology
В	Cylinder working port
BERO	Proximity limit switch
C Bus	Communication bus
COM	Communication module
DAC	Digital/analog converter channel
D/A	Digital to analog
DP	Distributed I/Os
DRV	Driver module
DSC	Dynamic Stiffness Control
EMC	Electromagnetic compatibility
ESD	Electrostatic Sensitive Device
EUI	End User Interface
FFT	Fast Fourier Transform
FRM	Enable voltage, internal, ground
FRP	Enable voltage, internal, +24 V
FSD	Feed drive (drive bus configuration)
HD	Hard Disk
HHU	Handheld unit
HLA	Hydraulic Linear Drive (drive bus configuration)
HR servo solenoid valve	High Response servo solenoid valve
HYD	Hydraulic drive
I/RF	Infeed/regenerative feedback unit
IM	Interface Module (SIMATIC S7-300)
IM Address	Interface Module Address
ISA	Industry Standard Architecture
LED	Light Emitting Diode
LVDT	Linear Variable Differential Transducer
M24EXTIN	Input for 0 V external
МСР	Machine Control Panel

MD	Machine Data
MMC	Human Machine Communication
MON	Monitoring
MPI	Multi-Point Interface
MS	Mains Supply
MSD	Main Spindle Drive
NC	Numerical Control
NCU	Numerical Control Unit
NMI	Non-Maskable Interrupt
0	Cylinder working port
OBE	On-Board Electronics
OP	Operator Panel
OPI	Operator Panel Interface
Order No.	Machine-Readable Product Designation (order no.)
Р	Pressure port (inlet), servo solenoid valve
P24EXTIN	Input for +24 V external
P bus	I/O (peripheral) bus
PBL	Parameter Basic List
PCL	Position Control Loop
PCMCIA	Personal Computer Memory Card International Association
PER	I/O (peripheral) module
PG	Programming device
PI	Program Invocation
PID	Controller with Proportional, Integral and Differential components
PLC	Programmable Logic Control
PS	Power Supply (SIMATIC S7-300)
SC	Status Class
SCI	Serial Communication Interface
SL	Servo Loop
SLM	Synchronous Linear Motor (drive configuration)
SM	SIMATIC S7-300 Signal Module, e.g. I/O modules
SRM (FDD)	Synchronous Rotary Motor (drive configuration)
SW	Software
т	Tank port (return), servo solenoid valve
Term.	Terminal
UI	Unstabilized power supply
VCL	Velocity control loop
VGA	Video graphics adapter

С

Definition of Terms

D1, D2	Cylinder piston diameter
d1, d2	Cylinder piston rod diameter
f _{0drive}	Natural frequency (resonant frequency) of hydraulic drive
f _{0control}	Limit frequency that can be achieved by velocity-controlled drive
f _{0valve}	Natural frequency of servo solenoid valve
f _v	Limit frequency of servo solenoid valve
h	Cylinder stroke
m	Mass on piston rod
0	Cylinder piston area
PA	Pressure at A end of cylinder
р _В	Pressure at B end of cylinder
р _р	Pump pressure
Δ p	Pressure difference (nominal pressure drop)
Q _{nom}	Nominal flowrate of servo solenoid valve
Q _{valve}	Flow rate of servo solenoid valve

Uset valve	Valve setpoint
V _{set}	Velocity setpoint
V _{act}	Actual velocity value
X _{set}	Position setpoint
X _{act}	Actual position value
X _{valve}	Valve spool position

D

References

D.1 Electrical applications

General Documentation

/BU/	SINUMERIK & SIMODRIVE, Automation Systems for Machine Tools Catalog NC 60 Order No.: E86060-K4460-A101-A9-7600
/IKPI/	Industrial Communication and Field Devices Catalog IK PI Order No.: E86060-K6710-A101-B2-7600
/ST7/	SIMATIC Products for Totally Integrated Automation and Micro Automation Catalog ST 70 Order No.: E86060-K4670-A111-A8-7600
ΙΖΙ	MOTION-CONNECT Cable, Connectors & System Components for SIMATIC, SINUMERIK, Masterdrives and SIMOTION Catalog NC Z Order No.: E86060-K4490-A001-B1-7600

Electronic Documentation

/CD1/	The SINUMERIK System DOC ON CD	(03.04 Edition)
	(includes all SINUMERIK 840D/840Di/810D/802D/802S publications) Order No.: 6FC5 298-7CA00-0BG4	C and SIMODRIVE

D References

D.1 Electrical applications

User Documentation

/AUK/	SINUMERIK 840D/810D Short Guide AutoTurn Operation Order No.: 6FC5298-4AA30-0BP2	(09.99 Edition)
/AUP/	SINUMERIK 840D/810D Operator's Guide AutoTurn Graphic Programming Sys Programming/Setup Order No.: 6FC5298-4AA40-0BP3	(02.02 Edition) stem
/BA/	SINUMERIK 840D/810D Operator's Guide MMC Order No.: 6FC5298-6AA00-0BP0	(10.00 Edition)
/BAD/	SINUMERIK 840D/840Di/810D Operator's Guide HMI Advanced Order No.: 6FC5298-6AF00-0BP2	(11.02 Edition)
/BAH/	SINUMERIK 840D/840Di/810D Operator's Guide HT 6 Order No.: 6FC5298-0AD60-0BP2	(11.02 Edition)
/BAK/	SINUMERIK 840D/840Di/810D Short Guide Operation Order No.: 6FC5298-6AA10-0BP0	(02.01 Edition)
/BAM/	SINUMERIK 840D/810D Operation/Programming ManualTurn Order No.: 6FC5298-6AD00-0BP0	(08.02 Edition)
/BAS/	SINUMERIK 840D/840Di/810D Operation/Programming ShopMill Order No.: 6FC5298-6AD10-0BP1	(11.02 Edition)
/BAT/	SINUMERIK 840D/810D Operation/Programming ShopTurn Order No.: 6FC5298-6AD50-0BP2	(06.03 Edition)
/BEM/	SINUMERIK 840D/810D Operator's Guide HMI Embedded Order No.: 6FC5298-6AC00-0BP2	(11.02 Edition)

10.03		D.1 Electrical applications
/BNM/	SINUMERIK 840D/840Di/810D User's Guide Measuring Cycles Order No.: 6FC5298-6AA70-0BP2	(11.02 Edition)
/BTDI/	SINUMERIK 840D/840Di/810D Motion Control Information System (MCIS) User's Guide Tool Data Information Order No.: 6FC5297-6AE01-0BP0	(04.03 Edition)
/CAD/	SINUMERIK 840D/840Di/810D Operator's Guide CAD Reader Order No.: (included in online help)	(03.02 Edition)
/DA/	SINUMERIK 840D/840Di/810D Diagnostics Guide Order No.: 6FC5298-6AA20-0BP3	(11.02 Edition)
/KAM/	SINUMERIK 840D/810D Short Guide ManualTurn Order No.: 6FC5298-5AD40-0BP0	(04.01 Edition)
/KAS/	SINUMERIK 840D/810D Short Guide ShopMill Order No.: 6FC5298-5AD30-0BP0	(04.01 Edition)
/KAT/	SINUMERIK 840D/810D Short Guide ShopTurn Order No.: 6FC5298-6AF20-0BP0	(07.01 Edition)
/PG/	SINUMERIK 840D/840Di/810D Programming Guide Fundamentals Order No.: 6FC5298-6AB00-0BP2	(11.02 Edition)
/PGA/	SINUMERIK 840D/840Di/810D Programming Guide Advanced Order No.: 6FC5298-6AB10-0BP2	(11.02 Edition)
/PGK/	SINUMERIK 840D/840Di/810D Short Guide Programming Order No.: 6FC5298-6AB30-0BP0	(10.00 Edition)
(DOM)		

/PGM/ SINUMERIK 840D/840Di/810D (11.02 Edition) Programming Guide ISO Milling Order No.: 6FC5298-6AC20-0BP2

D References

D References			10.03
D.1 Electrical applicat	tions		
/PGT/	SINUMERIK 840D/840Di/810D Programming Guide ISO Turning Order No.: 6FC5298-6AC10-0BP2	(11.02 Edition)	
/PGZ/	SINUMERIK 840D/840Di/810D Programming Guide Cycles Order No.: 6FC5298-6AB40-0BP2	(11.02 Edition)	
/PI/	PCIN 4.4 Software for Data Transfer to/from MMC Module Order No.: 6FX2060 4AA00-4XB0 (English, French, Ger Order from: WK Fürth	rman)	
/SYI/	SINUMERIK 840Di System Overview Order No.: 6FC5298-6AE40-0BP0	(02.01 Edition)	
Manufacturer/Ser	vice Documentation		
a) Lists			
/LIS/	SINUMERIK 840D/840Di/810D SIMODRIVE 611D Lists Order No.: 6FC5297-6AB70-0BP4	(09.03 Edition)	
b) Hardware			
/ASAL/	SIMODRIVE Planning Guide General Information for Asynchronou Order No.: 6SN1197-0AC62-0BP0	(06.03 Edition) is Motors	
/APH2/	SIMODRIVE Planning Guide 1PH2 Asynchronous Motors Order No.: 6SN1197-0AC63-0BP0	(07.03 Edition)	
/APH4/	SIMODRIVE Planning Guide 1PH4 Asynchronous Motors Order No.: 6SN1197-0AC64-0BP0	(07.03 Edition)	
/APH7/	SIMODRIVE Planning Guide 1PH7 Asynchronous Motors Order No.: 6SN1197-0AC65-0BP0	(06.03 Edition)	

/APL6/	SIMODRIVE Planning Guide 1PL6 Asynchronous Motors Order No.: 6SN1197-0AC66-0BP0	(07.03 Edition)
/BH/	SINUMERIK 840D/840Di/810D Operator Components Manual (HW) Order No.: 6FC5297-6AA50-0BP3	(09.03 Edition)
/BHA/	SIMODRIVE Sensor User's Guide (HW) Absolute Position Sensor with PR Order No.: 6SN1197-0AB10-0YP2	(03.03 Edition) OFIBUS DP
/EMV/	SINUMERIK, SIROTEC, SIMODRIVE Planning Guide (HW) EMC Installation Guide Order No.: 6FC5297-0AD30-0BP1	(06.99 Edition)
	The current Declaration of Conformity is available under address: http://www4.ad.siemens.de	the following Internet
	Please enter the ID No.: 15257461 in the 'Search' field ("go".	top right) and click on
/GHA/	SINUMERIK/SIMOTION ADI4 - Analog Drive Interface for 4 Axes Manual Order No.: 6FC5297-0BA01-0BP1	(09.03 Edition)
/PFK6/	SIMODRIVE Planning Guide 1FK6 Three-Phase AC Servomotors Order No.: 6SN1197-0AD05-0BP0	(05.03 Edition)
/PFK7/	SIMODRIVE Planning Guide 1FK7 Three-Phase AC Servomotors Order No.: 6SN1197-0AD06-0BP0	(01.03 Edition)
/PFS6/	SIMODRIVE Planning Guide 1FS6 Three-Phase AC Servomotors Order No.: 6SN1197-0AD08-0BP0	(07.03 Edition)
/PFT5/	SIMODRIVE Planning Guide 1FT5 Three-Phase AC Servomotors Order No.: 6SN1197-0AD01-0BP0	(05.03 Edition)
/PFT6/	SIMODRIVE Planning Guide 1FT6 Three-Phase AC Servomotors Order No.: 6SN1197-0AD02-0BP0	(05.03 Edition)

D References			10.03
D.1 Electrical application	tions		
/PHC/	SINUMERIK 810D Configuring Manual CCU (HW) Order No.: 6FC5297-6AD10-0BP1	(11.02 Edition)	
/PHD/	SINUMERIK 840D Configuring Manual NCU (HW) Order No.: 6FC5297-6AC10-0BP3	(09.03 Edition)	
/PJAL/	SIMODRIVE 611 / Masterdrives MC Planning Guide Three-Phase AC Servomotors General Part Order No.: 6SN1197-0AD07-0BP0	(01.03 Edition)	
/PJAS/	SIMODRIVE Planning Guide Asynchronous Motors (Compendium) Order No.: 6SN1197-0AC61-0BP0	(07.03 Edition)	
/PJFE/	SIMODRIVE Planning Guide 1FE1 Built-In Synchronous Motors Three-Phase AC Motors for Main Spindle Drives Order No.: 6SN1197-0AC00-0BP4	(02.03 Edition)	
/PJF1/	SIMODRIVE Installation Guide 1FE1 0511FE1 147. Built-In Synch Three-Phase AC Motors for Main Spindle Drives Order No.: 610.43000.02	(12.02 Edition) ronous Motors	
/PJLM/	SIMODRIVE Planning Guide 1FN1, 1FN3 Linear Motors ALL General Information about Linear Motors 1FN1 1FN1 Three-Phase AC Linear Motor 1FN3 1FN3 Three-Phase AC Linear Motor CON Connections Order No.: 6SN1197-0AB70-0BP4	(06.02 Edition)	
/PJM/	SIMODRIVE Planning Guide Motors Three-Phase AC Servo Motors for Feed and Main Spind Order No.: 6SN1197-0AC20-0BP0	(11.00 Edition) le Drives	
/PJM2/	SIMODRIVE Planning Guide Servomotors Three-Phase AC Motors for Feed and Main Spindle Driv Order No.: 6SN1197-0AA20-0BP4	(07.03 Edition) es	

/PJTM/		1FW6 Integrated Torque Motors 197-0AD00-0BP0	(05.03 Edition)
/PJU/	SIMODRIVE 611 Planning Guide I Order No.: 6SN1		(02.03 Edition)
/PKTM/		IFW3 Complete Torque Motors 197-0AC70-0BP0	(09.03 Edition)
/PMH/	Hollow-Shaft M	nsor allation Guide (HW) easuring System SIMAG H 197-0AB30-0BP1	(07.02 Edition)
/PMHS/	SIZAG2 Toothe	e Measuring System for Main Spindle d-Wheel Encoder 197-0AB00-0YP3	(12.00 Edition) Drives
/PMS/		E CO Motor Spindle for Main Spindle Dr 197-0AD04-0BP1	(02.03 Edition) ives
/PPH/	AC Induction Mo	IPH2, 1PH4, 1PH7 Motors tors for Main Spindle Drives 197-0AC60-0BP0	(12.01 Edition)
/PPM/	for 1PM4 and 1F	Hollow-Shaft Motors M6 Main Spindle Drives 197-0AD03-0BP0	(11.01 Edition)
c) Software			
/FB1/	(the various sect Order No.: 6FC5	Inctions Basic Machine (Part 1) ions are listed below) 297-6AC20-0BP3	(11.03 Edition)
	A2 A3 B1 B2 D1	Various Interface Signals Axis Monitoring, Protection Zones Continuous-Path Mode, Exact Stop an Acceleration Diagnostic Tools	d Look Ahead

/FB2/

D2	Interactive Programming
F1	Travel to Fixed Stop
G2	Velocities, Setpoint/Actual Value Systems, Closed-Loop
	Control
H2	Output of Auxiliary Functions to PLC
K1	Mode Group, Channel, Program Operation Mode
K2	Axes, Coordinate Systems, Frames, Actual Value System
17.4	Workpiece, External Zero Offset
K4	Communication EMERGENCY STOP
N2 P1	Transverse Axes
P1 P3	Basic PLC Program
R1	Reference Point Approach
S1	Spindles
V1	Feeds
Ŵ1	Tool Offset
	IK 840D/840Di/810D(CCU2) (11.02 Edition)
including F (the variou:	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below)
including F (the various	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor
including F (the various Order No.:	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os
including F (the various Order No.: A4 B3	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs
including F (the variou: Order No.: A4 B3 B4	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC
including F (the various Order No.: A4 B3 B4 F3	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics
including F (the variou: Order No.: A4 B3 B4 F3 H1	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5 N3	 of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5 N3 N4	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals Punching and Nibbling
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5 N3 N4 P2	 of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5 N3 N4 P2 P5	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals Punching and Nibbling Positioning Axes
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5 N3 N4 P2 P5 R2	a of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals Punching and Nibbling Positioning Axes Oscillation
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5 N3 N4 P2 P5 R2 S3	a of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals Punching and Nibbling Positioning Axes Oscillation Rotary Axes
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5 N3 N4 P2 P5 R2 S3 S5	a of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals Punching and Nibbling Positioning Axes Oscillation Rotary Axes Synchronous Spindles
including F (the variou: Order No.: A4 B3 B4 F3 H1	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals Punching and Nibbling Positioning Axes Oscillation Rotary Axes Synchronous Spindles Synchronized Actions (up to and including SW 3) Stepper Motor Control Memory Configuration
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5 N3 N4 P2 P5 R2 S3 S5 S6 S7 T1	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals Punching and Nibbling Positioning Axes Oscillation Rotary Axes Synchronous Spindles Synchronized Actions (up to and including SW 3) Stepper Motor Control Memory Configuration Indexing Axes
including F (the variou: Order No.: A4 B3 B4 F3 H1 K3 K5 L1 M1 M5 N3 N4 P2 P5 R2 S3 S5 S6 S7	n of Functions Extended Functions (Part 2) M-NC: Turning, Stepper Motor s sections are listed below) 6FC5297-6AC30-0BP2 Digital and Analog NCK I/Os Several Operator Panels and NCUs Operation via PG/PC Remote Diagnostics JOG with/without Handwheel Compensations Mode Groups, Channels, Axis Replacement FM-NC Local Bus Kinematic Transformation Measurement Software Cams, Position Switching Signals Punching and Nibbling Positioning Axes Oscillation Rotary Axes Synchronous Spindles Synchronized Actions (up to and including SW 3) Stepper Motor Control Memory Configuration

SINUMERIK 840D/840Di/810D(CCU2) (11.02 Edition) Description of Functions Special Functions (Part 3) (the various sections are listed below) Order No.: 6FC5297-6AC80-0BP2

- F2 3-Axis to 5-Axis Transformation Gantry Axes G1 G3 Cycle Times K6 **Contour Tunnel Monitoring** Coupled Motion and Leading Value Coupling М3 S8 Constant Workpiece Speed for Centerless Grinding
- T3 **Tangential Control**

/FB3/

	TE0 TE1 TE2 TE3 TE4 TE5 TE6 TE7 TE8 V2 W5	Installation and Activation of Compile Clearance Control Analog Axis Master-Slave for Drives Transformation Package Handling Setpoint Exchange MCS Coupling Retrace Support Path-Synchronous Switch Signal Preprocessing 3D Tool Radius Compensation	Cycles
/FBA/	Description of Fill (the various sec	ID/SINUMERIK 840D/810D unctions Drive Functions tions are listed below) I197-0AA80-1BP0	(11.02 Edition)
	DB1 DD1 DD2 DE1 DF1 DG1 DL1 DM1 DS1 DÜ1	Operational Messages/Alarm Reaction Diagnostic Functions Speed Control Loop Extended Drive Functions Enable Commands Encoder Parameterization Linear Motor MD Calculation of Motor/Power Section Pa Controller Data Current Control Loop Monitors/Limitations	
/FBAN/	Description of F	DD/SIMODRIVE 611 digital unctions ANA MODULE I197-0AB80-0BP0	(02.00 Edition)
/FBD/		unctions Digitizing 5297-4AC50-0BP0 Start-up Scanning with Tactile Sensors (scanca Scanning with Lasers (scancad laser)	
	DI4	Milling Program Generation (scancad	mill)
/FBDM/	Description of F	DD/840Di/810D Information System (MCIS) unctions DNC NC Program Manageme 5297-1AE81-0BP0	(09.03 Edition)
/FBDN/	Description of F	DD/840Di/810D Information System (MCIS) unctions DNC NC Program Manageme 5297-1AE80-0BP0	(03.03 Edition) Int
	DN1	DNC Plant / DNC Cell	

D References			10.03
D.1 Electrical app	olications		
/FBFA/	Description of	40D/840Di/810D Functions ISO Dialects for SINUMERIK C5297-6AE10-0BP3	(11.02 Edition)
/FBFE/	Description of	40D/840Di/810D Functions Remote Diagnosis C5297-0AF00-0BP2	(04.03 Edition)
	FE1 FE3	Remote Diagnosis ReachOut Remote Diagnosis pcAnywhere	
/FBH/	HMI Configur	40D/840Di/810D ing Package pplied with the software)	(11.02 Edition)
	Part 1 Part 2	User's Guide Description of Functions	
/FBH1/	HMI Configur ProTool/Pro C	40D/840Di/810D ing Package Option SINUMERIK pplied with the software)	(03.03 Edition)
/FBHLA/	Description of	40D/SIMODRIVE 611 digital Functions HLA Module N1197-0AB60-0BP4	(09.03 Edition)
/FBIC/	Motion Control Description of	40D/840Di/810D I Information System (MCIS) Functions TDI Ident Connection C5297-1AE60-0BP0	(06.03 Edition)
/FBMA/		40D/810D Functions ManualTurn C5297-6AD50-0BP0	(08.02 Edition)
/FBO/		40D/810D Functions Configuring OP 030 Operator C5297-6AC40-0BP0	(09.01 Edition) Interface
	BA EU PS PSE IK	Operator's Guide Development Environment (Configur Online only: Configuring Syntax (Cor Introduction to Configuring of Operat Screen Kit: Software Update and Co	nfiguring Package) or Interface
/FBP/		40D Functions C-PLC Programming C5297-3AB60-0BP0	(03.96 Edition)

D.1 Electrical applications

/FBR/	SINUMERIK 840 IT Solutions Description of Fu Order No.: 6FC52	nctions Computer Link (SinCOM)	(09.01 Edition)
	NFL NPL	Host Computer Interface PLC/NCK Interface	
/FBSI/		D / SIMODRIVE 611 digital nctions SINUMERIK Safety Integrated 297-6AB80-0BP2	(09.03 Edition)
/FBSP/	SINUMERIK 8400 Description of Fu Order No.: 6FC52	nctions ShopMill	(08.03 Edition)
/FBST/	SIMATIC Description of Fu Order No.: 6SN11	nctions FM STEPDRIVE/SIMOSTEP 97-0AA70-0YP4	(01.01 Edition)
/FBSY/	SINUMERIK 8401 Description of Fu Order No.: 6FC52	nctions Synchronized Actions	(10.02 Edition)
/FBT/	SINUMERIK 8401 Description of Fu Order No.: 6FC52	nctions ShopTurn	(06.03 Edition)
/FBTC/	SINUMERIK 8401 IT Solutions SINUMERIK Too Description of Fu Order No.: 6FC52	I Data Communication SinTDC nctions	(01.02 Edition)
/FBTD/	SINUMERIK 8400 IT Solutions Tool Information Description of Fu Order No.: 6FC52	System (SinTDI) with Online Help nctions	(02.01 Edition)
/FBTP/	Description of Fu	D/840Di/810D nformation System (MCIS) nctions TPM Total Productive Mainter nent is supplied with the software	(01.03 Edition) nance, Version 3.0

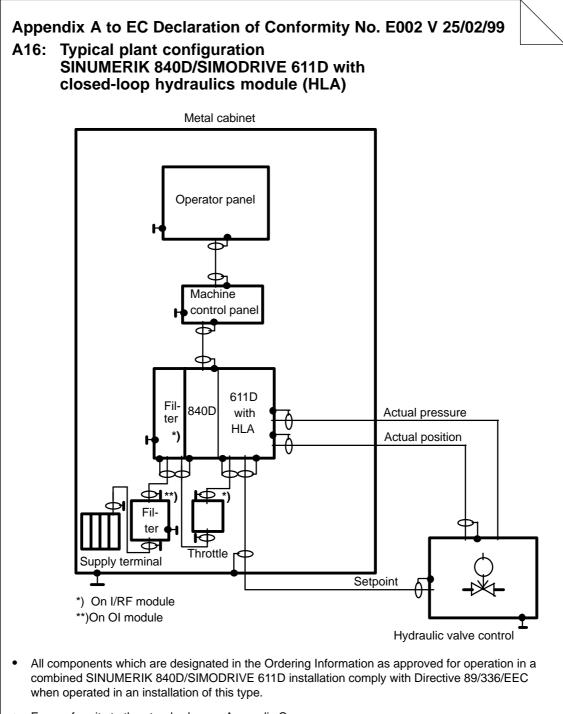
D References		
D.1 Electrical applie	cations	
/FBU/	SIMODRIVE 611 universal/universal E Closed-Loop Control Component for Speed Control a Description of Functions Order No.: 6SN1197-0AB20-0BP7	(07.03 Edition) and Positioning
/FBU2/	SIMODRIVE 611 universal Installation Guide (enclosed with SIMODRIVE 611 un	(04.02 Edition) iversal)
/FBW/	SINUMERIK 840D/840Di/810D Description of Functions Tool Management Order No.: 6FC5297-6AC60-0BP1	(11.02 Edition)
/HBA/	SINUMERIK 840D/840Di/810D Manual @Event Order No.: 6AU1900-0CL20-0BA0	(03.02 Edition)
/HBI/	SINUMERIK 840Di Manual Order No.: 6FC5297-6AE60-0BP2	(09.03 Edition)
/INC/	SINUMERIK 840D/840Di/810D System Description Commissioning Tool SINUMERI Order No.: (an integral part of the online help for the s	
/PJE/	SINUMERIK 840D/810D Description of Functions Configuring Package HMI Software Update, Configuration Installation Order No.: 6FC5297-6EA10-0BP0 (the document PS Configuring Syntax is supplied with and available as a pdf file)	
/POS1/	SIMODRIVE POSMO A User's Guide Distributed Positioning Motor on PRO Order No.: 6SN2197-0AA00-0BP5	(05.03 Edition) OFIBUS DP
/POS2/	SIMODRIVE POSMO A Installation Guide (enclosed with POSMO A)	(04.02 Edition)
/POS3/	SIMODRIVE POSMO SI/CD/CA User's Guide Distributed Servo Drive Systems Order No.: 6SN2197-0AA20-0BP4	(07.03 Edition)
/POS4/	SIMODRIVE POSMO SI Installation Guide (enclosed with POSMO SI)	(04.02 Edition)

10.03		D References
	D.1	Electrical applications
/POS5/	SIMODRIVE POSMO CD/CA Installation Guide (enclosed with POSMO CD/CA)	(04.02 Edition)
/S7H/	SIMATIC S7-300 - Manual: CPU Data (Hardware) - Reference Manual: Module Data - Manual: Technological Functions - Installation Manual Order No.: 6ES7398-8FA10-8BA0	(2002 Edition)
/S7HT/	SIMATIC S7-300 Manual: STEP 7, Fundamentals , V. 3.1 Order No.: 6ES7 10-4CA02-8BA0	(03.97 Edition)
/S7HR/	SIMATIC S7-300 Manual: STEP 7, Reference Manuals , V. 3.1 Order No.: 6ES7810-4CA02-8BR0	(03.97 Edition)
/S7S/	SIMATIC S7-300 FM 353 Positioning Module for Stepper Drive Order together with configuring package	(04.02 Edition)
/S7L/	SIMATIC S7-300 FM 354 Positioning Module for Servo Drive Order together with configuring package	(04.02 Edition)
/S7M/	SIMATIC S7-300 FM 357-2 Multimodule for Servo and Stepper Drives Order together with configuring package	(01.03 Edition)
/SP/	SIMODRIVE 611-A/61 1-D SimoPro 3.1 Program for Configuring Machine-Tool Drives Order No.: 6SC6111-6PC00-0BAD, Order from: WK Fi	ürth
d) Installation and Start-Up		
/BS/	SIMODRIVE 611 analog Description Start-Up Software for Main Spindle and Motor Modules Version 3.20 Order No.: 6SN1197-0AA30-0BP1	(10.00 Edition) Asynchronous

tions		
Installation and	Start-Up Guide	(10.00 Edition)
Installation and (incl. description	Start-Up Guide of SIMODRIVE 611D start-up softwar	(11.02 Edition) e)
Installation and (incl. description	I Start-Up Guide of SIMODRIVE 611 digital start-up so	(11.02 Edition) ftware)
Installation and	Start-Up Guide HMI/MMC	(09.03 Edition)
	Installation and Order No.: 6SN SINUMERIK 81 Installation and (incl. descriptior Order No.: 6FC SINUMERIK 84 Installation and (incl. descriptior Order No.: 6FC SINUMERIK 84 Installation and Order No.: 6FC AE1 BE1 HE1 IM2 IM4	SIMODRIVE 611A Installation and Start-Up Guide Order No.: 6SN1197-0AA60-0BP6 SINUMERIK 810D Installation and Start-Up Guide (incl. description of SIMODRIVE 611D start-up software Order No.: 6FC5297-6AD20-0BP0 SINUMERIK 840D/SIMODRIVE 611 digital Installation and Start-Up Guide (incl. description of SIMODRIVE 611 digital Installation and Start-Up Guide (incl. description of SIMODRIVE 611 digital start-up software Order No.: 6FC5297-6AB10-0BP2 SINUMERIK 840D/840Di/810D Installation and Start-Up Guide HMI/MMC Order No.: 6FC5297-6AE20-0BP3 AE1 Updates/Supplements BE1 Expanding the Operator Interface HE1 Online Help IM2 Starting up HMI Embedded IM4 Starting up HMI Advanced

D.2 Hydraulic applications

/BR1/	Bosch Rexroth AG, "Servo solenoid valves" catalog Rexroth Order no.: 1 987 761 323
/BR2/	Bosch Rexroth AG, "Sensors and Electronics" catalog Rexroth Order no.: 1 987 761 327
/BR3/	Bosch Rexroth AG, "Sandwich-plate valves" catalog Rexroth Order no.: 1 987 761 012
/BR4/	Robert Bosch GmbH, "Electro-hydraulic Proportional and Closed-loop Control Systems" book ISBN 3-933698-00-6


Ε

EC Declaration of Conformity

Note

An extract from the EC Declaration of Conformity No. E002 V 25/02/99 is shown below. A complete copy of the EC Declaration of Conformity can be found in the "EMC Installation Guidelines" for the SINUMERIK, SIROTEC and SIMODRIVE controls.

		NS			
Hersteller: Siemens AG Manufacturer: Anchrift: Siemens AG A&D MC Address: Frauenauracherstraße 80 91056 Erlangen Produkt SINUMERIK 805, 805SM-P, 805SM-TW, 810, 810D bezeichnung: 820, 840C, 840CE, 840D, 840DE, FM NC Produkt SIMATIC FM 353, FM 354, FM 357 description SIROTEC RCM1D, RCM1P description SIROTEC RCM1D, RCM1P SiMODRIVE 610, 611A, 611D, 611U, MCU, FM STEPDRIVE Des bezeichnete Produkt stimmt in der von uns in Verkehr gebrachten Ausführung mit de Vorschriften folgender Europäischer Richtlinle überein: The product described above in the form as delivered is in contomity with the provisions of the following Europäischer Richtline überein: Regulational describe an the approximation of the laws of the Member States relating to electromagnetic compatificmedure 91/283/26/00, 923/1/EWG, 93/89/EWG und 93/97/EWG). Cound Directive an the approximation of the laws of the Member States relating to electromagnetic compatificmendure 91/283/26/00, 923/1/EWG, 93/89/EWG und 93/97/EWG). Die Einhaltung dieser Richtlinie setzt einen EMV-gerechten Einbau der Produkte gemäß E Aufbaunchtline für SINUMERIK, SIROTEC, SIMODRIVE (Best. N. 6FC 5297-0AD30-0AP) in die Gesartmating/or For details of the system configurations, which meet the requirements of the directive, sor to the standards applied see: <th></th> <th></th> <th></th> <th></th> <th></th>					
Manufacturer: Anschrift: Siemens AG A&D MC Address: Frauenauracherstraße 80 91056 Erlangen Produkt SINUMERIK 805, 805SM-P, 805SM-TW, 810, 810D bezeichnung: 820, 840C, 840CE, 840D, 840DE, FM NC Produkt SINATIC FM 353, FM 354, FM 357 description SIRODEC RCMID, RCMIP SIMODRIVE 610, 611A, 611D, 611U, MCU, FM STEPDRIVE Des bezeichnete Produkt stimmt in der von uns in Verkehr gebrachten Ausführung mit of Vorschriften folgender Europäischer Richtlinie überein: The product described above in the form as delivered is in conformity with the provisions of the following Europ Directives: 89/336/EWG Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit (geändert durch 91/282/EEC, 923/EEC, 938/EE/08 und 9397/EE/0). Die Einhaltung dieser Richtlinie setzt einen EMV-gerechten Einbau der Produkte gemäß E Aufbaurchhnite für SINUMERIK, SIROTEC, SINODRIVE (Best. Nr. 6FC 5297-0AD30-0APO) in die Gesamtanlage voraus. Anlagenkonfigurationen, bei der die Einhaltung dieser Richtlinie nachgewi wurde, sowie angewandte Normen, siehe: Pri keepigt derieduet, ist is requirate insattil the produst according to 'EMC Mounting regulation for SINUMERIK, SIROTEC, SINOD (Oder No. 6FC 5297-0AD30-0490, FO details of the system configurations, which meet the requirements of the directives, is v for the standards applied see:			No. E002 V 28	5/02/99	
Address: Frauenauracherstraße 80 91056 Erlangen Produkt SINUMERIK 805, 805SM-P, 805SM-TW, 810, 810D bezeichnung: 820, 840C, 840CE, 840D, 840DE, FM NC Product SIMATIC FM 353, FM 354, FM 357 description SIROTEC RCM1D, RCM1P SIMODRIVE 610, 611A, 611D, 611U, MCU, FM STEPDRIVE Des bezeichnete Produkt stimmt in der von uns in Verkehr gebrachten Ausführung mit of Vorschriften folgender Europäischer Richtlinie überein: The product described above in the form as delivered is in conformity with the provisions of the following Europ Directives: 89/336/EWG Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit (geändert durch 91/283/EWG, 9231/EWG, 93/88/EWG und 93/97/EWG). Council Directive on the approximation of the laws of the Member States relating to electromagnetic compati (amerdet by 91/283/EC, 93/98/EEC) Die Einhaltung dieser Richtlinie setzt einen EMV-gerechten Einbau der Produkte gemäß E Aufbaurichtlinie für SINUMERIK, SIROTEC, SIMODRIVE (Best. Nr. 6FC 5297-0AD30-0APO) in die Gesamtaniage voraus. Anlagenkonfigurationen, bei der die Einhaltung dieser Richtlinie nachgewi wurde, sowie angewandte Normen, siehe: For keeping the directive, it is required to install the products according to "EMC Mounting regulation for SINUMERIK, SIROTEC, SIMOD (Order No. 6FC 5297-0AD30-0BPO), For details of the system configurations, which meet the requirements of the directives, as w for the standards applied see: Anhang A1 - A14 (Anlagenkonfigurationen) - Amex A1-A14(system configurations) Anhang C (Normen) - Amex C(standards) Siemens AG Erlangen, den 2 FMUILIER Name, function - Sinutifie für Sinutifie setzt einer Richtlinie, signature Name, function - Singer Erlehten Produktdokumentation sind zu beachten. Name, function - Singer Erlehten Produktdokumentation sind zu beachten. Die Sichterheitsinnevielse der mitgelieften Produktion sind zu beachten. Tis destandor outfies the confirmet in the zusteh documentation accompanying the produ		Siemens AG	à		
bezeichnung: 820,840C, 840CE, 840D, 840DE, FM NC Product SIMATIC FM 353, FM 354, FM 357 description SIROTEC RCM1D, RCM1P SIMODRIVE 610, 611A, 611D, 611U, MCU, FM STEPDRIVE Das bezeichnete Produkt stimmt in der von uns in Verkehr gebrachten Ausführung mit of Vorschriften folgender Europäischer Richtlinie überein: The product described above in the form as delivered is in conformity with the provisions of the following Europ Directives: 89/336/EWG Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit (geändert durch 91/283/EWG, 92/31/EWG, 93/88/EWG und 93/97/EWG). Council Directive on the approximation of the laws of the Member States relating to electromagnetic compati (aneroded by 91/28/EC, 93/98/EC, 03/98/ECG and 93/97/ECG) Die Einhaltung dieser Richtlinie setzt einen EMV-gerechten Einbau der Produkte gemäß E Aufbaurichtlinie für SINUMERIK, SIROTEC, SIMODRIVE (Best. Nr. 6FC 5297-0AD30-0AP0) in die Gesamtanlage voraus. Anlagenkonfigurationen, bei der die Einhaltung dieser Richtlinie nachgewi wurde, sowie angewandte Normen, siehe: - Anhang A1 - A14 (Anlagenkonfigurationen) - ArrexA1-A14(system configurations) - Anhang B1 - B7 (Komponenten) - ArrexC(standards) Siemens AG Erlangen, den 25 (b2,1999 R. Müller Entwicklungsleitung Name, Funktion Name,		Frauenaurac	cherstraße 80		
Vorschriften folgender Europäischer Richtlinie überein: The product described above in the form as delivered is in conformity with the provisions of the following Europ Directives: 89/336/EWG Richtlinie des Rates zur Angleichung der Rechtsvorschriften der Mitgliedstaaten über die elektromagnetische Verträglichkeit (geändert durch 91/263/EWG, 92/31/EWG, 93/68/EWG und 93/97/EWG). Council Directive on the approximation of the laws of the Member States relating to electromagnetic compati (amended by 91/263/EEC, 92/31/EEC, 93/68/EEC and 93/97/EWG) Die Einhaltung dieser Richtlinie setzt einen EMV-gerechten Einbau der Produkte gemäß E Aufbaurichtlinie für SINUMERIK, SIROTEC, SIMODRIVE (Best. Nr. 6FC 5297-0AD30-0APO) in die Gesamtanlage voraus. Anlagenkonfigurationen, bei der die Einhaltung dieser Richtlinie nachgewi wurde, sowie angewandte Normen, siehe: For keeping the directive, it is required to install the products according to *EMC Mounting regulation for SINUMERIK, SIROTEC, SIMOU (Order No. 6FC 5297-0AD30-0BPO). For details of the system configurations, which meet the requirements of the directives, as w for the standards applied see: Anhang A1 - A14 (Anlagenkonfigurationen) Annang B1 - B7 (Komponenten) Annang C (Normen) Annex C (standards) Siemens AG Erlangen, den 25, 422, 1999 R. Müller Entwicklungsleitung Name, funktion Name, funktion Name, funktion Name, funktion Name, funktion Name, funktion Name, funktion Siebereinstimmung mit der genannten Richtlinie, ist jedoch keine Zusicherung von Eigenschaften. Die Sicherheitshinweise der mitigelieferten Produktokumentation sind zu beachten	bezeichnung: Product	SIMATIC SIROTEC	820, 840C, 840CE, 84 FM 353, FM 354, FM 3 RCM1D, RCM1P	0D, 840DE, FM NC 357	RIVE
über die elektromagnetische Verträglichkeit (geändert durch 91/263/EWG, 92/31/EWG, 93/68/EWG und 93/97/EWG). Council Directive on the approximation of the laws of the Member States relating to electromagnetic compating (mended by 91/263/EEC, 92/31/EEC, 93/68/EEC and 93/97/EEC) Die Einhaltung dieser Richtlinie setzt einen EMV-gerechten Einbau der Produkte gemäß E Aufbaurichtlinie für SINUMERIK, SIROTEC, SIMODRIVE (Best. Nr. 6FC 5297-0AD30-0AP0) in die Gesamtanlage voraus. Anlagenkonfigurationen, bei der die Einhaltung dieser Richtlinie nachgewi wurde, sowie angewandte Normen, siehe: For keeping the directive, it is required to install the products according to "EMC Mounting regulation for SINUMERIK, SIROTEC, SIMOD (Order No. 6FC 5297-0AD30-0BP0). For details of the system configurations, which meet the requirements of the directives, as w for the standards applied see: Anhang A1 - A14 (Anlagenkonfigurationen) - Annex A1 - A14 (system configurations) Anhang C (Normen) Annex B1 - B7 (Komponenten) Anhang C (Normen) Annex C (standards) Siemens AG Erlangen, den 25, 023, 1999 R. Müller Entwicklungsleitung Name, Funktion Name, Funktion Name, Funktion Name, Funktion Name, Funktion Name, function Diese Erklärung bescheinigt die Übereinstimmung mit der genannten Richtlinie, ist jedoch keine Zusicher	Vorschriften fo The product desc	lgender Europäi	ischer Richtlinie überein:	:	
(amended by 91/263/EEC, 92/31/EEC, 93/68/EEC and 93/97/EEC) Die Einhaltung dieser Richtlinie setzt einen EMV-gerechten Einbau der Produkte gemäß E Aufbaurichtlinie für SINUMERIK, SIROTEC, SIMODRIVE (Best. Nr. 6FC 5297-0AD30-0AP0) in die Gesamtanlage voraus. Anlagenkonfigurationen, bei der die Einhaltung dieser Richtlinie nachgewi wurde, sowie angewandte Normen, siehe: For keeping the directive, it is required to install the products according to "EMC Mounting regulation for SINUMERIK, SIROTEC, SIMOL (Order No. 6FC 5297-0AD30-0BP0). For details of the system configurations, which meet the requirements of the directives, as w for the standards applied see: - Anhang A1 - A14 (Anlagenkonfigurationen) - Arnex A1 - A14 (system configurations) - Anhang B1 - B7 (Komponenten) - Arnex A1 - A14 (system configurations) - Anhang C (Normen) - Arnex C (standards) Siemens AG Unterschrift R. Müller Name, Funktion Name, function Unterschrift Name, function Name, Funktion Name, function Unterschrift Name, function Name, function Diese Erklärung bescheinigt die Übereinstimmung mit der genannten Richtlinie, ist jedoch keine Zusicherung von Eigenschaften. Die Sicherheitshinweise der mitgelieferten Produktdokumentation sing zu beachten. Tis declaration eetifides the conformity of the specified diractives		über die elektro	omagnetische Verträglic	chkeit	n der Mitgliedstaaten
Die Einhaltung dieser Richtlinie setzt einen EMV-gerechten Einbau der Produkte gemäß E Aufbaurichtlinie für SINUMERIK, SIROTEC, SIMODRIVE (Best. Nr. 6FC 5297-0AD30-0AP0) in die Gesamtanlage voraus. Anlagenkonfigurationen, bei der die Einhaltung dieser Richtlinie nachgewi wurde, sowie angewandte Normen, siehe: For keeping the directive, it is required to install the products according to "EMC Mounting regulation for SINUMERIK, SIROTEC, SIMOD (Order No. 6FC 5297-0AD30-0BP0). For details of the system configurations, which meet the requirements of the directives, as w for the standards applied see: - Anhang A1 - A14 (Anlagenkonfigurationen) - Annang B1 - B7 (Komponenten) - Anhang C (Normen) - Annex B1 - B7 (components) - Annex C (standards) Siemens AG Erlangen, den 25, 22, 1999 R. Müller Entwicklungsleitung Name, Funktion Name, funktion Name, funktion Diese Erklärung bescheinigt die Übereinstimmung mit der genannten Richtlinie, ist jedoch keine Zusicherung von Eigenschaften. Die Sicherheitshinweise der mitgelieferten Produktdokumentation sind zu beachten. This declaration certifies the conformity of the specified directives kerklöckungen terming the produktookumentation sind zu beachten. This declaration certifies the conformity of the specified directives but contains no assurance of properties. The safety documentation accompanying the produktookumentation					; to electromagnetic compatil
Anhang B1 - B7 (Komponenten) Annex B1-B7 (components) Annex B1-B7 (components) Annex C (standards)	Die Einhaltun		K, SIROTEC, SIMODRIVI		
Erlangen, den 25.02.1999 R. Müller Entwicklungsleitung Name, Funktion Name, function Diese Erklärung bescheinigt die Übereinstimmung mit der genannten Richtlinie, ist jedoch keine Zusicherung von Eigenschaften. Die Sicherheitshinweise der mitgelieferten Produktdokumentation sind zu beachten. This declaration certifies the conformity to the specified directives but contains no assurance of properties. The safety documentation accompanying the produ	Aufbaurichtlinie Gesamtanlage wurde, sowie a For keeping the dir (Order No. 6FC 525	e voraus. Anlage angewandte Norr ective, it is required to 97-0AD30-0BP0). For (men, siehe: install the products according to "	er die Einhaltung diese EMC Mounting regulation for S	INUMERIK, SIROTEC, SIMOD
R. Müller Multication Entwicklungsleitung Interschrift Name, Funktion Interschrift Name, function Interschrift Diese Erklärung bescheinigt die Übereinstimmung mit der genannten Richtlinie, ist jedoch keine Zusicherung von Eigenschaften. Die Sicherheitshinweise der mitgelieferten Produktdokumentation sind zu beachten. This declaration certifies the conformity to the specified directives but contains no assurance of properties. The safety documentation accompanying the produ	Aufbaurichtlinie Gesamtanlage wurde, sowie a For keeping the din (Order No. 6FC 525 for the standards - Anha - Anha	e voraus. Anlage angewandte Non ective, it is required to 77-0AD30-0BP0). For (applied see: ang A1 - A14 (A ang B1 - B7 (K	men, siehe: install the products according to details of the system configurati Anlagenkonfigurationen) Komponenten)	er die Einhaltung diese EMC Mounting regulation for S ions, which meet the required - Annex A1 – A14 (system co - Annex B1 – B7 (component	INUMERIK, SIROTEC, SIMOD ments of the directives, as w
Entwicklungsleitung Qualitätsmanagement Qualitätsmanagement Name, Funktion Unterschrift Name, Funktion Unterschrift Name, function Signature Name,	Aufbaurichtlinie Gesamtanlage wurde, sowie a For keeping the dir (Order No. 6FC 525 for the standards - Anha - Anha - Anha	e voraus. Anlage angewandte Non ective, it is required to 77-0AD30-0BP0). For (applied see: ang A1 - A14 (A ang B1 - B7 (K	men, siehe: install the products according to details of the system configurati Anlagenkonfigurationen) Komponenten)	er die Einhaltung diese EMC Mounting regulation for S ions, which meet the required - Annex A1 – A14 (system co - Annex B1 – B7 (component	INUMERIK, SIROTEC, SIMOD ments of the directives, as w
Name, function signature Name, function signa Diese Erklärung bescheinigt die Übereinstimmung mit der genannten Richtlinie, ist jedoch keine Zusicherung von Eigenschaften. Die Sicherheitshinweise der mitgelieferten Produktdokumentation sind zu beachten. This declaration certifies the conformity to the specified directives but contains no assurance of properties. The safety documentation accompanying the produ	Aufbaurichtlinie Gesamtanlage wurde, sowie a For keeping the din (Order No. 6FC 525 for the standards - Anha - Anha - Anha Siemens AG	e voraus. Anlage angewandte Non ective, it is required to 77-0AD30-0BP0). For a applied see: ang A1 - A14 (A ang B1 - B7 (k ang C (N	men, siehe: install the products according to details of the system configurati Anlagenkonfigurationen) Komponenten)	er die Einhaltung diese EMC Mounting regulation for S ions, which meet the required - Annex A1 – A14 (system co - Annex B1 – B7 (component - Annex C (standards)	INUMERIK, SIROTEC, SIMOD ments of the directives, as w
Die Sicherheitshinweise der mitgelieferten Produktdokumentation sind zu beachten. This declaration certifies the conformity to the specified directives but contains no assurance of properties. The safety documentation accompanying the produ	Aufbaurichtlinie Gesamtanlage wurde, sowie a For keeping the dir (Order No. 6FC 525 for the standards - Anha - Anha - Anha Siemens AG Erlangen, der R. Müller	e voraus. Anlage angewandte Non ective, it is required to 77-0AD30-0BP0). For a applied see: ang A1 - A14 (A ang B1 - B7 (k ang C (N	men, siehe: install the products according to details of the system configurati Anlagenkonfigurationen) Komponenten)	er die Einhaltung diese EMC Mounting regulation for S ions, which meet the required - Arnex A1 – A14 (system co - Arnex B1 – B7 (component - Arnex C (standards) K. Krause	INUMERIK, SIROTEC, SIMOD ments of the directives, as w
	Aufbaurichtlinie Gesamtanlage wurde, sowie a For keeping the dir (Order No. 6FC 525 for the standards - Anha - Anha - Anha Siemens AG Erlangen, der R. Müller Entwicklungsleitung Name, Funktion	e voraus. Anlage angewandte Non ective, it is required to 77-0AD30-0BP0). For a applied see: ang A1 - A14 (A ang B1 - B7 (k ang C (N	men, siehe: install the products according to ' details of the system configurati Anlagenkonfigurationen) Komponenten) Normen) Unterschrift	er die Einhaltung diese EMC Mounting regulation for S ions, which meet the required - Arnex A1 – A14 (system co - Arnex B1 – B7 (component - Arnex C (standards) K. Krause Qualitätsmanagement Name, Funktion	INUMERIK, SIROTEC, SIMOL ments of the directives, as w nfigurations) s)
	Aufbaurichtlinie Gesamtanlage wurde, sowie a For keeping the dir (Order No. 6FC 525 for the standards - Anha - Anh	e voraus. Anlage angewandte Non ective, it is required to 77-0AD30-0BP0). For a applied see: ang A1 - A14 (A ang B1 - B7 (k ang C (N h 25-02, 1999 	men, siehe: install the products according to details of the system configurati Anlagenkonfigurationen) Komponenten) Normen) Unterschrift signature mmung mit der genannten Richtlin Produktdokumentation sind zu be	er die Einhaltung diese EMC Mounting regulation for S ions, which meet the required - Amex A1 – A14 (system co - Amex B1 – B7 (component - Amex C (standards) K. Krause Qualitätsmanagement Name, Funktion Name, funktion Name, funktion Name, funktion	INUMERIK, SIROTEC, SIMOD ments of the directives, as w infigurations) s) <i>Lo coccorrections</i> Untersc signa
	Aufbaurichtlinie Gesamtanlage wurde, sowie a For keeping the dir (Order No. 6FC 525 for the standards - Anha - Anh	e voraus. Anlage angewandte Non ective, it is required to 77-0AD30-0BP0). For a applied see: ang A1 - A14 (A ang B1 - B7 (k ang C (N h 25-02, 1999 	men, siehe: install the products according to details of the system configurati Anlagenkonfigurationen) Komponenten) Normen) Unterschrift signature mmung mit der genannten Richtlin Produktdokumentation sind zu be	er die Einhaltung diese EMC Mounting regulation for S ions, which meet the required - Amex A1 – A14 (system co - Amex B1 – B7 (component - Amex C (standards) K. Krause Qualitätsmanagement Name, Funktion Name, funktion Name, funktion Name, funktion	INUMERIK, SIROTEC, SIMOD ments of the directives, as w nfigurations) s) Untersci signa

· For conformity to the standards, see Appendix C.

Note:

The sketch of the system configuration shows only the basic measures required to ensure that a typical system configuration conforms to directive 89/336/EEC. In addition, and especially if the system configuration deviates from this typical model, the installation guidelines for EMC-compliant system design in the product documentation and the EMC design guidelines for SINUMERIK, SIROTEC and SIMODRIVE (order no.: 6FC5297-0AD30-0BP0) must be carefully observed and implemented.

Aŗ	opendix C to EC Decl	aration of (Conformity No. E002 V 25/02/99			
C: Conformity of the products with Council Directive 89/336/EEC has been verified by inspection and testing in accordance with the following product standard, basic technical specifications and the basic standards contained therein. Product categories SINUMERIK, SIROTEC, SIMODRIVE and SIMATIC are subject to the requirements of different standards.						
C1	Product categories SINUME	RIK ^{*)} , SIMATIC	<u>, SIROTEC:</u>			
	Basic specification: EN 50081	-2 dated 8/93	1)			
	Basic standards: EN 55011 2)	<u>Test topic:</u> Radio interfer	rence			
	Basic specification: EN 50082	2-2 dated 3/95	3)			
	Basic standards:EN 61000-4-34)ENV 502045)EN 61000-4-66)EN 61000-4-87)EN 61000-4-28)EN 61000-4-49)		ds ge			
			*) except for SINUMERIK 810D			
	Product categories SIMODR Product standard: EN 61800-		<u>RIK 810D:</u>			
	Other standards complied w					
1)	VDE 0839 part 81-2	6)	IEC 801-6, VDE 0847 part 4-6 IEV 1000-4-6 ENV 50141			
2)	VDE 0875 part 11	7)	VDE 0847 part 4-8			
3)	VDE 0839 part 82-2	8)	IEC 1000-4-8 VDE 0847 part 4-2 EN 60801 part 2 IEC 801-2 VDE 0843 part 2			
4)	VDE 0847 part 4-3 ENV 50140	9)	VDE 0843 part 4 VDE 0847 part 4-4 IEC 801-4			
5)	VDE 0847 part 204	10)	VDE 0160 part 100			

Index

A

Abbreviations of drive types, 3-51 Absolute encoder, 4-140 Acceleration feedback, 4-110 Acceleration limitation, 4-105 Activating the DAC output, 5-183 Activation of data, 3-58 Address Documentation (fax, email), 8-238 Internet, 8-238 Technical Support, 8-238 Ambient mechanical conditions, 5-185 Analogy of characteristic data, 1-17 Applications, 1-15 Atmospheric pressure, 5-185

В

Block diagram of control functions, 4-96

С

Characteristic compensation Area adaptation, 4-124 Friction, 4-106 Linearization of valve, 4-125 Offset, 4-129 Characteristics of servo solenoid valves Dynamic performance, A-245 Filtration grade, A-246 Hysteresis, A-246 Linearization of knee-shaped flow characteristic, A-244 Pressure amplification, A-242 Range of inversion, A-246 Rated flowrate, A-245 Response sensitivity, A-246 Circularity test, 3-88 Climatic environmental conditions, 5-185 Closed-loop control functions, 4-99

Closed-loop force control, 4-115 Configuration, 4-116 Force controller, 4-119 Force limitation, 4-115, 4-117 Requirements, 4-115 Startup, 4-115 Static friction injection, 4-118 Closed-loop velocity control Acceleration feedback, 4-110 Adaptation of D component, 4-107 Adaptation of P component, 4-107 Control output filter, 4-111 controller D component, 4-110 controller P component, 4-108 I component, 4-109 Integrator feedback, 4-109 Reference model, 4-111 Velocity controller cycle, 4-106 Comparison of electric and hydraulic drive systems, 1-16 Configuring an OEM valve list, 3-92 Design, 3-92 Example of an OEM valve list, 3-92 General, 3-92 Language-dependent OEM texts, 3-94 Language-dependent system texts, 3-94 Language-dependent texts, 3-94 Configuring steps, 2-21 electrical, 2-21 Hydraulic, 2-22 Configuring the hydraulic drive, 2-30 Cylinder selection, 2-30 Hydraulic power unit, 2-43 Natural frequency, 2-42 Selection of servo solenoid valves, 2-32 Selection of shutoff valves, 2-39 Connection and power loss calculation for the NCU, 2-45 Connection configuration for HLA module, 2-27 Connection of 24 V supply With shut-off valve, 4-148 without shut-off valve, 4-148 Construction of an electro-hydraulically controlled drive axis, 1-18 Contaminants, 5-187

Control direction Determine control direction, 3-62 General, 3-62 Limitation of manipulated voltage, 3-62 Control output, velocity controller, 4-111 Controller adaptation General, 3-73 Implementation, 3-73 controller D component, 4-110 Controller data/calculate drive model data, 3-61 Controller optimization, 3-61 D response, 3-71 General, 3-68 I response, 3-72 P response, 3-71 controller P component, 4-108 Cylinder Construction, 1-19 Dead volume, A-255 Differential cylinder, A-254 General, A-254 Quality criteria, 1-19 Quality of seals, A-255 Through-rod cylinder, A-254 Cylinder data, 4-136 Cylinder drive, Cylinder data, 4-136 Cylinder selection, 3-56 Cylinder pipes, 2-31 Friction, 2-31 Mounting, 2-31 Mounting position, 2-31 Piston diameter, 2-30 Position measuring system, 2-31 Rod diameter, 2-30 Seal, 2-31 Stroke length, 2-30

D

DAC assignment, 5-182 DAC parameter settings, 3-89 DAC selection list, 3-89 DC power supplies, 2-45 Deactivate adaptation, 4-107 Dew-point temperature td, 5-185 Display options, 3-91 Drive data Dynamic model data, 4-139 Mechanical design of drive, 4-137 Valve-to-drive connection, 4-137 Drive model data, Changing valve data, 3-59 Dust, hazardous, 5-187 Dynamic drive model data, 4-139 Dynamic stiffness control (DSC), 4-114

F

Fault responses., 6-189 File functions Load data, 3-75 Save data, 3-75 Filter Control output filter in velocity controller, 4-111 Velocity setpoint filter, 4-100 Fine adjustment and optimization, 3-62 Force controller controller D component, 4-121 controller P component, 4-120 Feedforward control filter, 4-122 Feedforward control gain, 4-119 I component, 4-121 Servo gain, 4-120 Function generator, 3-84 Position setpoint, 3-87 Signal types, 3-84 Signals, 3-84 Start-up of force controller, 4-115 Valve spool setpoint, 3-85 Velocity setpoint, 3-86

G

Grounding concept, 2-48

Н

HLA machine data, 4-165 Hotline, 8-238 Hydraulic power unit, 1-20 Configuration, 2-43 Cooling:, 2-44 Drive power, 2-43 Filtration, 2-43 flow rate, 2-43 Pressure, 2-43 Pump type, 2-43

I

I component, 4-109 Incremental encoder, 4-140 Integrator feedback, 4-109 Interfaces Firmware, 1-15 Hardware, 1-15 Interfaces on mains supply module, 2-28 Internet address, 8-238

L

Loaded valve data, 3-54

Μ

Machine configuration, 3-49 Machine data groups, 3-91 Machine guideway Friction, 1-18 Guide, 1-18 Mains connection, 5-184 Manipulated variable inversion, 4-132 Manipulated voltage limitation, 4-132 Manipulated voltage output, 4-124 Measurement function Measurement of velocity controller, 3-78 Position control measurement, 3-82 Valve control loop measurement, 3-77 Measuring system, 5-178 Measuring system data Absolute, 3-58 Incremental, 3-58 Mechanical design of drive, 4-137 Modify drive machine data, 3-52 Monitoring Limit frequency reached measuring circuit, 4-153 Measuring Circuit, 4-152 Power On alarms, 4-152 Monitoring functions, 4-152 Mounting the HLA closed-loop control plug-in module, 2-29 Mounting/supply data Connection, 3-57 Drive data, 3-57 Supply unit, 3-57

Ν

Natural frequency, 2-42 Natural frequency of hydraulic drive Possible dynamic response, 2-42 Servo gain, 2-42 Notes Hotline, 8-238 Technical Support, 8-238

0

Objective, 1-15 Offset adjustment Offset of pressure sensors, 3-64 Offset of valve manipulated voltage, 3-65 Reference value for pressure sensors, 3-65 Output voltage range of the DAC output, 5-183 Overview of functions of HLA firmware, 4-97 Overview of hydraulics module start-up process, 3-49

Ρ

Parameter set changeover, 4-98 Position adjustment, 3-67 Position measuring system, 1-19, 4-140 Actual position value, 4-144 Linear scale graduations, 4-142 Phase error compensation, 4-141 Possible dynamic response, 2-42, 4-95 Power disable, 4-149, 4-150 power enable, 4-149 Power supply external, 2-45 Internal, 2-45 Preset unlisted valve, 3-55 Pressure sensing system, 4-145, 5-179 Offset adjustment, 4-145 Sensor adjustment, 4-145

R

Reference model, 4-111 Referencing data for HLA Piston zeroing, 3-67 Position adjustment, piston position, 3-67 References, D-261 Relative air humidity U, 5-185 Requirements of external 26.5 V supply, 2-45

S

Selection of servo solenoid valves Fail-safe position, 2-35 Flow characteristic asymmetrical, 2-34 Knee-shaped, 2-33 Linear, 2-33 HR servo solenoid valves, 2-33 Pin assignments, 2-35 Preferred range of servo solenoid valves, 2-36 Servo solenoid valve, 2-33 Valve size, 2-33 Valve size, 2-32 Selection of shutoff valves General, 2-39 Preferred range of shut-off valves, 2-41 Service functions Diagnostic machine data, 4-161 Min/max display, 4-159 Monitor, 4-160 Servo gain, 4-105 Servo solenoid valve Function, 1-19 Task, 1-19 Servo solenoid valves Features of HRV valves, A-252 Flow characteristic linear, A-243 Flow characteristic, with knee, A-244 Graphical symbol, A-240 HR servo solenoid valves, A-252 Mechanical structure, A-247 Pilot control principle, A-249 Sliding spool principle, A-239 Solenoid actuation with valve spool position control, A-240 Zero overlap in mid-position, A-242 Shock stressing, 5-185 Shutoff valve, 1-19 Signal SMRDY, 4-151 Valve spool not reacting, 4-154 Velocity controller at limit, 4-153 Start-up flow chart Definition of drive travel direction, 3-63, 3-64 Determine control direction, 3-63 Start-up sequence, 3-50 Start-up support, Disabled softkeys, 3-76 Static friction injection Cutoff limit, 4-118 Cylinder friction force, 4-119 Velocity threshold, 4-118 Storage conditions, 5-186 Supply unit data, 4-133 Support, 8-238 System components, 2-26 System overview Components, 2-24 Mounting the HLA closed-loop control plug-in module, 2-29 system variables, 3-94

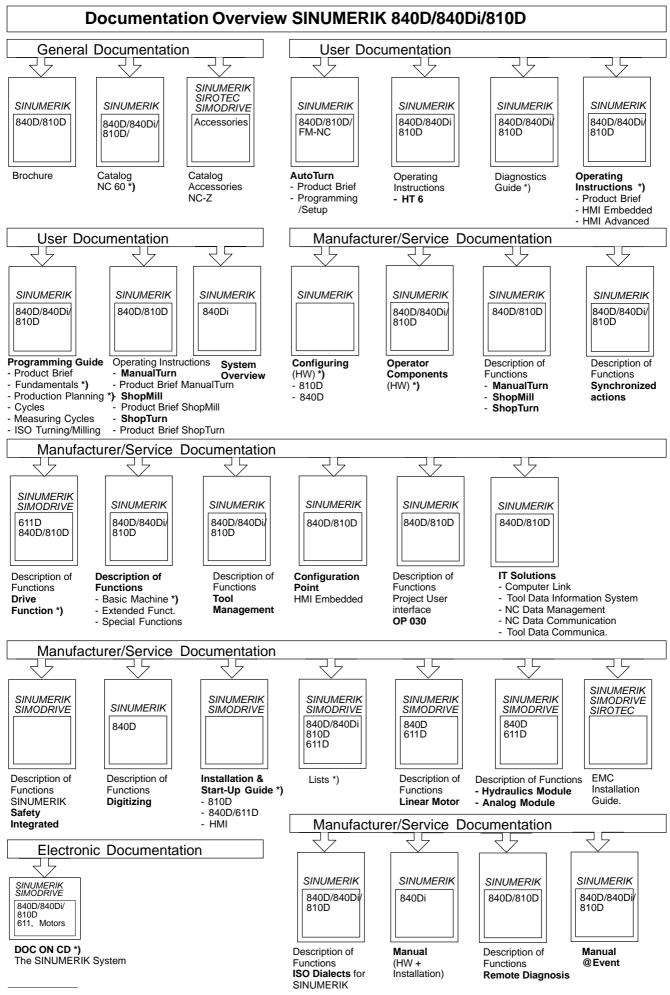
Т

Technical Support, 8-238 Terminals, 4-146, 5-181 External 26.5 V supply, 4-146 Fault responses., 6-189 Function switch, 4-151 ON/OFF sequence, 4-146 Setup mode, 4-151 Velocity controller disable, 4-151 terminals Power disable, 4-149, 4-150 power enable, 4-149 Velocity controller enable, 4-150 Transport conditions, 5-186 Traversing direction Cancel manipulated voltage limitation, 3-64 Definition of drive travel direction, 3-63 Definition of travel direction in NC, 3-64 Determine control direction, 3-62 Limitation of manipulated voltage, 3-62

U

Unlisted valve data, 3-55

۷


Valve amplifier, 1-19 Valve data, 4-134 Valve list Design, 3-92 Example of an OEM valve list, 3-92 General, 3-92 Language-dependent OEM texts, 3-94 Language-dependent system texts, 3-94 Language-dependent texts, 3-94 Valve selection from list, 3-54 General, 3-53 Loaded valve data, 3-54 Unlisted valve data, 3-55 Valve selection softkey, 3-53 Valve selection from a list, 3-54 Velocity adjustment Adjustment of controlled system gain, 3-66 Target, 3-65 Velocity controller, 4-106 Velocity controller cycle, 4-106 Velocity controller disable, 4-151 Velocity controller enable, 4-150 Velocity feedforward control, 4-99 Acceleration limitation, 4-105 Friction, 4-106 Servo gain, 4-105 Velocity setpoint, 4-99 Velocity setpoint filter, 4-100 Velocity setpoint interpolation, 4-99 Velocity setpoint limitation, 4-105 Velocity setpoint, 4-99 Velocity setpoint filter, 4-100 Velocity setpoint interpolation, 4-99 Velocity setpoint limitation, 4-105 Vibration stressing, 5-185

W	X111, 5-179
Weighting factor, 2-45	X112, 5-179 X121, 5-180
	X122, 5-180 X141, 5-183
X	X151, 5-183 X341, 5-183
X101, 5-178 X102, 5-178	X431, 5-181
X102, 0 110	X432, 5-181

Notes	

To SIEMENS AG	Suggestions Corrections	
A&D MC BMS P.O. Box 3180	For Publication/Manual: SINUMERIK 840D SIMODRIVE 611 digital Description of Functions HLA Module	
D-91050 Erlangen Germany Phone: +49 (0) 180 / 5050 - 222 [Service Support] Fax: +49 (0) 9131 / 98 - 2176 [Documentation]		
E-mail: motioncontrol.docu@erlf.siemens.de	Manufacturer/Service Documentation	
From	Description of Functions	
Name	Order no.: 6SN1197-0AB60-0BP3 Edition: 10/03	
Company/Dept.	Should you come across any printing	
Address	errors when reading this publication, please notify us using this form.	
Zip code: Town:	Suggestions for improvement are also	
Phone: /	welcome.	
Fax: /		

Suggestions and/or corrections

*) Recommended minimum scope of documentation

Siemens AG

Automation and Drives Motion Control Systems P.O. Box 3180, D – 91050 Erlangen Germany

© Siemens AG 2003 Subject to change without prior notice Order No.: 6SN1197-0AB60-0BP3

www.siemens.com

Printed in Germany