Planning Guide 10/2003 Edition

simodrive

AC Induction Motors 1PH4 SIMODRIVE 611

SIEMENS

SIMODRIVE 611

AC Induction Motors 1PH4

Planning Guide

Motor Description 1

Technical Data and Characteristics

Motor Components 3

Dimension Drawings 4

References

Α

2

Index

10.2003 Edition

^a SIMODRIVE[®]Documentation

Printing history

Brief details of this edition and previous editions are listed below.

The status of each edition is shown by the code in the "Remarks" column.

Status code in the "Remarks" column:

- A New documentation
- B Unrevised reprint with new Order No.
- **C** Revised edition with new status

If factual changes have been made on the page since the last edition, this is indicated by a new edition coding in the header on that page.

Edition	Order No. for 1PH4	Remarks
10.03	6SN1197-0AC64-0BP0	Α

This manual is	M (DOCONCD)	
Edition	Order No.	Remarks
03.04	6FC5 298-7CA00-0BG0	С

Trademarks

SIMATIC[®], SIMATIC HMI[®], SIMATIC NET[®], SIROTEC[®], SINUMERIK[®], SIMODRIVE[®], MASTERDRIVES[®] and MOTION–CONNECT[®] are registered trademarks of Siemens AG. Other names in this publication might be trademarks whose use by a third party for his own purposes may violate the rights of the registered holder.

Additional information is available in the Internet under: http://www.ad.siemens.de/mc

This documentation was produced with Interleaf V 7

The reproduction, transmission or use of this document or its contents is not permitted without express written authorization. Offenders will be liable for damages. All rights, including rights created by patent grant or registration of a utility model or design, are reserved.

© Siemens AG 2003. All rights reserved.

Other functions not described in this documentation might be executable in the control. This does not, however, represent an obligation to supply such functions with a new control or when servicing.

We have checked that the contents of this publication agree with the hardware and software described herein. Nonetheless, differences might exist and therefore we cannot guarantee that they are completely identical. The information given in this publication is reviewed at regular intervals and any corrections that might be necessary are made in the subsequent printings. Suggestions for improvement are welcome at all times.

Subject to change without prior notice.

Order No.6SN1197-0AC64-0BP0 Printed in the Federal Republic of Germany Siemens-Aktiengesellschaft

Foreword

Information on the documentation

This document is part of the technical customer documentation developed for the SIMODRIVE drive converter system. All publications are available individually. The documentation list, which includes all Advertising Brochures, Catalogs, Overview, Short Descriptions, Operating Instructions and Technical Descriptions with order number, ordering address and price can be obtained from your local Siemens office.

This document does not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation, operation or maintenance.

Furthermore, the contents of this document shall neither become part of nor modify any prior or existing agreement, commitment or relationship. The sales contract contains the entire obligations of Siemens. The warranty contained in the contract between the parties is the sole warranty of Siemens. Any statements contained herein neither create new warranties nor modify the existing warranty.

Structure of the documentation for 1PH and 1PL motors

The complete Planning Guides for 1PH and 1PL motors can be ordered in paper form.

Title	Order No. (MLFB)	Lan- guage
AC Induction Motors, 1PH and 1PL6	6SN1197-0AC61-0 A P0	German
AC Induction Motors, 1PH and 1PL6	6SN1197-0AC61-0 B P0	English

Table 1-1 Planning Guide with General Section and 1PH and 1PL6 motors

The General Section and the individual motor series are also separately available.

Table 1-2 Planning Guide, individual section

Title	Order No. (MLFB)	Lan- guage
AC Induction Motors, General Section	6SN1197-0AC62-0AP0	German
AC Induction Motors, Motor Section 1PH2	6SN1197-0AC63-0AP0	German
AC Induction Motors, Motor Section 1PH4	6SN1197-0AC64-0AP0	German
AC Induction Motors, 1PH7 Motor Section for SIMODRIVE	6SN1197-0AC65-0AP0	German
AC Induction Motors, Motor Section 1PH7 for SIMOVERT MASTERDRIVES VC/MC	6SN1197-0AC66-0AP0	German
AC Induction Motors, Motor Section 1PL6 for SIMOVERT MASTERDRIVES VC/MC	6SN1197-0AC67-0AP0	German

Start-up software

Start-up software is also available to start-up (commission) AC induction motors when connected to the SIMODRIVE drive converter system.

Order No. [MLFB] for the software	6SN1153-2AX10-DABD5
Order No. [MLFB] for the documentation	6SN1197–0AA30–0□B□

Hotline

If you have any questions please contact the following Hotline:

A&D Technical Support Tel.: +49 (180) 5050–222 Fax: +49 (180) 5050–223 eMail: adsupport@siemens.com

Please send any questions regarding the documentation (suggestions, corrections) to the following fax number:

+49 (9131) 98-2176

Fax form: Refer to the response sheet at the end of the document

Definition of qualified personnel

For the purpose of this document and product labels, a qualified person is a person who is familiar with the installation, mounting, start–up and operation of the equipment and hazards involved. He or she must have the following qualifications:

- Trained and authorized to energize, de-energize, ground and tag circuits and equipment in accordance with established safety procedures.
- Trained in the proper care and use of protective equipment in accordance with established safety procedures.
- Trained in rendering first aid.

Explanation of the symbols

The following danger and warning concept is used in this document:

Danger

This symbol is used in the document to indicate that death, severe personal injury or substantial property damage **will** result if proper precautions are not taken.

Warning

This symbol is used in the document to indicate that death, severe personal injury or property damage **can** result if proper precautions are not taken.

Caution

This symbol is used in the document to indicate that minor personal injury or material damage **can** result if proper precautions are not taken.

Caution

This warning (without warning triangle) indicates that material damage **can** result if proper precautions are not taken.

Notice

This warning indicates that an undesirable situation or condition **can** occur if the appropriate instructions/information are not observed.

Note

In this document, it can be advantageous to observe the information provided in a Note.

Danger and warning information

Danger

- Start–up/commissioning is absolutely prohibited until it has been completely ensured that the machine, in which the components described here are to be installed, fully corresponds to the specifications of Directive 98/37/EC.
- Only appropriately qualified personnel may commission/start-up the SIMODRIVE drive units and the AC motors.
- This personnel must carefully observe the technical customer documentation belonging to this product and be knowledgeable about and carefully observe the danger and warning information.
- Operational electrical equipment and motors have parts and components which are at hazardous voltage levels.
- Hazardous axis motion can occur when working with the equipment.
- All work must be undertaken with the system in a no-voltage condition (powered-down).
- SIMODRIVE drive units are designed for connection to line supplies that are grounded through a low-ohmic connection (TN line supplies). For additional information please refer to the appropriate documentation for the drive converter systems.

Warning

- Perfect and safe operation of these units and motors assumes professional transport, storage, mounting and installation as well as careful operator control and servicing.
- The information provided in catalogs and quotations additionally applies to special versions of units and motors.
- In addition to the danger and warning information/instructions in the technical customer documentation supplied, the applicable domestic, local and plant–specific regulations and requirements must be carefully taken into account.

Caution

- The motors can have surface temperatures of over +80° C.
- This is the reason that no temperature–sensitive components, e.g. cables or electronic components may be in contact or be attached to the motor.
- When handling cables, please observe the following
 - They may not be damaged
 - They may not be stressed
 - They may not come into contact with rotating components.

Caution

- Motors should be connected up according to the circuit diagram provided. It is not permissible to directly connect the motors to the three-phase line supply as this will destroy the motors.
- SIMODRIVE drive units with AC motors are subject, as part of the routine test, to a voltage test in accordance with EN 50178. While the electrical equipment of industrial machines is being subject to a voltage test in accordance with EN60204-1, Section 19.4, all SIMODRIVE drive unit connections must be disconnected/withdrawn in order to avoid damaging the SIMODRIVE drive units.

Note

- SIMODRIVE units with AC motors fulfill, when operational and in dry operating rooms, the Low–Voltage Directive 73/23/EEC.
- SIMODRIVE units with AC motors fulfill, in the configuration specified in the associated EC Declaration of Conformity, EMC Directive 89/336/EEC.

ESDS information

Caution

ElectroStatic Discharge Sensitive devices (ESDS) are individual components, integrated circuits or boards which, when handled, tested or transported, could be destroyed by electrostatic fields or electrostatic discharge.

Handling ESDS boards:

- When handling components which can be destroyed by electrostatic discharge, it must be ensured that personnel, the workstation and packaging are well grounded!
- Electronic boards may only be touched by personnel in ESDS areas with conductive flooring if
 - they are grounded with an ESDS bracelet
 - they are wearing ESDS shoes or ESDS shoe grounding strips.
- Electronic boards should only be touched when absolutely necessary.
- Electronic boards would not be brought into contact with plastics and articles of clothing manufactured from man-made fibers.
- Electronic boards may only be placed on conductive surfaces (table with ESDS surface, conductive ESDS foam rubber, ESDS packing bag, ESDS transport containers).
- Electronic boards may not be brought close to data terminals, monitors or television sets. Minimum clearance > 10 cm).
- · Measuring work may only be carried-out on the electronic boards, if
 - the measuring unit is grounded (e.g. via a protective conductor) or
 - for floating measuring equipment, the probe is briefly discharged before making measurements (e.g. a bare–metal control housing is touched).

Table of Contents

1.1 Applications and features 1PH4/1-13 1.2 Technical design 1PH4/1-14 1.3 Technical version, options 1PH4/1-14 1.3 Technical version, options 1PH4/1-15 1.4 Order designation 1PH4/1-16 1.5 Rating plate data 1PH4/1-16 1.6 Cooling 1PH4/1-12 1.8 Electrical connections 1PH4/1-24 1.9 Mounting and installation 1PH4/2-31 2.1 Technical data 1PH4/2-31 2.1 Technical data 1PH4/2-31 2.2 P/n and M/n diagrams 1PH4/2-33 2.3 Axial and cantilever force diagrams 1PH4/2-44 2.3.1 Cantilever force 1PH410V 1PH4/2-43 2.3.2 Cantilever force 1PH416V 1PH4/2-43 3.3 Cantilever force 1PH413V 1PH4/3-55 3.1 Thermal motor protection 1PH4/3-55 3.1 Thermal motor protection 1PH4/3-63 3.4.1 Applications and features 1PH4/3-63 3.4.2 Moutring a gearbox 1PH4/3-66	1	Motor D	Description	1PH4/1-13
1.2 Technical design 1PH4/1-14 1.3 Technical version, options 1PH4/1-15 1.4 Order designation 1PH4/1-16 1.5 Rating plate data 1PH4/1-16 1.5 Rating plate data 1PH4/1-16 1.6 Cooling 1PH4/1-19 1.7 Bearing design 1PH4/1-24 1.8 Electrical connections 1PH4/1-24 1.9 Mounting and installation 1PH4/2-31 2.1 Technical data 1PH4/2-31 2.2 P/n and M/n diagrams 1PH4/2-33 2.3 Axial and cantilever force diagrams 1PH4/2-44 2.3.1 Cantilever force 1PH410V 1PH4/2-49 2.3.2 Cantilever force 1PH413V 1PH4/2-49 2.3.3 Cantilever force 1PH416V 1PH4/2-52 3 Motor Components 1PH4/3-55 3.1 Thermal motor protection 1PH4/3-55 3.2 Encoder 1PH4/3-66 3.4.1 Applications and features 1PH4/3-66 3.4.2 Mounting a gearbox 1PH4/3-66 3.4.3 Technical data		1.1	Applications and features	1PH4/1-13
1.3 Technical version, options 1PH4/1-15 1.4 Order designation 1PH4/1-16 1.5 Rating plate data 1PH4/1-16 1.6 Cooling 1PH4/1-16 1.6 Cooling 1PH4/1-19 1.7 Bearing design 1PH4/1-22 1.8 Electrical connections 1PH4/1-24 1.9 Mounting and installation 1PH4/2-31 2.1 Technical data 1PH4/2-33 2.2 P/n and Mn diagrams 1PH4/2-33 2.3 Axial and cantilever force diagrams 1PH4/2-44 2.3.2 Cantilever force 1PH410V 1PH4/2-46 2.3.3 Cantilever force 1PH410V 1PH4/2-52 3 Motor Components 1PH4/2-53 3.1 Thermal motor protection 1PH4/3-57 3.3 Holding brake 1PH4/3-63 3.4.1 Applications and features 1PH4/3-63 3.4.2 Mounting a gearbox 1PH4/3-63 3.4.3 Technical data 1PH4/3-63 3.4.4 Electrical connection 1PH4/3-63 3.4.1 Applications and featu		1.2	Technical design	1PH4/1-14
1.4 Order designation 1PH4/1-16 1.5 Rating plate data 1PH4/1-18 1.6 Cooling 1PH4/1-19 1.7 Bearing design 1PH4/1-22 1.8 Electrical connections 1PH4/1-24 1.9 Mounting and installation 1PH4/2-31 2.1 Technical Data and Characteristics 1PH4/2-33 2.2 P/n and M/n diagrams 1PH4/2-33 2.3 Axial and cantilever force diagrams 1PH4/2-46 2.3.1 Cantilever force 1PH410V 1PH4/2-46 2.3.2 Cantilever force 1PH410V 1PH4/2-45 3 Motor Components 1PH4/2-45 3.1 Thermal motor protection 1PH4/3-55 3.2 Encoder 1PH4/3-57 3.3 Holding brake 1PH4/3-63 3.4.2 Mounting a gearbox 1PH4/3-63 3.4.2 Mounting a deatres 1PH4/3-63 3.4.3 Technical data 1PH4/3-67 3.4 Gearbox 1PH4/3-67 3.4.4 Electrical connection 1PH4/3-66 3.4.5 Gearbox for oil circulating		1.3	Technical version, options	1PH4/1-15
1.5 Rating plate data 1PH4/1-18 1.6 Cooling 1PH4/1-19 1.7 Bearing design 1PH4/1-22 1.8 Electrical connections 1PH4/1-24 1.9 Mounting and installation 1PH4/1-27 2 Technical Data and Characteristics 1PH4/2-31 2.1 Technical data 1PH4/2-33 2.2 P/n and M/n diagrams 1PH4/2-33 2.3 Axial and cantilever force diagrams 1PH4/2-44 2.3.1 Cantilever force 1PH410V 1PH4/2-49 2.3.2 Cantilever force 1PH410V 1PH4/2-49 2.3.3 Cantilever force 1PH416V 1PH4/2-52 3 Motor Components 1PH4/2-53 3.1 Thermal motor protection 1PH4/3-55 3.1 Thermal motor protection 1PH4/3-55 3.4 Gearbox 1PH4/3-63 3.4.1 Applications and features 1PH4/3-63 3.4.1 Applications and features 1PH4/3-66 3.4.2 Mounting a gearbox 1PH4/3-66 3.4.3 Technical data 1PH4/3-66 3.4.4		1.4	Order designation	1PH4/1-16
1.6 Cooling 1PH4/1-19 1.7 Bearing design 1PH4/1-22 1.8 Electrical connections 1PH4/1-24 1.9 Mounting and installation 1PH4/1-27 2 Technical Data and Characteristics 1PH4/2-31 2.1 Technical data 1PH4/2-33 2.2 P/n and M/n diagrams 1PH4/2-33 2.3 Axial and cantilever force diagrams 1PH4/2-44 2.3.1 Cantilever force 1PH410V 1PH4/2-49 2.3.2 Cantilever force 1PH410V 1PH4/2-49 2.3.3 Cantilever force 1PH416V 1PH4/3-55 3.1 Thermal motor protection 1PH4/3-55 3.1 Thermal motor protection 1PH4/3-56 3.4 Gearbox 1PH4/3-63 3.4.1 Applications and features 1PH4/3-63 3.4.2 Mounting a gearbox 1PH4/3-63 3.4.3 Technical data 1PH4/3-63		1.5	Rating plate data	1PH4/1-18
1.7 Bearing design 1PH4/1-22 1.8 Electrical connections 1PH4/1-24 1.9 Mounting and installation 1PH4/1-27 2 Technical Data and Characteristics 1PH4/2-31 2.1 Technical data 1PH4/2-33 2.2 P/n and M/n diagrams 1PH4/2-33 2.3 Axial and cantilever force diagrams 1PH4/2-44 2.3.1 Cantilever force 1PH410V 1PH4/2-49 2.3.2 Cantilever force 1PH413V 1PH4/2-49 2.3.3 Cantilever force 1PH413V 1PH4/2-49 2.3.3 Cantilever force 1PH416V 1PH4/2-52 3 Motor Components 1PH4/3-55 3.1 Thermal motor protection 1PH4/3-55 3.2 Encoder 1PH4/3-55 3.4 Applications and features 1PH4/3-63 3.4.1 Applications and features 1PH4/3-63 3.4.2 Mounting a gearbox 1PH4/3-66 3.4.3 Technical data 1PH4/3-67 3.4.4 Electrical connection 1PH4/3-67 3.4.4 Applications and features 1PH4/3-67 <		1.6	Cooling	1PH4/1-19
1.8Electrical connections1PH4/1-241.9Mounting and installation1PH4/1-272Technical Data and Characteristics1PH4/2-312.1Technical data1PH4/2-332.2P/n and M/n diagrams1PH4/2-332.3Axial and cantilever force diagrams1PH4/2-442.3.1Cantilever force 1PH410V1PH4/2-492.3.2Cantilever force 1PH413V1PH4/2-492.3.3Cantilever force 1PH415V1PH4/2-492.3.3Cantilever force 1PH416V1PH4/2-523Motor Components1PH4/3-553.1Thermal motor protection1PH4/3-553.2Encoder1PH4/3-573.3Holding brake1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-633.4.3Technical data1PH4/3-663.4.4Electrical connection1PH4/3-683.4.5Gearbox stage changeover1PH4/3-683.4.6Lubrication1PH4/3-733.4.10Gearbox for frame sizes 132 and 1601PH4/3-733.4.10Gearbox dimensions1PH4/3-744Dimension Drawings1PH4/3-744Dimension Drawings1PH4/3-74IndexIndexIndex		1.7	Bearing design	1PH4/1-22
1.9Mounting and installation1PH4/1-272Technical Data and Characteristics1PH4/2-312.1Technical data1PH4/2-312.2P/n and M/n diagrams1PH4/2-332.3Axial and cantilever force diagrams1PH4/2-442.3.1Cantilever force 1PH410V1PH4/2-442.3.2Cantilever force 1PH410V1PH4/2-492.3.3Cantilever force 1PH416V1PH4/2-523Motor Components1PH4/3-553.1Thermal motor protection1PH4/3-553.2Encoder1PH4/3-573.3Holding brake1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-633.4.4Electrical connection1PH4/3-633.4.5Gearbox stage changeover1PH4/3-683.4.6Lubrication1PH4/3-743.4.10Gearbox dimensions1PH4/3-744Dimension Drawings1PH4/3-744Dimension Drawings1PH4/4-77AReferencesA-81IndexIndex-85		1.8	Electrical connections	1PH4/1-24
2Technical Data and Characteristics1PH4/2-312.1Technical data1PH4/2-312.2P/n and M/n diagrams1PH4/2-332.3Axial and cantilever force diagrams1PH4/2-442.3.1Cantilever force 1PH410V1PH4/2-462.3.2Cantilever force 1PH413V1PH4/2-492.3.3Cantilever force 1PH416V1PH4/2-523Motor Components1PH4/3-553.1Thermal motor protection1PH4/3-553.2Encoder1PH4/3-573.3Holding brake1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-633.4.3Technical data1PH4/3-683.4.4Electrical connection1PH4/3-683.4.5Gearbox stage changeover1PH4/3-703.4.6Lubrication1PH4/3-743.4.10Gearbox for frame sizes 132 and 1601PH4/3-744Dimension Drawings1PH4/3-744Dimension Drawings1PH4/3-74		1.9	Mounting and installation	1PH4/1-27
2.1Technical data1PH4/2-312.2P/n and M/n diagrams1PH4/2-332.3Axial and cantilever force diagrams1PH4/2-432.3.1Cantilever force 1PH410V1PH4/2-442.3.2Cantilever force 1PH413V1PH4/2-492.3.3Cantilever force 1PH416V1PH4/2-523Motor Components1PH4/3-553.1Thermal motor protection1PH4/3-553.2Encoder1PH4/3-573.3Holding brake1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mouning a gearbox1PH4/3-633.4.4Electrical connection1PH4/3-683.4.5Gearbox stage changeover1PH4/3-683.4.6Lubrication1PH4/3-703.4.7Flange dimensions1PH4/3-744Dimension Drawings1PH4/3-74IndexIndexIndex-85	2	Technic	cal Data and Characteristics	1PH4/2-31
2.2P/n and M/n diagrams1PH4/2-332.3Axial and cantilever force diagrams1PH4/2-442.3.1Cantilever force 1PH410V1PH4/2-492.3.2Cantilever force 1PH413V1PH4/2-492.3.3Cantilever force 1PH416V1PH4/2-523Motor Components1PH4/3-553.1Thermal motor protection1PH4/3-553.2Encoder1PH4/3-573.3Holding brake1PH4/3-593.4Gearbox1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-633.4.3Technical data1PH4/3-673.4.4Electrical connection1PH4/3-673.4.5Gearbox stage changeover1PH4/3-673.4.6Lubrication1PH4/3-743.4.7Flange dimensions1PH4/3-743.4.10Gearbox for frame sizes 132 and 1601PH4/3-744Dimension Drawings1PH4/4-77AReferencesA-81IndexIndexIndex-85		2.1	Technical data	1PH4/2-31
2.3Axial and cantilever force diagrams1PH4/2-442.3.1Cantilever force 1PH410V1PH4/2-462.3.2Cantilever force 1PH413V1PH4/2-492.3.3Cantilever force 1PH416V1PH4/2-523Motor Components1PH4/3-553.1Thermal motor protection1PH4/3-553.2Encoder1PH4/3-573.3Holding brake1PH4/3-593.4Gearbox1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-633.4.3Technical data1PH4/3-683.4.4Electrical connection1PH4/3-683.4.5Gearbox stage changeover1PH4/3-693.4.6Lubrication1PH4/3-683.4.7Flange dimensions1PH4/3-713.4.8Connections for oil circulating lubrication, frame size 1001PH4/3-723.4.10Gearbox dimensions1PH4/3-744Dimension Drawings1PH4/4-77AReferencesA-81IndexIndex-85		2.2	P/n and M/n diagrams	1PH4/2-33
3Motor Components1PH4/3-553.1Thermal motor protection1PH4/3-553.2Encoder1PH4/3-573.3Holding brake1PH4/3-593.4Gearbox1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-633.4.3Technical data1PH4/3-633.4.4Electrical connection1PH4/3-633.4.5Gearbox stage changeover1PH4/3-693.4.6Lubrication1PH4/3-703.4.7Flange dimensions1PH4/3-713.4.8Connections for oil circulating lubrication, frame size 1001PH4/3-733.4.10Gearbox dimensions1PH4/3-744Dimension Drawings1PH4/4-77AReferencesA-81IndexIndex-85		2.3 2.3.1 2.3.2 2.3.3	Axial and cantilever force diagramsCantilever force 1PH410VCantilever force 1PH413VCantilever force 1PH413VCantilever force 1PH416V	1PH4/2-44 1PH4/2-46 1PH4/2-49 1PH4/2-52
3.1Thermal motor protection1PH4/3-553.2Encoder1PH4/3-573.3Holding brake1PH4/3-593.4Gearbox1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-633.4.3Technical data1PH4/3-673.4.4Electrical connection1PH4/3-673.4.5Gearbox stage changeover1PH4/3-693.4.6Lubrication1PH4/3-703.4.7Flange dimensions1PH4/3-713.4.8Connections for oil circulating lubrication, frame size 1001PH4/3-733.4.10Gearbox dimensions1PH4/3-744Dimension Drawings1PH4/4-77AReferencesA-81IndexIndex-85	3	Motor 0	Components	1PH4/3-55
3.2Encoder1PH4/3-573.3Holding brake1PH4/3-593.4Gearbox1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-633.4.3Technical data1PH4/3-663.4.4Electrical connection1PH4/3-683.4.5Gearbox stage changeover1PH4/3-693.4.6Lubrication1PH4/3-693.4.7Flange dimensions1PH4/3-713.4.8Connections for oil circulating lubrication, frame size 1001PH4/3-733.4.10Gearbox dimensions1PH4/3-744Dimension Drawings1PH4/4-77AReferencesA-81IndexIndex-85		3.1	Thermal motor protection	1PH4/3-55
3.3Holding brake1PH4/3-593.4Gearbox1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-663.4.3Technical data1PH4/3-673.4.4Electrical connection1PH4/3-683.4.5Gearbox stage changeover1PH4/3-693.4.6Lubrication1PH4/3-703.4.7Flange dimensions1PH4/3-713.4.8Connections for oil circulating lubrication, frame size 1001PH4/3-723.4.9Selector gearbox for frame sizes 132 and 1601PH4/3-744Dimension Drawings1PH4/4-77AReferencesA-81IndexIndex-85		3.2	Encoder	1PH4/3-57
3.4Gearbox1PH4/3-633.4.1Applications and features1PH4/3-633.4.2Mounting a gearbox1PH4/3-633.4.3Technical data1PH4/3-673.4.4Electrical connection1PH4/3-683.4.5Gearbox stage changeover1PH4/3-693.4.6Lubrication1PH4/3-703.4.7Flange dimensions1PH4/3-713.4.8Connections for oil circulating lubrication, frame size 1001PH4/3-723.4.9Selector gearbox for frame sizes 132 and 1601PH4/3-744Dimension Drawings1PH4/4-77AReferencesA-81IndexIndex-85		3.3	Holding brake	1PH4/3-59
A References A-81 Index Index-85	4	3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.4.6 3.4.7 3.4.8 3.4.9 3.4.9 3.4.10	Gearbox Applications and features Mounting a gearbox Technical data Electrical connection Gearbox stage changeover Lubrication Flange dimensions Connections for oil circulating lubrication, frame size 100 Selector gearbox for frame sizes 132 and 160 Gearbox dimensions	1PH4/3-63 1PH4/3-63 1PH4/3-66 1PH4/3-67 1PH4/3-69 1PH4/3-70 1PH4/3-70 1PH4/3-71 1PH4/3-73 1PH4/3-74 1PH4/4-77
Index Index Index	+ ∧	Referer	ייייייייייייייייייייייייייייייייייייי	/ /-4/4* I
	~	Indev	1059	Indox_95

Space for your notes

Motor Description

1.1 Applications and features

Applications

The 1PH4 series is suitable for the closed–loop speed controlled operation of main spindles on machine tools, transfer lines and special–purpose machines.

For compact machine tool designs, the power loss from the electrical drives can have a negative impact on the machining precision. The resulting requirement for cold–running motors resulted in the development of the water–cooled 1PH4 AC main spindle motors.

Features

1PH4 motors are water–cooled squirrel–cage induction motors. As a result of the compact design, high maximum speeds (up to 12000 RPM) can be reached.

Depending on the shaft height, the 1PH4 series of motors has rated outputs of between 7.5 and 52 kW at rated speeds of 1500 RPM.

The power of these water–cooled motors can be increased by up to 40 % over the power of air–cooled motors.

The 1PH4 series has compatible flange and shaft dimensions to the air–cooled 1PH7 AC motors.

Standards, regulations

The appropriate standards and regulations are directly assigned to the functional requirements.

1.2 Technical design

1.2 Technical design

Table 1-1	Standard motors

Technical features Design						
Motor type	Induction motor with squirrel cage rotor					
Type of construction (acc. to IEC 60034-7)	IM B35, IM V15, IM V36					
Degree of protection (acc. to IEC 60034-5)	IP 65 (shaft gland IP 55)					
Cooling	Water cooling (\leq 25 °C, otherwise de–rating)					
Thermal motor protection (acc. to IEC 60034-6)	KTY 84 temperature sensor in the stator winding					
Winding insulation (acc. to IEC 60034)	Temperature rise class F for a cooling medium temperature of +25 °C					
Motor voltage	Max.: 3–ph. 430 V AC					
Motor noise (acc. to DIN 45635) Tolerance +3 dB	up to shaft height 132: max. 69 dB (A) shaft height 160: max. 71 dB (A)					
Speed control range	> 1: 500 000					
Terminal box arrangement	Тор					
Connection type	Motor: via terminal box Encoder: via signal connector					
Encoder system	Integrated optical encoder					
	Speed sensing					
	Indirect position sensing (incremental)					
Balancing	Standard: Full key balancing (dynamic) (acc. to DIN ISO 8821)					
Shaft end	Cylindrical (acc. to DIN 748, Part 3); with keyway and key (acc. to DIN 6885); solid shaft to shaft height 132: Tolerance zone k6 shaft height 160: Tolerance zone m6					
Bearing design (A side)	Double–bearing design ¹⁾ (deep–groove ball bearings and roller bearings)					
Flange version, radial eccentricity	Tolerance N (acc. to DIN 42 955)					
Vibration severity (acc. to IEC 60034-14)	Level R					
Paint finish	Anthracite					

1.3 Technical version, options

Table 1-2	Option
-----------	--------

Technical feature	Design
Terminal box arrangement	Terminal box, mounted on the left or right
Balancing	Half-key balancing (dynamic) (acc. to DIN ISO 8821) Code: "H" at the shaft face
Shaft end	Cylindrical; without keyway and without key (acc. to DIN 748, Part 3); solid shaft Tolerance zone k6 (up to shaft height 132) Tolerance zone m6 (up to shaft height 160)
Bearing design (A side)	Single-bearing design for coupling outdrive or planetary gear mounting; bearing design for increased speeds
Flange version, radial eccentricity	Tolerance R (acc. to DIN 42 955)
Vibration severity (acc. to IEC 60034-14)	Level S (single/double-bearing design) Level SR for shaft heights 100 to 160 (single-bearing design)
Mounted/integrated components	Selector gearbox
	Holding brake
Rating plate	2nd rating plate, supplied loose

¹⁾ Not suitable for use with couplings; minimum cantilever force required.

1.4 Order designation

1.4 Order designation

Motor type, design features and additional data are coded in the order designation.

	1	Ρ	н	4	•		-	4	Ν		2	6	-	Ζ
AC induction motors for main spindle drives								T	T	T	T	T		T
Size														
Pole number														
N = with optical sin/cos encoder -														
Rated speed F = 1500 / min						 								
Winding version 2 = 1PH4						 								
Type of construction 6 = IM B35, IM V15; IM V36						 								

Supplementary data in plain text ______ or in the form of short code(s), refer to the next page

Supplementary data for options

0	otion	Brief designation
Те	rminal box arrangement (when viewing the A side)	
•	Mounted on the righthand side	K09
•	Mounted on the lefthand side	K10
•	The small terminal box and signal connector connections rotated through 90° (cable entry from the A side)	K83
•	The small terminal box and signal connector connections rotated through	
	90°(cable entry from the B side)	K84
•	The small terminal box and signal connector connections rotated through 180°	K85
Be	earing design on the DE	
•	Single bearing design for coupling, planetary gear or for low up to average cantilever forces	K00
•	Single hearing design for increased speeds	L37
•	Radial shaft sealing ring: oiltight	K18
Vi	bration soverity (ass. to IEC 34, 14, DIN V/DE 0530, Bart 14)	
•	Level S for double bearing designs	K05 1) 4)
	Level S for single bearing designs	K02 1) 4)
•	Level SR for single bearing designs	K03 ¹⁾⁴⁾
~		
Sr	Talerance D	K042)
•		KU4 -/
Sł	naft end DE	
•	Shaft end "B" (without keyway)	K42
Ba	alancing	
•	Half key balancing	L69
Ge	earbox ⁵⁾	
•	The motor is prepared for mounting a 2LG43 ZF selector gearbox	K00 ³⁾
Н	olding brake	
•	Motor with mounted holding brake (A side)	G46 ⁴⁾
01	hers	
•	2nd rating plate, supplied loose	K31
•	Without encoder system	H30

1) Automatically includes version K04

- 3)
- For 2LG42 gearboxes (old version), use G97+K00; G97 = non–standard cylindrical shaft end for shaft height 100, WE \varnothing 28 x 60 mm Cannot be combined with a mounted gearbox 4)
- For shaft heights 32 and 160, a sealing compound (e.g. Terostat 93, from Terosan) must be used to establish a seal between the motor and gearbox flanges due to the interrupted sealing edge. 5)

²⁾ Increased shaft precision

1.5 Rating plate data

1.5 Rating plate data

Fig. 1-1 Rating plate (example for 1PH4138), for a description, refer to Table 1-3

Position	Description / Technical data
1	AC induction motor Order No.
2	Standards and Regulations
3	Serial No.
4	Type of construction
5	Degree of protection
6	Temperature rise class
7	Rated voltage [V] and winding configuration
8	Rated current [A]
9	Rated power [kW]
10	Power factor [cosφ]
11	Rated frequency [Hz]
12	Rated speed [RPM]
13	Designation, encoder type
14	Designation, temperature sensor
15	Maximum speed [RPM]
16	Code No. for SIMODRIVE 611 drive converters
17	Cooling data; cooling medium, flow rate
18	Designation, holding brake
19	Supplementary options

 Table 1-3
 Description of the rating plate data

1.6 Cooling

The 1PH4 series is water-cooled in order to achieve a high power density.

The cooling duct geometry is designed so that the stator power losses – and to some extent the rotor losses – are dissipated. The geometry is identical for all built–in motors.

Liquid cooling with a cooling unit is required for operation.

Cooling medium

Water or a low viscosity oil can be used as cooling medium.

If water is used as cooling medium, then the appropriate quantity of additives must be used for anti–corrosion protection and to slow down the growth of algae. The type and quantity of additive should be taken from the manufacturer's specifications for these additives (refer to Table 1-4) and the particular ambient conditions.

Company	Address	Telephone/URL
Tyforop Chemie GmbH	Hellbrookstr. 5a, D–22305 Hamburg	URL: www.tyfo.de
Joh. A. Beckiser Wassertechnik GmbH	Bergstr. 17 D-40699 Erkrath	Tel.: 02104 / 40075
CINCINATI CIMCOOL Cincinati Milacron b. v. / Cimcool Division	Postfach 98 NL–3031 AB Vlaardingen	Tel.: 003110 / 4600660
Fuchs Petrolub AG	Friesenheimer Strasse 17 D-68169 Mannheim	Tel.: 0621 / 3802–0 URL: www.fuchs–oil.com
Hebro Chemie GmbH	Rostocker Straße D-41199 Mönchengladbach	Tel.: 02166 / 6009–0 URL: www.hebro–chemie.de
Hoechst	Refer to the Internet address	URL: www.hoechst.com
Houghton Lubricor GmbH	Werkstrasse 26 D-52076 Aachen	Tel.: 02408 / 14060
Schilling–Chemie GmbH u. Produktions KG	Steinbeißstr. 20 D-71691 Freiberg	Tel.: 07141 / 7030

Table 1-4 Manufacturers of chemical additives

Note

These recommendations involve third–party products which we know to be basically suitable. It goes without saying that similar products with the same quality from other manufacturers can be used. Our recommendation should only be considered as such and not as a specification. We cannot accept any liability for the quality and properties/characteristics of third–party products.

1.6 Cooling

If e.g. Tyfocor is used (Tyforop Chemie GmbH), then 75% water and 25% anticorrosion additive should be used.

When using another cooling medium (e.g. oil) it may be necessary to de-rate the motor so that the thermal motor limit is not exceeded.

The following properties of the cooling medium must be known in order to calculate the de-rating:

•	Specific density	ρ	[kgm ^{–3}]
•	Specific thermal capacity	c _p	[Jkg ⁻¹ K ⁻¹]
•	Kinematic viscosity	ν	[m²/s]

Note

For oil–water mixtures with less than 10% oil, the motor power does not have to be reduced. The cooling medium must be pre–cleaned or filtered in order to prevent the cooling circuit from becoming blocked.

For water–cooled motors, the cooling conditions (intake temperature, liquid quantity, cooling power) must be maintained. If required, the cooling medium should be cleaned using a filter before it is fed to the motor cooling circuit.

Maximum permissible particle size after filtering: 100 μ m

Cooling power and cooling quantity

Туре	Cold water flow [I/min] ± 0.75	Cooling power [W]	Connection	Max. permissible pressure [bar]
1PH4103	6	1900	G 1/4	7
1PH4105	6	2600	G 1/4	7
1PH4107	6	3000	G 1/4	7
1PH4133	8	2750	G 3/8	7
1PH4135	8	3500	G 3/8	7
1PH4137	8	4100	G 3/8	7
1PH4138	8	4500	G 3/8	7
1PH4163	10	4600	G 1/2	7
1PH4167	10	5400	G 1/2	7
1PH4168	10	6200	G 1/2	7

 Table 1-5
 Cooling power and cooling quantity

Cooling medium intake temperature

Recommendation: up to 25 °C

In order to avoid moisture condensation, depending on the ambient temperature, the cooling medium intake temperature can be up to 40 $^\circ\text{C}.$

The rated power P_N is reduced for increased cooling medium temperatures (refer to the Table 1-6).

Table 1-6Rated power as a function of the cooling temperature

Cooling medium temperature [°C]	Rated power [%]
30	100
40	95
50	90
60	85

Cooling system

A cooling system (i.e. heat exchanger) must be used in order to guarantee a cooling medium intake temperature of 25 $^{\circ}$ C. It is possible to operate several motors from a single cooling system.

The cooling system is not included in the scope of supply of the motors. You will find addresses of cooling system manufacturers in Catalog NC 60.

Fig. 1-2 Cooling circuit

1.7 Bearing design

1.7 Bearing design

Standard

Double–bearing design on the A side (deep–groove ball bearings and roller bearings).

The double-bearing design is not suitable for a coupling outdrive.

Bearing versions

Table 1-7Bearing versions

Applications	Bearing/option	Bearing/option	
		Drive end	Non-drive end
 Belt drive Minimum cantilever force required For high cantilever forces 	Standard double-bearing design		
Coupling outdrive or planetary gearReduced cantilever forces permissible	K00, (K02, K03) single-bearing design		
Increased max. speedOutdrive without cantilever force required, e.g. coupling outdrive	L37 single-bearing design "spindle bearings"		

Bearing change intervals (t_{LW})

For single and double bearing designs, for a cooling medium temperature of +25 $^{\circ}$ C, bearing temperature of +85 $^{\circ}$ C and horizontal mounting.

Table 1-8Bearing change intervals for shaft heights 100, 132 and 160

Shaft height	t Double-bearing design		Single-bearin	ng design (K00)	Bearing for in (L	creased speed 37)
[mm]	Average operating speed n _m [RPM]	Average operating speed n _m [RPM]	Average operating speed n _m [RPM]	Average operating speed n _m [RPM]	Average operating speed n _m [RPM]	Average operating speed n _m [RPM]
100	n _m < 2500	2500 < n _m < 6000	n _m < 4000	4000 < n _m < 7000	$n_m \leq 8000$	8000 < n _m <12000
132	n _m < 2000	2000 < n _m < 5500	n _m < 3500	3500 < n _m < 6500	$n_m \leq 6000$	6000 < n _m <10000
160	n _m < 1500	1500 < n _m < 4500	n _m < 3000	3000 < n _m < 5000	$n_{\rm m} \leq 5000$	5000 < n _m <8000
t _{LW} [h]	16000	8000	20000	10000	16000	8000

Grease change intervals

 $0.8 \cdot t_{LW}$ (t_{LW} = grease change interval)

Continuous operating speed

The maximum permissible continuous operational speed $n_{\mbox{S1cont}}$ depends on the bearings and the shaft height.

Table 1-9	Assignment, max.	speed/continuous or	perating speed to	shaft height and bearings
-----------	------------------	---------------------	-------------------	---------------------------

SH [mm]	Double-bearing design [RPM]		Single-bea [RF	ring design PM]	Bearings for inc [RF	creased speeds PM]
	n _{max} 1)	n _{s1cont}	n _{max} 1)	n _{s1cont}	n _{max} 1)	n _{s1cont}
100	7500	5600	9000	6500	12000	10000
132	6700	5200	8000	6000	10000	9250
160	5300	4000	6500	4500	8000	7000

Important

If the motor is operated at speeds between n_{s1cont} and n_{max} , a speed duty cycle with low speeds and standstill intervals is required in order to reliably guarantee that the grease is well–distributed in the bearings.

¹⁾ mechanical limit speed (permissible for 10 min cycle with: 3 min n_{max}, 6 min 2/3 n_{max}, 1 min standstill)

1.8 Electrical connections

1.8 Electrical connections

Connecting-up AC motors

Note

The motors can be fed from a DC link voltage of up to 700 V DC.

The type of terminal box, number of terminals, cross–sections which can be connected, number of auxiliary terminals and the cross–section for the PE connection are listed in the following tables.

Table 1-10 Overview, 1PH4 connection system

Motor type	Number of main terminals	Max. cross–section which can be connected	Terminal strip for temperature sensor	PE connection size/ cable lug width
Shaft height 100	3xM5	16 mm ²	3 terminals	M4/9 mm
Shaft height 132	3xM5	35 mm ² with cable lug connection	3 terminals	M5/15 mm
Shaft height 160	3xM10	70 mm ² with cable lug connection	3 terminals	M6/15 mm

Caution

Carefully observe the current which the motor draws for your particular application! Adequately dimension the connecting cables in compliance with IEC 60204-1.

Power cable

Note

The cables are available in a UL version or for higher mechanical requirements. Technical data, refer to Catalog NC Z.

Connecting-up information

Note

The overall system compatibility is only guaranteed when using shielded power cables

Shields must be incorporated in the protective grounding concept. Protective ground should be connected to open conductors or conductors which are not being used or electrical cables which can be touched. If the brake feeder cables from the SIEMENS range of cable accessories are not used, then the brake conductor cores and shields must be connected to the cabinet ground (open–circuit cables result in capacitive charges!).

Warning

- Before carrying out any work on the AC motor, please ensure that it is powered down and locked–out so that it cannot be accidentally re–started!
- Please observe the rating plate data and the circuit diagram in the terminal box.
- Twisted or three–core cables with additional ground conductor should be used as motor cables. Only as much insulation should be removed from the ends of the conductors so that the insulation remains up to the cable lug or the terminal.
- The connecting cables must be freely arranged in the terminal box so that the protective conductor has a certain amount of excess length and so that the cable conductor insulation cannot be damaged. The connecting cables must be strain–relieved.
- Please ensure that the following minimum air clearances are maintained: Supply voltages up to 500 V: Minimum air distance 4.5 mm
- After the motor has been connected-up, the following must be checked:
 - the inside of the terminal box must clean and free of any pieces of conductor
 - all of the terminal screws must be tight
 - the minimum air distances must be maintained
 - the cable glands must be reliably sealed
 - unused cable entry glands must be closed-off and the sealing elements (e.g. plugs) tightly screwed in
 - all of the sealing surfaces must be in a perfect condition

1.8 Electrical connections

Press drive

Note

For press drives with acceleration rates > 2 g, special measures are required. Please contact your local Siemens office.

Cross-sections

When making connections at the terminal board, the connecting cables must be dimensioned corresponding to the rated current. The size of the cable lugs must be selected to match the dimensions of the terminal studs.

Table 1-11Current load capacity according to EN 60204–1 for PVC–insulated cables
with copper conductors at an ambient temperature 40°C and routing type C
(cables and conductors routed along walls and in cable trays)

I _{rms} at +40 °C [A]	Required cross-section [mm ²]	Comments
11.7	1	
15.2	1.5	-
21	2.5	
28	4	
36	6	Correction factors regarding
50	10	the ambient temperature
66	16	taken from EN 60204–1.
84	25	
104	35	-
123	50	-
155	70	
192	95	
221	120	

1.9 Mounting and installation

Mounting instructions

Warning

This is an electric motor. When electrical equipment is operated, certain parts of these motors are at hazardous voltage levels. If this motor is not correctly handled/operated, this can result in death or severe bodily injury as well as significant material damage. Please carefully observe all of the warning information and instructions provided in this Chapter and on the product itself.

- Only qualified personnel may carry out service or repair work on this motor.
- Before starting any work, the motor must be disconnected from the line supply and grounded.
- Only spare parts, certified by the manufacturer, may be used.
- The specified service/maintenance intervals and measures as well as the procedures for repair and replacement must be carefully maintained and observed.

Warning

- When transporting the motors, use all of the hoisting lugs provided!
- All work should be undertaken with the system in a no-voltage condition!
- The motor should be connected up according to the circuit diagram provided.
- In the terminal box, it must be ensured that the connecting cables are insulated with respect to the terminal board cover.
- After the motor has been installed, the brake (if one is used) must be checked to ensure that it is functioning perfectly!

Note

Flange mounting is only possible using studs and nuts. Clearance M1 to insert the nut between the motor flange and motor frame acc. to DIN 42677 (refer to Table 1-1).

1.9 Mounting and installation

Table 1-12	Flange mounting with threaded studs and nut
------------	---

Shaft height	M1 [mm]	
100	44	
132	50	
160	65	M1

Cable outlet NDE

Fig. 1-3 Cable outlet

Mounting instructions

The following mounting instructions must be carefully observed:

- For high–speed machines, we recommend that the complete unit is dynamically balanced after couplings or belt pulleys have been mounted.
- Use suitable equipment when mounting drive elements. Use the thread at the shaft end.
- Do not apply any blows or axial pressure to the shaft end.
- Especially for high-speed motors with flange mounting, it is important that the mounting is stiff in order that any resonant frequency is positioned as high as possible and it remains above the maximum rotational frequency.
- When motors are flange mounted, if the mounting is too "soft", then this can have a negative impact on the vibration quality of the drive unit. Foot mounting is required on the B side for type of construction IM B35 in order to maintain the vibration severity limit values.
- The sealing caps for the screw holes used to foot-mount 1PH4 motor must be re-located after the motor has been mounted.

Caution

Liquid must be prevented from collecting at the flange – for both vertical and horizontal mounting. If this is not observed, this can have a negative impact on the bearings and bearing grease.

Natural frequency when mounted

The motor is a system which is capable of vibration at its natural frequency. For all 1PH motors, this resonant frequency lies above the specified maximum speed.

When the motor is mounted onto a machine tool, a new system, which is capable of vibration, is created with modified natural frequencies. These can lie within the motor speed range.

This can result in undesirable vibrations in the mechanical drive transmission.

Note

Motors must be carefully mounted on adequately stiff foundations or bedplates. Additional elasticities of the foundation/bedplates can result in resonance effects of the natural frequency at the operating speed and therefore result in inadmissibly high vibration values.

The magnitude of the natural frequency when the motor is mounted depends on various factors and can be influenced by the following points:

- Mechanical transmission elements (gearboxes, belts, couplings, pinions, etc.)
- · Stiffness of the machine to which the motor is mounted
- · Stiffness of the motor in the area around the foot or customer flange
- Motor weight
- Weight of the machine and the weight of the mechanical system in the vicinity of the motor
- · Damping properties of the motor and the machine tool
- Mounting type, mounting position (IM B5; IM B3; IM B35; IM V1; etc.)
- Motor weight distribution, i.e. length, shaft height

1.9 WOULINING AND INSTALLATION	1.9	Mounting	and	instal	lation
--------------------------------	-----	----------	-----	--------	--------

Space for your notes

Technical Data and Characteristics

2.1 Technical data

Motor type	Rated power P _N [kW]	Rated speed n _N [RPM]	Max. ²⁾ speed n _{max} [RPM]	n _{max} ²⁾ with L37 [RPM]	Rated torque M _N [Nm]	Moment of inertia J [kgm ²]	Rated current I _N [A]	ا ₀ [۵]	U _N
01 (11 1 1 1 1 0 0			[RI M]					[73]	[•]
Shaft height 100 m	m	1					r	r	
1PH4103-4NF26	7.5	1500	9000	12000	48	0.017	26	12	265
1PH4105-4NF26	11	1500	9000	12000	70	0.024	38	16	263
1PH4107-4NF26	14	1500	9000	12000	90	0.031	46	19	265
Shaft height 132 m	m								
1PH4133-4NF26	15	1500	8000	10000	95	0.046	55	17	229
1PH4135-4NF26	22	1500	8000	10000	140	0.071	73	26	251
1PH4137-4NF26	27	1500	8000	10000	170	0.085	85	31	265
1PH4138-4NF26	30	1500	8000	10000	190	0.104	102	34	244
Shaft height 160 m	m								
1PH4163-4NF26	37	1500	6500	8000	235	0.17	107	44	286
1PH4167-4NF26	46	1500	6500	8000	293	0.206	120	49	315
1PH4168-4NF26	52	1500	6500	8000	331	0.22	148	59	284

Table 2-1 Technical data of the 1PH4 series

2.1 Technical data

Technical data

Motor type 1PH4	z	nmax 2)	z S	nmax with L37 2)	-	N N	К Ű	ated motol for duty 1 acc. to EN (PN [kV	r power type 60 034) V]	f	ed motor c or duty ty (acc. to EN I N	urrent pe 60 034) [A]	Drive c the r (â	onverter mo notor duty t acc. to EN 6([A]	odule for ype 0 034)
	(RPM)	(RPM)	(MM)	(RPM)	Ð	S	S1	S6-60 %	S6-40 %	S1	S6-60 %	S6-40 %	S1	S6-60 %	S6-40 %
Shaft height	t 100 mr	F													
103-4NF26	1500	0006	48	12 000	12	265	7.5	8.75	10	26	29	32	24/32 ¹⁾	24/32	24/32
105-4NF26			70		16	263	1	12.75	14.75	38	42	47	45/60	45/60	45/60
107-4NF26			06		19	265	14	16.25	18.75	46	52	58	45/60 ¹⁾	45/60	45/60
Shaft height	t 132 mi	۶													
133-4NF26	1500	8000	95	10 000	17	229	15	18	21	55	65	74	60/80	60/80	60/80
135-4NF26			140		26	251	22	26.5	31	73	86	66	85/110	85/110	85/110
137-4NF26			170		31	265	27	32.5	38	85	100	114	85/110	85/110	85/110 ¹⁾
138-4NF26			190		34	244	30	36	42	102	119	136	120/150	120/150	120/150
Shaft height	t 160 m														
163-4NF26	1500	6500	235	8000	44	286	37	45	52.5	107	125	142	120/150	120/150	120/150
167-4NF26			293		49	315	46	55	65	120	138	158	120/150	120/150	120/150 ¹⁾
168-4NF26			331		59	284	52	62.5	73	148	173	197	200/250	200/250	200/250

Table 2-2	Technical data – drive converter assignment,	1PH4
-----------	--	------

If required, use a larger module; refer to the diagram Max. speed for S1 and S6 duty, refer to power-speed diagram; max. continuous operating speed, refer to Table 1–8

⊊ (i

Independent of the duty type, the main spindle AC motors must be continuously cooled in operation.

The dotted lines in the diagrams indicate the power limit of the particular drive converter for the specified AC motor. The power module (PM) is specified.

The output values for a relative power–on duration of 25 %, 40 % and 60 % are specified.

Abbreviation	Units	Description	
P _N	kW	Rated power	
n _N	RPM	Rated speed	
M _N	Nm	Rated torque	
I _N	A	Rated current	
n _{max}	RPM	Maximum speed	
T _{th}	min	Thermal time constant	
J	kgm ²	Moment of inertia	
m	kg	Weight	

Table 2-3 Explanation of the codes

Table 2-4 AC main spindle motor 1PH4103–4NF2

Fig. 2-1 1PH4103–4NF2

Table 2-5 AC main spindle motor 1PH4105–4NF2

Fig. 2-2 1PH4105–4NF2

Table 2-6 AC main spindle motor 1PH4107–4NF2

Fig. 2-3 1PH4107–4NF2

Table 2-7 AC main spindle motor 1PH4133–4NF2

Fig. 2-4 1PH4133–4NF2

Fig. 2-5 1PH4135–4NF2

Table 2-9AC main spindle motor 1PH4137–4NF2

Fig. 2-6 1PH4137–4NF2

Table 2-10 AC main spindle motor 1PH4138–4NF2

Fig. 2-7 1PH4138–4NF2

Table 2-11 AC main spindle motor 1PH4163–4NF2

Fig. 2-8 1PH4163–4NF2

Table 2-12 AC main spindle motor 1PH4167–4NF2

Fig. 2-9 1PH4167–4NF2

Table 2-13 AC main spindle motor 1PH4168–4NF2

Fig. 2-10 1PH4168–4NF2

2.3 Axial and cantilever force diagrams

1PH4 main spindle motors are provided with double bearings on the A side in order to accept high cantilever forces due to belt tension.

For a definition, refer to the Planning Guide "General Section".

Axial force

The force diagrams and tables only apply for standard drive shaft ends; for nonstandard drive shaft ends, the dimensions will be specified corresponding to the permissible force load for each application.

For forces which go beyond these values, please contact your local Siemens office.

Note

When using option L37 (increased speed), it must be ensured that the motors are only suitable for operation without any cantilever force!

Table 2-14	Axial forces F _A	for double bearing	designs (standard)	as a function of the speed
------------	-----------------------------	--------------------	--------------------	----------------------------

Motor type								
1PH410□-4	Speed n in [RPM]	1500	2000	3000	4000	5000	6000	7500
	Axial force FA in [N]	1440	1270	1050	920	830	760	690
1PH413□-4	Speed n in [RPM]	1500	2000	3000	4000	5000	6700	_
	Axial force FA in [N]	1520	1330	1090	950	850	730	-
1PH416□–4	Speed n in [RPM]	1500	2000	3000	4000	5300	-	-
	Axial force FA in [N]	2080	1830	1520	1340	1180	-	-

Forces due to the rotor weight

For an explanation, refer to the Planning Guide "General Section".

Motor type	F _L in [N]	F _C in [N]
1PH4103	125	320
1PH4105	155	320
1PH4107	205	320
1PH4133	215	360
1PH4135	305	360
1PH4137	365	360
1PH4138	445	360
1PH4163	500	520
1PH4167	590	520
1PH4168	665	520

Table 2-15 Force due to weight F_L and alignment force F_C of the rotor

Cantilever force

Caution

When using force transmission elements, which subject the shaft end to a cantilever force, it should be ensured that the **maximum limit values, specified in the cantilever force diagrams, are not exceeded**.

Note

For applications with extremely low cantilever force loads, it must be observed, that the **minimum cantilever force is applied to the motor shaft as specified in the diagrams**. Low cantilever forces can result in the cylindrical roller bearings rolling in an undefined fashion which would result in increased bearing wear.

For these particular applications, single bearing designs should be selected.

The maximum permissible and the minimum cantilever forces are shown in the following diagrams.

2.3.1 Cantilever force 1PH410

Max. continuous operating speed $n_{s1max} = 5600 \text{ RPM}$ Mechanical limit speed n_{max} = 9000 RPM F_Q [N] 5000 n=1500 RPM 4500 n=2000 RPM 4000 n=3000 RPM n=4000 RPM 3500 n=5500 RPM 3000 n=6000 RPM 1) n=7500 RPM 1)-2500 Minimum cantilever force 1000 500 0 70 80 10 20 30 40 50 60 x [mm]

Permissible cantilever forces for double-bearing designs (standard).

Fig. 2-11 Permissible cantilever force F_Q at a distance x from the shaft shoulder for a nominal bearing lifetime of 20 000 h.

¹⁾ Permissible for continuous duty, however with a reduced bearing lifetime

Permissible cantilever forces for 1PH410, single bearing designs (option K00)

Maximum continuous operating speed Mechanical limit speed n_{s1max} = 6500 RPM n_{max} = 9000 RPM

Fig. 2-12 Permissible cantilever force F_Q at a distance x from the shaft shoulder for a nominal bearing lifetime of 20 000 h. ¹

Permissible cantilever forces for 1PH410 \Box , single bearing designs (option K00) as a function of the axial forces

Fig. 2-13 Permissible cantilever force F_Q as a function of the axial force F_A for a nominal bearing lifetime of 20 000 h.

¹⁾ Permissible for continuous duty, however with a reduced bearing lifetime

Permissible cantilever forces for 1PH410, single bearing designs (option K00 with L37)

Maximum continuous operating speed Mechanical limit speed

 $n_{s1max} = 10000 \text{ RPM}$ $n_{max} = 12000 \text{ RPM}$

Fig. 2-14 Permissible cantilever force F_Q at a distance x from the shaft shoulder for a nominal bearing lifetime of 10 000 h ¹⁾

Permissible cantilever forces for 1PH410 \Box , single bearing designs (option K00 with L37) as a function of the axial forces

Fig. 2-15 Permissible cantilever force F_Q as a function of the axial force F_A for a nominal bearing lifetime of 10,000 h.

2.3.2 Cantilever force 1PH413

Permissible cantilever forces for double-bearing designs (standard).

Fig. 2-16 Permissible cantilever force F_Q at a distance x from the shaft shoulder for a nominal bearing lifetime of 20,000 h ¹)

1) Permissible for continuous duty, however with a reduced bearing lifetime

Permissible cantilever forces for 1PH413, single bearing designs (option K00)

Permissible cantilever forces for 1PH413 \square , single bearing designs (option K00) as a function of the axial forces

Fig. 2-18 Permissible cantilever force F_Q as a function of the axial force F_A for a nominal bearing lifetime of 20 000 h.

¹⁾ Permissible for continuous duty, however with a reduced bearing lifetime

Permissible cantilever forces for 1PH413, single bearing designs (option K00 with L37)

Maximum continuous operating speed Mechanical limit speed $n_{s1max} = 9250 \text{ RPM}$ $n_{max} = 10000 \text{ RPM}$

Fig. 2-19 Permissible cantilever force F_Q at a distance x from the shaft shoulder for a nominal bearing lifetime of 10,000 h. ¹

Permissible cantilever forces for 1PH413 \square , single bearing designs (option K00 with L37) as a function of the axial forces

¹⁾ Permissible for continuous operation, however with a reduced bearing lifetime

2.3.3 Cantilever force 1PH416

Permissible cantilever forces for double-bearing designs (standard).

Fig. 2-21 Permissible cantilever force F_Q at a distance x from the shaft shoulder for a nominal bearing lifetime of 20 000 h.

Permissible cantilever forces for 1PH416, single bearing designs (option K00)

Fig. 2-22 Permissible cantilever force F_Q at a distance x from the shaft shoulder for a nominal bearing lifetime of 20 000 h. ¹

Permissible cantilever forces for 1PH416 \Box , single bearing designs (option K00) as a function of the axial forces

¹⁾ Permissible for continuous duty, however with a reduced bearing lifetime

Permissible cantilever forces for 1PH416, single bearing designs (option K00 with L37)

Maximum continuous operating speed Mechanical limit speed n_{s1max} = 7000 RPM n_{max} = 8000 RPM

Fig. 2-24 Permissible cantilever force F_Q at a distance x from the shaft shoulder for a nominal bearing lifetime of 10,000 h.¹⁾

Permissible cantilever forces for 1PH416 \Box , single bearing designs (option K00 with L37) as a function of the axial forces

Fig. 2-25 Permissible cantilever force F_Q as a function of the axial force F_A for a nominal bearing lifetime of 10,000 h.

1) Permissible for continuous duty, however with a reduced bearing lifetime

Motor Components

3.1 Thermal motor protection

Table 3-1	Characteristics	and	technical	data
	Unaracteristics	anu	teennear	uala

Туре	KTY 84
Resistance when cold (20 °C)	approx. 580 Ohm
Resistance when warm (100 °C)	approx. 1000 Ohm
Connection	Through the encoder cable
Response temperature	Alarm at 120 °C Shutdown at 155 °C \pm 5 °C

The change in resistance is proportional to the winding temperature change. For 1PH motors, the temperature characteristic is taken into account in the closed–loop control.

The pre–alarm signal from the evaluation circuit in the SIMODRIVE drive converter can be externally evaluated.

High short–time overload conditions require additional protective measures. This is due to the thermal coupling time of the sensor. If the overload condition $(4 \cdot M_0)$ lasts longer than 4 s, additional protection should be provided.

The temperature sensor cables are included in the encoder cable.

Warning

If the user carries—out an additional high—voltage test, then the ends of the temperature sensor cables must be short—circuited before the test is carried—out! If the test voltage would be connected to only one temperature sensor terminal, then it would be destroyed.

3.1 Thermal motor protection

Warning

The integrated temperature sensor protects the motors from overload conditions up to 4 \cdot I_{0 60K} and speed <> 0.

There is no adequate protection at thermally critical load situations, e.g. a high overload at motor standstill. In this case, other protective measures must be provided, e.g. a thermal overcurrent relay.

If available, reduced data for standstill is specified.

Fig. 3-1 Resistance characteristic as a function of the KTY 84 temperature

3.2 Encoder

Incremental encoders 1 Vpp

Design	Optical encoder system
Use	 Tachometer for speed actual value sensing Indirect measuring system for the position control loop
Coupling	On the non-drive end, integrated in the motor
Output signals (refer to Fig. 3-2)	Incremental track, sinusoidalReference signal
Connection	Connector
Max. possible connecting cable length	50 m
Operating voltage	+ 5 V ± 5 %
Pulse number	2048
Incremental signals	1 Vpp incremental encoder
Accuracy	± 40"

Table 3-2 Characteristics and technical data

Fig. 3-2 Output signals

3.2 Encoder

PIN No.	Signal	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	A+ A- R+ not connected not connected not connected M-Encoder +Temp -Temp P-Encoder B+ B- R- not connected 0 V Sense 5 V Sense not connected	When viewing the connector side (plug contacts)

Connection:	17–pin	flange-mounted	socket	(pin	contacts)
-------------	--------	----------------	--------	------	-----------

Mating connector:6FX2003-0CE17 (socket)Pre-assembled cable: $6FX \square 002-2CA51-\square \square \square 0$ \square \square

3.3 Holding brake

Use

A single–disk brake can be mounted on the A side to hold the motor shaft, without any play, at standstill.

Design

The drive end bearing endshield is supplied with a special output bearing cover as retaining element for the solenoid assembly (brake assembly). Customers can bolt–on the solenoid assembly. The armature disk of the brake should be bolted to the drive–out element (pulley or similar).

The brakes do not have any slip rings and are maintenance–free. Both of the friction surfaces are metallic. Brakes cannot be retrofitted.

Table 3-3	Degree of protection and supply voltage
-----------	---

Degree of protection	IP 00
Supply voltage	24 V DC ±10 %

Mode of operation

The brake operates according to the open-circuit principle. This means that the brake is open when it is in a no-current state.

Only switch in the brake when the motor is at a standstill.

When changing–over the gear ratio, and when the motor is running, the holding brake must be released (no current condition). There is no residual torque after the brake has been released.

After the motor has been mounted, the brake must be checked to ensure that it is functioning perfectly.

Caution

The holding brake is only designed for a limited number of emergency braking operations. It is not permissible to use the brake as operating brake.

Voltage must be connected to the holding brake before the solenoid assembly is withdrawn. This prevents the membrane spring from being overextended.

3.3 Holding brake

Selection data

The holding brakes described here cannot be used together with the two-stage selector gearbox.

Table 3-4	Selecting the	holding	brake
	Ociceung ine	norung	braile

Holding brake for motors, shaft heights 100 to 160	Brief data
The motor is prepared for mounting a holding brake; customers mount the holding brake	G95
Motor with mounted ZF holding brake	G46

Technical data

Shaft height [mm]	ZF type	Order No.	Holding torque [Nm]	Power con- sumption ¹⁾ [W]	Closing time [ms]
100	EB 3M	2LX2 146–0	30	20	100
132	EB 8M	2LX2 145–0	100	34	130
160	EB 8M	2LX2 145–0	100	34	130

Table 3-5 Technical data, holding brake

1) Coil temperature 20 °C

Dimensions of the single-surface holding brake for motors, shaft heights 100 to 160

Fig. 3-3 Mounting a holding brake on the A side of 1PH410□ up to 1PH416□ AC motors as example: The armature disk is mounted to a belt with key (upper half) and to a toothed–belt pulley for tensioning elements (lower half)

3.3 Holding brake

	-									
Motor		Drive shaft end								
1PH4	d	D	I	h	у	d ₁ H8 +/-	d₂ ∅ -0.1	d ₃ 3x offs 120°	d ₄ set by max.	
Shaft height 100 1PH4 103 105 107	38	118	80	77	15	45	94	M6	42	
Shaft height 132 1PH4 133 135 137 138	42	167	110	100	11	70	118	M8	60	
Shaft height 160 1PH4 163 167 168	55	167	110	100	7	70	118	M8	63	

 Table 3-6
 Dimensions for mounting the single–disk holding brake [mm]

3.4 Gearbox

Prerequisites for mounting a gearbox

- Type of construction IM B5, IM B35 or IM V15
- Shaft with key and full-key balancing
- Degree of protection IP 55, prepared for mounting a ZF gearbox

Please contact the gearbox manufacturer if you have questions about gearboxes:

ZF Friedrichshafen AGAntriebstechnik MaschinenbauD-88038 FriedrichshafenTelephone:+49 (75 41) 77 - 0Telefax:+49 (75 41) 77 - 34 70Internet:http://www.ZF-Group.de

3.4.1 Applications and features

Use

A gearbox has to be mounted if

- the drive torque at low speeds is not sufficient.
- the constant power range is not sufficient in order to utilize the cutting power over the complete speed range.

3.4 Gearbox

Gearbox features

- Version as planetary gear
- Gearbox efficiency: Above 95 %
- Gearboxes are available for motors, shaft heights 100 to 160
- Selector gearboxes are available up to a drive output of 100 kW
- Types of construction: IM B35 (IM V15) and IM B5 (IM V1) are possible

Note

The 1PH4 motor series is only designed for load levels in accordance with the specifications (refer to the cantilever force diagrams and maximum torque).

When using elements to increase the force/torque, for example, a gearbox, then the increased mechanical load (e.g. as a result of significant belt tensioning forces) must be able to be handled by the appropriate element. This must be taken into account by the plant/system design engineers. For a gearbox this means that, for example, the gearbox must be able to handle increased belt pre-tensioning forces and transfer them to the machine.

For drive units which are, for example, retained to the gearbox flange or gearbox enclosure, then motors with type of construction IM B35 must be supported on the B side (non–drive end). This support must be tension–free.

Example: AC motor without selector gearbox

For P = constant from n_N = 1500 RPM up to n_{max} = 6300 RPM , a constant power control range greater than 1:4 is possible.

The same AC motor with selector gearbox:

For gearbox stage $i_1 = 4$ and $i_2 = 1$ a constant power control range of greater than 1:16 is possible ($n_N' = 375$ RPM up to $n_{max} = 6300$ RPM).

Gearbox mounted outside the spindle box

The following advantages are obtained by locating the gearbox outside the spindle box:

- Gearbox vibrations are not transferred.
- Separate lubricating systems for the main spindle (grease) and selector gearbox (oil).
- No noise and no temperature fluctuations caused by the gearbox pinion wheels in the spindle box.
- Instead of using belts, the drive power can also be transferred from the gearbox out drive using pinion (on request) or co-axially through a compensating coupling.

Vibration severity level

Motor + gearbox: Tolerance level R (according to DIN ISO 2373)

This also applies if motor tolerance level S is ordered.

Sealing between the motor flange and gearbox flange

For shaft heights 132 and 160, a sealing compound must be used because of the interrupted centering edge (e.g. Terostat 93 from the Teroson company).

3.4 Gearbox

3.4.2 Mounting a gearbox

Fig. 3-5 Mounting a gearbox for 1PH4, shaft heights 100-160

The following applies for the selector gearbox:

Stage I:
$$i_1 = 4$$

Stage II: $i_2 = 1$

Both gearbox ratios are electrically selected and the setting is monitored using limit switches.

The gearbox out drive lies coaxially to the motor shaft.

Torsional play (measured at the gearbox out–drive): Standard: 30 angular minutes (for shaft heights 100-160)

For milling and machining with interrupted cutting, the following special versions are available on request for shaft heights 100-160:

- Lower play: max. 20'
- Lower play for increased requirements: max. 15'

Belt pulley

- The belt pulley should be in the form of a cup wheel.
- The gearbox drive out shaft has a flange with outer centering and tapped holes to retain the belt pulley.
- The complete drive should be designed to be as stiff as possible using large belt cross-sections. This has a positive impact on the smooth running properties of the drive.

3.4.3 Technical data

Туре	Motor shaft height	Order No.	Maximum speed n _{max}	Rated torque (S1 duty)		Max. torque (S6 duty, 10 min duty cycle, max 60% power–on dura- tion)			Weight	Drive–out housing a10	
				Drive	Driv	e out	Drive	Driv	e out		
ZF desig.	[mm]		[RPM]	[Nm]	i=1 [Nm]	i=4 [Nm]	[Nm]	i=1 [Nm]	i=4 [Nm]	[kg]	[mm]
2K120	100	2LG4312	8000 ²⁾ 9000 ³⁾	120	120	480	140	140	560	30	100
2K250	132	2LG4315	6300 8000 ³⁾	250	250	1000	400	400	1600	62	116
2K300	160	2LG4320	6300 8000 ³⁾	300	300	1200	400	400	1600	70	140

 Table 3-7
 Explanation of the connections

Important

When designing the complete drive unit (motor with gear) the gearbox data is decisive.

For 1PH4168 AC motors for example, the torque should be reduced to 300 Nm. For motors, shaft heights 100 and 132, the maximum motor torque should be limited to the permissible gearbox speed 2K120 / 2K250.

Other binding technical data and engineering information/instructions (e.g. lubrication, temperature rise, permissible cantilever forces and examples), please refer to Catalog 2K, Gearboxes from ZF (Zahnradfabrik Friedrichshafen).

¹⁾ Can be supplied with holding brake (option).

²⁾ Higher maximum speed of 8000 ... 9000 RPM for more than 20 % power–on duration is only possible using injection lubrication.

³⁾ Permissible with gearbox oil cooling for gearbox stage i = 1.

3.4 Gearbox

3.4.4 Electrical connection

Power supply of the selector unit:

24 V DC \pm 10 %

The mechanical selector unit requires a separate supply.

Fig. 3-6 Circuit diagram

Connector (included with the gearbox): Manufacturer, Harting; 7-pin + PE, type HAN 7D

Table 3-8	Explanation of the connections

Connector contact No.	Number and designation	In- put	Out- put	Voltage	Current
2 and 3	1 selector unit	0	-	24 V DC	I _{max} = 5 A (pick–up current)
4 and 6	2 limit switches	0	0	24 V DC V _{max} =42 V DC	I _{max} = 5 A

Table 3-9Control sequence when changing–over the gearbox ratios

Gearbox stage selection	Connector contact No.					
	2	3	4/5 (S1)	5/6 (S2)		
When changing the ratio from stage i_2 to i_1						
 a Initial setting (f) b Selection c Mechanical selection executed up to the endstop¹⁾ 	+24 V DC	0 V	0 0 L	L 0 0		
When changing the ratio from stage ${\rm i_1}$ to ${\rm i_2}$	<u>.</u>					
 d Initial setting (c) e Selection f Mechanical selection executed up to the endstop¹⁾ 	0 V	+24 V DC	L 0 0	0 0 L		

L Contact closed

0 Contact open

1) After the switching operation, the limit switch (S1 or S2) outputs a signal to the control to switch–out the selector unit.

3.4.5 Gearbox stage changeover

The following information should be carefully observed when selecting a gearbox stage:

- The gearbox stage may only be changed when the motor/gearbox is at a complete standstill. For example while a tool is being changed.
- During selection, the direction of rotation should be changed approximately 5 times per second. The gears normally mesh at the first direction of rotation change so that changeover times of between 300 and 400 ms can be achieved. An "oscillation" function is provided in the SIMODRIVE 611 drive converter.
- The gearbox stage should not be changed without using the oscillation function.
- The motor may only accelerate 200 ms after the changeover has been completed.
- The changeover operation must be monitored using a time relay. The switching operation must be reversed after 2 s if the switching command was not able to be executed. A time limit of 10 s should be provided for approx. 4 to 5 additional selection operations.

Fig. 3-7 Functional sequence of a gearbox stage changeover

3.4 Gearbox

3.4.6 Lubrication

Splash lubrication

Oil level check:	Visually using a sight glass					
The oil level depends on the mounting position:						
Horizontal and vertical:	Center of the sight glass ¹⁾					
When inclined:	Provide an appropriate mark on the angled oil level indicator (additionally mounted)					
Oil which can be used:	HLP 32 acc. to ISO-VG 68					
Oil drain plugs:	Located at both sides					

Circulating oil lubrication

Circulating lubrication is required in the following cases:

- for continuous duty
- for duty over a longer period of time in one gearbox stage
- · for intermittent duty with shorter standstill times

The type of circulating lubrication used depends on which operating temperature level is required in use. Several applications require a low operating temperature level. We recommend, in these cases, circulating lubrication. The oil intake quantity is between 1 and 1.5 l/min with an oil pressure of approx. 1.5 bar. The diagrams 3-9 and 3-10 indicate the approximate oil intake and outlet positions on the gearbox. The precise dimensions can be taken from the relevant mounting drawings.

For the following gearboxes, circulating lubrication is required when mounted vertically in positions V1 or V3:

- Gearbox 2K120
- Gearbox 2K121
- Gearbox 2K250
- Gearbox 2K300

¹⁾ The oil volume data on the rating plate is only an approximate value.

3.4.7 Flange dimensions

Fig. 3-8 Flange dimensions for AC motors (dimensions refer to the Table 3-10)

Table 3-10 Fla	inge dimension	for AC motors
----------------	----------------	---------------

Two-stage	Motor size	Standard motor companion dimensions						
selector gearbox		act- h	d	I	b ₁	e ₁	a ₁	s ₁
2K120	101, 103, 105, 107	100–0.5	38 k ₆	80	180 j ₆	215±0.5	_	14±0.2
2K250	131, 132, 133, 135, 137	132–0.5	42 k ₆	110	250 h ₆	300 ± 0.5	-	18±0.2
2K300	163, 167	160–0.5	55 k ₆	110	300 h ₆	350 ± 0.5	-	$18\!\pm\!0.2$

3.4 Gearbox

3.4.8 Connections for oil circulating lubrication, frame size 100

 Table 3-11
 Connections for circulating lubrication

Max. pres- sure	Connection oil return	Connection oil intake	Mounting position				
0.2 bar 1.5 bar		M (0.5 dm ³ /min) K/L (1.0 dm ³ /min)	V1 (closed version)				
1.5 bar	D Main direction of rota-						
1.5 bar	E Main direction of rota- tion, clockwise ¹⁾ Main direction of rota- tion, counter-clock- wise ¹⁾	G (1.5 dm ³ /min) Main direction of rota- tion, clockwise F (1.5 dm ³ /min) Main direction of rota- tion, counter–clock- wise	B5 V1				
Note: Circulating oil lubrication is required for certain gearboxes and mounting positions vertical V1 or V3 (refer to Chapter 3.4.6)							

¹⁾ View from the motor to the gearbox drive
3.4.9 Selector gearbox for frame sizes 132 and 160

Fig. 3-10 Selector gearbox with selector unit for frame sizes 132 and 160

Table 3-12	Connections for circulating lubrication
------------	---

Max. pres- sure	Connection oil return	Connection oil intake	Mounting position						
2 bar	Н	P (1.5 dm ³ /min)	3 V						
0.5 bar 1.5 bar 1.5 bar	D Main direction of rota-	M (0.5 dm ³ /min) N (1.5 dm ³ /min)	V1 (closed version)						
1.5 bar	tion, clockwise ¹⁾ E Main direction of rota- tion, counter–clock- wise ¹⁾	G (1.5 dm ³ /min) Main direction of rota- tion, clockwise F (1.5 dm ³ /min) Main direction of rota- tion, counter–clock- wise	B5 V1						
Note: Circulating oil lubrication is required for certain gearboxes and vertical V1 or V3 mounting position (refer to Chapter 3.4.6)									
O connectio	O connection additionally possible (0.5 dm ³ /min)								

¹⁾ View from the motor to the gearbox drive

3.4 Gearbox

3.4.10 Gearbox dimensions

9 Connector, Harting, type HAN 8 U

Motor	•	Dimensions in mm																
Size	Туре	Ø	Ø	Ø	Ø	Ø	Ø											
		a10	a11	a12	a13	e11	e12	f10	f11	f12	f13	f14	act- h	m1	m2	m3	m4	m5
		Drive–out housing	k6		g6	±0.2							Shaft height					
100	1PH4 105	100	100	188	190	215	80	208	104	92	86.6	42.4	100	107	90.5	15	45	-
	1PH4 107																	
132	1PH4 133	116	118	249	250	300	100	270	135	117	89.5	39.5	132	131	100	15	53	60
	1PH4 135																	
	1PH4 137																	
	1PH4 138																	
160	1PH4 163	140	130	249	250	350	100	326	163	145	89.5	39.5	160	131	100	15	53	60
	1PH4 167																	
	1PH4 168																	

 Table 3-13
 Two-stage selector gearbox (dimensions, overview 1)

view 2)

Motor		Dimensions in mm															
Size	Туре	n1	n2	n3	p40	p41	p42	p43	q21	q22	q23	q31	q32	q33	q34	q35	q36
100	1PH4 103	17	80	30	209	92	108	12	42	57–67	75	15	17.5	-	116	26	10
	1PH4 105																
	1PH4 107																
132	1PH4 133	30	108	35	268	78	136	12	46.9	57–66	72.1	20	22.5	129.5	142.5	29	10
	1PH4 135																
	1PH4 137																
	1PH4 138																
160	1PH4 163	30	135	35	324	78	164	17	48.2	74–83	69.8	20	22.5	-	142.5	29	10
	1PH4 167																
	1PH4 168																

Table 3-15	Two-stage selector gearbox (dimensions, overview 3))

Motor			Dimensions in mm												
Size	Туре	q37	q38	q39	q40	q41	q42	q50	q51	s10	s11	s12	z10 Thread	No. of tapped holes	Motor with gearbox, total length k1
100	1PH4 103	18	55	63	18	25	298	136	12	14	14	14	M8	8x45°	714
	1PH4 105														774
	1PH4 107														839
132	1PH4 133	20	58	71	20	25	346.5	136	28	18	18	14	M12	12x30°	805
	1PH4 135														875
	1PH4 137														925
	1PH4 138														960
160	1PH4 163	20	58	71	23	25	346.5	136	28	18	18	14	M12	12x30°	938
	1PH4 167														993
	1PH4 168														1024

3.4 Gearbo	X						
	Space for your notes						

Dimension Drawings

4

Note

Siemens AG reserves the right to change the dimensions of the motors, as part of mechanical design improvements, without prior notice. Dimension drawings can go out–of–date. Updated dimension drawings can be requested at no charge.

1PH4104 in type of construction IM B35	1PH4/4-78
1PH4134 in type of construction IM B35	1PH4/4-79
1PH4164 in type of construction IM B35	1PH4/4-80

1PH410.-4 in type of construction IM B35

1PH413.-4 in type of construction IM B35

References

General Documentation

/BU/ Catalog NC 60

Automation Systems for Machine Tools Ordering document Order No.: E86060–K4460–A101–A8 Order No.: E86060–K4460–A101–A8–7600 (English)

/Z/ Catalog NC Z

SINUMERIK, SIMODRIVE & SIMOVERT MASTERDRIVES Connection system & system components Order No.: E86060–K4490–A001–A7 Order No.: E86060–K4490–A001–A7–7600 (English)

Electronic Documentation

/CD1/ DOC ON CD

The SINUMERIK System (includes all SINUMERIK 840D/810D and SIMODRIVE 611D documents) Order No: 6FC5 298–6CA00–0BG4

Manufacturer/Service Documentation

/PJAS/ Planning Guide, AC Induction Motors

SIMODRIVE, MASTERDRIVES VC/MC Contents: General Section, 1PH2, 1PH4, 1PH7 for SIMODRIVE, 1PH7 for MASTERDRIVES, 1PL6 for MASTERDRIVES Order No: 6SN1197–0AC61–0BP0

/ASAL/ Planning Guide, AC Induction Motors

SIMODRIVE, MASTERDRIVES VC/MC AC Induction Motors, General Section Order No: 6SN1197–0AC62–0BP0

/APH2/ Planning Guide, AC Induction Motors SIMODRIVE AC Induction Motors 1PH2 Order No: 6SN1197–0AC63–0BP0

/APH4/ Planning Guide, AC Induction Motors SIMODRIVE AC Induction Motors 1PH4 Order No: 6SN1197–0AC64–0BP0

/APH7S/Planning Guide, AC Induction MotorsSIMODRIVEAC Induction Motors 1PH7Order No:6SN1197–0AC65–0BP0

/APH7M/ Planning Guide, AC Induction Motors

MASTERDRIVES VC/MC AC Induction Motors 1PH7 Order No: 6SN1197–0AC66–0BP0

/APL6/ Planning Guide, AC Induction Motors

MASTERDRIVES VC/MC AC Induction Motors 1PL6 Order No: 6SN1197–0AC67–0BP0

/PJM2/ Planning Guide, AC Servomotors

SIMODRIVE 611, MASTERDRIVES MC Contents: General Section, 1FT5, 1FT6, 1FK6, 1FK7 Order No: 6SN1197–0AC20–0BP0

/PJAL/ Planning Guide, AC Servomotors

SIMODRIVE 611, MASTERDRIVES MC AC Servomotors, General Section Order No: 6SN1197–0AD07–0BP0 /PFK7/ Planning Guide, AC Servomotors SIMODRIVE 611, MASTERDRIVES MC AC Servomotors 1FK7

Order No: 6SN1197–0AD06–0BP0

/PFK6/ Planning Guide, AC Servomotors

SIMODRIVE 611, MASTERDRIVES MC AC Servomotors 1FK6 Order No: 6SN1197–0AD05–0BP0

/PFT5/ Planning Guide, AC Servomotors SIMODRIVE

AC Servomotors 1FT5 Order No: 6SN1197–0AD01–0BP0

/PFT6/ Planning Guide, AC Servomotors

SIMODRIVE 611, MASTERDRIVES MC AC Servomotors 1FT6 Order No: 6SN1197–0AD02–0BP0

/PPM/ Planning Guide, Hollow Shaft Motors

SIMODRIVE Hollow Shaft Motors for Main Spindle Drives 1PM6 and 1PM4 Order No: 6SN1197–0AD03–0BP0

/PJFE/ Planning Guide, Synchronous Build-in Motors

SIMODRIVE AC Motors for Main Spindle Drives Synchronous Build–in Motors 1FE1 Order No: 6SN1197–0AC00–0BP1

/PMS/ Planning Guide, Motor Spindle

SIMODRIVE ECO Motor Spindle 2SP1 Order No: 6SN1197–0AD04–0BP1

/PKTM/ Planning Guide, Complete Torque Motors SIMODRIVE Complete Torque Motors 1FW3 Order No: 6SN1197–0AC70–0BP1

/PJTM/ Planning Guide, Build–in Torque Motors

SIMODRIVE Build–in Torque Motors 1FW6 Order No: 6SN1197–0AD00–0BP2

/PJLM/ Planning Guide, Linear Motors SIMODRIVE 1FN1 and 1FN3 Linear Motors Order No: 6SN1197–0AB70–0BP3

/PJU/ Planning Guide, Drive Converters

SIMODRIVE 611 Drive Converters Order No: 6SN1197–0AA00–0BP5

/EMV/ Planning Guide, EMC Design Guidelines

SINUMERIK, SIROTEC, SIMODRIVE Order No: 6FC5297–0AD30–0BP1

Operating Instructions 1PH4

Order No.: 610. 43.424.21a

Index

A

Axial force, 1PH4/2-44

В

Bearing change interval, 1PH4, 1PH4/1-22 Bearing design, 1PH4/1-22 Bearing versions, 1PH4/1-22

С

Cantilever force, 1PH4/2-45 Connecting cable, Cross-section, 1PH4/1-26 Connecting-up information, 1PH4/1-25 Connection, 1PH4/1-24 Continuous operating speed, 1PH4/1-23 Cooling, 1PH4/1-19 Cooling circuit, 1PH4/1-21 Cooling medium, 1PH4/1-19 Cooling medium intake temperature, 1PH4/1-21 Cooling power, 1PH4/1-20 Cooling quantity, 1PH4/1-20

D

Danger and warning information, vii Dimension drawings, 1PH4, 1PH4/4-77

Е

Electrical connection, 1PH4/1-24 Encoder, 1PH4/3-57 ESDS instructions, ix

F

Features, 1PH4/1-13 Forces due to the rotor weight, 1PH4/2-45

G

Gearbox, 1PH4/3-63 Electrical connection, 1PH4/3-68 Lubrication, 1PH4/3-70 Technical data, 1PH4/3-67 Gearbox dimensions, 1PH4/3-74 Gearbox stage changeover, 1PH4/3-69 Grease change intervals, 1PH4/1-23

Н

Hotline, vi

I

Incremental encoders, 1PH4/3-57

Μ

Motor components, 1PH4/3-55 Mounting, 1PH4/1-27 Mounting a gearbox, 1PH4/3-66

0

Order designation, 1PH4/1-16

Ρ

Power cable, 1PH4/1-24 Power–speed diagrams, 1PH4/2-33

R

Rating plate, 1PH4/1-18

Т

Technical data, 1PH4/2-31 Technical design, 1PH4/1-14 Torque–speed diagrams, 1PH4/2-33

Space for your notes

То	Recommendations					
SIEMENS AG	Corrections					
A&D MC BMS Postfach 3180	For documentation:					
D-91050 Erlangen	AC Induction Motors 1PH4					
Tel.: +49 (0)180 / 5050 – 222 [Service Support] Fax: +49 (0)9131 / 98 – 2176 [Documentation] email: motioncontrol.docu@erlf.siemens.de	Manufacturer/Service Documentation					
From	Planning Guide					
Name	Order No.: 6SN1197-0AC64-0BP0 Edition: 10.2003					
Company address/Dept.						
Street	If you come across printing errors in this document, please let us know using this form. We would also be grateful for any					
Postal code: City:						
Telephone: /	recommendations and suggestions.					
Telefax: /						

Recommendations and/or corrections

Siemens AG

Automatisierungs- und Antriebstechnik Motion Control Systems Postfach 3180, D – 91050 Erlangen Bundesrepublik Deutschland

© Siemens AG 2003 Subject to change without prior notice Order No.: 6SN1197-0AC64-0BP0

www.ad.siemens.de

Printed in the Federal Republic of Germany