
SINUMERIK 840D
C-PLC Programming

Description of Functions 03.96 Edition

Manufacturer Documentation

Overview 1

Components and
Installation

2

C Block Programming 3

C Call Interface for Basic
PLC Program

4

Miscellaneous 5

Abbreviations A

References B

Index C

SINUMERIK 840D

C-PLC Programming
Description of Functions

Manufacturer Documentation

Valid for

Control Software Version
SINUMERIK 840D 3.2

03.96 Edition

SINUMERIK® documentation

Printing history

Brief details of this edition and previous editions are listed below.

The status of each edition is shown by the code in the "Remarks" column.

Status code in the "Remarks" column:

A New documentation.

B Unrevised reprint with new Order No.

C Revised edition with new status.
If factual changes have been made on the page since the last edition, this is indicated by a new edition
coding in the header on that page.

Edition Order No.. Remarks
04.95 6FC5297-2AB60-0BP0 A
03.96 6FC5297-3AB60-0BP0 C

Siemens quality for software and training
to DIN ISO 9001, Reg. No. 2160-01

This publication was produced with WinWord V 6.0c and Designer V 6.0.
The reproduction, transmission or use of this document or its contents is
not permitted without express written authority. Offenders will be liable
for damages. All rights, including rights created by patent grant or
registration of a utility model or design, are reserved.

© Siemens AG 1995. All Rights Reserved.

Other functions not described in this documentation might be
executable in the control. This does not, however, represent an
obligation to supply such functions with a new control or when
servicing.

We have checked that the contents of this document correspond to the
hardware and software described. Nonetheless, differences might exist
and therefore we cannot guarantee that they are completely identical.
The information contained in this document is, however, reviewed
regularly and any necessary changes will be included in the next
edition. We welcome suggestions for improvement.

Subject to change without prior notice.

Order No. 6FC5297-3AB60
Printed in the Federal Republic of Germany

Siemens-Aktiengesellschaft.

03.96 Contents

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) v

Contents

Page

Overview ...1-1

Components and Installation..2-1

2.1 Development environment for PC...2-3

2.2 Development environment for PLC...2-5

2.3 Overview of directory structure ...2-7

2.4 Hardware ..2-8

2.5 System resources of the PLC ...2-8

C Block Programming..3-1

3.1 Conventions ..3-2
3.1.1 Language and functionality..3-2
3.1.2 Use of data types ...3-8
3.1.3 Constants...3-10
3.1.4 Runtime environment and standard program structure ...3-10

3.2 Off-line program development ..3-12
3.2.1 Example project: rotary table control ...3-12
3.2.2 Header files for PLC and PC environments ...3-16
3.2.3 Standard visualization objects ...3-17
3.2.4 User-defined visualization objects ...3-20
3.2.5 Simulation routines ..3-24
3.2.6 Presetting data during start-up of test environment ...3-25
3.2.7 Termination procedure...3-26
3.2.8 Setting configuration data ..3-27
3.2.9 Test of alarm runtime levels...3-27
3.2.10 Notes on testing...3-30

3.3 Generating and loading a C block...3-33
3.3.1 Generating a C block ...3-33
3.3.2 Loading a C block ..3-35

3.4 On-line monitor ...3-39

C Call Interface for the Basic PLC Program ..4-1

4.1 General information ..4-2

4.2 Description of the C functions...4-3
4.2.1 RUN_UP, start-up function ..4-3
4.2.2 GET, read NCK variables...4-6

Contents 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
vi FB (FB)

4.2.3 PUT, write NCK variables ..4-9
4.2.4 PI, general PI services ...4-12
4.2.5 GETGUD, read GUD variable ..4-15
4.2.6 ASUP, start asynchronous subroutines ...4-18
4.2.7 AL_MSG, error messages and operational messages ..4-19
4.2.8 BHGDisp, display control for the handheld operator panel......................................4-20
4.2.9 POS_AX, positioning of linear and rotary axes ..4-23
4.2.10 PART_AX, positioning of indexing axes...4-24
4.2.11 YDelta, star/delta selection ..4-25
4.2.12 SpinCtrl, spindle control ...4-26
4.2.13 MCP_IFM, transfer of MCP signals to the interface...4-28
4.2.14 MCP_IFT, transfer of MCP/OP signals to the interface ...4-29

Miscellaneous...5-1

5.1 Access to local data from the C program..5-2

5.2 Response to errors ...5-5

5.3 Stack handling on the PLC ...5-7

5.4 Example project: Rotary table positioning...5-8

Abbreviations ...A-1

References..B-1

Index..Index-1

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 1-1

Overview

As an alternative to programming with STEP 7, it is possible to generate high-
level language applications in the ANSI-C language for the integrated PLC of
the SINUMERIK 840D machine tool control system.

The development environment described below, which is based on Borland C
for DOS and the CS7DLIB library, allows this type of program to be developed
and subjected to preliminary tests on the PC in off-line operation.

Fig. 1-1 Development of C-PLC programs with Borland C and CS7DLIB

The Borland C package provides you with powerful tools for generating, testing
and modifying C programs.

The CS7DLIB library is used in conjunction with the package and provides
functions which are relevant to runtime processes. These include timers,
counters, I/O accessing functions as well as S7-specific data objects and
system services.

1
High-level language
programming

Borland C package

CS7DLIB

1 Overview 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
1-2 FB (FB)

CS7DLIB also offers a complete test sequence system which can manage
user-specific routines for process simulation in addition to the actual PLC
application. The status of the system objects can be saved and reconstructed.

In addition to the visualization facilities available with the Borland debugger,
CS7DLIB provides user-defined screen pages for visualization of S7 objects in
off-line test mode with which data contents with symbolic information can be
displayed or manipulated.

The BSO tasking tool chain can be used to create C blocks from the program
modules developed in off-line mode. These blocks can be loaded to the
integrated PLC via the MPI interface.

Fig. 1-2 Call interface for the C block

The basis of the PLC environment is the supplied basic STL program which
links the PLC with the runtime system and the process (NCK-PLC interface)
(see Fig. 1-2 Call interface for the C block).

Call interfaces (SFC63) for C blocks are available on the STEP 7 program
execution levels "Basic cycle" (OB1), "Delay interrupt" (OB20), "Watchdog
alarm" (OB35), "Process interrupt" (OB40) and "Start-up branch" (OB100). It is
therefore possible to implement all user-specific expansions fully in C.

Data are exchanged between STEP 7 and C by means of data blocks or bit
memories. A data exchange may be required, for example, for operator
communication and monitoring or for the NCK-PLC interface.

Testing and start-up of the C program block in the control are supported by a C
source level monitor for the PLC environment which is connected to the MPI
interface.

Creating C blocks

Basic PLC program

Data exchange
between
STEP 7 and C

On-line test
environment

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 2-1

Components and Installation

2.1 Development environment for PC...2-3

2.2 Development environment for PLC...2-5

2.3 Overview of directory structure ...2-7

2.4 Hardware ..2-8

2.5 System resources of the PLC ...2-8

2

2 Components and Installation 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
2-2 FB (FB)

Fig. 2-1 Components for the development of C-PLC programs

See Section to 2.1 Development environment for PC

See Section to 2.2 Development environment for PLC

Software for
developing and
testing C-PLC
programs on PC

Software for
generating and
testing C-PLC
programs on PLC

03.96 2 Components and Installation

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 2-3

2.1 Development environment for PC
You will require the following items to develop and test C-PLC programs on the
PC:

• C development package, Borland C 3.0 or 3.1 (with DOS component) or
Turbo C 3.0 for off-line environment

• CS7DLIB extension from SIEMENS

In order to install the development system, you must follow the installation
instructions in the documentation of the development system. You do not need
to install the Windows components, the class libraries or their on-line
documentation, as only the DOS components are required. Nor do you need to
install the source text of the libraries supplied by Borland. To avoid having to
make changes to the project file supplied with the CS7DLIB software package,
you should install the development system under directory C:\BORLANDC.
Otherwise, you must change the path name for the include and library
directories to your path in menu Options | Directories.

After inserting the installation diskette into drive A:, install CS7DLIB by entering
the following command

Enter: a:\>install TargetDirectory

Please enter a directory name of your choice for the TargetDirectory
parameter, and specify the destination drive.

Example: a:\>install C:\CS7DLIB

This command copies the supplied files from the installation diskette plus all
subdirectories into the specified directory.

The supplied example project can be generated from the directory created in
the above operation.

Enter: c:\cs7dlib\>instdemo DemoDirectory

You must specify a directory name for the DemoDirectory parameter.

Example: c:\cs7dlib\>instdemo cs7_demo

C development
package, Borland C
3.x / Turbo C 3.0

Installing CS7DLIB

Generating example
project

2 Components and Installation 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
2-4 FB (FB)

Fig. 2-2 Installation of CS7DLIB and example project - Setting up a user
project

Note

This version is based on the assumption that Borland C has been installed in
directory C:\BORLANDC. If this is not the case, then the entries in menu
Options | Directories must be changed to the actual path of the Borland
compiler or else header files will not be found during compilation and library
files of the Borland package will not be found during linking.

You can set up a new project as follows:

Enter: c:\cs7dlib\>new_prj c:\ProjectDirectory ProjectName

The path name of the new project must be specified in the ProjectDirectory
parameter, and the project name must be specified in ProjectName.

Example: c:\cs7dlib\>new_prj c:\wzm_plc std_plcp

The project file you have now created is assigned the project name you have
specified; all subdirectories required for the project are set up and the
necessary files stored in the directory with the name entered above.

The Borland C++ development system offers numerous options which you can
set via menus.

Please note the following points:

• The CS7DLIB requires the large memory model of Borland C++ and also
expects a DOS-EXE file to be generated.

• The two paths ..\SYS_INC and ..\USR_INC are entered as include
directories for the project, in addition to the Borland path.

• The .OBJ and .EXE files of the project are stored in the ..\BIN project
directory.

• The ..\PROJECT project directory is used as the starting point for calling up
the development environment.

Setting up a
new project

Development
environment settings

03.96 2 Components and Installation

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 2-5

2.2 Development environment for PLC
The following items are required for generating and loading a C block on the
PLC:

BSO tasking tools, version 4.0, development package for microprocessor types
SAB 80C165/80C166. This package contains C compilers, assemblers, linkers
and the required libraries. The library expansion PXROSLIB (C166 Special
Stack Frame Library) must also be installed. Please follow the installation
instructions given in

References: /BSO/, Users Guide

HITEX user interface (space requirement: approx 3 Mbytes, HITEX licence).
This package also includes the symbol preprocessor SP166TA.EXE (see
Section 3.4 On-line monitor). Please follow the installation instructions
given in

References: /HITEX/, Users Manual

Directory \CS7TOOLS\HITEX must be specified as the destination directory for
installation purposes. In addition, symbol preprocessor SP166TA.EXE must be
copied to directory \CS7TOOLS.

CS7RTLIB.LNO, the runtime library for accessing S7 objects from C programs
(disk 1,directory \CS7DLIB\LIB), incl. the call interfaces AB_START.OBJ and
ABMAIN.OBJ.
CS7RTLIB.LNO, AB_START.OBJ, and ABMAIN.OBJ are stored in directory
CS7DLIB\LIB (see Section 2.3 Overview of directory structure).

Generation tools, loading tools and tools for on-line testing during start-up.

• MPI tools
Directory \CS7TOOLS\MPI

 MPIDOS.EXE MPI driver
MPIMON.EXE MPI driver
BT_L7STD.COM MPI driver
BT_L7TSR.COM MPI driver
NETNAMES.CPU Default settings for the MPI interface
NC_CD.EXE Directory change in the NCK
NC_DIR.EXE Directory display in the NCK
COMON.BAT Control file for installing the MPI drivers
COMOFF.BAT Control file for de-installing the MPI drivers

• Generating tools
Directory \CS7TOOL

 AB_GEN.EXE Generates a loadable C block
BS_ADDR.EXE Locates code and data segments
RDDBBPLC.EXE Reads the start address of the C block in the PLC

• Control files
Directory \CS7TOOLS

 CC.BAT Control file for compiling the C source files

C166 development
system

On-line monitor

Runtime library

CS7TOOLS

2 Components and Installation 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
2-6 FB (FB)

• Loading tools
Directory \CS7TOOLS

 DOWNPLC.EXE Loads the C and STEP 7 blocks on the PLC
UPPLC.EXE Saves the STEP7 blocks from the PLC

• Monitor tools:
Directory \CS7TOOLS\HITEX

 AB15.1V1 Monitor block
MONLOAD.BAT Loads the monitor block on the PLC
HIT_167.CFG Config file for HITEX user interface
DEBUGGER.INI File with cross reference to Debug data block

(DB71)
STARTUP.SCR HiScript file which is executed on start of the

HITEX user interface
MONSTART.BAT Starts the HITEX user interface

• Basic PLC program for SINUMERIK 840D:
Directory \CS7TOOLS\GP840D

AWLLOAD.BAT Loads the basic PLC program on the PLC
AWLSAVE.BAT Saves the basic PLC program from the PLC

To install CS7TOOLS, insert the installation diskette in drive A:

Enter: a:\>install TargetDirectory

Please enter a directory name of your choice for the TargetDirectory
parameter, and specify the destination drive.

Example: a:\>install C:\CS7TOOLS

This command copies the supplied files from the installation diskette with all
subdirectories to directory \CS7TOOLS in the specified drive.

The AUTOEXEC.BAT file must be extended as follows:

• Path name for BSO tools
<LW>:\C166\BIN386

• Path name for CS7 tools
<LW>:\CS7TOOLS

• Environment variables for include files
set C166INC=<LW>:\C166\INCLUDE

• Environment variables for MPI working directory
set TEMP=<LW>:\TEMP

• Environment variables in MPI driver directory
set BTDIR=<LW>:\CS7TOOLS\MPI

• Settings for DOS extender
set DOS16M=11
set DOS4GVM=@NEW4G.VMC
set DOS4GPATH=<BSO main directory>\bin386\, e.g.
c:\c166\bin386\

References: /BSO/, Users Guide

Installing
CS7TOOLS

Extending
AUTOEXEC.BAT

03.96 2 Components and Installation

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 2-7

2.3 Overview of directory structure
The following diagram shows you the directory structure of a C block project:

Fig. 2-3 Overview of main directory paths

• C166 path, development system for the C166 processor which is required
in order to generate the code executed on the PLC.

• Borland path, development system Borland C++ with which the C user
programs are developed with the support of the CS7DLIB.

• Project path, directory for the current project. Each project should be set up
as a separate directory tree (command new_prj,
see Section 2.1 Development environment for PC).

• Tool path, tools for starting up and testing the C user programs on the PLC
(MPI drivers, C block generating tools, loading tools, monitor tools, etc.).

Description of
individual directories

2 Components and Installation 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
2-8 FB (FB)

2.4 Hardware

• PC AT386 or higher with DOS >=5.0 and MPI card, VGA graphics

• Up to 80 Mbytes of free hard disk storage capacity

• Minimum of 4 Mbytes main memory

• Minimum of 500 Kbytes of free DOS memory

2.5 System resources of the PLC
The maximum available PLC memory is:

On the AS314: 672 Kbytes
On the AS315: 1280 Kbytes

PC hardware
requirements

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-1

C Block Programming

3.1 Conventions ..3-2
3.1.1 Language and functionality..3-2
3.1.2 Use of data types ...3-8
3.1.3 Constants...3-10
3.1.4 Runtime environment and standard program structure ...3-10

3.2 Off-line program development ..3-12
3.2.1 Example project: rotary table control ...3-12
3.2.2 Header files for PLC and PC environments ...3-16
3.2.3 Standard visualization objects ...3-17
3.2.4 User-defined visualization objects ...3-20
3.2.5 Simulation routines ..3-24
3.2.6 Presetting data during start-up of test environment ...3-25
3.2.7 Termination procedure...3-26
3.2.8 Setting configuration data ..3-27
3.2.9 Test of alarm runtime levels...3-27
3.2.10 Notes on testing...3-30

3.3 Generating and loading a C block...3-33
3.3.1 Generating a C block ...3-33
3.3.2 Loading a C block ..3-35

3.4 On-line monitor ...3-39

3

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-2 FB (FB)

3.1 Conventions

3.1.1 Language and functionality

The full functionality in accordance with the ANSI-C standard is available for
the C applications. Functions which require a specific type of environment (for
example, output or file functions, etc.) and which cannot operate either in the
S7 or in the PC test environment are naturally not permissible. Function
expansions of the tasking C compiler specific to the 80165 cannot be tested
with the off-line environment. It is not permissible to change the processor
setting or to access the special function register of the SAB 80C165
microcontroller.

In addition to the ANSI-C vocabulary, a series of S7 basic instructions are also
provided:

You can access the process image for read or write purposes either bit by bit,
byte by byte, word by word, or in doublewords. You must distinguish between
the input area of the process image (PII) and the output area of the process
image (PIQ).

Table 3-1 Process image functions

Operation C function
Read process input image
(bit/byte/word/doubleword)

E_R()
EB_R()
EW_R()
ED_R()

Write process input image
(bit/byte/word/doubleword)

E_W()
EB_W()
EW_W()
ED_W()

Determine address of PII (for pointer access) ADR_PAE()
Read direct access to I/O inputs
(bit/byte/word/doubleword)

L_PEB()
L_PEW()
L_PED()

Read process output image
(bit/byte/word/doubleword)

A_R()
AB_R
AW_R()
AD_R()

Write process output image
(bit/byte/word/doubleword)

A_W()
AB_W()
AW_W()
AD_W()

Determine address of PIQ (for pointer access) ADR_PAA()
Write direct access to I/O outputs
(byte/word/doubleword)

T_PAB()
T_PAW()
T_PAD()

Please note that a transfer takes place during the off-line test between the
simulated I/O area and the process image depending on your input in the
supplied source file user_cfg.c; in this case, you can determine the area for the
output and the input yourself. For test purposes, it is often advisable to keep
this area small in order to avoid undesirable side effects which may adversely
affect the test.

Process image
functions

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-3

SIMATIC S7 can make use of so-called bit memories, which are global
variables, which can be written or read bit by bit, byte by byte, in 16-bit blocks
or 32-bit blocks. The bit memories are addressed via the byte offset (parameter
s7_byte_offset) referred to the 0 memory byte. In the case of bit-by-bit
accessing, the bit offset (parameter s7_bit_offset) specifies the bit in the
memory byte.

Table 3-2 Bit memory functions

Operation C function
Read bit memory (bit/byte/word/doubleword) M_R()

MB_R()
MW_R()
MD_R()

Write bit memory
(bit/byte/word/doubleword)

M_W()
MB_W()
MW_W()
MD_W()

Determine address of bit memory area (for pointer access) ADR_MRK()

Data blocks are global memory areas of a size specified by the user in each
case. They are addressed by a data block number. Data blocks are required to
exchange data via interfaces with external devices such as, for example,
operator interfaces or the NCK.

In contrast to data blocks in the SIMATIC S7 environment which are loaded
from a programming device/PC or generated in the program, the memory area
for such blocks must always be allocated by the user in the development and
test environment on the PC. The CS7DLIB automatically sets up the data
blocks used as standard in the SINUMERIK 840D (see References /PLCGP).

References: /PLCGP/, Description of Functions: Standard Machine

Once a data block exists, it can be opened. The appropriate function call
OPN_DB() supplies a "handle" in exchange which is required for all further
calls of the data block. You can have several data blocks opened at the same
time and access them optionally via the functions below if you are managing
and using the appropriate handles.

Addressing within data blocks is implemented via the byte offset (parameter
s7_byte_offset, referred to the 0 byte of the data block addressed by handle
s7_db_handle). When blocks are accessed bit by bit, the bit offset (parameter
s7_bit_offset) must also be specified.

Table 3-3 Data block functions

Operation C function
Determine data block handle
Determine data block address (pointer access)
Determine data block length

OPN_DB()
ADR_DB()
LNG_DB()

Read from DB
(bit/byte/word/DWORD)

D_R()
DB_R()
DW_R()
DD_R()

Write to DB
(bit/byte/word/DWORD)

D_W()
DB_W()
DW_W()
DD_W()

Bit memory functions

Data block functions

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-4 FB (FB)

Performance can be improved by directly accessing the data blocks via
pointers which can be used to address any block. No range or write protection
checks are performed, however, so that the user must assure consistency
(data structure, and in particular non-violation of range limits). The S7-specific
byte order ("Big Endian") must be observed (see Fig. 3-1 SIMATIC byte
order.). S7 data are always stored with the highest-order byte at the lowest
address. Data block pointers are determined by means of the "ADR_DB"
function.

SIMATIC S7 offers the programmer 5 different types of timer, each type with its
own characteristics:

• The pulse timer is set to the specified value by a positive edge at logic
input rlo. This value is counted down to 0 in the specified clock cycle. The
logic output (return value of function) remains at 1 as long as the timer
value is higher than 0. A rlo input value of 0 resets a pulse timer.

• The timer with extended pulse is set to the specified value by a positive
edge at logic input rlo. This value to counted down to 0 in the specified
clock cycle. The logic output (return value of function) remains at 1 as long
as the timer value is higher than 0. A rlo input value of 0 does not reset the
timer. The next positive edge at rlo resets the timer, which has still not
expired, back to the specified value, i.e. it extends the pulse.

• The timer with ON delay is set to the specified value by a positive edge at
logic input rlo. This value is counted down to 0 in the specified clock cycle.
The logic output (return value of function) does not, however, switch to 1
until the time has expired and input rlo is still at 1. When rlo switches to 0,
the output also switches to 0.

• The timer with OFF delay is set to the specified value by a negative edge
at logic input rlo. This value is counted down to 0 in the specified clock
cycle.

• The timer with latched ON delay is set to the specified value by a positive
edge at logic input rlo This value is counted down to 0 in the specified clock
cycle. The logic output (return value of function) does not, however, switch
to 1 until the time has expired. It remains at 1 even when rlo switches to 0.
The output state can be reset only by a reset command. For further details,
please refer to

References: /S7/, User Manual

Table 3-4 Timer functions

Operation (timer function) Function
Timer SP_T()
Extended pulse SE_T()
ON delay SD_T()
Latched ON delay, OFF delay SS_T(), SA_T()
Timer reset R_T()
Timer enable F_T()
Scan timer value LV_T()
Scan timer scale LS_T()
Scan timer status TS()

Timer functions

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-5

SIMATIC S7 can make use of counter objects which can be set on an edge-
triggered basis and reset on a status-dependent basis. These objects permit
edge-triggered up/down counting. It is possible to interrogate the counter
contents (max. 999) and the counter status (counter contents > 0). For further
details, please refer to

References: /S7/, User Manual

Word-serial or doubleword-serial access operations by means of these access
functions result in the C byte order (Little Endian Format) being converted to
the SIMATIC Big Endian Format (see Fig. 3-1 SIMATIC byte order.).
S7 data are always stored with the highest-order byte at the lowest address.
The user should always use the defined access functions to transfer data to
and from S7 objects.

Fig. 3-1 SIMATIC byte order. S7 data are always stored with the highest-
order byte at the lowest address

A bit-serial read access supplies the logic status of the appropriate bit. In the
case of a write access, the addressed signal bit is set according to the logic
state of the input value.

During processing (PC or PLC environment) the system detects whether the
valid addressing space of an S7 object has been violated. This error is
displayed in the status line in the PC environment; the PLC environment
branches with an error identifier (and additional debug parameters) to an error
handler which the user can program freely (see 5.1 Access to local data).

Note

Please refer to file ..\sys_inc\func_doc\clib_doc for further details about
transfer parameters and return values.

A series of system services for manipulating the runtime system
(enabling/disabling/initiating watchdog, process and delay alarm levels), for
generating data blocks and for interrupting processing (STOP state) are also
available.

For further details regarding transfer parameters and error messages, please
refer to file ..\sys_inc\func_doc\clib_doc.

Counter functions

Special features
regarding accessing of
process images, bit
memories and data
blocks

System services

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-6 FB (FB)

Table 3-5 System services

Operation C function
Generate data block SFC_Create_DB()
Time-of-day alarm level
Parameterize/activate/deactivate
Status interrogation
(in preparation)

SFC_Set_Time_Alarm()
SFC_Activate_Time_Alarm()
SFC_Cancel_Time_Alarm()
SFC_Query_Time_Alarm()

Delay alarm level
Start/deactivate
Status interrogation

SFC_Start_Del_Alarm()
SFC_Cancel_Del_Alarm()
SFC_Query_Del_Alarm()

Disable/enable alarm processing levels SFC_Disable_Event_Processing()
SFC_Enable_Event_Processing()

Delay/enable processing of existing alarms SFC_Disable_Alarm_Interruption()
SFC_Enable_Alarm_Interruption()

Retrigger cycle time (monitoring) SFC_Retrigger()
Set system time
Read system time into clock structure
Interrogate system timer
(0 to 2**32-1 msec)

SFC_Set_Clk()
SFC_Read_Clk()
SFC_Time_Tick()

Initiate STOP state SFC_Stop()
Set operating hours counter
Start/stop operating hours counter
Read status of operating hours counter

SFC_Set_Rtm()
SFC_Ctrl_Rtm()
SFC_Read_Rtm()

The functionality of the library functions is identical to that of the appropriate
STEP 7 functions. Please refer to

References: /S7/, User Manual

The following S7 program execution levels are available for the C program
blocks. These levels are called up by the system according to defined events.
Depending on the event or program execution level, one of the following
functions is called by the system:

Table 3-6 Functions for program execution levels

Function name Description Cf. S7 Priority
StdApplCycle() Free cycle OB 1 1
StdTimeAlert() Time-of-day alarm

Function is called at user-defined time (in
preparation)

OB 10 2

StdDelayedTimeAlert
()

Delay alarm
Function is called after expiry of delay
defined by user

OB 20 3

StdWatchdogAlert() Watchdog alarm
Function is called periodically according
to user-defined time (default: 100 ms)

OB 35 12

StdProcessAlert() Process alarm
Call implemented by process signals
(e.g. alarm module, M function transfer
from NCK)

OB 40 16

StdApplStart() Start-up
Function is called on system start

OB 100 27

With regard to execution level priorities, the execution level with the highest
ordinal number interrupts the level with the lowest ordinal number.

Program execution
levels

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-7

Please note that a number of the functions have a return type which starts with
the prefix F_ or SFC_ . If you define a variable which receives the return value,
then you should do this with the data type of the same name without the prefix
F_ or SFC_. This convention must be observed in order to conceal the different
subordinate addressing modes.

Please refer to the header file CLIB_DOC.H for further details on how to use
these functions.

See Section to 3.2 Off-line program development
for details of functions for the off-line programming environment which are only
available in the PC environment.

Return values

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-8 FB (FB)

3.1.2 Use of data types

Within the scope of the CS7DLIB development package, a variety of
precautions has been taken to ensure easy portability and to conceal system-
specific differences between the PC and S7 environments. Important in this
respect are the abstract data types used, some of which are derived from
elementary data types and others user-compiled data types.

For your own applications, use only the data types provided by CS7DLIB or, if
you create your own data types, make sure they are derived from these
prespecified data types. This does not impose any restrictions on you in
practical terms and also means that you do not need to bother with
complicated, system-specific details. If you create a variable to use in calls of
S7 utilities, then all you need to do is copy the appropriate parameters from the
function prototypes of the CS7_CLIB.H header file and insert them in your
source code.

Your source code will therefore be independent of the appropriate destination
system and thus fully testable on the PC with CS7DLIB.

Data are either declared in the C program modules or in S7 data blocks and bit
memories. If data need to be available in the S7 world or via interfaces on
external devices (e.g. for operator interfaces or NCK), then they must be stored
in S7 data blocks or flags; the SIMATIC byte order (see Fig. 3-1

SIMATIC byte order.) must be observed in this case if applicable. S7
data are always stored with the highest-order byte at the lowest address.

Owing to the memory segmentation of the CPU 314 destination processor, the
following must be noted with respect to global or static variables:

• Up to 32K so-called near data which can be accessed particularly quickly.
Use the elementary data types UBYTE, WORD .. without prefix for these
data (see Fig. 3-2 Overview of data types). Data objects within the
near data area must not be larger than 16K.

• An "unlimited", so-called huge data area (extended memory area). Use of
this area effects a slightly slower and more comprehensive code. Create
this type of data using the elementary data types with the prefix G_, e.g.
(G_UBYTE, G_WORD, see Fig. 3-2 Overview of data types).

If possible, access operations to huge data should be minimized by careful
memory page allocation. The absolute memory address within these areas
cannot be influenced by the user.

Data types

User data types

Storing data

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-9

!
Caution

If data formats are modified or additional variables declared, the memory
location of a data may be shifted uncontrollably.

Reloading of C programs after changes to data declarations may therefore
only take place in the PLC STOP state.

Static data are not stored on the stack, but in a defined memory area. This
memory area is initialized during power-up:

• Data with a programmed start value are always initialized with this value
during power-up.

• Data for which no initial value is specified are not initialized. These data
therefore remain unchanged by a POWER-ON/RESET - caution when
modifying the data declaration.

Observe the following list of data types which are relevant to you as the user
(see also ..\sys_inc\data_def\datatype\datatype.h):

Fig. 3-2 Overview of data types

Initialize data

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-10 FB (FB)

3.1.3 Constants

In order to parameterize functions or obtain function results, you require a
variety of constants. These are divided into 2 groups:

• Constants for control or status signals, parameters and return values.
Examples of these are the logic constants VKE_TRUE and VKE_FALSE,
execution level IDs and STD_APPL_START_ID or transfer parameters to
the system.
(The constants are in ..\sys_inc\data_def\datatype\datatype.h).

• Identifiers for visualizing S7 objects. Each S7 object has an identifier for bit
display or for numerical display in some cases (see Section 3.2.4 User-
defined visualization objects).
(The constants are in ..\sys_inc\data_def\sys_objd.h).

3.1.4 Runtime environment and standard program structure

A C application comprises the basic cycle, a range of event-driven or time-
based runtime levels as well as an initialization phase.

The initialization phase is executed once before cyclic operation commences;
processing of the basic cycle is then initiated or, if applicable, processing of the
event-driven or time-based levels.

In addition, applications for the off-line test environment can be extended (see
Section 3.2 Off-line program development).

On the PLC, a C program block is called from the standard basic program. The
standard basic PLC program contains power-up and initialization routines,
establishes the connection to the NCK, machine control panel and operator
panels and detects error and operational messages. The basic program can be
fully parameterized and controlled with C functions. For a detailed description
of the basic program functionality, please refer to

References: /PLCGP/, Description of Functions: Standard Machine

On the PLC, a control program (AB_START.OBJ and ABMAIN.OBJ) is
responsible for C block call management and branches into the various
runtime levels of the C block depending on which STEP 7 runtime level has
issued the call (see Fig. 1-2 Call interface for the C block). The basic
PLC program and the call management are not generally changed.

This runtime environment is simulated on the PC by the CS7DLIB library and
Borland IDE (see Fig. 1-1 Development of C-PLC programs with Borland C
and CS7DLIB). Branching to the various runtime levels can be controlled via
the simulation (see Section 3.2 Off-line program development).

Program bodies are available for the possible runtime levels. These serve as
call shells for the C application.

A C program file gp840d.c (header: gp840d.h) is supplied and offers access to
NCK functionality (see Section C Call Interface for the Basic PLC Program).

The examples supplied for simulation and visualization can be adapted or
extended for the off-line test (see Section 3.2 Off-line program
development).

Classification of
constants

Incorporation of C
program blocks

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-11

The example project supplied has a standard structure which is tailored to NCK
applications. It can be executed immediately in the off-line development
environment.

Control file ABMAIN.BAT can be used to generate a C block from the source
files of the example project; this C block can be executed immediately on the
PLC.

Example project

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-12 FB (FB)

3.2 Off-line program development

This Section explains the structure and handling of the CS7DLIB off-line
development environment on the basis of the supplied example project Rotary
table. The example below can be translated and executed immediately both in
the PC development environment and in the PLC development environment.

Note

Please refer to Section 5.4 Example project: Rotary table positioning
for a description of the example project.

3.2.1 Example project: rotary table control

If you want to open the example project, please start the integrated
development environment (IDE) for DOS of Borland C++. First select the
directory which you specified when setting up the demo project in the Project |
Open menu by entering the directory name or selecting the drive and
directories. Now go into the subdirectory named project where you will find the
project file rd_tisch.prj.

Now activate menu item Window | Project. The project window of the example
project will then appear on your Borland interface (see Fig. 3-3 Project window
of example project).

Fig. 3-3 Project window of example project

The project window contains all the files required to generate the example
application in an executable form.

What is in this
Section?

Open example project

Files in project
window

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-13

The first entry in this project window, i.e. file cs7dlib.lib, is the library supplied
with CS7DLIB. It provides you with a runtime environment and PLC functions
on your PC as well as special functions for the off-line test.

The next files entered in the project window, i.e.
user_ini.c, user_cyc.c, user_alt.c, time_alt.c, dely_alt.c, wdog_alt.c and
user_err.c
contain the function bodies for the actual PLC user program. The user can
program his PLC application in these files.

• user_ini.c contains the start function StdApplStart() which is called during
start-up (see OB100). This function calls the C basic program basic
program startup() of file gp840d.c (see project window) in this example and
initializes the error handler (see Section C Call Interface for the Basic PLC
Program).

• user_cyc.c contains the function StdApplCycle() which is called up in the
free cycle (see OB1). This function calls the C basic program extension
MsttAnNahtstelle() of file gp840d.c and the rotary table control rotary table()
of file rund.c in this example project (see project window).

• user_alt.c contains the start function StdProcessAlert() which is started by
the process interrupted (see OB40).

• time_alt.c contains the function StdTimeAlert() which is time-of-day alarm
triggered (see OB10).

• dely_alt.c contains the function StdDelayedTimeAlert() which is triggered by
delay alarms (see OB20).

• wdog_alt.c contains the function StdWatchdogAlert() which is triggered by
the time alarm (see OB35).

• user_err.c contains the user-specific error handler StdErrorHandler() which
is called in the event of an erroneous S7 system access operation from the
on-line library cs7rtlib.lno (CS7DLIB outputs a message in the status line in
the event of an error, but does not call this error handler).

The following source-code files belong to the example project (demo project);
they are not, therefore, an integral part of CS7DLIB and can be modified or
omitted.

• gp840d.c contains C functions (see Section C Call Interface for the Basic
PLC Program).

• rund.c contains the example program for rotary table positioning (sequence
control).

The functions of the files named above are executable immediately, both on
the PC and on the PLC (after compilation and integration into the relevant
infrastructure).

Library

Source files for
runtime levels

Source files for
example project

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-14 FB (FB)

All other files of the project window contain functions for testing, visualization
and simulation and can be executed on the PC under CS7DLIB.

Most of these files contain an example code or act as dummies for example
codes in order to illustrate the options available with CS7DLIB. Comments are
given at the locations at which you can delete the example code or remove it in
order to replace it with your own routines. If you create a new project (see
Section 2.1 Development environment for PC), then this example code is
missing from the start.

The following files are supplied as a source code, but are an integral part of
CS7DLIB in terms of their functions and variables. Please enter your own code
sequences only at the locations marked by a comment and do not alter either
existing variable names, function names or the existing entries in the
associated header files.

• user_cfg.c is used to set a series of application-specific configuration data
for the off-line environment. These data also include the definitions of the
data blocks required by the user. The system then converts these
configuration entries.

• pset_udt.c is called in the start-up phase of the test system and allows you
to preset values for data and S7 objects. When the test system is
terminated with the escape key, the status of the S7 objects is stored on
restart. This system is restored again when the test system is restarted.
This restoration is followed by execution of pset_udt.c.

• usim_ini.c is used to initialize the user simulation. The system activates this
function on system power-up.

• uviewini.c provides you with space to insert the registration routines for
user-defined visualization objects. The system activates this function on
system start-up.

• u_test_f.c provides you with space to insert the calls for user test functions
during system start-up. The user can perform preliminary tests on his
functions independently of the system in this file; any required "clean-up"
operations (e.g. resetting S7 objects and data, deletion of unneeded data
blocks) are automatically performed by the system.

• user_sim.c provides you with space to insert user simulation routines which
must be called in every cycle.

• user_glb.c contains standardized debug pointers which have been
initialized by the system. These allow you to view the current values of the
system objects with the aid of the integrated Borland debugger.

• user_shd.c is called when the test system is terminated with the escape
key, i.e. in the shutdown phase, and permits clean-up and saving
operations to be performed.

• alt_hook.c is used to preprocess the alarm processing operation. Prior to
execution of the alarm functions, the test system branches into the
appropriate hooks. Here, the user has the opportunity to enter presettings if
required.

The following source code files belong to the example project (demo project);
they are not therefore an integral part of CS7DLIB and can be omitted or
replaced by user files. In these files, you will find a range of principles for the
application of system facilities. It is therefore worthwhile copying code
sequences from these files into your own applications and adapting them to
your own requirements:

Source files for
simulation

Source files for
simulation of example
project

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-15

• rund_tst.c contains an example user program for testing the rotary table
positioning function. You will find both user-defined visualization objects as
well as the user simulation routine in this file.

• dsp_demo.c demonstrates the initialization and registration of many
standard visualization objects. Use this file as a basis for your own
visualization objects. The value types to be specified are identified by
comments so that you can incorporate your requirements in the same way
as in a form.

The following diagram provides you with an overview of the files concerned
plus brief comments.

Fig. 3-4 Overview of source files of example project

The functions for test support of CS7DLIB, which are available on the PC, but
not on the S7 side, can be found in header file cs7_dlib.h.

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-16 FB (FB)

3.2.2 Header files for PLC and PC environments

In addition to the implementation files (file extension c.) listed in
Section 3.2.1 Example project: rotary table control
there are other important source files to be noted.

Each implementation file has a so-called header file with the function
prototypes of the implementation file concerned. Function prototypes are the
so-called function headers, i.e. they define the call structure of the functions
including parameters. The files containing the function prototypes have the
same file name as the implementation files. The only difference is that the file
extension is .h instead of .c.

If an implementation file now calls a function which is located in another
implementation file, then the prototype header file of this other implementation
file must be included in the implementation file calling the function by means of
the include instruction. Failure to do so will generally lead to compiler warnings
and possible to a system crash or malfunctions during processing.

The prototypes of the S7 PLC functions offered by the library are entered in the
supplied header file cs7_clib.h . For this reason, the supplied implementation
files always include the entry of an include instructions to this header file
cs7_clib.h. You should therefore also enter this instruction in the
implementation files you create yourself.

The prototype header files refer to higher-level header files which generally
contain constants as well as the declaration of data types which are relevant
for more than one implementation file. This hierarchy allows a clearly
structured modularization to be implemented on a large scale, permitting
modules to be removed (if they are not required for functional purposes) and to
be added relatively easily and without adverse affects.

The additions for the test environment are structured according to the same
principle. The prototypes of the additional services of library cs7dlib are
entered in header file cs7_dlib.h . Implementation files intended solely for the
test environment contain therefore the include instruction for the two library
header files cs7_clib.h and cs7_dlib.h in addition to the instruction for their own
prototype header files.

System header files are stored under the path ..\sys_inc; user-defined header
files should be stored under the path ..\user_inc.

Header files for
function prototypes

Higher-level header
files for constants and
data types

System header files

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-17

3.2.3 Standard visualization objects

CSDLIB offers a range of standard display objects which can be called by
means of function keys. These objects were specially selected to ensure that
several representatives of each supported S7 object are available so that the
user is provided quickly with basic, ready-programmed tools for testing an
application. With these tools, he can monitor and influence the effects of
important sections of an application. CS7DLIB offers visualization objects for
the S7 objects.

Fig. 3-5 Display of standard visualization objects

The system automatically displays 4 screens with different combinations.

When you can see the bit assignment in the bit display, you will find it is
possible to interpret the values quickly and to change them just as quickly by
entering new ones. The changed bits remain valid over and beyond the life of
the program if you terminate the program with the ESC key and the value is not
overwritten by the program.

The set object display remains unchanged during the program life provided it is
not altered. Even if you switch over to other screens, you will still find the set
object display on the original screen when you return to it later.

Keys have been defined for operator control which are based on commonly
used key assignments inasmuch as comparable examples exist. A few notes
on operator control are given below:

• When the demo program is started, screen displays can be called via
function keys. Some of these displays are a feature of the system, others
originate from the user program.

• If S7 objects are visualized, then the following keys can be used to control
them:

− Spacebar:
Inverts the bit on which the red marker is positioned

− Cursor key down:
Selects the following signal of the object

− Cursor key up:
Selects the preceding signal of the object

Operator control

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-18 FB (FB)

− Page down key:
Selects the last signal of the object

− Page up key:
Selects the first signal of the object

− CTRL key and page down key together:
Selects the last signal of the last object

− CTRL key and page up key together:
Selects the first signal of the first object

− Tab key:
Selects the next object

− Shift and Tab keys together:
The preceding object is selected

− CTRL key and cursor to right keys together
Increments the number of the S7 object
(e.g. PII 1 -> PII 2)

− CTRL key and cursor to left key together
Decrements the number of the S7 object
(e.g. memory bit 15 -> memory bit 14)

− Pos1 key:
Selects S7 object with the number 0
(e.g memory bit 15 -> memory bit 0)

− End key:
Selects S7 object with the number 127
(e.g. memory bit 15 -> memory bit 127)

− CTRL key and Pos1 key together:
Selects the S7 object with a number which is 16 lower
(e.g. memory bit 50 -> memory bit 34)

− CTRL key and End key together:
Selects the S7 object with a number which is 16 higher
(e.g. memory bit 50 -> memory bit 66)

− Plus key (+)
Increments the data byte for a data block
(e.g. DB 20 byte 3 -> DB 20 byte 4)

− Minus key (-)
Decrements the data byte for a data block
(e.g. DB 20 byte 3 -> DB 20 byte 2)

− The program is aborted with the ESC key. In this case, altered bits are
stored in a file (file name can be specified in the supplied C source file
user_cfg.c). These bits are restored on the next start and become
visible again provided they have not been overwritten by the user.

The most important keys are summarized in Fig. 3-6 Operator control of
visualization objects.

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-19

Fig. 3-6 Operator control of visualization objects

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-20 FB (FB)

3.2.4 User-defined visualization objects

There are certain typical displays with a particular meaning which recur
frequently in projects. In this case, it is worth the extra effort of assigning texts
once to the signals and registering corresponding, symbolic displays. You can
do this quickly and easily by using the template in the example file
dsp_demo.c. Copy the relevant template into your application and change it. In
this way, you can create a means for controlling and monitoring your
application which you can activate and switch over quickly.

The example file dsp_demo.c shows you how you can integrate visualization
objects to suit your own needs. Experiment with these objects by making
changes in the example project and then copy them to your own application
and change them there.

Fig. 3-7 Visualization facilities and Fig. 3-8 Identifiers for visualization objects
give a summary of the visualization facilities available.

Fig. 3-7 Visualization facilities

Integrating
visualization objects

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-21

Fig. 3-8 Identifiers for visualization objects

You can create screen pages yourself using S7 objects. In this case, you can
select the position of each object, assign a logical name to each object and
determine the designations of the individual signals of the objects by entering
your own texts (example: See Fig. 3-9 Example of a screen page).

Fig. 3-9 Example of a screen page

Some of the components of the screen page are, for example, a left-aligned
and right-aligned text in the title bar and a left-aligned text in the screen footer.
The S7 objects are represented in the form of rectangles, each of which has a
user-defined object designation justified to the right in the 1st line. The
abbreviated, current S7 object designation is located in the 2nd line of each
rectangle.

The example given here shows an extract of the NCK-PLC interface of the
SINUMERIK 840D.

Example:
NCK-PLC interface of
SINUMERIK 840D

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-22 FB (FB)

The symbolic designator is DB 20,0; in this case, "DB" stands for data block,
"20" for data block number 20 and "0" for byte 0 of data block 20. Since the
symbolic signals apply only to this byte, it is not possible to page on to other
bytes in this data block nor is it possible to change the data block through an
operator input.

Every bit is marked by its current state, i.e. 0 or 1, and also has a text which
has been assigned by the user. Non-assigned bits can be identified by the text
"Bit x", where "x" represents the bit number.

Using the cursor keys, you can position the cursor on the bit of your choice.
Now press the spacebar and the bit will invert its value, i.e. change from 0 to 1
or from 1 to 0. Provided the signal is not overwritten by the running program,
then it retains this value. If you exit the system in the normal way, i.e. with the
ESC key, then the current signal value is stored and restored again when the
application is restarted.

Fig. 3-10 and Fig. 3-11 Generating screen pages below show you how you
can generate this type of screen page:

Fig. 3-10 Generating screen pages

For the purpose of understanding the process, let us concentrate on the first
element on the screen because you use the same procedure for all the other
elements.

First of all, write down the text for the bits (see upper left-hand window) and
embed them in an object to which you should assign a name. Make sure that
the definition of your object is correct. The object represents an array of
pointers to bytes. It is best if you copy the example object with the editor and
then enter your own object designation and texts. This is the easiest and least
complicated method and helps to avoid a lot of errors right from the start.

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-23

After you have done this for each of the objects to be displayed on the screen
page, generate the next object (preferably by copying and altering the example
template) which contains all the objects on the screen page. Remember to
specify the following for each individual object: Its title (first line in object
display), the line and column on the screen in which it must be displayed,
which byte of which S7 object it represents and finally, a reference to the texts
of each bit for this S7 object.

The next step is to define the screen. Here you need to specify the text with
which you want to call it. This text is entered in the function key overview (call
by pressing function key F1) and acts as the identifier. You must then specify
the texts which are output on the left in the header and footer. Now you need to
enter the reference to the general object descriptions (i.e. those which include
all individual objects) and the number of objects. To save you having to count
yourself, you will be assisted here by a macro which also registers new entries.

Fig. 3-11 Generating screen pages

You can always view the assignment of the function keys by pressing function
key F1 when an application is active. The first keys are allocated to predefined
system displays. When you register your visualization objects, you occupy
further function keys. After function key F10, you must press the CTRL key and
the function key simultaneously (identified by ^F1, i.e. press CTRL key and +
F1 key simultaneously).

Assignment of
function keys

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-24 FB (FB)

3.2.5 Simulation routines

CS7DLIB offers you the means to create your own simulation routines. In the
example file rund_tst.c of the example project, you will find a machine
simulation for sequence control rund.c. as a guide to how this type of
simulation can be incorporated in your application.

Experiment with this option by making changes in the example project and then
use the facility if you need to.

Fig. 3-12 Simulation with CS7DLIB gives you an overview of the simulation
routine option:

Fig. 3-12 Simulation with CS7DLIB

Simulation in example
project

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-25

3.2.6 Presetting data during start-up of test environment

In order to establish a defined start environment or for the purpose of testing,
you can preset data during start-up with CS7DLIB. 'You need to insert the
functions for this option in file pset_udt.c which is called by the CS7DLIB during
start-up. Please note the information about general initialization in the following
diagram:

Fig. 3-13 Initialization of off-line test environment

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-26 FB (FB)

3.2.7 Termination procedure

Fig. 3-14 Overview of program termination routines

It is particularly advisable in test operation to examine and save certain data
and states when the program is terminated. You can insert the functions
required for this purpose in file user_shd.c. CS7DLIB calls this file in the
termination phase. An analysis procedure using debug points may be included
in these routines if required.

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-27

3.2.8 Setting configuration data

CS7DLIB provides the user with a number of configuring options. To make use
of these, it is necessary to make appropriate entries or modifications in the
project-specific file user_cfg.c. The available options and supplementary
conditions are documented in this file by means of comments. Please observe
the specified supplementary conditions to avoid any malfunctions later.

You move around in file user_cfg.c in a similar way as you do in a form except
that in this case, the frame is specified by C statements and the file is
interpreted by the compiler and the CS7DLIB.

The following setting options are currently available:

• Input of file in which the S7 object contents are saved. It is possible to
implement various scenarios through modification and to return to
predefined scenarios when required.

• Input of user data blocks with number and size. An entry block must always
be used or else the computer will signal an error.

• Input of machine configuration (number of mode groups, channels, axes)

• List in which the user can optionally control the transfer of data between the
simulated I/O area and the process image. This list must contain at least
one entry block or else the computer will signal an error.

3.2.9 Test of alarm runtime levels

In addition to the cyclical program section StdApplCycl() and the start-up
section StdApplStart(), the following alarm levels exist:

• StdProcessAlert()

• StdTimeAlert()

• StdWatchdogAlert()

• StdDelayedTimeAlert()

These levels can be programmed via SFCs (see Section 3.1.2 Use of data
types) or are initiated via system events. Using a preprogrammed S7 display
object, you can simulate this type of process using CS7DLIB.

Setting options

Alarm levels

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-28 FB (FB)

Fig. 3-15 Visualization objects for alarm levels (standard display)

On the basis of these objects, you can now initiate 8 different events per alarm
level. The respective event is added to the appropriate hook function in the
alt_hook.c file for preparation of the alarm simulation. After the hook function,
CS7DLIB branches into the actual alarm processing level.

The example below shows how you can simulate the occurrence of different
process interrupt events such as, for example, M40, M19=1, etc. using
alt_hook.c.

The hook functions receive the transfer parameters alert_ctrl_info (event
information) and instance (containing alarm ID (ID for process interrupt,
watchdog alarm, ...))

Initiating alarms

Example for process
interrupt events

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-29

Fig. 3-16 Listing of file alt_hook.c (extract)

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-30 FB (FB)

3.2.10 Notes on testing

Borland C++ 3.x (or Turbo C 3.0) contains a user-friendly, integrated debugger
with the following functions:

• Move step by step through program (Single Step), skipping functions as
required or stepping to functions,

• Allow program to run on until a specified point (break point) is reached,

• View variables and structures (Inspect function),

• Monitor variables and structures continuously (Watch function).

Note

Refer to the Borland documentation for more information about handling and
functional scope of this tool.

If you want to monitor the status and contents of S7 system objects with the
debugger, then you should use file user_glb.c. This file contains pointers which
are managed and initialized by the library and which have debugger-friendly
data types. The inspect function (can also be moved to the right-hand mouse
key) supplies the current values of the clicked object. It may be necessary to
open further inspect windows for detailed views by pressing the Return key.
You will see any changes when stepping through program sections which
modify the contents being monitored of these objects. The use of S7 objects
will be explained in the following.

Some information about debugging with CS7DLIB based on the example
project "Rotary table control" is given below:

• Open the example project. Set a breakpoint in the file RUND.C by pressing
CTRL-F8 (toggle breakpoint) in the program line with the sequence if (start)
(in function VOID Rotary Table (VOID)). Then start the program with CTRL-
F8.

• After the program has been started, it will be interrupted at this line, the line
being highlighted by a coloured background. You can now analyse
execution of the program using the debug functions (Single Step, Watch,
Inspect).

Debugger functions

Monitor status and
contents of S7 system
objects

Notes on debugging
the example project

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-31

Fig. 3-17 Inspect function

• Select file user_glb.c in the project window and open the associated editor
window by pressing the Return key.

• In the editor window, position the cursor on the C pointer p_dbg_inputs
which contains the reference to the area of the process input image.

• Open the associated Inspect window by selecting menu item Debug |
Inspect.

• To obtain a clearer display of the process input image, mark the line with
the symbol s7_proc_image in the window you have just opened and press
the Return key. This causes a further Inspect window to be opened in which
the byte index (enclosed in square brackets) of the process input image is
displayed line by line in the left-hand column and the current value of the
assigned position is output on the right in two representation modes, i.e.
character and decimal representation.

• If you want the program to continue after completing your analysis, press
CTRL-F9 (RUN) again. Program execution will now continue provided that
no further breakpoints are encountered or a termination command given
with ESC.

Example:
Display process image

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-32 FB (FB)

Bild 3-18 Process image display

This example shows you how you can process the code step by step and,
while doing so, monitor its effects using the Borland debugger tools and the
pointers prepared for access to system objects such as process image,
counters, timers, bit memories or data blocks (see file user_glb.c).

Counters and timers are not often easy to test because the counter or timer
events usually do not occur until the program has been executed many times.
In order to test the elementary effect quickly and easily, it is advisable to
conduct preliminary tests in the course of system startup. CS7DLIB provides
space for these tests in file u_test_f.c .

The events or runs can be generated by loops which can easily be examined
by means of carefully selected breakpoints in the relevant locations. For testing
of timer functions, CS7DLIB also offers the possibility of simulating timer clocks
(see CS7_DLIB.H).

While the program is running, you should monitor the counters with the
standard visualization tools of the CS7DLIB. Since updating in this case takes
place only every 100 ms, the macroscopic behaviour can be monitored and
interpreted; it is best to analyse this behaviour using the debugger.

• Timers are only ever updated between cycles.

• The jump to the time levels always takes place between cycles (no
interruption of cycle)

• The transfer between I/O and process image must be parameterized, if
desired, by means of user_cfg.c.

Displaying counters
and timers

Information about
CS7DLIB test system

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-33

3.3 Generating and loading a C block

3.3.1 Generating a C block

To run your application on the PLC, you must first compile your program
modules, link them to the required runtime libraries and convert the linker file
generated in this way into a loadable format.

The abmain.bat control file provided for this purpose can be found in directory
..\project. This file controls compilation, linking and locating by means of the
tasking tool chain.

References: /BSO/, Users Guide

The block generator ab_gen.exe uses this to generate a loadable C program
block which is transferred to the PLC by means of loading tool downplc.exe.

In addition, the symbol preprocessor sp166ta.exe generates a symbol file for
the on-line monitor after locating (see Section 3.4 On-line monitor), so that
it is possible to access memory addresses symbolically.

Compiling and linking
program modules

Compiling and linking
C blocks

Generating symbol file

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-34 FB (FB)

Fig. 3-19 Generating sequence for C program block and symbol file

Control file abmain.bat serves as the basis for your application. If the C
application includes other modules, these only need to be added to the
compiler and linker sections.

The return to the project directory must be added to the end of control file
abmain.bat.

Note
In the event of warnings or error messages, please see Section 5.2

Response to errors or
References: /BSO/, Users Guide

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-35

3.3.2 Loading a C block

The memory of the PLC can be enabled explicitly via machine data. Changes
to these machine data only become effective after general resetting of the
PLC. The enabling of C memory reduces the available STEP 7 memory. If the
machine data settings cause overlapping of the memory areas, the C memory
has a higher priority than the STEP 7 memory.

The size of the STEP 7 memory can be set in the general machine data
$ON_PLC_USER_MEM_SIZE.

The default setting is 2, i.e. 64 Kbytes of STEP 7 memory are enabled.

AS314: $ON_PLC_USER_MEM_SIZE 0 to 3 [0 to 3*220 KB]
AS315: $ON_PLC_USER_MEM_SIZE 0 to 6 [0 to 6*220 KB]

Owing to the special memory allocation method of STEP 7, the memory
requirements is as follows depending on the machine data:

Table 3-7 Memory requirements of the STEP 7 memory

$ON_PLC_USER_MEM_SIZE Memory requirements
0 0 Kbytes
1 220 Kbytes
2 440 Kbytes
3 660 Kbytes
4 880 Kbytes
5 1100 Kbytes
6 1320 Kbytes

The size of the C memory can be set in the general machine data
$ON_PLC_C_USER_MEM_SIZE.

The default setting is 0, i.e. no C memory is enabled.

AS314: $ON_PLC_C_USER_MEM_SIZE 0 to 7 [0 to 7*64 KB]
AS315: $ON_PLC_C_USER_MEM_SIZE 0 to 14 [0 to 14*64 KB]

Example for PLC memory allocation:

$ON_PLC_USER_MEM_SIZE = 1
$ON_PLC_C_USER_MEM_SIZE = 4

This results in the following PLC memory allocation:

Memory allocation on
the PLC

STEP 7 memory

C memory

Example for PLC
memory allocation

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-36 FB (FB)

Fig. 3-20 PLC memory allocation

The start address of the C block area is read from communication data block
DB70 with the tool rddbbplc.exe. On this basis, the code and data segments of
the application are assigned to the appropriate memory areas.

The memory areas and data pages are defined automatically by the
bs_addr.exe tool, according to the PLC type and the area sizes specified for
the code and data segments when control file abmain.bat is called. The data
and code segments for the application are allocated to different memory areas,
depending on whether or not an alternating buffer is used to load the block on
the PLC.

When the alternating buffer is active, the code section is switched over
alternately. The data section is permanently located at the end of the C block
area. (see Fig. 3-21 Allocation of C memory with active alternating
buffer).

Locating the C block

Locating with
alternating buffer
activated

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-37

Fig. 3-21 Allocation of C memory with active alternating buffer using the
example of an AS314 (also applies to AS315)

When the alternating buffer is deactivated, the code section always begins at
the start address of the C block area. The data section is located directly after
the code section. If a monitor block is installed, it is located permanently at the
end of the C block area (see Fig. 3-22 Allocation of C memory).

!
Important

The alternating buffer must always be deactivated when the monitor block is
loaded.

Locating with
alternating buffer
deactivated

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-38 FB (FB)

Fig. 3-22 Allocation of C memory with deactivated alternating buffer using the
example of an AS314 (also applies to AS315)

The C block "abmain.mc5" generated by block generator ab_gen.exe is divided
into blocks ("ab00.1vx") of 64 Kbyte each by the generator. These blocks are
loaded successively onto the PLC by means of tool downplc.exe, and are
linked into the PLC when the last block has been loaded.

The C program is loaded onto the PLC automatically at the end of control file
abmain.bat. It can be loaded separately by calling control file asmload.bat in
directory CS7TOOLS\MPI.

Reloading of the C program after changes to the data declaration may only
take place when the PLC is in the STOP state. The C program on the PLC can
only be erased through a PLC overall memory reset.

The PLC basic program is included in the scope of delivery
(CS7TOOLS\GP840D directory). The above directory is set up for you
automatically when the development environment is installed on your
computer. This directory also includes control file awlload.bat. When this file is
called, the compiled blocks of the PLC basic program are loaded on the PLC.

The C program can be executed on the PLC only if the PLC basic program is
loaded. The C program is called by the PLC basic program. If the C program
cannot be processed properly or the C program block is not installed, then the
PLC switches to the STOP operating state (check entry in MW 40 to 52, see
Section 5.2 Response to errors).

Loading the
C program

Loading the PLC basic
program

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-39

3.4 On-line monitor
The on-line monitor can be used to test the C block on the PLC.

This monitor is based on the remote debugger "telemon 80C166/167 (telemon
80C167)" with dialog software HiTOP supplied by HITEX (licence HITEX).

References: /HITEX/, User Manual

The dialog software is mouse-oriented with pull-down menus and flexible
window system. It is installed on a DOS-PC (>=386) with MPI interface.

The tool SP166TA.EXE for editing the C166 Locator Formats for debug
operation is supplied with the dialog software (see Section 3.3 Generating and
loading a C block). For further details about installation and operator control,
please refer to

References: /HITEX/, User Manual

The monitor is a remote debugger. The full range of functions for a remote
debugger is divided between two programs, i.e. the monitor block and the user
interface. The two programs operate on separate processors which are
interlinked via a defined interface. The monitor and user interface communicate
via debug data block DB71.

Fig. 3-23 On-line monitor

HITEX monitor

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-40 FB (FB)

In order to activate the monitor, you must first load the monitor block into the
PLC. This is performed by means of control file monload.bat.

Note

The monitor block can be loaded only if alternating buffer operation is
deselected.

The monitor is activated on the basis of data bit 500.0 in communication data
block DB 70:

DB70 DBX500.0 = 0 Normal operating mode
= 1 Debug mode with HITEX monitor

Note

After setting this data bit, it is absolutely essential to execute a complete PLC
restart because the monitor block is activated in OB100.

The HiTOP dialog software is started with control file monstart.bat. This file
activates the MPI interface and calls the dialog software hit_167.exe. When the
dialog software is started, the HiScript file startup.scr is called. This presets
certain variables for the interface and loads the symbol table. You can use files
startup.scr and hit_167.cfg to customize the dialog software.

After successful initialization of the monitor block (in event of an error, note
MW 50 and MW 52), cyclical operation is initiated.

Note

The C block is not operative after initialization of the monitor block.

The C block can be controlled after activation of the monitor block and start of
the dialog interface.

!
Caution

When testing C blocks with the on-line monitor, please note the following
points:

• If you set a breakpoint when the machine is in operation, the C block will
no longer be processed cyclically (if, for example, a motional function was
started before a breakpoint, then this can neither be checked nor
stopped.).
For this reason, the PLC basic program is stopped and the command
output disabled when a breakpoint (except for start breakpoint) is
reached.
However, cyclic processing of the monitor block continues, meaning that
the C block can be checked again. This state remains valid until the PLC
is next reset.

• You can change memory cells in the RAM selectively using the monitor.
The monitor does not check the location at which it writes the values. If
you change the system data, this will cause the system to crash.

There are 3 different types of breakpoint:

• User breakpoint; this is set by the user

Loading the monitor
block

Activating the monitor

Starting the monitor

Breakpoint handling

03.96 3 C Block Programming

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 3-41

• Temporary breakpoint; this is set by the monitor in single step mode

• Start breakpoint; this is set as soon as you call the user interface on the
computer

If the C block to be tested encounters a breakpoint, program processing is
halted at this point. Processing of the C block continues as soon as a RUN or
STEP command is entered via the user interface.

To deactivate the monitor and reload a C block:

• Set DB70.DB500.0 = 0
• Load the C block
• execute a PLC overall memory reset

• System times and STEP 7 runtime levels remain active even if the C
application has reached a stop point.

• Prior to every debug session, the C block must be reloaded on the PLC and
a PLC reset executed.

• The on-line monitor supports debugging only in the basic cycle (=
StdApplCycle()). The C alarm runtime levels are not processed in monitor
operation.

Deactivating the
monitor

Notes on monitor
operation

3 C Block Programming 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
3-42 FB (FB)

The most important functions are given below:

Table 3-8 User-related functions

Main
menu

Submenu Function Key
combination

File Load Load symbol file for View List window
File name: Symbolfile.sym
File type: SYMBOLS
All other input fields/options are irrelevant

FL

Info Status information FI
DOS Shell Call DOS environment FD
Quit End FQ

Define Breakpoint Define stop point DB
View List Display source text display of C program VL

Instruction Display and modify code in assembler
representation

VI

Memory Display RAM VM
Watch Display and modify monitoring points VW

Go Next Execute a machine command F6
Into Command execution up to next C line, this

command can also be used to branch to
functions

F7

Out of ... This command is used to exit a function which
you have "entered" with Go Into.

Shift F7

Line Command execution up to next C line, function
calls are skipped

F8

Run Start program execution F9
Halt Stop program execution Shift F9
Until... Program execution up to a certain address GU

Options Update Setting to define which window must be
'refreshed' cyclically.

OU

Symbols Display symbols ON/OFF OY
Screen Change text resolution OS

It is possible to call a local submenu within each window using the <spacebar>
or the right-hand mouse button.

Within most input fields, it is possible to open an additional selection menu
(e.g. wildcard sample for breakpoints, watches, etc.) using the <+> key or the
left-hand mouse key.

When you exit from the operator interface <FQ>, you can save the current
screen settings in a restore file. In order to restore these settings again at the
next session, you must modify file hit_167.cfg (switch -r).

For a detailed description of the HiTOP dialog software, please refer to

References: /HITEX/, User Manual

User-related functions

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-1

C Call Interface for the Basic PLC Program

4.1 General information ..4-2

4.2 Description of the C functions...4-3
4.2.1 RUN_UP, start-up function ..4-3
4.2.2 GET, read NCK variables...4-6
4.2.3 PUT, write NCK variables ..4-9
4.2.4 PI, general PI services ...4-12
4.2.5 GETGUD, read GUD variable ..4-15
4.2.6 ASUP, start asynchronous subroutines ...4-18
4.2.7 AL_MSG, error messages and operational messages ..4-19
4.2.8 BHGDisp, display control for the handheld operator panel......................................4-20
4.2.9 POS_AX, positioning of linear and rotary axes ..4-23
4.2.10 PART_AX, positioning of indexing axes...4-24
4.2.11 YDelta, star/delta selection ..4-25
4.2.12 SpinCtrl, spindle control ...4-26
4.2.13 MCP_IFM, transfer of MCP signals to the interface...4-28
4.2.14 MCP_IFT, transfer of MCP/OP signals to the interface ...4-29

4

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-2 FB (FB)

4.1 General information

JU FB..

JU FB..

JU FB..

Fig. 4-1 Structure of 840D standard basic program (for details about function
blocks shown with unbroken lines, refer to References: /PLCGP/,
Description of Functions: Standard Machine). C functions for
accessing NCK functionality are available for the C extensions
(blocks with broken lines).

The C program file gp840d.c (header: gp840d.h) provides the C programmer
with access to NCK functionality. The functions from gp840d.c represent a call
interface of the basic PLC program. This call interface supplies the
corresponding basic program block with transfer parameters, calls the block
and transfers the return values back to the C function, i.e. the basic program
block is always processed.

In chronological terms, the C function is processed before the basic program
block (and therefore also receives/transmits values first). Owing to this
mechanism, the return values of the C functions do not become valid until one
cycle has elapsed after initiation of the function. To ensure, however, that the C
function does not return any invalid values, all return values are set to 0 when
a function is activated (positive edge at start input).

Note

A basic program block may only be called once per cycle if the C interface is
in use.

For a description of the basic PLC program, please refer to

References: /PLCGP/, Description of Functions: Standard Machine

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-3

4.2 Description of the C functions

4.2.1 RUN_UP, start-up function

During start-up, the NCK and the PLC are synchronized, and the data blocks
for the NCK/PLC application interface are generated in accordance with the
NCK configuration stored in the machine data.
The RUN_UP function calls up the main function block FB1. For a description
of FB1 please refer to

References: /PLCGP/, Description of Functions Standard Machine

Table 4-1 Parameters for RUN_UP

Signal Type Value range Remarks
MCPNum WORD 0 to 2 No. of active MCPs

0: no MCP exists.
MCP1In
MCP2In

S7_POINTER I0.0 to I120.0 or
F0.0 to F248.0

Start address for the input
signals of the machine
control panel

MCP1Out
MCP2Out

S7_POINTER Q0.0 to Q120.0 or
F0.0 to F248.0

Start address for the
output signals of the
machine control panel

MCP1StatSend
MCP2StatSend

S7_POINTER Q0.0 to Q124.0,
F0.0 to F252.0 or
DBn.DBX0.0 to
DBXm.0

Start address for the status
doubleword for sending to
the machine control panel:
DW#16#08000000: time-
out expired, else 0

MCP1StatRec
MCP2StatRec

S7_POINTER Q0.0 to Q124.0,
F0.0 to F252.0 or
DBn.DBX0.0 to
DBXm.0

Start address for the status
doubleword for receiving
from the machine control
panel: DW#16#00040000:
time-out expired, else 0

MCP1BusAdr
MCP2BusAdr

WORD Bus address of the
machine control panel

MCP1Timeout
MCP2Timeout

ULONG Recommended:
700 ms

Cyclical sign-of-life
monitoring for the machine
control panel

MCP1Cycl
MCP2Cycl

ULONG Recommended:
200 ms

Time frame for cyclical
update of signals to
machine control panel

BHG WORD Handheld operator panel
interface:
0 - no handheld OP
1 - handheld OP on MPI
2 - handheld OP on MCP

BHGIn S7_POINTER Start address for data
received on the PLC from
the handheld operator
panel

BHGOut S7_POINTER Start address for data sent
from the PLC to the
handheld operator panel

BHGStatSend S7_POINTER Q0.0 to Q124.0,
F0.0 to F252.0 or
DBn.DBX0.0 to
DBXm.0

Start address for the status
doubleword for sending to
the handheld operator
panel: DW#16#08000000:
time-out expired, else 0

Function description

Parameters

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-4 FB (FB)

Signal Type Value range Remarks
BHGStatRec S7_POINTER Q0.0 to Q124.0,

F0.0 to F252.0 or
DBn.DBX0.0 to
DBXm.0

Start address for the status
doubleword for receiving
from the handheld operator
panel: DW#16#00040000:
time-out expired, else 0

BHGInLen BYTE Handheld OP
default:
B#16#6 (6 Byte)

No. of data items received
from the handheld operator
panel

BHGOutLen BYTE Handheld OP
default:
B#16#14 (20 Byte)

No. of data items sent to
the handheld operator
panel

BHGTimeout ULONG Recommended:
700 ms

Cyclical sign-of-life
monitoring for the
handheld operator panel

BHGCycl ULONG Recommended:
400 ms

Time frame for cyclical
update of signals to
handheld operator panel

BHGRecGDNo WORD Hheld OP default: 2 Receive GD circle no.
BHGRecGBZNo WORD Hheld OP default: 1 Receive GBZ no.
BHGRecObjNo WORD Hheld OP default: 1 Object no. for receive GBZ
BHGSendGDNo WORD Hheld OP default: 2 Send GD circle no.
BHGSendGBZNo WORD Hheld OP default: 2 Send GBZ no.
BHGSendObjNo WORD Hheld OP default: 1 Objekt no. for send GBZ
NCCyclTimeout ULONG Recommended:

200 ms
Cyclical sign-of-life
monitoring for NCK

NCRunupTimeout ULONG Recommended:
50 s

Start-up monitoring for
NCK

ListMDecGrp WORD 0..16 Activation of extended
M group decoding.
0 = not active
1..16: no. of M groups

NCKomm VKE_TYPE PLC-NC communication
services (FB 2/3/4:
Put/Get/PI) true: active

MMCToIF VKE_TYPE Transfer of MMC signals to
the interface (modes,
program modification, etc.)
true : active

HWheelMMC VKE_TYPE True: Handwheel selection
via MMC. False:
handwheel selection via
user program

MsgUser WORD 0..25 No. of user areas for
messages (DB 2)

UserIR VKE_TYPE OB40 local data extension
required for processing
signals from user there

IRAuxfuT VKE_TYPE Evaluate T function on
OB40

IRAuxfuH VKE_TYPE Evaluate H function on
OB40

IRAuxfuE VKE_TYPE Evaluate E function on
OB40

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-5

/* Programming example for RUN_UP */

VOID Bsp_RUN_UP(VOID)

{

S7_POINTER MCP1In, MCP1Out, MCP1StatSend, MCP1StatRec,

unused;

MCP1In.memArea = INPUT;

MCP1In.byteNo = 0;

MCP1Out.memArea = OUTPUT;

MCP1Out.byteNo = 0;

MCP1StatSend.memArea = OUTPUT;

MCP1StatSend.byteNo = 8;

MCP1StatRec.memArea = OUTPUT;

MCP1StatRec.byteNo = 12;

unused.memArea = 0;

unused.byteNo = 0;

RUN_UP(1,

MCP1In, MCP1Out, MCP1StatSend, MCP1StatRec,

6, 700, 200,

unused, unused, unused, unused,

0, 700, 200,

0,

unused, unused, unused, unused,

20, 6, 700, 400, 2, 1, 1, 2, 2, 1,

200, 50000UL,

1,

VKE_TRUE, VKE_TRUE, VKE_TRUE,

10,

VKE_FALSE, VKE_FALSE, VKE_FALSE, VKE_FALSE);

}

Programming example

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-6 FB (FB)

4.2.2 GET, read NCK variables

The GET function can be used to read variables from the NCK area. The
variables addressed by Addr[8] are copied to the referenced data block
following a successful read operation.

To reference the variables, all the required variables are first selected with the
NCK VAR selector tool, and then generated as an STL source in a data block.
In the C user program, structures of the NCK_VAR type are now filled with the
generated values.

For some variables, it is necessary to select the unit and/or the line or column.
It is possible to select a base type for these variables; i.e. unit/column/line are
initialized with “0”.

The value for this is taken from input parameters Unit[8]/Column[8]/Line[8]. The
GET function calls basic function block FB2. For a description of FB2 and the
NCK VAR selector, please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-2 Parameters for GET

Signal Type Value range Remarks
Req VKE_TYPE Start job on positive edge
NumVar UWORD 1..8 No. of variables to be read
Addr[8] NCK_VAR Variable names from NCK-

VAR selector
Unit[8] UBYTE Unit address, optional for

variable addressing
Column[8] UWORD Column address, optional for

variable addressing
Line[8] UWORD Line address, optional for

variable addressing
RD[8] S7_ANY_POINTE

R
P#DBnr.dbxm.n Line area for read data

Table 4-3 Return parameters for GET

Signal Type Value range Remarks
Error VKE_TYPE Job was given negative

acknowledgement or could not
be executed

NDR VKE_TYPE Job was successfully executed.
Data are available

State UWORD See error codes

If a job could not be executed, this is indicated by a ‘1’ in the state parameter.
The cause of the error is coded in the State block output:

Function description

Parameters

Return parameters

Error codes

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-7

Table 4-4 Error codes for GET

State Meaning Information
WORD-H WORD-L
1 to 8 1 Access error In high-byte number of variable in

which error occurred
0 2 Error in job request Incorrect variable syntax in job
0 3 Negative

acknowledgement, job
not executable

Internal error, possible remedy:
Reset NC

1 to 8 4 Insufficient local user
memory available

Variable read is longer than
definition in RD[8]; in high-byte
number of variable in which error
occurred.

0 5 Format conversion error Error on conversion of double
variable type: Var. not within range
of S7-REAL

0 6 FIFO full Job must be repeated, because
queue is full

0 7 Option not enabled GP parameter “NCKomm” is not
enabled

1 to 8 8 Incorrect dest. area (RD) RD[8] cannot be local data
0 9 Communication busy Job must be repeated
1 to 8 10 Error on variable

addressing
Unit or Column/Line contain
value 0

0 11 Variable address invalid Check Addr[8]

/* Programming example for GET */

VOID Bsp_GET(VOID)

{

GET_STAT get_ret;

UWORD i;

NCK_VAR var[8];

UBYTE unit[8];

UWORD column[8];

UWORD line[8];

S7_ANY_POINTER dest[8];

for (i=0; i < 8; i++)

{

/* R10 to R17 (permanent addressing) */

var[i].syntax_id = 0x82;

var[i].bereich_u_einheit = 0x41;

var[i].spalte = 0x1;

var[i].zeile = 10 + i+1;

var[i].bausteintyp = 0x15;

var[i].zeilenanzahl = 0x1;

var[i].typ = 0xf;

var[i].laenge = 0x8;

unit[i] = 0;

column[i] = 0;

line[i] = 0;

/* Destination for R10 to R17 */

dest[i].type = TYP_BYTE;

dest[i].count= var[i].laenge;

Programming example

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-8 FB (FB)

dest[i].dbNo = DB_TEST;

dest[i].offset= DB_TEST_OFS_GET + i*dest[i].count;

}

get_ret = GET(E_R(77, 7),/* Req */

8, /* NumVar */

var, /* Addr[] */

unit, /* Unit[] */

column, /* Column[] */

line, /* Line[] */

dest); /* RD[] */

A_W(112, 0, get_ret.Error);

A_W(112, 1, get_ret.NDR);

MW_W(100, get_ret.State);

}

Data block generated by NCK VAR selector with structure for R10:

STRUCT

rpa_10C1RP:

STRUCT

SYNTAX_ID : BYTE := B#16#82;

bereich_u_einheit : byte := B#16#41;

spalte : word := W#16#1;

zeile : word := W#16#11;

bausteintyp : byte := B#16#15;

ZEILENANZAHL : BYTE := B#16#1;

typ : byte := B#16#F;

laenge : byte := B#16#8;

END_STRUCT ;

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-9

4.2.3 PUT, write NCK variables

The PUT function can be used to write variables into the NCK area. The
variables addressed by Addr[8] are overwritten with the data in the data block
referenced by SD[8].

To reference the variables, all the required variables are first selected with the
NCK VAR selector tool, and then generated as an STL source in a data block.
In the C user program, structures of the NCK_VAR type are now filled with the
generated values.

For some variables, it is necessary to select the unit and/or the line or column.
It is possible to select a base type for these variables; i.e. unit/column/line are
initialized with “0”.

The value for this is taken from input parameters Unit[8]/Column[8]/Line[8]. The
PUT function calls basic function block FB3. For a description of FB3 and the
NCK-VAR selector, please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-5 Parameters for PUT

Signal Type Value range Remarks
Req VKE_TYPE Start job on positive edge
NumVar UWORD 1..8 No. of variables to be written
Addr[8] NCK_VAR Variable names from NCK

VAR selector
Unit[8] UBYTE Unit address, optional for

variable addressing
Column[8] UWORD Column address, optional for

variable addressing
Line[8] UWORD Line address, optional for

variable addressing
SD[8] S7_ANY_POINTER P#DBnr.dbxm.n Data to be written

Table 4-6 Return parameters for PUT

Signal Type Value range Remarks
Error VKE_TYPE Job was given negative

acknowledgement or could not
be executed

Done VKE_TYPE Job was successfully executed
State UWORD See error codes

If a job could not be executed, this is indicated by a ‘1’ in the state parameter.
The cause of the error is coded in the State block output:

Description

Parameters

Return parameters

Error codes

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-10 FB (FB)

Table 4-7 Error codes for PUT

State Meaning Information
WORD-H WORD-L
1 to 8 1 Access error In high-byte number of variable in

which error occurred
0 2 Error in job request Incorrect variable syntax in job
0 3 Negative

acknowledgement, job
not executable

Internal error, possible remedy:
Reset NC

1 to 8 4 Data areas or data types
do not match

Check data to be written in SD[8];
in high-byte number of variable in
which error occurred

0 6 FIFO full Job must be repeated, because
queue is full

0 7 Option not enabled GP parameter “NCKomm” is not
enabled

1 to 8 8 Incorrect dest. area (SD) SD[8] cannot be local data
0 9 Communication busy Job must be repeated
1 to 8 10 Error on variable

addressing
Unit or Column/Line contain
value 0

0 11 Variable address invalid Check Addr[8]

/* Programming example for PUT */

VOID Bsp_PUT(VOID)

{

PUT_STAT put_ret;

UWORD i;

NCK_VAR var[8];

UBYTE unit[8];

UWORD column[8];

UWORD line[8];

S7_ANY_POINTER src[8];

S7_DB_HANDLE dbtest = AUF_DB(DB_TEST);

for (i=0; i < 8; i++)

{

/* R10 to R17 (variable addressing) */

var[i].syntax_id = 0x82;

var[i].bereich_u_einheit = 0;

var[i].spalte = 0;

var[i].zeile = 0;

var[i].bausteintyp = 0x15;

var[i].zeilenanzahl = 0x1;

var[i].typ = 0xf;

var[i].laenge = 0x8;

unit[i] = 0x41;

column[i] = 0x1;

line[i] = 10 + i+1;

/* Source for R10 to R17 */

src[i].type = TYP_BYTE;

src[i].count = var[i].laenge;

Programming example

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-11

src[i].dbNo = DB_TEST;

src[i].offset= DB_TEST_OFS_PUT + i*src[i].count;

/* Overwrite source with value */

DD_W(dbtest, src[i].offset, F2L(1.0));

}

put_ret = PUT(E_R(77, 6),/* Req */

8, /* NumVar */

var, /* Addr[] */

unit, /* Unit[] */

volumn, /* Column[]*/

line, /* Line[] */

src); /* RD[] */

A_W(112, 2, put_ret.Error);

A_W(112, 3, put_ret.Done);

MW_W(102, put_ret.State);

}

Data block generated by NCK VAR selector with structure for R10:

STRUCT

rpa_10C1RP:

STRUCT

SYNTAX_ID : BYTE := B#16#82;

bereich_u_einheit : byte := B#16#41;

spalte : word := W#16#1;

zeile : word := W#16#11;

bausteintyp : byte := B#16#15;

ZEILENANZAHL : BYTE := B#16#1;

typ : byte := B#16#F;

laenge : byte := B#16#8;

END_STRUCT ;

Miscellaneous function for converting float to long:

VOID F2L(FLOAT value)

{

P_USHORT pointer;

/* Cast pointer and generate return value */

pointer = (USHORT *)&value;

return ((*pointer) * 0x10000UL + *(pointer+1));

}

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-12 FB (FB)

4.2.4 PI, general PI services

The PI function can be used to start program instance services in the NCK
area. The specified service is referenced in the PIService parameter (see
gp840d.h for the defines). The selected PI service is supplied with parameters
by means of the additional freely assignable input variables with different data
types (Addr[4] for strings, WVar[6] for integers or word variables).

The PI function calls up basic function block FB4. For a description of FB4
please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-8 Parameters for PI

Signal Type Value range Remarks
Req VKE_TYPE Start job on positive edge
PIService UWORD 1..16 PI service
Unit UWORD 1.. Unit number
Addr[4] S7_ANY_POINTER P#DBnr.dbxm.n Reference to string specification

according to PI service selected
WVar[9] WORD 1.. Word specification according to

PI service selected

Table 4-9 Return parameters for PI

Signal Type Value range Remarks
Error VKE_TYPE Job was given negative

acknowledgement or could not
be executed

Done VKE_TYPE Job was successfully executed
State UWORD See error codes

If a job could not be executed, this is indicated by a ‘1’ in the state parameter.
The cause of the error is coded in the State block output:

Table 4-10 Error codes for PI

State Meaning Information
3 Negative

acknowledgement, job not
executable

Internal error, possible remedy: Reset NC

6 FIFO full Job must be repeated, because queue is full
7 Option not enabled GP parameter “NCKomm” is not enabled
9 Communication busy Job must be repeated

Description

Parameters

Return parameters

Error codes

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-13

/* Programming example for PI */

VOID Bsp_PI(VOID)

{

PI_STAT pi_ret;

S7_ANY_POINTER adr[4];

WORD var[9];

UWORD i;

S7_DB_HANDLE dbtest = AUF_DB(DB_TEST);

UWORD ebtest = EB_R(72);

BYTE mpfpath[MAX_STR_LEN+1] = "/_N_MPF_DIR/";

BYTE mpfprog[MAX_STR_LEN+1] = "_N_ASUP_MPF";

switch (ebtest)

{

/* PI_SELECT */

case 1:

/* Address for mpfpath */

adr[0].type = TYP_BYTE;

adr[0].count = MAX_STR_LEN+2;

adr[0].dbNo = DB_TEST;

adr[0].offset= DB_TEST_OFS_PI;

/* Address for mpfprog */

adr[1].type = TYP_BYTE;

adr[1].count = MAX_STR_LEN+2;

adr[1].dbNo = DB_TEST;

adr[1].offset= DB_TEST_OFS_PI +adr[0].count;

/* Write string for mpfpath */

DS_W(dbtest, adr[0].offset, mpfpath);

/* Write string for mpfpath */

DS_W(dbtest, adr[1].offset, mpfprog);

pi_ret = PI(E_R(77, 1),/* Req */

PI_SELECT, /* PIService */

1, /* Unit */

adr, /* Addr[] */

var); /* WVar[] */

A_W(113, 0, pi_ret.Error);

A_W(113, 1, pi_ret.Done);

MW_W(104, pi_ret.State);

break;

/* PI_CONFIG */

case 2:

var[0] = 1; /* Classification */

Programming example

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-14 FB (FB)

pi_ret = PI(E_R(77, 1),/* Req */

PI_CONFIG, /* PIService */

1, /* Unit */

adr, /* Addr[] */

var); /* WVar[] */

A_W(113, 0, pi_ret.Error);

A_W(113, 1, pi_ret.Done);

MW_W(104, pi_ret.State);

break;

default:

break;

}

}

Miscellaneous function for writing a string to a data block:

VOID DS_W(S7_DB_HANDLE db,

USHORT byteOffset,

BYTE value[])

{

UBYTE i, str_len;

/* Write string identifier to db */

DB_W(db, byteOffset, 0x0E);

/* Write string length to db */

if ((str_len = strlen(value)) > MAX_STR_LEN)

str_len = MAX_STR_LEN;

DB_W(db, byteOffset+1, str_len);

/* Write user data to db */

for (i=0; i < str_len; i++)

DB_W(db, i + byteOffset+2, value[i]);

}

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-15

4.2.5 GETGUD, read GUD variable

The GETGUD function can be used to read a GUD variable (GUD = Global
User Data) from the NCK or channel area. The GETGUD function calls up
basic function block FB5. For a description of FB5 please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-11 Parameters for GETGUD

Signal Type Value range Remarks
Req VKE_TYPE Start job on positive edge
Addr[32] BYTE GUD variable name
Area BYTE Unit address:

0: NCK variable
2: Channel variable

Unit BYTE Unit NCK: Unit:=1
Unit channel: channel no.

Index1 WORD Array index 1 of variable
The value of the variable is 0 if
the array index is not used

Index2 WORD Array index 2 of variable
The value of the variable ist 0 if
the array index is not used

CnvtToken VKE_TYPE Activation of the generation of a
variable token

RD S7_ANY_POINTE
R

P#DBnr.dbxm.n Data to be read

Table 4-12 Return parameters for GETGUD

Signal Type Value range Remarks
VarToken NCK_VAR Address of a 10-byte token
Error VKE_TYPE Job was given negative

acknowledgement or could not
be executed

Done VKE_TYPE Job was successfully executed.
Data are available

State UWORD See error codes

If a job could not be executed, this is indicated by a ‘1’ in the state parameter.
The cause of the error is coded in the State block output:

Function description

Parameters

Return parameters

Error codes

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-16 FB (FB)

Table 4-13

State Meaning Information
WORD-H WORD-L
0 1 Access error
0 2 Error in job request Incorrect variable syntax in job
0 3 Negative

acknowledgement, job
not executable

Internal error, possible remedy:
Reset NC

0 4 Insufficient local user
memory available

Check data to be read in RD

0 6 FIFO full Job must be repeated, because
queue is full

0 7 Option not enabled GP parameter “NCKomm” is not
enabled

0 8 Incorrect dest. area (RD) RD cannot be local data
0 9 Communication busy Job must be repeated
0 10 Error on addressing Unit contains value 0
0 11 Variable address invalid Check Addr (or variable name),

Area, Unit

/* Programming example for GETGUD */

VOID Bsp_GETGUD(VOID)

{

GETGUD_STAT getgud_ret;

PUT_STAT put_ret;

BYTE var[MAX_STR_LEN+1] = "GUD_VAR_NCK";

S7_ANY_POINTER dest;

UBYTE unit[8];

UWORD column[8];

UWORD line[8];

S7_ANY_POINTER src[8];

S7_DB_HANDLE dbtest = AUF_DB(DB_TEST);

static UBYTE cycle;

VKE_TYPE put_start;

/* Destination for GUD variable */

dest.type = TYP_BYTE;

dest.count = 4;

dest.dbNo = DB_TEST;

dest.offset = DB_TEST_OFS_GETGUD;

getgud_ret = GETGUD(E_R(73, 4), /* Req */

var, /* Addr */

0, /* Area */

1, /* Unit */

0, /* Index1 */

0, /* Index2 */

E_R(73, 5), /* CnvtToken */

dest); /* RD */

A_W(112, 0, getgud_ret.Error);

A_W(112, 1, getgud_ret.Done);

Programming example

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-17

MW_W(100, getgud_ret.State);

}

if (E_R(73, 5)

{
/* Address for source */

src[0].type = TYP_BYTE;

src[0].count = 4;

src[0].dbNo = DB_TEST;

src[0].offset= DB_TEST_OFS_GETGUD+4;

/* Overwrite source with value */

DD_W(dbtest, src[0].offset, 2UL);

/* Supply values for variable addressing */

unit[0] = 0;

column[0] = 0;

line[0] = 0;

/* 1 PLC cycle delay for put_start */

if (getgud_ret.Done)

if (cycle)

put_start = VKE_TRUE;

else

cycle = 1;

else

cycle = 0;

put_ret = PUT(put_start, /* Req */

1, /* NumVar */

&getgud_ret.VarToken,/* Addr[] */

unit, /* Unit[] */

volumn, /* Column[]*/

line, /* Line[] */

src); /* RD[] */

A_W(112, 2, put_ret.Error);

A_W(112, 3, put_ret.Done);

MW_W(102, put_ret.State);

}

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-18 FB (FB)

4.2.6 ASUP, start asynchronous subroutines

The ASUP function can be used to initiate any functions on the NC. In order to
be started from the PLC, an ASUP must be selected and configured by an NC
program. An ASUP which has been prepared in this way can be started at any
time from the PLC. The ASUP calls up basic function block FC9. For a
description of FC9 please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-14 Parameters for ASUP

Signal Type Value range Remarks
Start VKE_TYPE
ChanNo UWORD 1, 2 No. of NC channel
IntNo UWORD 1..8 Interrupt no.

Table 4-15 Return parameters for ASUP

Signal Type Value range Remarks
Activ VKE_TYPE 1 = active
Done VKE_TYPE 1 = ASUP terminated
Error VKE_TYPE
StartErr VKE_TYPE 1 = Interrupt number

not assigned

/* Programming example for ASUP */

VOID Bsp_ASUP

{

ASUP_STAT asup_ret;

asup_ret = ASUP(E_R(77, 5), /* Start */

1, /* ChanNo */

EB_R(72)); /* IntNo */

A_W(112, 7, asup_ret.Activ);

A_W(112, 6, asup_ret.Done);

A_W(112, 5, asup_ret.Error);

A_W(112, 4, asup_ret.StartErr);

}

Function description

Parameters

Return parameters

Programming example

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-19

4.2.7 AL_MSG, error messages and operational messages

The AL_MSG function evaluates the signals entered in DB 2, and displays
them as incoming and outgoing error messages and operational messages on
the MMC. The AL_MSG function calls basic function block FC10. For a
description of FC10 please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-16 Parameters for AL_MSG

Signal Type Value range Remarks
ToUserIF VKE_TYPE 1 = Transfer of signals to application

interface each cycle
Quit VKE_TYPE 1 = Error message acknowledgement

/* Programming example for AL_MSG */

VOID Bsp_AL_MSG

{

S7_DB_HANDLE db2 = AUF_DB(2);

D_W(db2, 1, 0, E_R(77, 3)); /* BM 510008 */

D_W(db2, 0, 0, E_R(77, 4)); /* FM 510000 */

AL_MSG(VKE_FALSE, /* ToUserIF */

E_R(77, 2)); /* Quit */

}

Function description

Parameters

Programming example

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-20 FB (FB)

4.2.8 BHGDisp, display control for the handheld operator panel

This function controls the display of the handheld operator panel. The
BHGDisp function calls up basic function block FC13. For a description of
FC13 please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-17 Parameters for BHGDisp

Signal Type Value range Remarks
Row UBYTE 0..3 Display row

0: no display output
1: Row 1
2: Row 2
3: Row 1 and row 2

ChrArrray[32] BYTE - Complete display contents
Convert VKE_TYPE Activation of numeric conversion.
Addr S7_POINTE

R
- Points to variable to be converted

DataType UBYTE 1..8 Data type of variable
1: Bool, 1 character
2: Byte, 3 characters
3: Char, 1 character
4: Word, 5 characters
5: Int, 6 characters
6: Dword, 7 characters
7: Dint, 8 characters
8: Real, 9 characters
(see Parameter Digits)

StringAddr UWORD 1..32 Address within variable ChrArray
Digits UBYTE 1..3 Only relevant for data type Real with

leading sign (LS)
1 : 6.1 digits without LS
2 : 5.2 digits without LS
3 : 4.3 digits without LS

Table 4-18 Return parameters for BHGDisp

Signal Type Value range Remarks
Error VKE_TYPE Conversion error, number overflow or

StringAddr error

/* Programming example for BHGDisp */

VOID Bsp_BHGDisp(VOID)

{

BHGDISP_STAT bhgdisp_ret;

static UWORD cycle;

S7_POINTER var1, var2;

BYTE bhgdisp[MAX_STR_LEN+1] = "Zeile 1---------Zeile 2---
------";

S7_DB_HANDLE dbtest = AUF_DB(DB_TEST);

/* Assign address for var1 */

Function description

Parameters

Return parameters

Programming example

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-21

var1.memArea = DATABLOCK;

var1.byteNo = DB_TEST_OFS_BHG+0;

var1.dbNo = DB_TEST;

/* Assign address for var2 */

var2.memArea = DATABLOCK;

var2.byteNo = DB_TEST_OFS_BHG+4;

var2.dbNo = DB_TEST;

/* Write values for var1 and var2 to dbtest */

if (E_R(76, 5))

{

DD_W(dbtest, var1.byteNo, F2L(-0.5));

DD_W(dbtest, var2.byteNo, F2L(-10.0));

}

else

{

DD_W(dbtest, var1.byteNo, F2L(0.5));

DD_W(dbtest, var2.byteNo, F2L(10.0));

}

switch (cycle)

{

case 1:

/* Write first display row */

bhgdisp_ret = BHGDisp(1, /*Row*/

bhgdisp, /* ChrArray */

E_R(76, 4),/* Convert */

var1, /* Addr */

8, /* DataType */

16, /* StringAddr */

3); /* Digits */

A_W(113, 6, bhgdisp_ret.Error);

cycle = 2;

break;

case 2:

/* Write second display row */

bhgdisp_ret = BHGDisp(2, /*Row*/

bhgdisp, /* ChrArray */

E_R(76, 4),/* Convert */

var2, /* Addr */

8, /* DataType */

32, /* StringAddr */

3); /* Digits */

A_W(113, 6, bhgdisp_ret.Error);

cycle = 0;

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-22 FB (FB)

break;

default:

cycle = 1;

break;

}

}

Miscellaneous function for converting float to long:

VOID F2L(FLOAT value)

{

P_USHORT pointer;

/* Cast pointer and generate return value */

pointer = (USHORT *)&value;

return ((*pointer) * 0x10000UL + *(pointer+1));

}

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-23

4.2.9 POS_AX, positioning of linear and rotary axes

The POS_AX function can be used to traverse NC axes, which have been
defined in machine data as "concurrent axes", from the PLC. During normal
operation, these axes can also be traversed using the JOG keys. The POS_AX
function calls up basic program block FC15. For a description of FC15 please
refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-19 Parameters for POS_AX

Signal Type Value range Remarks
Start VKE_TYPE
AxisNo UWORD 1..8 No. of axis to be traversed
IC VKE_TYPE 0 = absolute 1 = incremental
Inch VKE_TYPE 0 = mm 1 = inch
HWheelOv VKE_TYPE 1 = handwheel overlay
Pos FLOAT ± 0.1469368 E -38 to

± 0.1701412 E +39
Linear axis: mm Rotary axis:
degrees

FRate FLOAT ± 0.1469368 E -38 to
± 0.1701412 E +39

Linear axis: mm/min Rotary
axis: degrees/min

Table 4-20 Return parameters for POS_AX

Signal Type Value range Remarks
InPos VKE_TYPE 1 = Position reached
Activ VKE_TYPE 1 = active
StartErr VKE_TYPE Axis cannot be started
Error VKE_TYPE Error on traversal

/* Programming example for POS_AX */

VOID Bsp_POS_AX(VOID)

{

POS_AX_STAT pos_ax_ret;

pos_ax_ret = POS_AX(E_R(76, 7),/*Start*/

5, /* AxisNo */

E_R(76, 6),/* IC */

VKE_FALSE, /* Inch */

VKE_FALSE, /* HWheelOv */

-777.0, /* Pos */

3333.0); /* FRate */

A_W(104, 7, pos_ax_ret.InPos);

A_W(104, 6, pos_ax_ret.Activ);

A_W(104, 5, pos_ax_ret.StartErr);

A_W(104, 4, pos_ax_ret.Error);

}

Function description

Parameters

Return parameters

Programming example

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-24 FB (FB)

4.2.10 PART_AX, positioning of indexing axes

The PART_AX function can be used to traverse NC axes, which have been
defined in machine data as "indexing axes", from the PLC. During normal
operation, these axes can also be traversed using the JOG keys. The
PART_AX function calls up basic program block FC16. For a description of
FC16 please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-21 Parameters for PART_AX

Signal Type Value range Remarks
Start VKE_TYPE
AxisNo UWORD 1..8 No. of axis to be traversed
IC VKE_TYPE 0 = abs. direction 1 = incremental

direction
DC VKE_TYPE 0 = defined direction

1 = shortest path
Minus VKE_TYPE in preparation
Plus VKE_TYPE in preparation
Pos WORD 0 to +32767 Indexing position no.
FRate FLOAT ± 0.1469368 E -38 to

± 0.1701412 E +39
Linear axis: mm/min
Rotary axis: degrees/min

Table 4-22 Return parameters for PART_AX

Signal Type Value range Remarks
InPos VKE_TYPE 1 = Position reached
Activ VKE_TYPE 1 = active
StartErr VKE_TYPE Axis cannot be started
Error VKE_TYPE Error on traversal

/* Programming example for PART_AX */

VOID Bsp_PART_AX(VOID)

{

PART_AX_STAT part_ax_ret;

part_ax_ret = PART_AX(E_R(76, 3),/*Start*/

6, /* AxisNo */

E_R(76, 2),/* IC */

VKE_FALSE, /* DC */

VKE_FALSE, /* Minus */

VKE_FALSE, /* Plus */

EB_R(72), /* Pos */

1111.0); /* FRate */

A_W(105, 7, part_ax_ret.InPos);

A_W(105, 6, part_ax_ret.Activ);

A_W(105, 5, part_ax_ret.StartErr);

A_W(105, 4, part_ax_ret.Error);

}

Function description

Parameters

Return parameters

Programming example

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-25

4.2.11 YDelta, star/delta selection

The function for star/delta selection is performed in both directions by defined
(time-controlled) selection logic. The function can only be used for digital main
spindle drives, and must be called up separately for each spindle. The YDelta
function calls up basic function block FC17. For a description of FC17 please
refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-23 Parameters for YDelta

Signal Type Value range Remarks
YDelta VKE_TYPE 0 = star

1 = delta
The selection edge of the signal
initiates the selection.

SpindleIFNo UWORD 1.. Number of spindle interface
TimeVal ULONG 0.. Selection time
TimerNo UWORD 10.. Timer for programming the wait time.

Table 4-24 Return parameters for YDelta

Signal Type Value range Remarks
Y VKE_TYPE Activation of the star contactor
Delta VKE_TYPE Activation of the delta contactor

/* Programming example for Ydelta */

VOID Bsp_YDelta

{

YDELTA_STAT ydelta_ret;

S7_DB_HANDLE db34 = AUF_DB(34);

ydelta_ret = YDelta(E_R(77, 0),/*YDelta*/

4, /* SpindleIFNo */

3000, /* TimeVal (3s) */

10); /* TimerNo */

D_W(db34, 21, 3, VKE_FALSE);

/* Acknowledge motor selection */

/* Initiate selection */

A_W(113, 3, ydelta_ret.Y);

A_W(113, 2, ydelta_ret.Delta);

}

Function description

Parameters

Return parameters

Programming example

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-26 FB (FB)

4.2.12 SpinCtrl, spindle control

The SpinCtrl function can be used to control spindles from the PLC. The
function supports the functions:

• Position spindle

• Rotate spindle

• Oscillate spindle

The SpinCtrl function calls up basic function block FC18. For a description of
FC18 please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-25 Parameters for SpinCtrl

Signal Type Value range Remarks
Start VKE_TYPE Start spindle control from PLC
Stop VKE_TYPE Stop spindle control from PLC
Funct UBYTE 1, 2, 3 1: Position spindle

2: Rotate spindle
3: Oscillate spindle

Mode UBYTE 0..5 0: Pos at absolute pos.
1: Pos incremental
2: Pos shortest path
3: Pos absolute, positive
 approach
4: Pos absolute, negative
 approach
5: Direction of rotation as M4

AxisNo UWORD 1..8 No. of axis to be traversed
Pos FLOAT ± 0.1469368 E -38 to

± 0.1701412 E +39
Rotary axis: degrees

FRate FLOAT ± 0.1469368 E -38 to
± 0.1701412 E +39

Rotary axis: degrees/min
Spindle: rpm

Table 4-26 Return parameters for SpinCtrl

Signal Type Value range Remarks
InPos VKE_TYPE 1 = Position reached or fct. executed
Error VKE_TYPE 1 = error
State UBYTE 0..255 Error code

If a job could not be executed, this is indicated by a ‘1’ in the state parameter.
The cause of the error is coded in the State block output:

Function description

Parameters

Return parameters

Error detection

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-27

Table 4-27 Error codes for SpinCtrl

State Meaning
Error caused by PLC handling:
1 Several functions were activated simultaneously for axis/spindle
20 A function was started although the position was not reached
Error caused by NCK handling: The alarm numbers are described in the 840D
Diagnostics Guide.
100 corresponds to alarm number 16830
105 corresponds to alarm number 16770
106 corresponds to alarm number 22052
107 corresponds to alarm number 22051
108 corresponds to alarm number 22050
109 corresponds to alarm number 22051
115 Programmed position was not reached
System or other major alarms:
200 corresponds to system alarm number 450007

/* Programming example for SpinCtrl */

VOID Bsp_SpinCtrl

{

SPINCTRL_STAT spinctrl_ret;

spinctrl_ret = SpinCtrl(E_R(76, 1),/*Start*/

E_R(76, 0),/* Stop */

1, /* Funct */

1, /* Mode */

4, /* AxisNo */

100.0, /* Pos */

9.0); /* FRate */

A_W(113, 5, spinctrl_ret.InPos);

A_W(113, 4, spinctrl_ret.Error);

MW_W(114, spinctrl_ret.State);

}

Programming example

4 C Call Interface for the Basic PLC Program 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
4-28 FB (FB)

4.2.13 MCP_IFM, transfer of MCP signals to the interface

The MCP_IFM function (M variant) can be used to transfer operating modes,
axis selections, WCS/MCS switchover, travel keys, overrides and keyswitch
from the machine control panel (MCP) to the corresponding signals on the
NCK/PLC interface. In the basic program, the handwheel selections, operating
modes and other operating signals are transferred from the operator panel
(OP) or MMC to the NCK/PLC interface, such that it is possible to select the
operating modes from either the MCP or the OP.

The MCP_IFM function calls up basic function block FC19. For a description of
FC19 please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-28 Parameters for MCP_IFM

Signal Type Value range Remarks
BAGNo UBYTE 0..1 No. of mode group to which the

operating mode signals are transferred.
ChanNo UBYTE 0..2 Channel number for the channel

signals.
SpindleIFNo UBYTE 0..8 Number of the axis interface declared

as a spindle.

Table 4-29 Return parameters for MCP_IFM

Signal Type Value range Remarks
FeedHold VKE_TYPE Feed hold from MCP, modal
SpindleHold VKE_TYPE Spindle hold from MCP, modal

/* Programming example for MCP_IFM */

VOID Bsp_MCP_IFM

{

MCP_IFM_STAT ifm_ret;

ifm_ret = MCP_IFM(1, /* ModeGrpNo */

1, /* ChanNo */

4); /* SpindleIFNo */

/* Signals to LEDs */

A_W(104, 0, ifm_ret.FeedHold);

A_W(104, 1, ifm_ret.SpindleHold);

}

Function description

Parameters

Return parameters

Programming example

03.96 4 C Call Interface for the Basic PLC Program

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 4-29

4.2.14 MCP_IFT, transfer of MCP/OP signals to the interface

The MCP_IFT function (T variant) can be used to transfer operating modes, the
direction keys of 4 axes, WCS/MCS switchover, travel keys, overrides and
keyswitch from the machine control panel (MCP) to the corresponding signals
on the NCK/PLC interface. In the basic program, the handwheel selections,
operating modes and other operating signals are transferred from the operator
panel (OP) or MMC to the NCK/PLC interface, such that it is possible to select
the operating modes from either the MCP or the OP. The MCP_IFT function
calls up basic function block FC25. For a description of FC25 please refer to

References: /PLCGP/, Description of Functions: Standard Machine

Table 4-30 Parameters for MCP_IFT

Signal Type Value range Remarks
BAGNo UBYTE 0..1 No. of mode group to which the

operating mode signals are transferred.
ChanNo UBYTE 0..2 Channel number for the channel signals.
SpindleIFNo UBYTE 0..8 Number of the axis interface declared as

a spindle.

Table 4-31 Return parameters for MCP_IFT

Signal Type Value range Remarks
FeedHold VKE_TYPE Feed hold from MCP, modal
SpindleHold VKE_TYPE Spindle hold from MCP, modal

/* Programming example for MCP_IFT */

VOID Bsp_MCP_IFT

{

MCP_IFT_STAT ift_ret;

ift_ret = MCP_IFT(1, /* ModeGrpNo */

1, /* ChanNo */

4); /* SpindleIFNo */

/* Signals to LEDs */

A_W(104, 0, ift_ret.FeedHold);

A_W(104, 1, ift_ret.SpindleHold);

}

Function description

Parameters

Return parameters

Programming example

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 5-1

Miscellaneous

5.1 Access to local data from the C program..5-2

5.2 Response to errors ...5-5

5.3 Stack handling on the PLC ...5-7

5.4 Example project: Rotary table positioning...5-8

5

5 Miscellaneous 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
5-2 FB (FB)

5.1 Access to local data from the C program
In order to access the start information of the standard OBs from the C
program, the start information of the OBs is copied to communication data
block DB70 on every OB entry.

Table 5-1 Detailed description of OB start information (extract from standard
OB shells):

C function name Standard OB Start information in DB70
StdApplCycle() OB 1 DBB 80 to 99
StdTimeAlert() OB 10 DBB 100 to 119
StdDelayedTimeAlert() OB 20 DBB 120 to 139
StdWatchdogAlert() OB 35 DBB 140 to 159
StdProcessAlert() OB 40 DBB 160 to 189
StdApplStart() OB 100 DBB 190 to 209

OB1_EV_CLASS: byte; //Bits 0-3 = 1 (Coming event)
//Bits 4-7 = 1 (Event class 1)

OB1_SCAN_1: byte; //1(Cold restart scan 1 of OB 1)
//3 (Scan 2-n of OB 1)

OB1_PRIORITY: byte; //1(Priority of 1 is lowest)

OB1_OB_NUMBR: byte; //1(Organization block 1, OB1)

OB1_RESERVED_1: byte; //Reserved for system

OB1_RESERVED_2: byte; //Reserved for system

OB1_PREV_CYCLE: int; //Cycle time of previous OB1 scan
(milliseconds)

OB1_MIN_CYCLE: int; //Minimum cycle time of OB1
//(milliseconds)

OB1_MAX_CYCLE: int; //Maximum cycle time of OB1
(milliseconds)

OB1_DATE_TIME: date_and_time; //Date and time OB1 started

OB10_EV_CLASS : byte; //Bits 0-3=1 (Coming event)
//Bits 4-7 = 1 (Event class 1)

OB10_STRT_INFO : byte; //16#11 (OB 10 has started)

OB10_PRIORITY : byte; //2 (Priority of 1 is lowest)

OB10_OB_NUMBR : byte; //10 (Organization block 10, OB10)

OB10_RESERVED_1 : byte; //Reserved for system

OB10_RESERVED_2 : byte; //Reserved for system

OB10_PERIOD_EXE : word; //Period of execution (once, per
//minute/hour/day/week/month/year)

OB10_RESERVED_3 : int;//Reserved for system

OB10_RESERVED_4 : int;//Reserved for system

OB10 DATE_TIME : date_and_time; //Date and time OB10 started

OB 1

OB 10

03.96 5 Miscellaneous

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 5-3

OB20_EV_CLASS : byte; //Bits 0-3 =1 (Coming event)
//Bits 4-7=1 (Event class 1)

OB20_STRT_INF : byte; //16#21 (OB 20 has started)

OB20_PRIORITY : byte; //3 (Priority of 1 is lowest)

OB20_OB_NUMBR : byte; //20 (Organization block 20, OB20)

OB20_RESERVED_1 : byte; //Reserved for system

OB20_RESERVED_2 : byte; //Reserved for system

OB20_SIGN : word; //Identifier input (SIGN)
//attached to SRT_DALM

OB20_RESERVED_3 : int;//Reserved for system

OB20_DTIME : int; //Delay time (DTIME)
//input to SRT_DALM instruction

OB20_DATE_TIME: date_and_time; //Date and time OB20 started

OB35_EV_CLASS : byte; //Bits 0-3=1 (Coming event)
//Bits 4-7 = 1 (Event class 1)

OB35_STRT_INF : byte; //16#36 (OB 35 has started)

OB35_PRIORITY : byte; //11 (Priority of 1 is lowest)

OB35_OB_NUMBR : byte; //35 (Organization block 35, OB35)

OB35_RESERVED_1 : byte; //Reserved for system

OB35_RESERVED_2 : byte; //Reserved for system

OB35_PHASE_OFFSET : word; //Phase offset (msec)

OB35_RESERVED_3 : int;//Reserved for system

OB35_EXC_FREQ : int; //Frequency of execution
//(XX integer) * (100 msec)

OB35_DATE_TIME: date_and_time; //Date and time OB1 started

OB40_EV_CLASS: byte; //Bits 0-3=1 (Coming event)
//Bits 4-7 = 1 (Event class 1)

OB40_STRT_INF: byte; //16#41 (OB 40 has started)

OB40_PRIORITY: byte; //16 (Priority of 1 is lowest)

OB40_OB_NUMBR: byte; //40 (Organization block 40, OB40)

OB40_RESERVED_1: byte; //Reserved for system

OB40_MDL_ID: byte; //Module identifier initiating interupt

OB40_MDL_ADDR: int; //Base address of module initiating

OB40_POINT_ADDR: dword; //Point address of interupt

OB40_DATE_TIME: date_and_time;//Date and time OB1 started

OB 20

OB 35

OB 40

5 Miscellaneous 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
5-4 FB (FB)

GP_IRFromNCK: bool; //Interrupt for user by NCK

GP_TM: bool; //Tool management

GP_InPosition: array[1..31] of bool; //Axis-oriented for positioning axes,

//Indexing axes, spindles

GP_AuxFunction: array[1..10] of bool;//Channel-oriented for miscellaneous

//functions

GP_FMBlock: array[1..10] of bool; //Channel-oriented for block transfer to FM

//(in preparation)

OB100_EV_CLASS : byte; //16#13, Event class 1
//Entering event state
//Event logged in diag. buffer

OB100_STRTUP : byte; //16#81/82/83/84 Method of startup

OB100_PRIORITY : byte; //27 (Priority of 1 is lowest)

OB100_OB_NUMBR : byte; //100 (Organization block 100, OB100)

OB100_RESERVED_1 : byte; //Reserved for system

OB100_RESERVED_2 : byte; //Reserved for system

OB100_STOP : word; //Event that caused CPU to stop (16#4xxx)

OB100_RESERVED_3 : word; //Reserved for system

OB100_RESERVED_4 : word; //Reserved for system

OB100_DATE_TIME: date_and_time; //Date and time OB100 started

OB 100

03.96 5 Miscellaneous

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 5-5

5.2 Response to errors
The C block processing program supplies a return value, which is entered in
memory words, to the S7 level issuing the call. When an error is detected, the
PLC is switched to the STOP operating state.

Tabelle 5-2 Entry of return values

S7 runtime level Return value
OB 1 MW 40
OB10 MW 42
OB 20 MW 44
OB 35 MW 46
OB 40 MW 48
OB 100 C user block MW 50

Monitor block for the HITEX monitor MW 52

Table 5-3 Possible return values

Return value Error Remedy
0 No error
1 Block call number too high Use number between 0 and 14
2 Block does not exist Match call number to block call

number in generating file
3 DB_pointer does not exist Generate and load DB_pointer
4 DB_pointer too small Check entries in DB_pointer
5 Incorrect number of C blocks "
6 Length block-spec. data incorrect

(DB_pointer)
"

7 Definition in DB_pointer missing "
8 Offset block-spec. data incorrect

(DB_pointer)
"

9 DB_K missing Generate and load DB_K
10 DB_K too small Check DB_pointer
12 DB_K and DB_pointer identical Assign different DB numbers
128 Monitor not loaded Link in monitor during generation

process
129 Monitor not initialized Initialize monitor
130 DB_K for monitor not correct Check DB_pointer
131
133

Incorrect C block number for
debugger

Start monitor only for existing
blocks with call number 0..14

132 Monitor called for several blocks The monitor may only for activated
for one C block at a time

Entry of return values

Possible return
values

5 Miscellaneous 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
5-6 FB (FB)

Table 5-4 Linker/locater error messages

Error Meaning
Warning 130 missing system stack definition

This message is caused by the runtime system and has no
significance.

Warning 152 class name '%s' not found
Non-critical warning; if a class not contained in the current object is
specified in the class instruction.

Warning 193 class '%s' without classes control
Remedy:
Include the designated section in the "classes" instruction for ROM or
RAM or else the program response is not defined.

Error 268 '%s' linear element '%s %s' cannot be located within 4 pages
Remedy:
Check first whether the DPP assignments are correct (DPP formula =
base address of specified data area/16k, e.g. 90000H/16k = 36)

Error 270 '%s' segmented element '%s %s' cannot be located
The available memory has been exceeded, increase the specified
memory limits for code or data section of locater.

The C library cs7rtlib.lno provides a freely programmable error handler
StdErrorHandler(), user_err.c to which the program branches in the case of
runtime errors. After processing, your application is continued. You can add
application-specific error handling actions to the error handler.

The error codes for the detected errors can be found in header file user_err.h.

In the example project for rotary table positioning, the error handler (file
usr_err.c) was extended insofar as the error code is entered in communication
data block DB70.

• DW 40 Error code (error_id)

• DW 42 Errored parameter (error_reason_par)

• DD 44 Address of errored command (error_adr)

The PLC is also swiched to the STOP operating state in the example project
for rotary table positioning. The user can now read out the cause of the error
from the PLC status information (PG or MMC).

Example of an error entry in DB70:

DB70.DBW40 = h0431

DB70.DBW42 = h0080

DB70.DBD44 = h00080488

Information about
linker/locater error
messages

Error handler for C
library functions

03.96 5 Miscellaneous

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 5-7

5.3 Stack handling on the PLC
The user stack is located in the near data segment of the C block. The C
program requires this stack for the "automatic" variables as well as to manage
the return addresses of function calls (-> C166 Special Stack Frame Library).
The compiler calculates the stack size on the basis of the stack requirement of
each individual function without the return addresses. This stack requirement is
therefore based on the assumption that all functions are called simultaneously.
In most cases, the requirement is oversized, but may be undersized in the
case of a recursive call. The calculated stack requirement is occupied by
runtime levels StdApplStart() (OB100) and StdApplCycle() (OB1) during the run
time. A prespecified stack is located for each of the other runtime levels, i.e.
this stack is not calculated by the compiler.

The user can modify the user stack by means of file user_stk.c. The stack is
modified on the basis of the following constants:

OB1_STACK LIT '256' ;StdApplCycle() & StdApplStart()

OB10_STACK LIT '512' ;StdTimeAlert()

OB20_STACK LIT '512' ;StdDelayedTimeAlert()

OB35_STACK LIT '512' ;StdWatchdogAlert()

OB40_STACK LIT '512' ;StdProcessAlert()

The value for OB1_STACK is an additive component in the C166 user stack
calculation. This value acts as the default memory for the return addresses of
function calls. Normally speaking, the user does not need to concern himself
about the size of this stack. For description of the stack mechanism, please
refer to:

References: /BSO/, Users Guide

Modify constants
for user stack

5 Miscellaneous 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
5-8 FB (FB)

5.4 Example project: Rotary table positioning

Rotate counter-clockwise

Fig. 5-1 Positioning a rotary table

• The rotary table is driven by an electric motor with 2 speeds (rapid traverse
and creep speed) and 2 directions (clockwise and counter-clockwise
rotation).

• On approach to the position, the motor switches from rapid traverse to
creep speed.

• Positioning is implemented by means of 3 cam switches with binary
positional values 1, 2 and 4. Positions 1 to 7 are defined on the basis of
these cam switches.

• The position reached is maintained by an index bolt. This bolt has 2
positions (retracted/extended) and is fixed by means of valves.

• The end support likewise has 2 positions (clamped/unclamped) and is
valve-controlled. The support is unclamped during the traversing motion.

• The positioning operation is started by means of an expanded M function.

• The read-in disable is transferred to the NC during positioning.

Table 5-5 Input signals for rotary table positioning example project

Input signal Description
In_einfahren Limit switch "Index retracted"
In_ausgefahren Limit switch "Index extended"
Ge_geklemmt Pressure switch "End support clamped"
Mo_inPosition Limit switch "Motor (table) in position"
Mo_Cod1 Coding switch with positional value 1
Mo_Cod2 Coding switch with positional value 2
Mo_Cod4 Coding switch with positional value 4

Description of
example

Signal description

03.96 5 Miscellaneous

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) 5-9

Table 5-6 Output signals for rotary table positioning example project

Output signal Description
In_einfahren Retract index
In_ausfahren Extend index
Ge_klemmen Clamp end support
Ge_loesen Unclamp end support
Mo_Rechts Enable "Motor clockwise rotation"
Mo_Links Enable "Motor counter-clockwise rotation"
Mo_Schnell Enable "Motor high speed"

Table 5-7 Interface signals for rotary table positioning example project

Interface signals Description
M_Funktion M function for rotary table e.g.: M1=90 (90 = rotary

table)
M_Adresse M address for position e.g.: M1=90 (1 = Position)
Einlesesperre_an_NC Read-in disable to NC

5 Miscellaneous 03.96

6FC5297-3AB60 © Siemens AG 1995 All Rights Reserved
5-10 FB (FB)

Counter-clockwise
rotation = 1

Counter-clockwise rotation = 0

Fig. 5-2 Flowchart

Description of
operational sequence

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) A-1

Abbreviations

Assembler block

Automation System 314

Automation System 315

Data Block (SIMATIC S7)

Function Block (SIMATIC S7)

Function Call (SIMATIC S7)

Man-Machine Communication

Multipoint Interface

NC Kernel

Organization Block (SIMATIC S7)

Process Input Image

Process Output Image

Programmable Logic Controller

System Data Block (SIMATIC S7)

Statement List

A
AB

AS314

AS315

DB

FB

FC

MMC

MPI

NCK

OB

PII

PIQ

PLC

SDB

STL

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) B-1

References

80C166 Assembler Users Guide Vol I,II
80C166 C-Cross Compiler Users Guide
1993 Tasking Software B.V.

SINUMERIK FM-NC/SINUMERIK 840D
Operator's Guide
1994 SIEMENS AG

SINUMERIK FM-NC/SINUMERIK 840D
Description of Functions, Basic Machine (Part 1), P3: Basic PLC Program
1994 SIEMENS AG

Borland C++3.1
C++ Development Package

SIMATIC STEP 7
USER MANUAL
1994 SIEMENS AG

TELEMON 167
User Manual
HITEX System Development
Gesellschaft für angewandte Informatik mbH, D-76229 Karlsruhe, Germany

B
/BSO/

/MMC0/

/PLCGP/

/BC3/

/S7/

/HITEX/

© Siemens AG 1995 All Rights Reserved 6FC5297-3AB60
FB (FB) Index-1

Index

C block generation
block generator 3-33
compiler/linker 3-33
symbol file 3-33

C block location
alternating buffer off 3-37
alternating buffer on 3-36
general information 3-36

C functions
AL_MSG 4-19
ASUP 4-18
BHGDisp 4-20
GET 4-6
GETGUD 4-15
MCP_IFM 4-28
MCP_IFT 4-29
PART_AX 4-24
PI 4-12
POS_AX 4-23
PUT 4-9
RUN_UP 4-3
SpinCtrl 4-26
YDelta 4-25

C library
bit memory functions 3-3
counter functions 3-4
data block functions 3-3
process image functions 3-2
timer-functions 3-4

C project structure 2-7
data types 3-8
error messages

C block 5-5
C library 5-6
linker/locater 5-6

example project rotary table 5-8
execution level source files 3-13
load C block 3-35
load C program 3-38
load PLC basic program 3-38
local data

OB1 5-2
OB10 5-2
OB100 5-4
OB20 5-3
OB35 5-3
OB40 5-3

off-line development environment 2-3
on-line development environment 2-5
on-line monitor

breakpoint handling 3-40
general information 3-39
load monitor block 3-40
operating information 3-42
start monitor 3-40

PLC memory
C memory 3-35
example for PLC memory allocation 3-35
general information 3-35
STEP 7 memory 3-35

program execution levels 3-6
simulation routines 3-24
user stack 5-7
visualization objects 3-17

C

SIEMENS AG Suggestions

Corrections

AUT V24
P.O. Box 3180

For Publication/Manual:

SINUMERIK 840D

D-91050 Erlangen
Fed. Rep. of Germany

C-PLC Programming

Manufacturer Documentation

From

Name:

Description of Functions

Order No.: 6FC5297-3AB60
Edition: 03.96

Company/department

Address:

Telephone: __________ /

Telefax: ________ /

Should you come across any printing errors
when reading this publication, please notify
us on this sheet.

Suggestions for improvements are also
welcome.

Suggestions and/or corrections

Siemens AG
Automation Group
Automation Systems
for Machine Tools, Robots
and Special-Purpose Machines
P.O. Box 3180, D - 91050 Erlangen
Federal Republic of Germany

Siemens quality for software and training to
DIN ISO 9001, Reg. No. 2160-01.
This edition was printed on paper bleached using
an environmentally friendly chlorine-free method.
Copyright Siemens AG 1994 All Rights Reserved
Subject to change without prior notice

Progress
in Automation.
SiemensSiemens Aktiengesellschaft

Order No.: 6FC5297-3AB60
Printed in the Federal Republic of Germany

