Configuration Manual 12/2005 Edition

simodrive

Three-Phase Motors for Main Spindle Drives Synchronous Built-in Motors 1FE1

SIEMENS

SIEMENS

SIMODRIVE Three–Phase Motors for Main Spindle Drives

Synchronous Built–in Motors 1FE1

Configuration Manual

Description of the 1 **Synchronous Motor** Brief Installation Overview **2** 3 **Electrical Connections** 4 **Order Designations Technical Data** 5 and Characteristics 6 **Dimension Drawings** Α References Index

12.2005 Edition

Printing history

Brief details of this edition and previous editions are listed below.

The status of each edition is shown by the code in the "Remarks" column.

Status code in the "Remarks" column:

- A New documentation
- **B**.... Unrevised reprint with new Order No.
- C Revised edition with new status

Edition	Order No.	Remarks
10.00	6SN1 197–0AC00–0BP0	Α
09.01	6SN1 197–0AC00–0BP1	С
01.02	6SN1 197–0AC00–0BP2	С
12.02	6SN1 197–0AC00–0BP3	С
02.03	6SN1 197–0AC00–0BP4	С
11.04	6SN1 197–0AC00–0BP5	С
12.05	6SN1 197-0AC00-0BP6	С

Trademarks

SIMATIC[®], SIMATIC HMI[®], SIMATIC NET[®], SIROTEC[®], SINUMERIK[®], SIMODRIVE[®] and MOTION–CONNECT[®] are registered trademarks of Siemens AG. Other names in this publication might be trademarks whose use by a third party for his own purposes may violate the rights of the registered holder.

Foreword

Information on SIMODRIVE documentation

This document is part of the Technical Customer Documentation which has been developed for the SIMODRIVE system. All of the documents are available individually. The documentation list, which includes all Advertising Brochures, Catalogs, Overviews, Short Descriptions, Operating Instructions and Technical Descriptions with Order No., ordering address and price can be obtained from your local Siemens office.

This document does not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in connection with installation, operation or maintenance.

We would also like to point-out that the contents of this document are neither part of nor modify any prior or existing agreement, commitment or contractual relationship. The sales contract contains the entire obligations of Siemens. The warranty contained in the contract between the parties is the sole warranty of Siemens. Any statements contained herein neither create new warranties nor modify the existing warranty.

Target group of the Configuration Manual

The Configuration Manual addresses planners and design engineers. It supports you when selecting motors, calculating the drive components, selecting the required accessories as well as when selecting line and motor–side power options.

Technical Support

Should you have any questions about our products, then please contact the following hotline:

European and African time zones

Tel.: +49 (0) 180 5050-222

Fax: +49 (0) 180 5050-223

Internet: http://www.siemens.com/automation/support-request

Asian and Australian time zones

Tel.: +86 1064 719 990

Internet: http://www.siemens.com/automation/support-request

American time zone

Tel.: +1 423 262 2522

Internet: http://www.siemens.com/automation/support-request

If you have any questions regarding the documentation (suggestions, corrections) then please send a fax to the following number:

+49 (9131) 98-63315

Fax form: See the reply form at the end of the brochure.

Note

Country telephone numbers for technical support are provided under the following Internet address:

http://www.siemens.com/automation/service&support

Product information

Up-to-date information about our products can be found on the Internet at the following address:

http://www.siemens.com/motioncontrol

Technical Documentation

If you have any questions regarding the documentation (suggestions, corrections) then please send a fax to the following number:

+49 (9131) 98–63315

Fax form: See the reply form at the end of the brochure.

Correct use

Please carefully note the following:

The equipment may only be used for applications described in the catalog or in the Configuration Manual, and only in combination with devices or components from other manufacturers which have been approved or recommended by Siemens.

The successful and safe operation of this equipment and motors is dependent on professional transport, storage, installation and mounting as well as careful operator control, service and maintenance.

Definition of qualified personnel

For the purpose of this document and product labels, a qualified person is a person who is familiar with the installation, mounting, start–up and operation of the equipment and hazards involved. He or she must have the following qualifications:

- Trained and authorized to energize/de-energize, circuits and equipment in accordance with established safety procedures.
- Trained in the proper care and use of protective equipment in accordance with established safety procedures.
- · First aid training.

Explanation of symbols

The following danger and warning concept is used in this document:

Danger

This symbol is always used if death, severe personal injury or substantial material damage **will** result if proper precautions are not taken.

Warning

This symbol is always used if death, severe personal injury or substantial material damage **can** result if proper precautions are not taken.

Caution

This symbol is always used if minor personal injury or material damage **can** result if proper precautions are not taken.

Caution

The warning note (without a warning triangle) means that material damage **can** occur if proper precautions are not taken.

Notice

This warning note indicates that an undesirable result or an undesirable status **can** occur if the appropriate information is not observed.

Note

In this document, it can be advantageous to observe the information provided in a Note.

Danger and warning information

Danger

- Start–up/commissioning is absolutely prohibited until it has been completely ensured that the machine, in which the components described here are to be installed, is in full compliance with the specifications of Directive 98/37/EC.
- Only appropriately qualified personnel may commission SIMODRIVE units and AC motors.
- This personnel must carefully observe the technical customer documentation belonging to this product and be knowledgeable about and observe the danger and warning information.
- Operational electrical equipment and motors have parts and components which are at hazardous voltage levels.
- When the machine or system is operated, hazardous axis movements can occur.
- All of the work carried–out on the electrical machine or system must be carried–out with it in a no–voltage condition.
- SIMODRIVE drive units are designed for operation on low–ohmic, grounded line supplies (TN line supplies).
- SIMODRIVE drive units with three–phase motors may only be connected to the line supply through residual–current operated circuit–breakers, if corresponding to EN 50178, Chapter 5.2.11.2, it has been clearly proven that the SIMODRIVE unit is compatible with the residual–current operated circuit–breaker.

Warning

- For 1FE1 motors, voltages are present at the motor terminals when the rotor is rotating (as a result of the permanent magnets). The voltage can be up to 2 kV depending on the particular motor type.
- For special versions of the drive units and motors, information and data in the catalogs and quotations additionally apply.
- In addition to the danger and warning information/instructions in the technical customer documentation supplied, the applicable domestic, local and plant-specific regulations and requirements must be carefully taken into account.

Caution

- The motors can have surface temperatures of over +100° C.
- This is the reason that temperature-sensitive components, e.g. cables or electronic components may neither be in contact nor be attached to the motor.
- When handling cables, please observe the following:
 - They may not be damaged,
 - they may not be stressed,
 - they cannot come into contact with rotating parts.

Caution

- SIMODRIVE drive units with three–phase motors are subject to a voltage test, in compliance with EN 50178 as part of a routine test. While the electrical equipment of industrial machines is being subject to a voltage test in accordance with EN60204–1, Section 19.4, all SIMODRIVE drive unit connections must be disconnected/withdrawn in order to avoid damaging the SIMODRIVE drive units.
- Motors should be connected-up according to the circuit diagram provided. They must not be connected directly to the three-phase supply because this will damage them.

Notes

- SIMODRIVE units with three-phase motors fulfill, when operational and in dry operating rooms, the Low-Voltage Directive 73/23/EEC.
- SIMODRIVE units with three-phase motors fulfill, in the configuration specified in the associated EC Declaration of Conformity, the EMC Directive 89/336/EEC.

ESDS information and instructions

Caution

ElectroStatic Discharge Sensitive Devices (ESDS) are individual components, integrated circuits, or modules that can be damaged by electrostatic fields or discharges.

Handling ESDS boards:

- When handling components, make sure that personnel, workplaces, and packaging are well earthed.
- Personnel in ESDS areas with conductive flooring may only handle electronic components if:
 - They are grounded with an ESDS bracelet, and
 - They are wearing ESDS shoes or ESDS shoe grounding straps
- Electronic boards should only be touched if absolutely necessary.
- Electronic boards must not come into contact with plastics or items of clothing containing synthetic fibers.
- Boards must only be placed on conductive surfaces (work surfaces with ESDS surface, conductive ESDS foam, ESDS packing bag, ESDS transport container).
- Electronic boards may not be brought close to data terminals, monitors or television sets. (Minimum clearance >10 cm).
- Measurements must only be taken on boards when:
 - the measuring unit is grounded (e.g. via a protective conductor) or
 - when floating measuring equipment is used, the probe is briefly discharged before making measurements (e.g. a bare-metal control housing is touched).

Disposal

Motors must be disposed of carefully taking into account domestic and local regulations in the normal recycling process or by returning to the manufacturer.

The following must be taken into account when disposing of the motor:

- Oil should be disposed of according to the appropriate regulations for disposing of used oil (no mixing with solvents, cold cleaning agents or remains of paint)
- Components that are to be recycled should be separated according to:
 - Electronics to be disposed of (encoder electronics)
 - Iron to be recycled
 - Aluminum
 - Processed metal parts (gearwheels, motor windings)

Space for your notes

Table of Contents

1	Descript	tion of the Synchronous Motor	1-15
	1.1	Features, system prerequisites	1-15
	1.2	Technical features	1-21
	1.3 1.3.1	Technical data Determining the maximum speed of the 1FE1 built-in motor when operated	1-24 ป
	1.3.2	without VP module Calculating the accelerating (ramp–up time) using the torque/power	1-29
	1.3.3 1.3.4	Characteristic Rotor weights and moments of inertia Dimensions	1-30 1-31 1-33
	1.4 1.4.1 1.4.2 1.4.3	Rotor position identification (RLI)	1-36 1-36 1-36
	1.5	Drive converter pulse frequencies, controller data and de-rating	1-39
	1.6 1.6.1	Cooling Cooling power to be dissipated	1-41 1-45
	1.7	Thermal motor protection	1-48
	1.8	Encoder system	1-52
2	Brief Mo	ounting Overview	2-55
	2.1	Safety information and instructions when mounting	2-55
	2.2	Mounting the rotor (brief description)	2-57
	2.3	Removing the rotor (brief description)	2-58
	2.4	Mounting the stator (brief description)	2-59
	2.5 2.5.1 2.5.2 2.5.3	Mounting the motor spindle (brief description) Magnetic forces Types of construction (IPM, APM) Recommendations for balancing the rotor without sleeve	2-60 2-61 2-63 2-65
	2.6	Packaging and transport	2-67
3	Electrica	al Connection	3-69
	3.1 3.1.1	Safety information/instructions	3-69 3-69
	3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5	Connection system Overview of connections Connecting cables Cable cross–sections and outer cable diameter Recommended grounding Terminal box	3-70 3-70 3-71 3-71 3-76 3-76

	3.3 3.3.1 3.3.2	VP module (VPM, Voltage Protection Module) Technical data of the VP modules Selecting the VP module and determining the brake constant K	3-77 3-78 3-80
	3.3.3	Connecting the VPM 120, VPM 200 and VPM 200 DYNAMIK	3-83
4	Order D	esignation	4-85
5	Technic	al Data and Characteristics	5-87
	5.1	P/n and M/n diagrams	5-87
	5.2	P/n and M/n diagrams for 6–pole 1FE1 motors	5-88
	5.3	P/n and M/n diagrams for 8–pole 1FE1 motors	5-123
	5.4	P/n and M/n diagrams for 4–pole 1FE1 motors	5-130
6	Dimensi	on Drawings	6-181
	6.1	1FE104.–6	6-182
	6.2	1FE105.–6	6-184
	6.3	1FE106.–6	6-189
	6.4	1FE108.–6	6-194
	6.5	1FE109.–6	6-199
	6.6	1FE111.–6	6-204
	6.7	1FE114.–8	6-208
	6.8	1FE105.–4	6-211
	6.9	1FE107.–4	6-214
	6.10	1FE108.–4	6-218
	6.11	1FE109.–4	6-222
	6.12	1FE1104	6-227
	6.13	1FE112.–4	6-230
	6.14	Dimension drawing for VPM 120, VPM 200, VPM 200 DYNAMIK	6-232
Α	Referen	ces	A-233
	Index .	Inde	ex-237

Description of the Synchronous Motor

1.1 Features, system prerequisites

Applications

The 1FE1 series has been developed for directly driven motor spindles. The built–in motor is a compact drive solution where the mechanical motor power is transferred directly to the spindle without any mechanical transmission elements.

The motor is mounted between the spindle bearings so that the motor–spindle assembly has a high degree of stiffness. This means, for example, that C–axis operation for lathes can be implemented using just one drive.

Standard 1FE1 built-in motors are liquid-cooled, permanent-magnet synchronous motors that are supplied as components (refer to Fig. 1-1).

After the motor components have been assembled on the spindle, a complete motor spindle unit is formed.

Fig. 1-1 Components of 1FE1 synchronous built-in motors

Comparison, synchronous/induction motor technology

The most important advantages of synchronous motor technology with respect to induction motor technology are (assuming the same power rating and the same frame size):

- Higher torque (up to 60%) for the same active part volumes (compare, 1PH2 motors). This results in a more compact machine design.
- · Shorter accelerating times for the same moment of inertia
- Lower cooling power required for the same torque

Temperature characteristics, synchronous/induction motor technology

- Typically, synchronous motor rotors have a different temperature characteristic than induction motor rotors. Under no load conditions and at high speeds induction motor rotors are cooler (lower temperature increase) – while under full load conditions, rotors can reach temperatures of up to 250° C.
- In the speed range up to 200% rated speed n ≤ 2 nN, a synchronous motor generates significantly less power loss in the rotor as a comparable induction motor rotor. This applies both for no–load operation as well as for operation with a load. This means that the bearing and rotor temperatures are lower, the spindle and material do not expand as much and a higher degree of precision is achieved.
- In the speed range $\geq 2 \bullet n_N$ up to the maximum motor speed, under no–load conditions, the synchronous motor can have a higher temperature rise than an induction motor. The reason for this is the field weakening current required, that for a synchronous motor must be additionally impressed in the winding in order to weaken the rotor field. For this speed range, typical temperature values for synchronous motors are 110° C in the stator. However, the temperature increase when a load is connected (approx.10...15° C) is significantly lower when compared to an induction motor. The rotor of an induction motor can reach approx. 250° C when a load is connected.
- The temperature characteristic/behavior must be taken into consideration when designing the spindle.

A comparison of torque/power for synchronous/induction motors

Fig. 1-2 Comparison of the torque/power characteristics between 1FE1 built–in motors and induction motors

Permanent-magnet synchronous motors

Depending on the motor type, the rotor has **inner** (IPM) or **outer** (APM) permanent magnets, refer to Chapter 2.5.2.

Motor spindle

A motor spindle generally comprises the following assemblies (refer to Fig. 1-3):

- Spindle housing
- Spindle shaft with bearings
- Built-in motor
- Cooling system
- · Encoder system

Fig. 1-3 Design of a motor spindle

Note

The spindle manufacturer is responsible for designing the bearings, lubrication and cooling.

A ferrite spindle shaft is required in order to achieve the appropriate electrical characteristics.

Features and applications of built-in motors

1FE1 built-in motors can be adapted to a wide range of applications thanks to the different frame sizes. The most important features are:

- As a result of its features, the 4-pole series is especially suitable for high speeds (e.g. milling applications).
- As a result of their features, the 6 and 8–pole series are especially suitable for machining with high torque levels (e.g. turning and grinding applications) and C–axis operation.
- Depending on the maximum EMF (pole wheel voltage > 800 V), a VP module is required (refer to Chapter 3.3).
- Maximum speed: up to 40.000 RPM (dependent on the frame size)
- Maximum rated torque: up to 820 Nm (dependent on the frame size)
- Torque is transmitted to the spindle without any play through a press fit.
- The rotor has been completely machined. The rotor does not have to be machined after mounting/installation.
- Rotors with sleeve are, depending on the version from the manufacturer, prebalanced or not balanced and can be disassembled.
- Rotors **without** sleeves are not balanced. They cannot be disassembled without damage.

System requirements

The following requirements must be fulfilled:

- Open–loop and closed–loop control modules
 - SINUMERIK 840D (from SW 5.3) with SIMODRIVE 611 digital
 - SINUMERIK 840Di with SIMODRIVE 611 universal HR
 - SINUMERIK 840Di with SIMODRIVE 611 universal E HR
 - SINUMERIK 840C (from SW 6.4) with SIMODRIVE 611 digital

Criteria to select the control module:

- ---> High-speed milling applications ---> High Standard
- ---> Machining with C-axis quality: ---> High Performance
- SIMODRIVE 611 universal (from SW 3.3)
- For an EMF ¹⁾ > 830 V, a VP module is required (refer to the motor Order No., Description, refer to Chapter 3.3)

1FE1000-000000-0000

— 0 = no VPM required (EMF < 830 V)

- 1 = VPM required (EMF > 830 V)
- Hollow–shaft measuring system (refer to Chapter 1.8)

Fig. 1-4 System integration

¹⁾ EMF = induced rms phase-to-phase motor voltage

Accuracy

The precision of a motor spindle is defined on one hand by the mechanical design and on the other hand by the control technology and the encoder resolution.

Mechanical system

The machining precision of the spindle that can be achieved is influenced, in addition to the system stiffness (housing, bearings, spindle), also by its smooth running properties. The spindle manufacturer is responsible for the implementation and proving the corresponding performance.

Warning

Static charging of the rotor:

At higher speeds, depending on the spindle design as well as the properties of the spindle bearings (e.g. grease and minimum oil lubrication), the rotor can be statically charged–up! The spindle manufacturer must apply the appropriate counter–measures.

If ceramic bearings are used, the motor shaft must be grounded as otherwise arcing could occur between the shaft and the sensor housing!

Closed–loop control

The decisive closed-loop control factors include:

- The number of encoder signals per spindle revolution
- The precision when mounting and adjusting the encoder system
- The multiplication of the encoder signals
- The sampling time of the current and speed controller

In conjunction with the Performance control (closed–loop) of SIMODRIVE 611 digital, the motor spindle is suitable for C–axis operation.

Degree of protection

The motor components have degree of protection IP00.

The final degree of protection is determined by the mechanical design of the spindle housing of the particular manufacturer. Protection against coming into contact, foreign bodies and water for electrical equipment is specified in accordance with DIN IEC 60034, Part 5.

Recommendation: IP54 (minimum degree of protection)

Magnetic excitation

Forces occur between the rotor and stator of electrical motors due to the inherent magnetic principle of operation.

These forces must be able to be absorbed by the surrounding mechanical assembly. In order to avoid exciting vibration, the motor spindle (spindle shaft, bearings, spindle housing) should be designed to be as stiff as possible.

1.2 Technical features

1.2 Technical features

Technical features	Version
Motor type	Synchronous spindles with permanent-magnet rotor (4, 6 or 8 pole)
Type of construction	Individual components (IM 5110 acc. to DIN IEC 60034–7): Stator, rotor
Degree of protection	IP00 (acc. to DIN IEC 60034, Part 5): Stator, rotor
Cooling (refer to Chapter 1.6)	Water cooling with $T_{\rm H2O}$ = 25 °C acc. to EN 60034–1 and Q = 8 l/min
Standard protection temperature monitoring	2 KTY PTC thermistors in the stator winding (of which 1 is a reserve)
Full protection (optional)	In addition to the standard protection 1 x PTC thermistor triplet (3 sensors in series)
	Can be evaluated, e.g. using a thermal motor protection unit: Order number 3RN1013–1GW10
Universal protection (optional)	- Full protection + - NTC PT3-51-F + - NTC K227
Winding insulation	Temperature Class F acc. to DIN IEC 60034 permits an average winding temperature rise of $\Delta T = 105$ K for a cooling–medium temperature of +5 °C to + 25 °C (recommendation +25 °C)
Balance quality of the rotor (acc. to ISO 1940–1) Rotor with sleeve:	Depending on the particular version, pre–balanced, balance quality G 2.5, reference speed 3600 RPM or non–balanced for complete balancing after mounting and installation
Rotor without sleeve:	Not pre-balanced
Motor voltage (terminal voltage)	Regulated: Maximum 3–ph. 430 V _{rms} Non–regulated: Maximum 3–ph. 420 V _{rms}
Supply voltage of the SIMODRIVE 611 converter system	3-ph 400 V AC ± 10% (i.e. V _{DC link} ≤ 600 V) → All 1FE1 motors can be operated 3-ph 480 V AC +6%, -10% (i.e. V _{DC link} ≤ 680 V) → 1FE1□□-4W can be used → If you wish to use 1FE1□□-6W, please inquire → If you wish to use 1FE1□□-8W, please inquire
Connection type	Free single cables U1, V1, W1 (cable conductors); Length 0.5 m (preferred version) or 1.5 m
Torque ripple 1FE1 –6W 1FE1 –8W 1FE1 –4W	≤ 1 % at 20 RPM and $M_N/2$ referred to the rated torque ≤ 1 % at 20 RPM and $M_N/2$ referred to the rated torque ≤ 2 % at 20 RPM and $M_N/2$ referred to the rated torque

Table 1-1 Technical features, 1FE1 motors

1.2 Technical features

Note

Technical data are system data and are only applicable in conjunction with the specified system components (1FE1 built–in motor, SIMODRIVE 611 digital, SIMODRIVE 611 universal, VP module, etc.).

Scope of supply of the 1FE1 built-in motor

1. a) APM rotor package

or

- b) IPM rotor package
- 2. Stator package with cooling jacket (optional, without cooling jacket)
- 3. Round sealing rings (4x) (for versions with a standard cooling jacket)
- 4. Motor rating plate
- 5. Installation Instructions
- 6. Circuit diagram

Fig. 1-5 Scope of supply of the 1FE1 built-in motor

1.2 Technical features

Motor rating plate

Fig. 1-6 Motor rating plate for 1FE1093–6WN10

1.3 Technical data

Table 1-2 Technical data

Order No. [MLFB] 1FE1	M	Rated torque I [Nm]) 1)	(Rated current I _N [A]		Maximum current	Rated speed	Maximum speed	Power 1) S1/ S6–40%/ S6–25%	Power unit fulfills motor duty type S1 to S6–	
	S1	S6-40%	S6-25%	S1	S6-40%	S6–25%	l _{max²⁾ [A]}	n _N [RPM]	n _{max} [RPM]	P _N [kW]	S6–40% ³⁾ [A]	S6–25% ³⁾ [A]
						6	–pole bu	ilt–in mot	ors			
041-6WM□0	4.5	6	7	13	17.5	21.5	26	15800	20000	7.4/9.9/11.6	24/32/32	24/32/32
042–6WN□0	11	14	16	24	32	40	48	12500	18000	14.4/18.3/20.9	45/60/76	45/60/76
042–6WR□0	11	14	16	19	26	32	38	10000	15000	11.5/14.7/16.8	24/32/32	30/40/51
051–6WN□0	10	12.5	14.4	15	22	27	30	6000	12000	6.3/7.9/9	24/32/32	24/32/32
051–6WK□0	10	12.4	14.0	20	29	36	40	8000	15000	8.3/10.2/11.8	24/32/32	30/40/51
052–6WN□0	20	25.4	29.0	30	44	55	60	5500	12000	11.5/14/16.5	30/40/51	45/60/76
052–6WK□0	18	23.0	26.5	37	54	68	74	7500	15000	14/18/21	45/60/76	45/60/76
054–6WN□0	37	46.0	52.0	60	89	110	120	6000	12000	23/28/33	60/80/102 85/110/127	
061–6WH□0	13	17	21	21	30	37	42	8500	12000	11.6/15/18.5	24/32/32 30/40/51	
061–6WY□0	13	17	21	8	11.5	14	16	3000	5000	4/5.3/6.8	8/10/16 8/10/16	
064–6WN⊡1	56	80.5	97.0	56	80	100	112	4300	12000	25/36/44	60/80/102 85/110/12	
064-6WQ□1	56	81	97.5	43	61	77	86	3400	10000	20/29/34	45/60/76 45/60/76	
082–6WP□0	65	81	95	65	91	112	130	5000	8500	34/41.5/50	85/110/127	85/110/127
082–6WS□0	65	81	95	45	62	76	90	3600	6000	24.5/31/34	45/60/76	45/60/76
082-6WQ□1	65	81	95	60	84	103	120	4300	9000	29.3/36.5/42	60/80/102 60/80/102	
082-6WW□1	65	81	95	30	42	51	60	2200	9000	15/18.5/20	30/40/51	30/40/51
084–6WR⊡1	130	175	200	60	84	103	120	2300	9000	31/40/42	60/80/102	60/80/102
084–6WU□1	130	175	200	45	64	79	90	1700	7000	23/31/32	45/60/76	45/60/76
084–6WX□1	130	175	200	30	42	52	60	1100	4500	15/19/19	30/40/51 30/40/51	
091–6WN□0	28	36	41	24	35	43	48	3500	7000	10/13/15	24/32/32 30/40/51	
091–6WS□0	30	36	41	15	19	23	30	2000	4000	6.3/7.5/8.6	24/32/32	24/32/32
092–6WN□0	66	85	98	58	84	103	116	3500	7000	24/31/36	60/80/102 60/80/102	
092–6WR□1	66	85	98	41	58	72	82	3200	7000	22/28.5/29	45/60/76	45/60/76
093–6WN□0	100	128	147	83	120	150	166	3500	7000	36/47/54	85/110/127	120/150/193
093–6WS□0	100	127	148	53	76	94	106	2000	4000	21/27/31	60/80/102	60/80/102
093–6WV□1	100	129	149	43	60	75	86	1600	7000	17/22/25	45/60/76 45/60/76	
113–6WU□1	150	190	220	60	91	114	124	2100	6500	33/35/35	60/80/102	85/110/127
113–6WX⊡1	150	190	220	43	62	78	86	1400	5700	22/24/24	45/60/76	45/60/76

Table 1-2 Technical data, continued

Order No. [MLFB] 1FE1	Mr	Rated torque _N [Nm]) 1)		Rated current I _N [A]	1	Maximum current	Rated speed	Maximum speed	Power ¹⁾ S1/ S6–40%/ S6–25%	Power unit fulfills motor duty type S1 to S6–	
	S1	S6-40%	S6–25%	S1	S6-40%	S6–25%	I _{max²⁾ [A]}	n _N [RPM]	n _{max} [RPM]	P _N [kW]	S6–40% ³⁾ [A]	S6–25% ³⁾ [A]
114–6WR⊡1	200	258	285	108	160	198	216	2000	6500	42/47/53	120/150/193	120/150/193
114–6WT⊡1	200	258	285	84	123	154	168	1400	6500	29/37/43	85/110/127 120/150/193	
114-6WW□1	200	257	291	58	85	106	116	1000	6000	21/27/30	60/80/102	60/80/102
115–6WT⊡1	265	340	385	85	123	154	170	1500	6500	41.6/45/45	85/110/127	120/150/193
116–6WR⊡1	300	387	440	109	160	200	218	1200	6500	38/48/56	120/150/193	200/250/257
116–6WT⊡1	300	387	440	84	123	154	168	900	5500	28/36/42	85/110/127	120/150/193
116-6WW□1	300	385	435	60	87	108	120	700	4000	22/28/31	60/80/102	85/110/127
	-			-		8-	-pole bu	ilt-in mo	tors			
144–8WL□1	430	620	700	133	193	241	266	1400	6500	63/80/80	200/250/257	200/250/257
145–8WN□1	585	795	890	200	290	360	400	1700	8000	104/125/125	200/250/257 6) -	
145–8WS⊡1	585	795	890	130	188	235	260	1100	5000	67.4/80/80	200/250/257	200/250/257
145-8WQ□1	585	795	890	158	230	285	316	1300	6000	79.6/97/97	200/250/257	-
147–8WN⊡1	820	1110	1240	200	290	360	400	1200	5500	103/125/125	200/250/257 6)	-
147–8WS⊡1	820	1110	1240	130	190	235	260	750	3500	64.4/78/80	200/250/257	200/250/257
147-8WQ□1	820	1110	1240	158	230	285	316	950	4200	81.6/97/97	200/250/257 6)	-
						4-	-pole bu	ilt–in mo	tors			
051–4HC□0	5	7	9	25	34.5	42	50	24000	40000	12.6/17.6/22.6	45/60/76	45/60/76
051–4WN□1	6.5	9	11	12	17	21	24	9500	30000	6.5/8/8	24/32/32	24/32/32
052–4HD□0	12	15	19	57	75	95	114	25000	40000 5)	31.4/35/35	120/150/193	120/150/193
052–4HG□1	12	15	19	44	59	73	88	19000	40000 5)	24/30/34	85/110/127	85/110/127
052–4WK□1	13	17	21	30	39	49	60	12500	30000	17.5/19/19	40/60/76	40/60/76
052–4WN□1	13	18	22	20	26	33	40	8000	30000	11/12/12	30/40/51 30/40/51	
053–4HH□1	18	23	28	46	63	77	92	13500	40000 5)	25.5/33/35	85/110/127 85/110/127	
053–4WN⊡1	20	27	32	29	38	47	58	7900	30000	16.5/18/18	45/60/76 45/60/76	
053–4WJ⊡1	20	27	32	36	49	60	72	11000	30000	23/25/25	60/80/102	60/80/102
072–4WH⊡1	28	40	48	64	96	119	128	9700	24000	28.5/28.5/28.5	5 85/110/127 85/110/127	
072–4WL⊡1	28	40	48	45	68	84	90	6800	24000	20/20/20	60/80/102 60/80/102	
072–4WN□1	28	40	48	36	54	67	72	5500	24000	16/16/16	45/60/76 45/60/76	
073–4WN□1	42	59	71	65	97	120	130	6800	24000	30/30/30	85/110/127	85/110/127
073–4WT⊡1	45	64	75	30	44	55	60	3200	14000	15/15/15	30/40/51	45/60/76
074-4WM⊡1	60	87	99	97	144	176	194	7700	20000	48/51/51 120/150/193 120/150		120/150/193

Table 1-2Technical data, continued

Order No. [MLFB] 1FE1	Mr	Rated torque _N [Nm]	; 1)		Rated current I _N [A]		Maximum current	Rated speed	Maximum speed	Power ¹⁾ S1/ S6–40%/ S6–25%	Power unit fulfills motor duty type S1 to S6–	
	S1	S6-40%	S6–25%	S1	S6-40%	S6–25%	l _{max²⁾ [A]}	n _N [RPM]	n _{max} [RPM]	P _N [kW]	S6–40% ³⁾ [A]	S6–25% ³⁾ [A]
074–4WN□1	56	78	95	91	136	168	182	7000	20000	41/41/41	120/150/193	120/150/193
074–4WT⊡1	60	85	95	53	77	95	106	4100	18000	25.8/28/28	60/80/102	60/80/102
082–4WN□1	42	55	63	42	60	76	84	3500	20000	15.5/15.5/15.5	45/60/76	45/60/76
082–4WR□1	42	55	63	24	34	43	48	2000	11000	8.8/8.8/8.8	24/32/32	30/40/51
083–4WN□1	63	83	95	77	110	137	154	4200	20000	28/28/28	85/110/127	120/150/193
084–4WN□1	84	115	127	105	150	187	210	4300	20000	38/38/38	120/150/193	120/150/193
084–4WP□1	78	110	127	79	120	150	160	4300	20000	35/35/35	85/110/127	120/150/193
084-4WQ□1	84	110	126	83	119	147	166	3400	18000	30/30/30	85/110/127 4)	120/150/193
084–4WT⊡1	84	110	127	60	85	105	120	3000	15000	26.4/26.4/26.4	60/80/102	85/110/127
085–4WN□1	105	139	159	105	150	187	210	3500	18000	38/38/38	120/150/193 120/150/193	
085–4WT⊡1	105	140	160	60	85	105	120	2200	12000	24/24/24	60/80/102	85/110/127
085-4WQ□1	105	140	160	85	120	150	170	3000	16000	33/33/33	85/110/127	120/150/193
092–4WP□1	45	60	73	41	58	72	82	3400	18000	16/16/16	45/60/76	45/60/76
092–4WV□1	50	64	73	24	35	43	48	2000	10000	10.5/10.5/10.5	30/40/51	30/40/51
093–4WH□1	75	105	112	83	120	148	166	4500	18000	35/35/35	85/110/127	120/150/193
093-4WM⊡1	75	103	113	64	92	114	128	3500	18000	27.5/27.5/27.5	85/110/127	85/110/127
093–4WN□1	75	103	112	60	86	107	120	3300	16000	26/26/26	60/80/102	85/110/127
094–4WK□1	100	138	150	108	156	192	216	4400	18000	46/46/46	120/150/193	120/150/193
094–4WL□1	100	138	150	90	130	160	180	3800	18000	40/40/40	120/150/193	120/150/193
094–4WS□1	100	125	140	60	85	105	120	2500	13000	26/26/26	60/80/102	85/110/127
094–4WU□1	95	119	133	45	64	79	90	1800	10000	18/18/18	45/60/76	60/80/102
095–4WN□1	125	172	188	108	156	192	216	3500	18000	46/46/46	120/150/193 120/150/19	
096–4WN□1	150	208	225	120	173	214	240	3300	16000	52/52/52	120/150/193 200/250/25	
103–4WN□1	102	140	155	84	127	158	168	3600	16000	38.5/45/45	85/110/127 120/150/193	
104–4WN□1	136	190	206	120	181	226	240	3800	16000	54/65/65	120/150/193 200/250/25	
105–4WN□1	170	236	260	120	180	221	240	3000	16000	53/65/65	120/150/193 200/250/257	
106–4WN□1	204	280	312	159	240	300	318	3400	16000	72/85/85	200/250/257 –	
106–4WR□1	204	270	300	128	184	227	260	2900	14000	62/66/66	6 200/250/257 200/250/257	
106–4WS⊡1	200	270	300	120	170	210	240	2700	12500	56.5/60/60	0 120/150/193 200/250/257	
106–4WY⊡1	200	270	300	60	85	105	120	1200	6000	25/30/30	60/80/102	85/110/127
124–4WN□1	200	275	312	135	198	247	270	3000	14000	63/75/75	5/75 200/250/257 200/250/2	

Table 1-2	Technical data.	continued
	reconnical data,	Continuou

Order No. [MLFB] 1FE1	Rated torque M _N [Nm] ¹⁾		ted Rated que curren Nm] ¹⁾ I _N [A]		Rated current I _N [A]		Maximum current	Rated speed	Maximum speed	Power 1) S1/ S6–40%/ S6–25%	Power u motor de S1 to	nit fulfills uty type S6–
	S1	S6-40%	S6-25%	S1	S6-40%	S6–25%	I _{max²⁾ [A]}	n _N [RPM]	n _{max} [RPM]	P _N [kW]	S6–40% ³⁾ [A]	S6–25% ³⁾ [A]
125–4WN⊡1	250	345	390	162	240	295	324	3000	14000	78/90/90	200/250/257	-
125–4WP□1	250	345	390	147	215	270	294	2500	12500	65/82/82	200/250/257	-
126–4WN□1	300	410	470	200	295	365	400	3000	14000	94/115/115	200/250/257	-
126–4WP□1	300	410	470	180	265	330	360	2500	12500	78/100/100	200/250/257	-
126-4WQ□1	300	410	470	147	215	270	294	2000	10000	63/82/82	200/250/257	-
^					•			•	•	·	£	£

Winding version: 1, 3, 5 refer to the Order No., Chapter 4

Note: Data specified in this table apply for a cooling jacket with cast winding in conjunction with water cooling

- 2) The maximum current may not be exceeded due to the danger of de-magnetization.
- Assignment, motor drive converter: The current data (S1/S6–40%/Imax [A_{rms}] according to the main spindle load duty cycle with f_T = 3.2 kHz) refer to the drive converter system SIMODRIVE 611 digital/611 universal (refer to Table 1-3).
- Possible with power unit 85/110/127 up to n_{max} = 16000 RPM Possible with power unit 120/150/193 up to n_{max} = 18000 RPM

¹⁾ Data for $\Delta T=105K$

⁵⁾ A series reactor L_{series} is required in order to safety and reliably operate the following motors 1FE1052–4HD.0 and 1FE1052–4HG.1 L_{series} = 0.23 mH, Order No.: 6SE7028–2HS87–1FE0 1FE1053–4HH.1 L_{series} = 0.32 mH, Order No.: 6SE7026–0HS87–1FE0 Note when using the series reactor:

The drive converter setting–data is only applicable in conjunction with the specified reactor. If a third–party reactor is used, the specified data is not guaranteed. If a series reactor is used, this represents a source of heat, surface temperatures can reach up to approx. 100° C. Technical data, refer to Catalog DA 65.10.

⁶⁾ The motor performance is limited by the SIMODRIVE power units that are presently available, (S6–60% duty), compare power unit and motor currents.

Selecting the power units

The required power units are selected according to the peak currents and continuous currents that occur in the load duty cycle. If several motors are operated in parallel with one drive converter, then the summed values of the peak and continuous currents must be taken into account.

Notice

For system configurations, where built-in motors are used together with regulated (closed-loop control) infeed units, electrical oscillations can occur with respect to ground potential.

These oscillations result in increased voltage stressing.

Factors that influence these system oscillations include, among others

- Cable lengths
- Size of the infeed and regenerative feedback module
- Number of axes
- Motor size
- Winding design

If increased voltage stressing occurs or if the main insulation is damaged, an HFD reactor with damping resistor should be used to dampen the system oscillations.

Current [A]	Order No. [MLFB] of the power units
8/10/16	6SN1123–1AA00–0 B A1
24/32/32	6SN1123–1AA00–0 C A1
30/40/51	6SN1123–1AA00–0 D A1
45/60/76	6SN1123–1AA00–0 L A1
60/80/102	6SN1123–1AA00–0 E A1
85/110/127	6SN1123–1AA00–0 F A1
120/150/193	6SN1123–1AA00–0 J A1
200/250/257	6SN1123–1AA00–0 K A1

Table 1-3 Order No. of power units

Using smaller power units

Note

When smaller power units are used, for several motor types, the complete speed range cannot be used (even when the motor utilization is somewhat lower). Please contact your local Siemens office.

1.3.1 Determining the maximum speed of the 1FE1 built–in motor when operated without VP module

Only applicable for built-in motors with Order No. [MLFB] 1FE1

This means that a VP module is required.

If a VP module is not used, then using the subsequent formula, the maximum speed ($n_{max_without_VPM}$) can be determined; motors can be operated up to this speed without having to use a VP module.

 $n_{max_without_VPM}$ [RPM] = $\frac{830 [V] \bullet 1000}{k_E [V/1000 RPM] \bullet \sqrt{2}}$

k_E = voltage constant (refer to Chapter 5)

Caution

Operation above the $n_{max_without_VPM}$ is not permissible without a VP module.

Siemens accepts no liability for any damage that is caused because these danger notes have not been carefully observed.

1.3.2 Calculating the accelerating (ramp–up time) using the torque/ power characteristic

Fig. 1-7 Calculating the accelerating time

 ^{*)} With the 200/250/257 A power unit, the following motors reach, as a maximum, duty type S6–40% (refer to Chapter 1.3, Technical data): 1FE1106–4WN11, 1FE1125–4WN11, 1FE1125–4WP11, 1FE1126–4WN11, 1FE1126–4WP11, 1FE1126–4WQ11; The acceleration time only changes insignificantly.

1.3.3 Rotor weights and moments of inertia

Order No. [MLFB]	Rotor code	Sleeve yes = x	Balancing yes = x	Rotor weight [kg]	Moment of inertia [kg*m ²]
		6–pole built–in	motors		
1FE1041-6W□□□-1□A□				0.33	0.00019
1FE1042-6W□□-1□A□				0.57	0.00033
1FE1051-6W□□-1□A□				1.20	0.00106
1FE1051-6W□□□-1□C□		х	x	1.90	0.00152
1FE1052-6W□□-1□A□				2.20	0.00195
1FE1052-6W□□-1□C□		х	x	3.10	0.00248
1FE1054–6W□□□-1□A□				4.30	0.00380
1FE1061–6W□□□-1□A□				1.10	0.00141
1FE1061-6W00-10B0		х	x	2.10	0.00242
1FE1064–6W□□-1□A□				4.30	0.00553
1FE1082–6W□□□-1□A□				3.60	0.01048
1FE1082–6W□□□-1□B□		х	x	7.70	0.01841
1FE1082-6W000-10C0		х	х	6.80	0.01710
1FE1082-6W000-10D0		х	х	6.10	0.01604
1FE1084–6W□□□-1□A□				7.10	0.02067
1FE1084–6W□□□-1□C□		х	х	12.20	0.03068
1FE1091–6W□□□-1□A□				2.60	0.00814
1FE1091-6W000-10B0		х	х	5.40	0.01423
1FE1091-6W000-10C0		х	х	4.50	0.01293
1FE1092–6W□□□-1□A□				5.00	0.01566
1FE1092–6W□□□-1□B□		х	x	9.10	0.02398
1FE1092–6W□□□-1□C□		х	x	7.50	0.02155
1FE1092–6W□□□-1□Z□	T37	х		8.30	0.02289
1FE1093-6W000-10A0				7.40	0.02317
1FE1093-6W000-10B0		х	х	12.70	0.03346
1FE1093-6W000-10C0		х	х	10.50	0.03017
1FE1093-6W000-10Z0	T06	х		10.50	0.03017
1FE1113-6W000-10D0		х	х	19.80	0.07747
1FE1113-6W000-10E0		х	х	14.50	0.06512
1FE1114–6W□□□-1□A□				12.70	0.06239
1FE1114–6W□□-1□B□		х	x	24.90	0.09843
1FE1114–6W□□□-1□C□		х	х	19.60	0.08650
1FE1114–6W□□□-1□Z□	T46	х		22.40	0.09342
1FE1114–6W□□□-1□Z□	T49	х		20.80	0.08971

Table 1-4 Rotor weight and moment of inertia
--

Order No. [MLFB]	Rotor code	Sleeve yes = x Balancing yes = x		Rotor weight [kg]	Moment of inertia [kg*m ²]	
1FE1114–6W□□□-1□Z□	T52	x		18.60	0.08353	
1FE1115–6W□□□-1□C□		x	x	23.80	0.10503	
1FE1116–6W□□□-1□A□				18.90	0.09285	
1FE1116-6W000-10B0		x	x	35.80	0.14152	
1FE1116-6W000-10C0		х	х	28.20	0.12445	
	8	3–pole built–in n	notors	1		
1FE1144-8W000-10A0				14.50	0.11447	
1FE1145-8W000-10C0		x	x	28.30	0.21636	
1FE1147-8W000-10C0		x	х	37.70	0.28823	
	2	1–pole built–in n	notors	1		
1FE1051-4W000-10A0				0.70	0.00057	
1FE1051–4H□□□-1□A□				0.60	0.00045	
1FE1052–4W□□□-1□A□				1.35	0.00110	
1FE1052–4H□□□-1□A□				1.15	0.00087	
1FE1053-4W000-10A0				2.00	0.00163	
1FE1053-4H000-10A0				1.70	0.00128	
1FE1072–4W□□□-1□A□				2.20	0.00287	
1FE1073-4W000-10A0				3.30	0.00430	
1FE1074–4W□□□-1□A□				4.40	0.00573	
1FE1082–4W□□□-1□A□				3.10	0.00559	
1FE1083–4W□□□-1□A□				4.70	0.00847	
1FE1084–4W□□□-1□A□				6.20	0.01118	
1FE1085–4W□□□-1□A□				7.70	0.01388	
1FE1092–4W□□□-1□R□				3.80	0.00916	
1FE1093-4W000-10A0				7.50	0.01694	
1FE1093-4W000-10R0				5.60	0.01350	
1FE1094–4W□□□-1□A□				9.60	0.02168	
1FE1094–4W□□□-1□R□				7.50	0.01808	
1FE1095–4W□□□-1□A□				11.70	0.02642	
1FE1095-4W000-10R0				9.30	0.02242	
1FE1096-4W000-10A0				13.90	0.03139	
1FE1096–4W□□□-1□R□				11.20	0.02700	
1FE1103-4W000-10A0				5.30	0.01589	
1FE1104–4W□□□-1□A□				7.00	0.02098	
1FE1105-4W00-10A0				8.70	0.02608	
1FE1106-4W00-10A0				10.50	0.03147	
1FE1124–4W□□□-1□A□				12.10	0.05112	

Table 1-4Rotor weight and moment of inertia, continued

Order No. [MLFB]	Rotor code	Sleeve yes = x	Balancing yes = x	Rotor weight [kg]	Moment of inertia [kg*m ²]
1FE1125-4W000-10A0				15.00	0.06337
1FE1126–4W□□□-1□A□				18.00	0.07604

Table 1-4Rotor weight and moment of inertia, continued

1.3.4 Dimensions

Fig. 1-8 Dimensions of 1FE1 motors (refer to Table 1-5 and Table1-6); Dimension drawings, refer to Chapter 6

Order No. [MLFB]	L	D	D _A	d _i	d*	d**	d**	d**		d	**	
of the built–in motors.	[mm]	[mm]	[mm]	–. A ⊔. [mm]	–. B ⊔. [mm]	–. C ⊔. [mm]	–. D ⊔. [mm]	–. ヒ ⊔. [mm]	[mm]			
1FE1										•		
6-pole built-in moto	rs				Rot	or stand	ard slee	ves,	Ro	otor spec	ial sleeve	es,
				inner diameter balanced			inner diameter unbalanced ¹⁾					
041–6W −1BA□	107	95	85	44	-	-	_	_	-	_	-	_
042–6W −1BA□	157	95	85	44	_	—	Ι	-	-	-	Ι	Ι
051–6W −1B□□	170	115	103.5	42	_	33	Ι	-	-	-	-	Ι
052–6W −1B□□	220	115	103.5	42	_	33	-	-	-	-	-	-
054–6W −1BA□	320	115	103.5	42	_	_	-	_	-	_	-	-
061–6W −1B□□	130	130	118	58	48	-	-	-	-	-	-	-
064–6W −1BA□	280	130	118	58	_	-	-	-	-	-	-	-
082–6W −1B□□	195	190	170	93	67	74	80		-	-		
084–6W −1B□□	295	190	170	93	_	74	Ι	-	-	_	I	-
091–6W −1B□□	150	205	180	92	67	80	Ι	-	-	_	I	-
092–6W −1B□□	200	205	180	92	67	80	-	-	74 (T37)	-	-	-
093–6W −1B□□	250	205	180	92	67	80	-	_	-	80.1 (T06)	-	_
113–6W −1B□□	260	250	220	120	-	_	80	105.2	-	-	-	-
114–6W −1B□□	310	250	220	120	82	102	-	-	92 (T46)	98 (T49)	105 (T52)	110 (T55)
115–6W −1B□□	360	250	220	120	_	102	Ι	-	-	_	-	-
116–6W −1B□□	410	250	220	120	82	102	Ι	-	-	-	-	-
8-pole built-in moto	rs									I		
144–8W −1BA□	340	310	280	166.7	-	—	-	-	_	-	-	-
145–8W –1BC□	390	310	280	-	-	150.3	_	-	125 (T62)	140.3 (T70)	_	-
147–8W –1BC	490	310	280	_	_	150.3	-	_	-	-	_	-
A = without rotor sleeve B = with rotor sleeve, dimensions, refer to column d* C = with rotor sleeve, optional, dimensions, refer to column d**C□ D= with rotor sleeve, optional, dimensions, refer to column d**D□ E = with rotor sleeve, optional, dimensions, refer to column d**E□												

Table 1-5 Dimensions of 1FE1 built-in motors, 6-/8-pole

1) On request

Order No. [MI FB] of the		D	Da	d:	d:
built-in motors.	-	2	DA	–.□ A .	–.□R.
	[mm]	[mm]	[mm]	[mm]	[mm]
4-pole built-in motors					
1FE1051–4H –1BA	130	120	106	46	-
1FE1051–4W –1BA	130	120	106	46	-
1FE1052–4H –1BA	180	120	106	46	_
1FE1052–4W –1BA	180	120	106	46	_
1FE1053–4H –1BA	230	120	106	46	-
1FE1053–4W −1BA□	230	120	106	46	_
1FE1072–4W −1BA□	185	155	135	58	_
1FE1073–4W –1BA	235	155	135	58	_
1FE1074–4W −1BA□	285	155	135	58	_
1FE1082–4W –1BA	190	180	160	68	_
1FE1083–4W −1BA□	240	180	160	68	_
1FE1084–4W –1BA	290	180	160	68	_
1FE1085–4W −1BA□	340	180	160	68	_
1FE1092–4W −1BR□	200	205	180	_	80
1FE1093–4W −1B□□	250	205	180	72	80
1FE1094–4W −1B□□	300	205	180	72	80
1FE1095–4W −1B□□	350	205	180	72	80
1FE1096–4W −1B□□	400	205	180	72	80
1FE1103–4W –1BA	265	230	200	96	_
1FE1104–4W −1BA□	315	230	200	96	-
1FE1105–4W –1BA	365	230	200	96	_
1FE1106-4W1BA	415	230	200	96	_
1FE1124–4W –1BA	315	270	240	110	_
1FE1125–4W –1BA□	365	270	240	110	-
1FE1126-4W1BA	415	270	240	110	_
	A = withou	er 4, Order No.	limensions refer	to column d _i –.	⊐A.

Table 1-6	Dimensions of 1FE1 built-in motors, 4-pole
-----------	--

1.4 Rotor position identification (RLI)

1.4 Rotor position identification (RLI)

For incremental measuring systems, the controller automatically carries-out a rotor position identification (RLI) each time before the system is powered-up. This is necessary in order to determine the electrical field angle to start the synchronous motor.

For 1FE1 motors, two RLI techniques can be used:

- Saturation-based rotor position identification (this is the technique selected as default in the SIMODRIVE system)
- Motion-based rotor position identification routine

Note

For a detailed description, refer to the Description of Functions, SIMODRIVE 611 digital and SIMODRIVE 611 universal, Drive Functions.

1.4.1 Saturation–based rotor position identification

- This functions both for rotors that can freely rotate as well as for rotors that are mechanically locked.
- The accuracy when determining the rotor position depends on the magnetic characteristics of the motor.
- A minimum current is required for the rotor position identification, i.e. when selecting the power unit and motor, the following must apply:

Rated current (S1 current), power unit \geq 50 % rated motor current.

• When using series reactors or for motors with a low degree of saturation, the accuracy when determining the rotor position is low or the RLI does not provide any result at all.

1.4.2 Motion–based rotor position identification routine

- The rotor must be able to freely rotate.
- The rotor position is determined with a high accuracy.
- Independent of the magnetic motor characteristics.
- The quality of the result is not influenced when using series reactors.
1.4.3 Special issues regarding rotor position identification (RLI) for specific motors

For various high–speed main spindle synchronous motors, (low–inductance motors and for motors with series reactor belonging to the high–speed 2–series), e.g.:

– 1FE104⊡–6WN10–	
– 1FE1052–4H□□□	(high–speed 2–series)
– 1FE1053–4H□□□	(high-speed 2-series)

the electrical rotor position angle cannot be determined with sufficient quality using the saturation-based rotor position identification routine. Although the saturation-based RLI is, for these motors, sufficient to start the motor, it isn't accurate enough to achieve the optimum efficiency.

There are two alternative strategies when operating the specified motors:

Note

Software prerequisites for both of these strategies:

The drive software must support both of these RLI versions – i.e. saturation–based and motion–based techniques; from software release 6.x

1. Changing-over the RLI technique from saturation-based to motion-based.

Prerequisites:

The rotor **must be free to rotate when powering–up**. If this cannot be reliably done in operation, because e.g. in the case of a fault, the spindle is blocked by the tool, then the motion–based RLI cannot be used.

- 2. Determining the angular commutation offset using motion-based RLI and operationally starting the motor using saturation-based RLI.
 - Prerequisites:

Encoder with zero mark (the zero mark is used for fine commutation).

Description:

When commissioning the motor for the first time or when re-commissioning it, the precise commutation angle is determined using motion-based RLI. In this case, the motor must be able to freely rotate. After the commutation angle has been precisely determined and saved in the machine data, then the saturation-based RLI is selected. The saturation-based RLI technique is normally used. After it has been powered-up, the motor initially operates using the less accurate commutation angle; at the latest after one revolution after it crosses the zero mark for the first time, the saved (precise) commutation angle is read-in.

1.4 Rotor position identification (RLI)

Procedure:

- 1. Changing–over the RLI technique from saturation–based to motion–based; set MD1075 to "3".
- 2. Activating the zero mark for the fine commutation; MD1011, set bit 12 to "1" and bit 13 to "0".
- 3. Before enabling the motor, activate the "commissioning support"; set MD1017 to "1".
- 4. The angular commutation offset is automatically entered into the machine data.

Then: Change–over the RLI technique from motion–based to saturation–based; set MD1075 to "1".

Notice

When disassembling the encoder (spindle service/maintenance), the commutation angle must be re-determined (qualified personnel must carry-out this work).

1.5 Drive converter pulse frequencies, controller data and de-rating

The SIMODRIVE power units are used according to the main spindle load duty cycle (drive converter pulse frequency $f_T = 3.2$ kHz).

The power units listed in Table 1-7 must be de–rated (reduced current) for a drive converter basic fundamental frequency $f_U < 0.5$ Hz. This is for thermal reasons.

Table 1-7 Selection help for the de–rating for the drive converter basic fundamental frequency $f_U < 0.5$ Hz

1FE1□□ n [IC-4	< 15	< 15	< 15		< 15	< 15
1FE1□□ n [II-6IIII [RPM]	< 10	< 10	< 10		< 10	< 10
1FE1□□ n [□ ─−8 □□□□ [RPM]	< 7.5	< 7.5	< 7.5		<7.5	< 7.5
Drive con frequen	nverter pulse ncy f _T [kHz]	3.20	4.00	5.33		6.40	8.00
6SN112□-1	1AA00–0JA1	110/130/150	101/119/138	86/101/1	17	73/87/100	55/65/75
6SN112□-1	1AA00–0KA1	155/180/220	142/165/202	121/140/	171	103/120/147	78/90/110
Note: f_V [kHz]Drive converter basic fundamental frequency $f_V = 0.$ Hz —> n = 15 RPM for 4–pole built–in motors (1FE100–4000) $fU = 0.5$ Hz —> n = 10 RPM for 6–pole built–in motors (1FE100–60000) $fU = 0.5$ Hz —> n = 7.5 RPM for 8–pole built–in motors (1FE100–80000)]			

Drive converter pulse frequencies and de-rating

The rated motor current is the basis when selecting the power unit.

The power unit de-rating should be taken into account for the following speeds:

- n > 16000 RPM for 4–pole built–in motors
- n > 10600 RPM for 6–pole built–in motors
- n > 8000 RPM for 8–pole built–in motors

At higher speeds, the power unit can no longer supply the specified current. Depending on the selected maximum speeds, the de-rating according to Table 1-8 should be taken into account. If required, the next larger power unit should be used.

1.5 Drive converter pulse frequencies, controller data and de-rating

Note

Depending on the maximum motor speed, in order to achieve optimum control behavior, a drive converter pulse frequency f_{T} according to Table 1-8 must be selected.

Table 1-8 Selection help for de-rating at high speeds

1FE1000-40000 ¹⁾	≤ 16000	≤ 20000	≤ 26500	≤ 32000	≤ 40000
	≤ 10600	≤ 13300	≤ 17700	≤ 21300	≤ 26600
n _{max} [RPM]					
1FE1□□□-8□□□□ n _{max} [RPM]	≤ 8000	≤ 10000	≤ 13300	≤ 16000	≤ 20000
Drive converter pulse frequency f _T [kHz] ¹⁾	3.20	4.00	5.33	6.40	8.00
6SN1 12□-1AA00-0CA1	24/32/32	22/29/29	18/23/23	14/19/19	10/13/13
6SN1 12□-1AA00-0DA1	30/40/51	28/37/47	24/32/41	21/28/36	17/22/28
6SN1 12□-1AA00-0LA1	45/60/76	42/56/70	36/48/61	32/42/53	25/33/42
6SN1 12□-1AA00-0EA1	60/80/102	55/73/94	47/62/79	40/53/68	30/40/51
6SN1 12□-1AA00-0FA1	85/110/127	79/102/117	68/88/102	60/77/89	47/61/70
6SN1 12□–1AA00–0JA1	120/150/193	110/138/177	93/117/150	80/100/129	60/75/97
6SN1 12□–1AA00–0KA1	200/250/257	183/229/236	156/195/200	133/167/171	100/125/129

Power units with currents $I_{S1}/I_{S6-40}/I_{max}$ [A_{rms}]

1) Exception

To ensure optimum operation, for the following motors, the following setting data must be taken into account.

Motor type	Drive converter pulse fre- quency f _T [kHz]	Current controller clock frequency [kHz]
1FE1042-6WN10	8	Standard
1FE10524HD10	8	16; MD 1000 = 2
1FE1053-4HH10	8	16; MD 1000 = 2

1.6 Cooling

An extremely high power density is achieved for liquid–cooled motors.

The stators of built–in motors are liquid cooled. The user connects the duct, used for cooling, to the cooling circuit. The cooling duct geometry is designed so that the stator power losses are dissipated.

Cooling media

Water or low viscosity oils can be used as cooling media (carefully observe any de-rating required).

If water is used as cooling medium, then the appropriate quantity of additives must be used for anti–corrosion protection and to slow down the growth of algae. The type and quantity of additive should be taken from the manufacturer's specifications for these additives (refer to table 1-9) and the particular ambient conditions.

Company	Address	Telephone/URL
Tyforop Chemie GmbH	Hellbrookstr. 5a, D–22305 Hamburg	URL: http://www.tyfo.de
Joh.A. Beckiser Wassertechnik GmbH	Bergstr. 17 D–40699 Erkrath	Tel.: +49 (0)2104 / 40075
CINCINNATI CIMCOOL Cincinnati Milacron b. v./ Cimcool Division	Postfach 98 NL–3031 AB Vlaardingen	Tel.: 003110 / 4600660
Fuchs Petrolub AG	Friesenheimer Strasse 17 D–68169 Mannheim	Tel.: +49 (0)621 / 3802–0 URL: http://www.fuchs–oil.com
Hebro Chemie GmbH	Rostocker Straße D–41199 Mönchengladbach	Tel.: +49 (0)2166 / 6009–0 URL: http://www.hebro–chemie.de
Fa. Hoechst	Refer to the Internet address	URL: http://www.hoechst.com
Houghton Lubricor GmbH	Werkstrasse 26 D–52076 Aachen	Tel.: +49 (0)2408 / 14060
Schilling–Chemie GmbH u. Produktions KG	Steinbeißstr. 20 D–71691 Freiberg	Tel.: +49 (0)7141 / 7030

Table 1-9 Manufacturers of chemical additives

Note

The cooling mediums and cooling medium supplements are third–party products; we neither know that they basically suitable for the application nor do we provide any guarantee It is the responsibility of the user to select and use suitable cooling mediums and chemical additives. The cooling medium and additives must be compatible to the materials used to feed the cooling medium on the motor and machine sides. In conjunction with the following materials, the mediums to be used must first be discussed with the cooling medium manufacturer.

Table 1-10	List of materials of the motor-side	1FE1	cooling	water	circuit
------------	-------------------------------------	------	---------	-------	---------

Cooling jacket circuit	Material
Cooling jacket	Steel or aluminum, depending on the type
O rings	FPM (Viton)

If, for example, Tyfocor (Tyforop Chemie GmbH) is used, then 75% water and 25% anti–corrosion agent should be used.

When using other cooling media (e.g. oil), the following data should be determined and the motor de-rating (reduced output) should be clarified with your local Siemens office:

•	Specific gravity	ρ	[kg/m ³]
•	Specific thermal capacity	C_P	[kJ/(kg·K)]
•	Dynamic viscosity at the cooling medium intake temperature	η	[Pa·s]
•	Cooling–medium intake temperature	[°C]	1
•	Thermal conductivity coefficient	λ	[W/(m·K)]
•	Flow rate	\dot{V}	[l/min]
•	For third-party cooling jacket	Coo	oling jacket geometry required

Note

The motor power still does not have to be reduced for oil – water mixtures with less than 10 %. The cooling medium must be pre–cleaned or filtered in order to prevent the cooling circuit from becoming blocked.

The maximum permissible particle size after filtering should be 100 μ m.

Flow rate

An adequate thermal transition is achieved with a flow rate of 8 l/min.

1.6

Cooling

Cooling medium pressure

Maximum steady-state cooling-medium pressure:	0.7 MPa (7.0 bar)
Pressure drop (this is automatically obtained):	approx. 0.03 MPa (0.3 bar)

Cooling-medium intake temperature

In order to prevent moisture condensation, the cooling-medium intake temperature must be greater than the ambient temperature.

 $T_{cool} > T_{environ} \leq 40 \ ^{\circ}C$

The motors are designed in accordance with EN 60034–1 for operation up to 25 °C cooling medium temperature, maintaining all of the motor data. Operation up to 40 °C cooling medium temperature is possible with de–rating (reduced power).

Fig. 1-9 Influence of the cooling–medium intake temperature on M_N as a percentage

Cooling system

A cooling system (i.e. heat exchanger) must be used in order to guarantee a cooling medium intake temperature of 25 $^{\circ}$ C. It is possible to operate several motors from a single cooling system.

The cooling systems are not included in the scope of supply of 1FE1 built–in motors. A list of addresses of cooling system manufacturers is provided in Catalog NC 60.

Fig. 1-10 Cooling circuit

1.6.1 Cooling power to be dissipated

The values specified in Table 1-11 refer to a cooling–medium temperature of 25 $^\circ\text{C}$ and S1 duty.

The cooling powers to be dissipated at maximum speed and rated speed are specified in the following table. Intermediate values can be linearly estimated proportional to the speed.

Motor type	Cooling power to be dissipated [W] at the maximum speed	Cooling power to be dissipated [W] at the rated speed				
6–pole built–in motors						
1FE1041-6WM10	1100	900				
1FE1042-6WN10	1400	1400				
1FE1042-6WR10	1400	1400				
1FE1051–6WK10	1500	1400				
1FE1051–6WN10	1500	1300				
1FE1052–6WK10	2800	2500				
1FE1052–6WN10	2400	2200				
1FE1054–6WN10	4200	4200				
1FE1061-6WH10	1600	1300				
1FE1061-6WY10	1200	1000				
1FE1064–6WN11	4300	2800				
1FE1064–6WQ11	3200	3000				
1FE1082–6WP10	3300	2600				
1FE1082–6WQ11	3300	2500				
1FE1082-6WS10	2500	2300				
1FE1082–6WW11	3300	2200				
1FE1084–6WR11	5500	3800				
1FE1084–6WU11	5000	3800				
1FE1084–6WX11	4000	3300				
1FE1091–6WN10	2000	1500				
1FE1091-6WS10	1800	1300				
1FE1092–6WN10	3000	3000				
1FE1092-6WR11	3000	2300				
1FE1093-6WN10	3600	3400				
1FE1093-6WS10	3600	3400				
1FE1093-6WV11	4000	3000				
1FE1113-6WU11	4000	2800				

Table 1-11 Cooling power to be dissipated

Motor type	Cooling power to be dissipated [W] at the maximum speed	Cooling power to be dissipated [W] at the rated speed
1FE1113–6WX11	3800	2700
1FE1114-6WR11	4600	4100
1FE1114–6WT11	4600	4100
1FE1114-6WW11	4600	4100
1FE1115–6WT11	5800	4500
1FE1116-6WR11	6700	5500
1FE1116-6WT11	6000	5500
1FE1116-6WW11	5000	5000
	8-pole built-in motors	
1FE1144-8WL11	8500	6000
1FE1145-8WN11	10000	7500
1FE1145-8WQ11	9500	7200
1FE1145-8WS11	7500	7000
1FE1147–8WN11	10000	8500
1FE1147-8WQ11	10000	8500
1FE1147-8WS11	8500	8500
	4-pole built-in motors	
1FE1051-4HC10	2000	1500
1FE1051–4WN11	1400	900
1FE1052-4HD10	3200	3000
1FE1052-4HG11	3200	2300
1FE1052–4WK11	2800	1600
1FE1052–4WN11	2800	1600
1FE1053-4HH11	3800	3600
1FE1053-4WN11	3800	2200
1FE1053–4WJ11	3800	2200
1FE1072–4WH11	3200	2000
1FE1072-4WL11	3200	2200
1FE1072–4WN11	3200	2200
1FE1073–4WN11	4500	2700
1FE1073-4WT11	2800	2400
1FE1074–4WM11	5000	3500
1FE1074–4WN11	5000	3500
1FE1074–4WT11	3800	2500
1FE1082–4WN11	2600	2000

Table 1-11 Cooling power to be dissipated, continued

Motor type	Cooling power to be dissipated [W] at the maximum speed	Cooling power to be dissipated [W] at the rated speed
1FE1082-4WR11	2000	2000
1FE1083-4WN11	3600	2800
1FE1084-4WN11	4600	3600
1FE1084-4WP11	5000	3600
1FE1084–4WQ11	4600	3600
1FE1084-4WT11	4200	3600
1FE1085–4WN11	5000	4100
1FE1085–4WQ11	5000	4100
1FE1085–4WT11	4000	4000
1FE1092-4WP11	3300	1900
1FE1092-4WV11	2000	1700
1FE1093–4WH11	4500	3100
1FE1093–4WM11	4500	3500
1FE1093–4WN11	4000	3100
1FE1094–4WK11	5300	3700
1FE1094-4WL11	5300	3700
1FE1094-4WS11	3500	3500
1FE1094–4WU11	3000	3000
1FE1095–4WN11	6500	4500
1FE1096–4WN11	6500	5000
1FE1103–4WN11	4500	3300
1FE1104–4WN11	5000	4000
1FE1105–4WN11	6000	4700
1FE1106–4WN11	8000	5500
1FE1106-4WR11	7500	5000
1FE1106-4WS11	7000	4800
1FE1106–4WY11	5000	5000
1FE1124–4WN11	6000	4500
1FE1125-4WN11	7500	5000
1FE1125-4WP11	7000	4800
1FE1126-4WN11	9000	6000
1FE1126-4WP11	8000	5800
1FE1126–4WQ11	7000	5500

Table 1-11	Cooling	power	to be	dissipated.	continued

1.7 Thermal motor protection

The stator winding can be supplied with the following motor protection to sense (measure) and monitor the motor temperature:

- Standard protection: 2 x KTY 84
- Full protection (option): 2 x KTY 84 + 1 x PTC thermistor triplet (3 sensors in series)
- Universal protection (option): 2 x KTY 84

+ 1 x PTC thermistor triplet + NTC PT3–51F

+ NTC K227/33k/A1

Order No., refer to Chapter 4.

Caution

At extremely low speeds or when a load is applied when the motor is stationary, all 3 motor phases must be monitored. This monitoring function must be realized using the PTC thermistor triplet.

Notice

The PTC and NTC thermistors are ESDS components. Please carefully note the ESDS information and instructions in the Foreword.

Note

At rated load, the winding temperature can reach up to 150 °C.

Temperature evaluation using a KTY 84 (Standard protection)

Notice

Full motor protection is not guaranteed when only a KTY 84 is used.

Under rated load conditions, the winding temperature can reach approx. 150°C. The winding (temperature Class F) is designed for this operating state.

Using a KTY 84 thermistor, the motor is protected against overload while operational.

The drive converter senses and evaluates the motor temperature using the KTY 84 sensor signal. An external tripping/evaluation unit is not required. The PTC thermistor function is monitored.

1. Pre-alarm temperature

When the pre–alarm temperature is exceeded, the drive converter signals this using an appropriate fault signal. This fault signal must be externally evaluated. The signal is withdrawn if the motor temperature < pre–alarm temperature.

If the pre–alarm temperature is exceeded for longer than 240 s (standard setting) or longer than the parameterized time, then a fault signal is issued and the drive is tripped (powered–down). A detailed description is provided in the following documentation "Description of Functions, SIMODRIVE I611, Motor Temperature Monitoring".

2. Motor limit temperature

When the motor limit temperature exceeds 160°C, the drive converter shuts down and signals this using an appropriate fault signal.

Designation	Description		
Туре	KTY 84		
Resistance when cold (20 °C)	approx. 580 Ω		
Resistance when warm (100 °C)	approx. 1000 Ω		
Connection (refer to Fig. 1-11)	Using the encoder cable		
Cable cross–section Outer diameter	0.22 mm ² 1.2 mm		
Temperature characteristic	$\begin{bmatrix} U \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		

Table 1-12 Technical data of the KTY 84 NTC thermistor

Temperature evaluation using the PTC thermistor triplet (full motor protection, option)

For special applications (e.g. when a load is applied with the motor stationary or for extremely low speeds), the temperature of all of the three motor phases must be additionally monitored using a PTC thermistor triplet.

The PTC thermistor triplet must be evaluated using an external tripping/evaluation unit (this is not included in the scope of supply). This means that the sensor cable is monitored for wire breakage and short–circuit by this unit. When the response temperature is exceeded, the motor motor must be switched into a no–current condition within 1 s.

Designation	Technical data	
Type (acc. to DIN 44082–M180)	PTC thermistor triplet	
PTC resistance (20 °C)	≤ 750 Ω	
Resistance when warm (180 °C)	≥ 1710 Ω	
Connection (refer to Fig. 1-11)	Using an external tripping/evaluation unit	
Cable cross-section/outer diameter	0.14 mm ² /0.9 mm	
Response temperature	180 °C	
Note: The PTC thermistors do not have a linear characteristic and are therefore not suitable to determine the instantaneous temperature. Characteristic acc. to DIN VDE 0660 Part 303, DIN 44081, DIN 44082		

Fig. 1-11 Temperature monitoring

Temperature evaluation using NTC thermistors (universal protection, option)

Notice

Temperature evaluation using the NTC K227 and NTC PT3–51F thermistors does not guarantee full motor protection.

The NTC K227 and NTC PT3–51F thermistors are used if the drive converter cannot evaluate the KTY PTC thermistor.

The drive converter senses and evaluates the motor temperature using the sensor signal (refer to the drive converter documentation).

1.8 Encoder system

1.8 Encoder system

Function

The encoder system has the following functions:

- Speed actual value encoder for the closed-loop speed control
- Position encoder for the closed–loop position control

The rotor position is determined by the software function "pole position identification" at power–up, refer to Chapter 1.4.

Encoder systems that can be used

Typically, toothed–wheel encoders (e.g. SIMAG H2) or a comparable hollow–shaft encoder system is used with sinusoidal voltage signals 1Vpp.

The encoder system is not included in the scope of supply (option).

Components

The encoder system comprises the following components:

- Sensor head
- Toothed wheel or a comparable hollow-shaft element

The sensor head is mounted to the spindle housing; the toothed measuring wheel is mounted to the spindle. The generated signals are evaluated in the SIMODRIVE drive converter.

Note

The appropriate manufacturer's documentation must be carefully observed when engineering, mounting/installing and adjusting the encoder system!

Fig. 1-12 Encoder mounting schematic

1.8 Encoder system

Note

A detailed technical description of the encoder system can be taken from the following references:

Reference: Configuration Manual/Installation Instructions, SIMAG H2 toothed–wheel encoder Catalog NC 60

GEL 244 encoder system from Lenord and Bauer (L & B)

For applications where it is not possible to use an encoder due to the high speed, then we recommend that the GEL 244 toothed encoder from L & B is used.

With these types of encoders, the signal amplitude depends heavily on the clearance between the toothed wheel and sensor head. This is the reason that these encoder systems must be precisely mounted and installed carefully taking into account the mechanical dimensions and tolerances.

Note

The appropriate manufacturer's documentation must be carefully observed when engineering, mounting/installing and adjusting the encoder system!

Please note the following limitations:

- 1. The encoder can be operated with Standard 2 or Performance modules.
- 2. Changes to the clearance between the toothed wheel and the sensor head may not exceed $\pm 20\,\mu\text{m}.$

This applies for operation over the complete operating temperature and speed range.

3. The signal tolerances, specified in the Operating Instructions of the GEL 244 encoder, must be carefully observed and the correct assignment of the zero mark should be checked after the encoder has been mounted and installed. This check can be made, for example, using the diagnostics box.

Order No. (MLFB) of the diagnostics box: 6FX2007–1AA00

- 4. As a result of offset and amplitude drift, an increased speed ripple and lower positioning accuracy when compared to SIMAG H2, can be expected.
- 5. Implementation of the GEL 244 encoder

The encoder is available with the same pin layout (pin–compatible) to Siemens measuring systems.

A 17–pin flange–mounted socket with plug contacts and outer thread is also used.

The technical data and a detailed order number can be taken from the L & B documentation.

1.8 Encoder system

6. Order administration

The encoders are ordered directly from L & B:

Lenord & Bauer GmbH, Dohlenstraße 32

D-46145 Oberhausen

Tel.: +49 (208) 9963 – 0

Fax: +49 (208) 676292

Internet: http://www.lenordundbauer.com

7. If technical problems are encountered, please contact L & B directly.

Brief Mounting Overview

2.1 Safety information and instructions when mounting

Danger

Safety in magnetic and electromagnetic fields:

- The safety codes according to VBG 125 must always be carefully observed. As
 part of the current accident prevention regulations, the access and presence of
 personnel close to synchronous built-in motors should be carefully managed
 and regulated.
- Personnel with active implants e.g. heart pacemakers or ferro-magnetic parts implanted in their body (containing iron) may not work with these motors in this working environment.
- Personnel with heart pacemakers must always maintain a safety distance of at least 0.5 m from these motors.
- For persons with implants, the limit value in exposed situations (i.e. where hazardous substances are available in the air as a result of electrical, magnetic or electromagnetic fields) in compliance with the rules for health and safety at work is 0.5 mT (millitesla).
- The specific effects of permanent–magnet rotors (magnetic force/field) on electro–magnetic devices, computers, watches, data mediums, e.g. credit and telephone cards and company ID tags must be carefully observed.

Warning

It is important that the Installation Instructions are carefully observed when engineering/configuring the system and before assembly/disassembly. These Mounting Instructions also include the appropriate safety and danger information/instructions regarding mounting and installation.

Order No. of the Installation Instructions:

610.43000.02 German/English 610.43000.62 Italian/Spanish/French

The Installation Instructions are available as follows:

- They are supplied with every built-in motor
- They are available through the Siemens–Intranet and on DOCONCD
- Can be ordered from your local Siemens office.

It is **not** possible to assembly/disassemble the motors with this particular document (Synchronous Built–in motors 1FE1, Configuration Manual)

Warning

There are potential hazards present when handling, storing and mounting the 1FE1 rotor assemblies equipped with permanent magnets. Only qualified, trained personnel who are knowledgeable about the specific dangers may work with these components.

Note

- The locations where 1FE1 rotor assemblies are mounted and stored must be clearly identified in accordance with VBG 125.
- There is a danger of injury as a result of the high magnetic forces. This means that the rotor may only be handled using suitable production and mounting resources and equipment.
- 1FE1 rotor assemblies must always be provided with non–magnetic protective covers (≥ 20 mm) to separate them from ferromagnetic parts and components. It is not permissible that the rotors are placed directly down on magnetic surfaces, e.g. steel floors or surfaces (danger of crushing).
- Magnetic rotors must be stored in their original packaging. It should be ensured that the environment is dust–free and subject to low vibration levels.

Fig. 2-1 Warning label provided

2.2 Mounting the rotor (brief description)

Fig. 2-2 Procedure when mounting the rotor onto the spindle

2.3 Removing the rotor (brief description)

Fig. 2-3 Procedure when removing the rotor from the spindle

2.4 Mounting the stator (brief description)

Fig. 2-4 Procedure to mount the stator

Fig. 2-5 Procedure when mounting the motor spindle

2.5.1 Magnetic forces

Warning

High magnetic forces are present as a result of the permanent magnets in the rotor. These magnetic forces can draw the spindle into the stator bore (danger of crushing)!

Note

The radial forces specified in Table 2-1 are maximum values that occur if the rotor comes into contact with the stator at one side. For a perfectly centered (ideal case) rotor (no eccentricity), the resulting radial force is zero.

Between a centered rotor and a rotor in contact with the stator, the radial force can be linearly converted as a function of the eccentricity (calculated air gap, 0.5 mm).

Motor type	F _a [N]	F _r [N]
	6–pole built–in motors	
1FE1041–6	180	200
1FE1042–6	180	400
1FE1051–6	180	200
1FE1052–6	180	400
1FE1054–6	180	800
1FE1061–6	250	250
1FE1064–6	250	1000
1FE1082–6	350	700
1FE1084–6	350	1400
1FE1091–6	360	350

Table 2-1 Magnetic forces (radial forces)

Motor type	F _a [N]	F _r [N]
1FE1092–6	360	700
1FE1093–6	360	1050
1FE1113–6	450	1300
1FE1114–6	450	1700
1FE1115–6	450	2200
1FE1116–6	450	2600
	8-pole built-in motors	
1FE1144–8	700	2400
1FE1145–8	700	3000
1FE1147–8	700	4200
	4-pole built-in motors	
1FE1051–4	200	150
1FE1052–4	200	300
1FE1053–4WJ	180	870
1FE1053–4HH	200	450
1FE1072–4	260	700
1FE1073–4	260	1050
1FE1074–4	260	1400
1FE1082–4	300	850
1FE1083–4	300	1275
1FE1084–4	300	1700
1FE1085–4	300	2125
1FE1092–4	340	1000
1FE1093–4	340	1500
1FE1094–4	340	2000
1FE1095–4	340	2500
1FE1096–4	340	3000
1FE1103–4	250	750
1FE1104–4	250	1000
1FE1105–4	250	1250
1FE1106–4	250	1500
1FE1124–4	350	1800
1FE1125–4	350	2300
1FE1126–4	350	2800

 Table 2-1
 Magnetic forces (radial forces), continued

2.5.2 Types of construction (IPM, APM)

IPM rotors are rotors with permanent magnets on the **inside**. APM rotors are rotors with permanent magnets on the **outside**.

Assigning the type of construction to the motor types

Table 2-2	Assigning the type of construction to the motor types

Motor type	IPM rotor		APM rotor	
	without sleeve	with sleeve	without sleeve	with sleeve
	6–pole b	uilt–in motors		
1FE104□-6	_	_	Х	-
1FE105□-6	Х	Х	-	_
1FE106□-6	Х	X	-	-
1FE108□-6	Х	X	-	-
1FE109□-6	Х	Х	-	-
1FE111□-6	Х	Х	-	-
	8–pole b	uilt-in motors		
1FE1144-8	_	-	Х	-
1FE1145-8	_	_	-	Х
1FE1147-8	_	-	_	Х
4–pole built–in motors				
1FE105□-4W□	Х	_	-	-
1FE105□-4H□	_	_	Х	_
1FE1074	Х	-	-	-
1FE108□-4	Х	-	-	-
1FE109□-4	Х	-	-	-
1FE1104	-	-	Х	-
1FE112□-4	-	-	Х	-

Design

1FE1 motor rotors are completely machined and are mounted directly onto the motor spindle shaft without having to be post–worked.

Fig. 2-7 Typical design of IPM and APM rotor assemblies without and without sleeve (for a description of the code numbers, refer to Table 2-3

Table 2-3	Description of the code number in Fig. 2-7
-----------	--

Code	Description	Code	Description
1A	End disk	5	Stage press fit
1B	Balancing disk	6	Threaded stud
2	Sleeve	7	Cylindrical press fit
3	Rotor assembly	8	Composite fiber
4	Pressurized oil connection		

Rotor sleeves

Note

Built-in motors without rotor sleeve:

Without a sleeve, the force is transferred without any play. Larger outer spindle diameters are achieved because there is no rotor sleeve. Generally, for rotors without sleeves, it is not possible to release the spindle–rotor assembly.

• Built-in motors with rotor sleeve: The rotor is located on an inner sleeve with stage press fit. The press fit can be released using pressurized-oil without damaging the joint surfaces.

The spindle manufacturer mounts the rotor onto the spindle using a thermal procedure. The spindle in the area around the press fit must be machined with specific dimensions and tolerances to ensure that the torque is transferred through a force fit without any play.

2.5.3 Recommendations for balancing the rotor without sleeve

- Rotors with sleeve in B, C, D and E versions are supplied with balance quality G 2.5 (reference speed 3600 RPM (acc. to DIN ISO 1940, Exception: Frame size 1FE114
 –8W
 .
- Rotors without sleeve are not balanced.

After the rotor has been mounted on the spindle, it may be necessary to finely balancing the complete rotor spindle system. The balancing planes required must be provided on the spindle system. It is not permissible to remove material from the rotor assembly.

After the rotor without sleeve has been mounted onto the spindle, the complete system must be balanced. The balancing disks required are not included in the scope of supply.

Table 2-4	Dimensions A, B and D for the recommended balancing disks (refer to Fig.
	2-8)

Motor type	A [mm] ¹⁾	B [mm]	D [mm]
1FE104□-6□□□	The balancing disk endstop is the rotor sleeve	10	52
1FE105□-6□□□	5 ³⁾	10	70
1FE106□-6□□□	4	10	80
1FE108□-6□□□	4	12	117
1FE109□-6□□□	5 ³⁾	12	125
1FE1110-6000	5 ³⁾	12	155
1FE114□-8□□□ ²⁾	The balancing disk endstop is the rotor sleeve	12	190
1FE1144-8000 ²⁾	22	15	186
1FE105□-4□□□	4	10	63
1FE105□-4H□□	7.5	10	63
1FE107□-4□□□	4	10	80
1FE108□-4□□□	4	10	95
1FE109□-4□□□ Rotor di = 72 mm Rotor di = 80 mm	5 ³⁾ 4	12 12	113 113
1FE110-4000	4 3)	12	120
1FE112□-4□□□	4 3)	12	145

 Minimum clearance A between the rotor and external balancing disk for magnetic materials. For non–magnetic materials, clearance A is not required (refer to the recommendations in the dimension drawings).

2) Version only with rotor sleeve - not pre-balanced

³⁾ Clearance as a result of the rotor end disks (=aluminum or non-magnetic steel). The balancing disk may be in contact with the rotor end disk.

2.6 Packaging and transport

Mounting dimensions

The mounting dimensions can be taken from the dimension drawings, Chapter 6.

A minimum spindle wall thickness is required in the area around the press fit. These thicknesses are specified in the dimension drawings.

Information regarding the balance quality, refer to the dimension drawings.

2.6 Packaging and transport

Note

- When the 1FE1 rotor assemblies are packaged as standard, they can be transported by truck, rail, ship in accordance with the DB Guidelines (without certification).
- 1FE1 rotor packaging is not suitable for transport by air. Special IATA regulations apply in this case.

2.6	Packag	ing and transport
	Sp	pace for your notes

Electrical Connection

3.1 Safety information/instructions

Danger

Electrical plants and systems should be designed and constructed so that they do not represent any potential hazards. Information on this subject is provided in VDE 0113 (EN 60204–1).

Danger

In order to prevent accidents caused by touching active components, protective measures must be provided to protect against direct as well as indirect contact. Information is provided in DIN VDE 0100, Part 410 and DIN VDE 0106, Part 100.

All work should be undertaken with the system in a no-voltage condition.

Voltage is present at the motor terminals when the rotor is spinning (up to 2 kV) due to the permanent magnets.

Warning

The stator assembly is electrically connected to the cooling jacket. The cooling jacket must be electrically connected through a good connection in order to ensure the appropriate electrical connection to the spindle box. The cross–section is the effective connection surface.

The spindle manufacturer is responsible in ensuring that the complete motor is grounded in–line with the relevant regulations.

3.1.1 High–voltage test

Before being shipped, the stators of the built–in motors are subject to a high–voltage test in compliance with DIN IEC 60034.

However, the Standards Commission recommends that when electrical components are mounted/installed (such as built–in motors), that a new high–voltage test according to DIN IEC 60034 is carried–out after the final mounting and assembly.

Warning

If the user carries–out an additional high–voltage test, then the ends of the temperature sensor cables must be short–circuited before the test!

If the test voltage is connected to a temperature sensor, then it will be destroyed.

3.2 Connection system

3.2 Connection system

3.2.1 Overview of connections

Fig. 3-1 Overview of connections

3.2.2 Connecting cables

The power connection is fed out from a winding overhang of the stator. The free cable ends are fed to a terminal box that has to be provided by the spindle/machinery construction company.

We recommend that the free cable ends are fed out at the spindle box in a suitable protective tubing with cable gland. Effective strain relief must be provided. The required minimum bending radii must be carefully maintained (3 to 4 x the outer cable diameter).

Standard cables from the range of accessories for the SIMODRIVE 611 drive converter system are used from the spindle bus interface onwards.

Because of the high voltages involved, cables that are suitable for higher mechanical requirements should be used in conjunction with a connection socket and VP module.

The maximum length of the connecting cable is 50 m with and without VP module.

The temperature sensor is connected in the flanged connection socket of the encoder.

3.2.3 Cable cross-sections and outer cable diameter

The values specified in Table 3-1 refer to the cable outlet of the motor.

All of the connecting cables should be engineered and dimensioned corresponding to the rated current according to IEC 60204–1 as a function of the routing type C (cables and conductors routed along walls/panels and in cable trays) and the ambient temperature.

Motor type	L = 0.5 m ¹⁾		L = 1.5 m ²⁾				
	Cable cross- section per phase	Outer cable diameter	Cable cross- section per phase	Outer cable diameter			
	[mm²]	[mm]	[mm²]	[mm]			
6–pole built–in motors							
1FE1 041–6WM10	2.5	3.1	2.5	3.1			
1FE1 042-6WN10	2.5	4.4	2.5	4.4			
1FE1 042–6WR10	2.5	4.4	2.5	4.4			
1FE1 051–6WN10	2.5	4.4	2.5	4.4			
1FE1 051–6WK10	2.5	4.4	2.5	4.4			
1FE1 052–6WN10	2.5	4.4	2.5	4.4			
1FE1 052–6WK10	4.0	5.5	4.0	5.5			
1FE1 054–6WN10	6.0	6.3	6.0 ³⁾	4.5 ³⁾			
1FE1 061–6WH10	2.5	4.4	2.5	4.4			

 Table 3-1
 Cable cross–sections (Cu) and outer diameter of the connecting cables

3.2 Connection system

Motor type	L = 0.5 m ¹⁾		L = 1.5 m ²⁾				
	Cable cross– section per phase	Outer cable diameter	Cable cross– section per phase	Outer cable diameter			
	[mm ²]	[mm]	[mm ²]	[mm]			
1FE1 061–6WY10	2.5	4.4	2.5	4.4			
1FE1 064–6WN11	6.0	6.3	10.0	7.9			
1FE1 064–6WQ11	4.0	5.5	6.0	6.3			
1FE1 082–6WP10	10	7.9	10	7.9			
1FE1 082–6WS10	4	5.5	6	6.3			
1FE1 082–6WQ11	6	6.3	10	7.9			
1FE1 082–6WW11	2.5	4.4	2.5	4.4			
1FE1 084–6WR11	6.0	6.3	10.0	7.9			
1FE1 084–6WU11	4.0	5.5	6.0	6.3			
1FE1 084–6WX11	2.5	4.4	2.5	4.4			
1FE1 091–6WN10	2.5	4.4	2.5	4.4			
1FE1 091–6WS10	2.5	4.4	2.5	4.4			
1FE1 092–6WN10	6.0	6.3	10.0	7.9			
1FE1 092–6WR11	4.0	5.5	6.0	6.3			
1FE1 093–6WN10	10.0	7.9	16.0	9.0			
1FE1 093–6WS10	6.0	6.3	10.0	7.9			
1FE1 093–6WV11	4.0	5.5	6.0	6.3			
1FE1 113–6WU11	4.0	5.5	6.0	6.3			
1FE1 113–6WX11	4.0	5.5	6.0	6.3			
1FE1 114–6WR11	16.0	9.0	25.0	11.0			
1FE1 114–6WT11	10.0	7.9	16.0	9.0			
1FE1 114–6WW11	6.0	6.3	10.0	7.9			
1FE1 115–6WT11	10.0	6.6	16.0	8.9			
1FE1 116–6WR11	16.0	9.0	25.0	11.0			
1FE1 116–6WT11	10.0	7.9	16.0	9.0			
1FE1 116–6WW11	6.0	6.3	10.0	7.9			
8-pole built-in motors							
1FE1 144–8WL11	25.0	11.0	2 • 16.0	9.0			
1FE1 145–8WN11	2 • 16.0	9.0	2 • 16.0	9.0			
1FE1 145–8WQ11	2 • 10.0	7.9	2 • 16.0	9.0			
1FE1 145-8WS11	25.0	11.0	25.0 4)	11.0 ⁴⁾			
1FE1 147–8WN11	2 • 16.0	9.0	2 • 16.0	9.0			
1FE1 147-8WQ11	2 • 10.0	7.9	2 • 16.0	9.0			
1FE1 147-8WS11	25.0	11.0	25.0	11.0			

Table 3-1 Cable cross-sections (Cu) and outer diameter of the connecting cables, continued
3.2 Connection system

Motor type	L = 0.	L = 0.5 m ¹⁾ L		1.5 m ²⁾	
	Cable cross– section per phase	Outer cable diameter	Cable cross– section per phase	Outer cable diameter	
	[mm ²]	[mm]	[mm ²]	[mm]	
4-pole built-in motors					
1FE1 051-4HC10	2.5	3.7	2.5	3.7	
1FE1 051-4WN11	2.5	4.4	2.5	4.4	
1FE1 052-4HD10	6.0	4.8	6.0	4.8	
1FE1 052-4HG11	4.0	4.2	6.0	4.79	
1FE1 052-4WN11	2.5	4.4	2.5	4.4	
1FE1 052-4WK11	2.5	4.4	4.0	5.5	
1FE1 053-4HH11	4.0	4.3	6.0	4.8	
1FE1 053-4WN11	2.5	4.4	2.5	4.4	
1FE1 053–4WJ11	4.0	4.2	4.0	4.2	
1FE1 072–4WH11	6.0	6.3	10.0	7.9	
1FE1 072-4WL11	4.0	5.5	6.0	6.3	
1FE1 072-4WN11	2.5	4.4	4.0	5.5	
1FE1 073-4WN11	6.0	6.3	10.0	7.9	
1FE1 073-4WT11	2.5	4.4	2.5	4.4	
1FE1 074–4WM11	16.0	9.0	25.0	11.0	
1FE1 074–4WN11	10.0	7.9	16.0	9.0	
1FE1 074–4WT11	6.0	4.8	6.0	4.8	
1FE1 082–4WN11	4.0	5.5	6.0	6.3	
1FE1 082–4WR11	2.5	4.4	2.5	4.4	
1FE1 083–4WN11	10.0	7.9	16.0	9.0	
1FE1 084–4WN11	16.0	9.0	25.0	11.0	
1FE1 084–4WP11	10.0	7.9	16.0	9.0	
1FE1 084–4WQ11	10.0	7.9	16.0	9.0	
1FE1 084–4WT11	6.0	6.3	10.0	7.9	
1FE1 085–4WN11	16.0	9.0	25.0	11.0	
1FE1 085–4WT11	6.0	6.3	10.0	7.9	
1FE1 085–4WQ11	10.0	7.9	16.0	9.0	
1FE1 092–4WP11	4.0	5.5	6.0	6.3	
1FE1 092–4WV11	4.0	5.5	6.0	6.3	
1FE1 093–4WH11	10.0	7.9	16.0	9.0	
1FE1 093–4WM11	6.0	6.3	10.0	7.9	
1FE1 093–4WN11	6.0	6.3	10.0	7.9	
1FE1 094–4WK11	16.0	9.0	25.0	11.0	
1FE1 094–4WL11	10.0	7.9	16.0	9.0	

Table 3-1Cable cross-sections (Cu) and outer diameter of the connecting
cables, continued

3.2 Connection system

Motor type	L = 0.5 m ¹⁾		L = 1.	5 m ²⁾
	Cable cross– section per phase	Outer cable diameter	Cable cross– section per phase	Outer cable diameter
	[mm ²]	[mm]	[mm ²]	[mm]
1FE1 094–4WS11	6.0	6.3	10.0	7.9
1FE1 094–4WU11	4.0	5.5	6.0	6.3
1FE1 095–4WN11	16.0	9.0	25.0	11.0
1FE1 096–4WN11	16.0	9.0	25.0	11.0
1FE1 103–4WN11	10.0	7.9	16.0	9.0
1FE1 104–4WN11	16.0	9.0	25.0	11.0
1FE1 105–4WN11	16.0	9.0	25.0	11.0
1FE1 106–4WN11	2 • 10.0	7.9	2 • 16.0	9.0
1FE1 106–4WR11	25.0	11.0	2 • 16.0	9.0
1FE1 106–4WS11	25.0	11.0	25.0	11.0
1FE1 106–4WY11	6.0	6.3	10.0	7.9
1FE1 124–4WN11	25.0	11.0	2 • 16.0	9.0
1FE1 125–4WN11	2 • 16.0	9.0	2 • 16.0	9.0
1FE1 125–4WP11	25.0	11.0	2 • 16.0	9.0
1FE1 126–4WN11	2 • 16.0	9.0	2 • 16.0	9.0
1FE1 126–4WQ11	25.0	11.0	2 • 16.0	9.0
1FE1 126–4WP11	2 • 16.0	9.0	2 • 16.0	9.0

Table 3-1 Cable cross-sections (Cu) and outer diameter of the connecting cables, continued

¹⁾ According to DIN 46200, it can only be used inside the motor spindle

²⁾ VDE 0298, Parts 3, 4 provide information information and instructions on using cables3) Teflon cable

⁴⁾ Connecting cable, also for 1.5 m is in one section

3.2 Connection system

Cable type

3.2.4 Recommended grounding

Note

A protective conductor must be connected to the spindle housing through a good electrical connection. Further, it must be ensured that there is a good electrical connection between the spindle housing and the cooling jacket.

VDE 0113 (EN 60204–1) provides data and information on the minimum required cross–section of the protective conductor.

When grounding the system, it must be ensured that there is a good electrical connection between the protective conductor and the spindle box. This connection must be protected against corrosion (e.g. the connection surfaces must be bare and a coat of Vaseline applied).

Fig. 3-3 Recommended grounding

3.2.5 Terminal box

The terminal box must have, as a minimum, degree of protection IP 54 according to DIN IEC 60034–5. Seals must be appropriately provided between the spindle housing (spindle box) and the terminal box and at the terminal box cover.

The terminal box is not included in the scope of supply.

3.3 VP module (VPM, Voltage Protection Module)

Use and application

Notice

A VP module is required for motors with an EMF > 830 V.

When a fault condition develops, the VPM limits the DC link voltage at the drive converter.

If the line supply voltage fails or if the drive converter pulses are canceled as a result of the power failure, at maximum motor speed, the synchronous motor regenerates a high voltage back into the DC link.

The VPM detects when the motor voltage is too high and short–circuits the 3 motor feeder cables. The energy remaining in the motor is converted into heat (thermal energy) as a result of the short–circuited. Response voltage, 830 V DC +/–1%.

The VPM must be located close to the drive converter (maximum distance to the converter = 1.5 m). MOTION–CONNECT cables should also be used in conjunction with the VP module.

The VP module can only be used in conjunction with SIMODRIVE 611 digital, SIMODRIVE 611 universal and 1FE1 built–in motors.

The VP module is not included with the 1FE1 built-in motors and must be separately ordered.

Note

The following references are available on the VP module:

Reference: /VPM/ Operating Instructions VPM 120, VPM 200

/BU/ Catalog NC 60

3.3 VP module (VPM, Voltage Protection Module)

3.3.1 Technical data of the VP modules

Table 3-2	Technical	data	of the	VP	modules

Designation	VPM 120	VPM 200 / VPM 200 DYNAMIK *)		
Order No. for metric gland	6SN1113-1AA00-1JA1	6SN1113–1AA00–1KA1/ 6SN1113–1AA00–1KC1		
Dimensions H • W • D [mm]	300 • 150 • 180	300 • 250 • 190/ 300 • 250 • 260		
Connection on the converter side (conductor cross-section)	U3, V3, W3; M50 (max. 50 mm ²)	U3, V3, W3; 2 • M50 (max. 2 • 50 mm ²)		
Connection on the motor side (conductor cross–section)	U4, V4, W4; M50 (max. 50 mm ²)	U4, V4, W4; 2 • M50 (max. 2 • 50 mm ²)		
Signaling contact 1 • M16	1 • NC contact (floating)	1 • NC contact (floating)		
Max conductor cross-section	24 V DC	24 V DC		
Poted oursent				
Rated current	\geq 3 AC 120 A _{rms}	\geq 3 AC 200 A _{rms}		
Short time load	2 • I _N for approx. 500 ms	3 • I _N for approx. 500 ms		
Connection length on the drive converter side	≦ 1.5 m	≦ 1.5 m		
Connection length on the motor side	≦ 50 m	≦ 50 m		
Power loss				
- normal operation	approx. 0 W	approx. 0 W		
– short–circuit operation with I_N	approx. 360 W (max. 2 min)	approx. 1.1 W (max. 2 min)		
Response voltage	830 V DC +/- 1%	830 V DC +/- 1%		
Degree of protection	IP20	IP20		
Ambient temperature	0 50 °C	0 50 °C		
Installation altitude	1000 m above sea level (otherwise de–rating)	1000 m above sea level (otherwise de-rating)		
Vibratory load	up to 1 g	up to 1 g		
(acc. to DIN EN 60721)				
Shock stressing	up to 10 g	up to 10 g		
(acc. to DIN EN 60721)				
Max. permissible braking time	$\leq 2 \min$	≦ 2 min		
Weight	approx. 6 kg	approx. 11 kg/approx. 13 kg		

*) Note: VPM 200 DYNAMIK

The VPM 200 DYNAMIK should be used in the following cases:

- When third-party/unlisted synchronous motors are used (they generally have higher inductances than 1FE1 motors) and when a third-party/unlisted motor is combined with a series reactor
- Combination of 1FE1 motor with series reactor

Capacitance of the drive converter group with VP module

In order that a defined DC link voltage is not exceeded when a fault condition develops, and to limit the voltage rate–of–rise, the SIMODRIVE DC link must have a minimum capacitance. This minimum capacitance is calculated according to the following approximate formula:

 $C_{DC \text{ link min }}[\mu F] = I_{Nmotor} [A] \cdot 33.33$

This required DC link capacitance must be taken into account when engineering the system.

Warning

It is not permissible that switching elements are inserted in the connecting cables U, V, W between the drive converter, VPM and motor!

Maximum permissible braking time with VP module

The braking time for a terminal short–circuit (with VPM) can be approximately calculated as follows:

$$t_{Br} = K \bullet 10^{-6} \bullet J_{tot} \bullet n^2$$

t_{Br} = braking time in [s]

K = brake constant [(
$$s \cdot min^2$$
)/(kg $\cdot m^2$)], (refer to Table 3-3)

 J_{tot} = total moment of inertia ($J_{rot} + J_{external}$) in [kgm²]

(J_{rot} refer to Chapter 5 Technical Data)

n = maximum speed in [RPM²]

Note

It must be ensured that the braking time t_{Br} is $\,\leq\,$ 120 s.

3.3.2 Selecting the VP module and determining the brake constant K

Motor type	VPM	Brake constant (K)
	6-pole built-in motors	
1FE1041-6WM10	_	_
1FE1042-6WN10	_	-
1FE1042-6WR10	-	-
1FE1051-6WN10	-	-
1FE1051-6WK10	-	-
1FE1052–6WN10	-	-
1FE1052–6WK10	-	-
1FE1054–6WN10	-	-
1FE1061-6WH10	-	-
1FE1061-6WY10	-	-
1FE1064–6WN11	120	1.0
1FE1064–6WQ11	120	1.1
1FE1082–6WP10	-	-
1FE1082–6WS10	-	-
1FE1082–6WQ11	120	1.8
1FE1082–6WW11	120	2.0
1FE1084–6WR11	120	1.2
1FE1084–6WU11	120	1.3
1FE1084–6WX11	120	1.5
1FE1091–6WN10	-	_
1FE1091–6WS10	_	_
1FE1092–6WN10	_	_
1FE1092–6WR11	120	2.3
1FE1093–6WN10	-	-
1FE1093-6WS10	-	-
1FE1093–6WV11	120	1.0
1FE1113-6WU11	120	2
1FE1113-6WX11	120	2.2
1FE1114–6WR11	120	1.1
1FE1114–6WT11	120	1.1
1FE1114–6WW11	120	1.1
1FE1115–6WT11	120	1.4
1FE1116-6WR11	120	0.9
1FE1116-6WT11	120	0.9
1FE1116-6WW11	120	1.9

Table 3-3 Selecting the VPM; brake constant K

3.3 VP module (VPM, Voltage Protection Module)

Motor type	VPM	Brake constant (K)
	8-pole built-in motors	
1FE1144-8WL11	200	0.8
1FE1145-8WN11	200	0.6
1FE1145-8WQ11	200	0.8
1FE1145-8WS11	200	0.9
1FE1147-8WN11	200	0.6
1FE1147-8WQ11	200	0.7
1FE1147-8WS11	200	0.8
	4-pole built-in motors	
1FE1051-4HC10	-	_
1FE1051–4WN11	120	5.5
1FE1052-4HD10	-	_
1FE1052-4HG11	120	1.3
1FE1052–4WN11	120	3.4
1FE1052–4WK11	120	3.2
1FE1053–4HH11	120	1.0
1FE1053–4WN11	120	2.5
1FE1053–4WJ11	120	2.1
1FE1072-4WH11	120	3.3
1FE1072-4WL11	120	2.7
1FE1072–4WN11	120	3.6
1FE1073–4WN11	120	2.6
1FE1073–4WT11	120	2.8
1FE1074–4WM11	120	2.3
1FE1074–4WN11	120	2.3
1FE1074–4WT11	120	2.0
1FE1082–4WN11	120	3.6
1FE1082-4WR11	120	5.3
1FE1083–4WN11	120	2.7
1FE1084–4WN11	120	2.2
1FE1084–4WP11	120	1.8
1FE1084-4WQ11	120	2.6
1FE1084-4WT11	120	2.3
1FE1085–4WN11	120	1.8
1FE1085-4WT11	120	2.5
1FE1085–4WQ11	120	2.1
1FE1092-4WP11	120	3.7
1FE1092-4WV11	120	5.7

Table 3-3 Selecting the VPM; brake constant K, continued

3.3 VP module (VPM, Voltage Protection Module)

Motor type	VPM	Brake constant (K)
1FE1093–4WH11	120	2.7
1FE1093–4WM11	120	2.7
1FE1093–4WN11	120	3.0
1FE1094–4WK11	120	2.3
1FE1094–4WL11	120	2.3
1FE1094–4WS11	120	3.0
1FE1094–4WU11	120	3.5
1FE1095–4WN11	120	1.9
1FE1096–4WN11	120	1.9
1FE1103–4WN11	120	1.3
1FE1104–4WN11	200	1.1
1FE1105–4WN11	200	0.9
1FE1106–4WN11	200	0.9
1FE1106-4WR11	200	1.11
1FE1106-4WS11	200	1.3
1FE1106–4WY11	120	1.7
1FE1124–4WN11	200	1.1
1FE1125–4WN11	200	0.9
1FE1125-4WP11	200	1.0
1FE1126-4WN11	200	0.8
1FE1126–4WQ11	200	1.1
1FE1126-4WP11	200	0.9

Table 3-3 Selecting the VPM; brake constant K, continued

3.3.3 Connecting the VPM 120, VPM 200 and VPM 200 DYNAMIK

Fig. 3-4 Connecting VPM 120

Fig. 3-5 Connecting VPM 200 and VPM 200 DYNAMIK

4

Order Designation

Structure of the order designation

The order designation comprises a combination of digits and letters. It is sub–divided into three hyphenated blocks.

Ord	er designation
1FE1 □□	
	Scope of supply and mechanical data
Cod	e, motor type

Fig. 4-1 Order designation

For possible combinations, refer to Chapter 1.3, Technical data or Catalog NC 60. Please note that not every theoretical combination is possible.

Order designation 1FE1] I
Liquid–cooled three–phase synchronous motors Machine tool – main spindle drive	
Size	
Length	
Lamination cross-section	
4 = 4-pole, 6 = 6-pole, 8 = 8-pole	
Cooling type (liquid–cooled = W, H)	
Winding versions: H, K, L, N, Q, R, S, T, U, V, W, Y	
Winding version 0 = impregnated winding with standard protection (2 x KTY) 1 = cast winding with standard protection (2 x KTY) 3 = cast winding with full protection (2 x KTY + PTC-PTC thermistor triplet) 5 = cast winding with universal protection: 2 x KTY + PTC thermistor triplet + NTC PT3-51F + NTC K227 can only be supplied with 0.5 m cable ¹)	
Voltage limiting module (VPM) 0 = without VPM 1 = with VPM	
Scope of supply 1 = stator and rotor 2 = spare part, only stator (W in the rotor version) 3 = spare part, only rotor (W in the stator version)	
Stator version A = version without cooling jacket ¹⁾ B = standard version with cooling jacket W = spare part, rotor, stator has not significance	
Rotor version	
A, R = without rotor sleeve B = with standard rotor sleeve (mounting-compatible to 1PH2 motors) C, D, E = with rotor sleeve (large bore diameter) Txx = special rotor sleeve, on request W = spare part, stator, rotor is of no significance	
Connection type 0 = free cable ends 1500 mm (cable outlet at the larger housing	
 outer diameter, rigid connecting location, refer to Chapter 3.2) 1 = free cable ends, 1500 mm (cable outlet at the smaller housing outer diameter, rigid connecting location, refer to Chapter 3.2) ¹⁾]
2 = free flexible cable ends, 500 mm, preferred version Cable outlet at the larger outer housing diameter	
(cable outlet at the smaller housing outer diameter) ¹⁾	
1) Only available on request; please contact your local Siemens office	

Technical Data and Characteristics

5.1 P/n and M/n diagrams

Built-in motors must be continually cooled independent of the operating mode.

Note

The friction losses depend on the motor spindle mechanical design (e.g. bearing losses, turbulence losses, losses at shaft glands).

As the built–in motor manufacturer is not aware of the magnitude of these losses, the motor power ratings and torques, specified in this documentation, refer to the values which the built–in motor transfers to the spindle. The total function losses must be subtracted from the specified values in order to determine the net shaft output.

The dotted lines in the diagrams indicate the motor utilization for duty type S6. The power module is specified in Chapter 1.3.

Note

The values in the characteristics and those specified apply for water–cooled versions and a cast winding design.

5.2 P/n and M/n diagrams for 6–pole 1FE1 motors

Table 5-1	Motor type 1FE1041–6WM10
-----------	--------------------------

Three-phase synchronous built-in motor 1FE1041-6WM10						
Rated power	P _N	kW	7.4			
Rated speed	n _N	RPM	15800			
Rated torque	M _N	Nm	4.5			
Rated current	I _N	A	13			
Maximum current	I _{max}	A	26			
Maximum rotational speed	n _{max}	RPM	20000			
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4			
Voltage constant	k _E	V/1000 RPM	29			
Thermal time constant	T _{therm}	min	1			
Stator weight with cooling jacket	m _{St}	kg	2.5			
Rotor weight	m _{Rot}	kg	Refer to Table 1-4			
12 10 8 6 4 2 0 2500 5000 7500	10000 12500	15000 17500 20000	Plimit S6–25% (21.5A) S6–40% (17.5A) S6–60% (15A) S1 (13A) n [RPM]			
8 7 6 5 4 3 2 1 0 2500 5000 7500 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	10000 12500		 Mlimit S6–25% (21.5A) S6–40% (17.5A) S6–60% (15A) S1 (13A) n [RPM]			

Table 5-2 Motor type 1FE1042–6WN10

The data for duty type S6 are valid for a 1 min. duty cycle. For optimum operation, a drive converter pulse frequency of 8 kHz is required

		Thre	ee–phase s	ynchronou	ıs built–in r	notor 1FE1	042–6WR1	10
Ra	ted p	ower			P _N	k	W	11.5
Ra	ted s	peed			n _N	R	PM	10000
Ra	ted to	orque			M _N	N	Im	11
Ra	ted c	urrent			I _N		A	19
Ma	ximu	m current		I	max		A	38
Ма	ximu	m rotational spee	d	r	າ _{max}	R	PM	15000
Мо	ment	of inertia			J _{rot}	kg	m ²	Refer to Table 1-4
Vo	ltage	constant			k _E	V/100	0 RPM	41
Th	ermal	time constant		Т	therm	n	nin	1
Sta	ator w	eight with cooling	g jacket		m _{St}	ŀ	κg	6
Ro	tor we	eight		r	n _{Rot}	ŀ	kg	Refer to Table 1-4
P [kW]	18 - 16 - 14 - 12 - 10 - 8 - 6 - 4 - 2 - 0 -	0 2500	5000	7500	10000	12500		 Plimit S6–25% (32A) S6–40% (26A) S6–60% (22.5A) S1 (19A) n [RPM]
[Nm]	18 16 14 12 10 - 8 - 4 - 2 - 0							 Mlimit S6–25% (32A) S6–40% (26A) S6–60% (22.5A) S1 (19A)
	0	2500	5000	7500	10000	12500	15000	

Table 5-3 Motor type 1FE1042–6WR10

The data for duty type S6 are valid for a 1 min. duty cycle.

Table 5-4 Motor type 1FE1051–6WN10

	Tł	nree-phase sy	nchronous	built-in motor	1FE1051-6WK1	10
Rated power			PN	1	kW	8.3
Rated speed			n _N	1	RPM	8000
Rated torc	que		M	1	Nm	10
Rated curr	rent		I _N		А	20
Maximum	current		I _{ma}	x	А	40
Maximum	rotational sp	eed	n _{ma}	ax	RPM	15000
Moment of	f inertia		J _{rc}	t	kg m²	Refer to Table 1-4
Voltage co	onstant		k _E		V/1000 RPM	36
Thermal ti	me constant		T _{the}	rm	min	2
Stator wei	ght with cooli	ng jacket	mg	St	kg	4
Rotor weig	ght		m _R	ot	kg	Refer to Table 1-4
12	300	00 600		0 1200		Plimit S6–25% (36A) S6–40% (29A) S6–60% (24A) S1 (20A) n [RPM]
14						Mlimit S6–25% (36A) S6–40% (29A) S6–60% (24A) S1 (20A)
0	300	600	0 900	00 1200	0 15000	n [RPM]

Table 5-5 Motor type 1FE1051–6WK10

Table 5-6 Motor type 1FE1052–6WN10

Three-phase syn	nchronous built–in	motor 1FE1052–6Wk	(10
Rated power	P _N	kW	14
Rated speed	n _N	RPM	7500
Rated torque	M _N	Nm	18
Rated current	I _N	A	37
Maximum current	I _{max}	A	74
Maximum rotational speed	n _{max}	RPM	15000
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Voltage constant	k _E	V/1000 RPM	36
Thermal time constant	T _{therm}	min	2
Stator weight with cooling jacket	m _{St}	kg	6
Rotor weight	m _{Rot}	kg	Refer to Table 1-4
25 20 15 10 5 0 3000 6000	9000	2000 15000	 Plimit S6–25% (68A) S6–40% (54A) S6–60% (46A) S1 (37A) n [RPM]
30 25 20 15 10 5 0 0 3000 6000	9000	12000 15000	 Mlimit S6–25% (68A) S6–40% (54A) S6–60% (46A) S1 (37A)

Table 5-7 Motor type 1FE1052–6WK10

Table 5-8 Motor type 1FE1054–6WN10

		Three-phase sy	/nchronous built–in m	notor 1FE1061–6WH1	
Rate	ed po	wer	P _N	kW	11.6
Rated speed			n _N RPM		8500
Rate	ed tor	que	M _N	Nm	13
Rate	ed cu	rent	۱ _N	A	21
Мах	kimum	current	I _{max}	A	42
Мах	kimum	rotational speed	n _{max}	RPM	12000
Mor	nent o	f inertia	J _{rot}	kg m ²	Refer to Table 1-4
Volt	age c	onstant	k _E	V/1000 RPM	42
The	rmal t	ime constant	T _{therm}	min	1.5
Stat	or we	ight with cooling jacket	m _{St}	kg	4
Rote	or wei	ght	m _{Rot}	kg	Refer to Table 1-4
P [kW]	25 - 20 - 15 - 10 - 5 - 0 - 0	2000 4000	6000 8000		 Plimit S6–25% (37A) S6–40% (30A) S6–60% (25A) S1 (21A) n [RPM]
[mm]	25 - 20 - 15 - 10 - 5 - 0 -		6000 8000		 Mlimit S6–25% (37A) S6–40% (30A) S6–60% (25A) S1 (21A)

Table 5-9 Motor type 1FE1061–6WH10

Table 5-10 Motor type 1FE1061–6WY10

Three-phase sy	nchronous built–in m	otor 1FE1064–6WN1	1
Rated power	P _N	kW	25
Rated speed	n _N	RPM	4300
Rated torque	M _N	Nm	56
Rated current	I _N	A	56
Maximum current	I _{max}	A	112
Maximum rotational speed	n _{max}	RPM	12000
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Voltage constant	k _E	V/1000 RPM	72
Thermal time constant	T _{therm}	min	1.5
Stator weight with cooling jacket	m _{St}	kg	10
Rotor weight	m _{Rot}	kg	Refer to Table 1-4
50 40 50 40 50 40 50 40 50 40 50 40 50 50 40 50 50 40 50 50 40 50 50 50 50 50 50 50 50 50 5	6000 8000	10000 12000	 Plimit S6–25% (100A) S6–40% (80A) S6–60% (67A) S1 (56A) n [RPM]
100 90 80 70 60 50 40 20 10 0 2000 4000	6000 8000	10000 12000	 Mlimit S6–25% (100A) S6–40% (80A) S6–60% (67A) S1 (56A)

Table 5-11 Motor type 1FE1064–6WN11

The data for duty type S6 are valid for a 1 min. duty cycle.

Table 5-12 Motor type 1FE1064–6WQ11

Three-phase	synchronous built–in mo	otor 1FE1082-6WP1	0
Rated power	P _N	kW	34
Rated speed	n _N	RPM	5000
Rated torque	M _N	Nm	65
Rated current	۱ _N	А	65
Maximum current	I _{max}	А	130
Maximum rotational speed	n _{max}	RPM	8500
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Voltage constant	k _E	V/1000 RPM	68
Thermal time constant	T _{therm}	min	2
Stator weight with cooling jacket	m _{St}	kg	10
Rotor weight	m _{Rot}	kg	Refer to Table 1-4
50 40 30 20 10 0 2000	4000 6000	8000	 Plimit S6–25% (112A) S6–40% (91A) S6–60% (76A) S1 (65A) LT 60/80/102A (60A) n [RPM]
100 90 80 70 60 50 40 20 10 0 2000	4000 6000	8000	 Mlimit S6–25% (112A) S6–40% (91A) S6–60% (76A) S1 (65A) LT 60/80/102A (60A) n [RPM]

Table 5-13 Motor type 1FE1082–6WP10

Table 5-14 Motor type 1FE1082–6WQ11

		Three-	-phase syn	chronous t	ouilt–in mo	tor 1FE108	2–6WS10	
Rated power			P _N		kW		24.5	
Rated speed				n _N		RPM	I	3600
Rated t	torque			M _N		Nm		65
Rated of	current			I _N		А		45
Maximu	um curren	t		I _{max}	<	А		90
Maximu	um rotatio	nal speed		n _{ma}	x	RPM		6000
Momen	nt of inertia	a		J _{rot}		kg m ²	2	Refer to Table 1-4
Voltage	e constant			k _E		V/1000 F	RPM	98
Therma	al time cor	nstant		T _{ther}	m	min		2
Stator v	weight witl	h cooling ja	acket	m _{St}	t	kg		10
Rotor w	veight			m _{Ro}	ot	kg		Refer to Table 1-4
30 24 20 14 10 4 0	0 5 5 5 5 0 5 0	1000	2000	3000		5000		 Plimit S6–25% (76A) S6–40% (62A) S6–60% (52A) S1 (45A)
10 9 8 7 6 5 4 3 2 1	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		2000	3000	4000	5000		 Mlimit S6–25% (76A) S6–40% (62A) S6–60% (52A) S1 (45A)

Table 5-15 Motor type 1FE1082–6WS10

Table 5-16 Motor type 1FE1082–6WW11

	Three–phase sy	nchronous built–in m	otor 1FE1084–6WR1	1
Rat	ted power	P _N	kW	31
Rat	ted speed	n _N	RPM	2300
Rat	ted torque	M _N	Nm	130
Rat	ted current	I _N	А	60
Ma	ximum current	I _{max}	А	120
Ma	ximum rotational speed	n _{max}	RPM	9000
Mo	ment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Volt	tage constant	k _E	V/1000 RPM	150
The	ermal time constant	T _{therm}	min	2.5
Sta	tor weight with cooling jacket	m _{St}	kg	22
Rot	or weight	m _{Rot}	kg	Refer to Table 1-4
P [kW]	40 35 30 25 20 15 10 5 0 0 1000 2000 3000 4	4000 5000 6000 7		 Plimit S6–25% (103A) S6–40% (84A) S6–60% (70A) S1 (60A) n [RPM]
[um]	200			 Mlimit S6–25% (103A) S6–40% (84A) S6–60% (70A) S1 (60A)

Table 5-17 Motor type 1FE1084–6WR11

Table 5-18 Motor type 1FE1084–6WU11

	Three-phase sy	/nchronous built–in	motor 1FE1084–6WX1	11
Ra	ted power	P _N	kW	15
Ra	ted speed	n _N	RPM	1100
Ra	ted torque	M _N	Nm	130
Ra	ted current	I _N	A	30
Ма	iximum current	I _{max}	A	60
Ма	iximum rotational speed	n _{max}	RPM	4500
Мс	oment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Vo	Itage constant	k _E	V/1000 RPM	302
Th	ermal time constant	T _{therm}	min	2.5
Sta	ator weight with cooling jacket	m _{St}	kg	22
Ro	tor weight	m _{Rot}	kg	Refer to Table 1-4
P [kW]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000 2500 3000	3500 4000 4500	 Plimit S6–25% (52A) S6–40% (42A) S6–60% (35A) S1 (30A) n [RPM]
M [Nm]	200			Mlimit S6–25% (52A S6–40% (42A

3000 3500

4000

4500

Table 5-19 Motor type 1FE1084–6WX11

The data for duty type S6 are valid for a 2 min. duty cycle.

1000 1500 2000 2500

n [RPM]

0

0

500

Table 5-20 Motor type 1FE1091–6WN10

Three-phase sy	nchronous built–in mo	otor 1FE1091–6WS	10
Rated power	P _N	kW	6.3
Rated speed	n _N	RPM	2000
Rated torque	M _N	Nm	30
Rated current	I _N	А	15
Maximum current	I _{max}	А	30
Maximum rotational speed	n _{max}	RPM	4000
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Voltage constant	k _E	V/1000 RPM	140
Thermal time constant	T _{therm}	min	3
Stator weight with cooling jacket	m _{St}	kg	14
Rotor weight	m _{Rot}	kg	Refer to Table 1-4
10 8 6 4 2 0 500 1000 1500	2000 2500 3000) 3500 4000	 Plimit S6–25% (23A) S6–40% (19A) S6–60% (17A) S1 (15A) n [RPM]
50 45 40 35 30 25 20 15 10 5 0 0 500 1000 1500	2000 2500 3000		 Mlimit S6–25% (23A) S6–40% (19A) S6–60% (17A) S1 (15A) n [RPM]

Table 5-21 Motor type 1FE1091–6WS10

The data for duty type S6 are valid for a 2 min. duty cycle.

Table 5-22 Motor type 1FE1092–6WN10

Three-phase synchronous built-in motor 1FE1092-6WR11					
Rated power	P _N	kW	22		
Rated speed	n _N	RPM	3200		
Rated torque	M _N	Nm	66		
Rated current	I _N	A	41		
Maximum current	I _{max}	A	82		
Maximum rotational speed	n _{max}	RPM	7000		
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4		
Voltage constant	k _E	V/1000 RPM	113		
Thermal time constant	T _{therm}	min	3		
Stator weight with cooling jacket	m _{St}	kg	21		
Rotor weight	m _{Rot}	kg	Refer to Table 1-4		

Table 5-23 Motor type 1FE1092–6WR11

The data for duty type S6 are valid for a 2 min. duty cycle.

Table 5-24 Motor type 1FE1093–6WN10

	Three-pha	ase synchronous	built-in motor	1FE1093-6WS	10
Rated pow	ver	P	1	kW	21
Rated spe	ed	n _N	1	RPM	2000
Rated torg	ue	M	N	Nm	100
Rated curr	ent	I _N		А	53
Maximum	current	I _{ma}	ix	А	106
Maximum	rotational speed	n _{ma}	ax	RPM	4000
Moment of	inertia	J _{rc}	ot	kg m ²	Refer to Table 1-4
Voltage co	nstant	k _E	<u>ا</u>	//1000 RPM	133
Thermal ti	me constant	T _{the}	rm	min	3.0
Stator weig	ght with cooling jacke	t m _t	St	kg	28
Rotor weig	lht	m _R	ot	kg	Refer to Table 1-4
30 25 20 10 5 0 0	1000	2000	3000	4000	Plimit S6–25% (94A) S6–40% (76A) S6–60% (64A) S1 (53A) n [RPM]
160 140 120 100 80 80 40 40 20 0					Mlimit
0	1000	2000	3000	4000	n [KPM]

Table 5-25 Motor type 1FE1093–6WS10

Three-phase s	ynchronous built–in m	otor 1FE1093-6WV1	1
Rated power	P _N	kW	16.8
Rated speed	n _N	RPM	1600
Rated torque	M _N	Nm	100
Rated current	I _N	А	43
Maximum current	I _{max}	А	86
Maximum rotational speed	n _{max}	RPM	7000
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Voltage constant	k _E	V/1000 RPM	168
Thermal time constant	T _{therm}	min	3
Stator weight with cooling jacket	m _{St}	kg	28
Rotor weight	m _{Rot}	kg	Refer to Table 1-4
$ \begin{array}{c} 25 \\ 20 \\ 15 \\ 15 \\ 10 \\ 5 \\ 0 \\ 0 \\ 1000 \\ 2000 \\ 30 \end{array} $		6000 7000	 Plimit S6–25% (75A) S6–40% (60A) S6–60% (51A) S1 (43A) n [RPM]
160 140 120 120 100 80 60 40 20 0			Mlimit S6–25% (75A) S6–40% (60A) S6–60% (51A) S1 (43A)
0 1000 2000 3	000 4000 5000	6000 7000	n [RPM]

Table 5-26	Motor type	1FE1093-6WV11
------------	------------	---------------

Three-phase sy	nchronous built–in mo	otor 1FE1113-6WU11	
Rated power	P _N	kW	33
Rated speed	n _N	RPM	2100
Rated torque	M _N	Nm	150
Rated current	۱ _N	А	60
Maximum current	I _{max}	А	124
Maximum rotational speed	n _{max}	RPM	6500
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Voltage constant	k _E	V/1000 RPM	175
Thermal time constant	T _{therm}	min	4
Stator weight with cooling jacket	m _{St}	kg	43
Rotor weight	m _{Rot}	kg	Refer to Table 1-4
40 35 30 25 20 15 10 5 0 0 1000 2000 300	00 4000 5000		 Plimit S6–25% (114A) S6–40% (91A) S6–60% (77A) S1 (60A)
250 200 150 100 50 0 1000 2000 300	000 4000 5000		 Mlimit S6–25% (114A) S6–40% (91A) S6–60% (77A) S1 (60A)

Table 5-27 Motor type 1FE1113–6WU11

Table 5-28 Motor type 1FE1113–6WX11

		Thre	e–phase sy	nchronous	built-in motor	1FE1114–6WR1 ²	I
Ra	ted pow	er		P _N		kW	41.9
Ra	ted spee	ed		n _N		RPM	2000
Ra	ted torqu	le		M _N	1	Nm	200
Ra	ted curre	ent		I _N		A	108
Ma	aximum o	current		I _{ma}	x	A	216
Ma	aximum r	otational speed	ł	n _{ma}	IX	RPM	6500
Мс	ment of	inertia		J _{ro}	t	kg m ²	Refer to Table 1-4
Vo	Itage cor	nstant		k _E	١	//1000 RPM	132
Th	ermal tin	ne constant		T _{the}	rm	min	4
Sta	ator weig	ht with cooling	jacket	m _S	t	kg	54
Ro	tor weigl	ht		m _R	ot	kg	Refer to Table 1-4
P [kW]	60			4000	6000		 Plimit S6–25% (198A) S6–40% (159A) S6–60% (133A) S1 (108A) n [RPM]
[Nm]	350 300 250 200 150 100 50 0						 Mlimit S6–25% (198A) S6–40% (159A) S6–60% (133A) S1 (108A)
	0	200	00	4000	6000	8000	n [RPM]

Table 5-29 Motor type 1FE1114–6WR11

Table 5-30 Motor type 1FE1114–6WT11

Three-phase sy	nchronous built–in i	motor 1FE1114–6WW	/11
Rated power	P _N	kW	20.9
Rated speed	n _N	RPM	1000
Rated torque	M _N	Nm	200
Rated current	I _N	A	58
Maximum current	I _{max}	A	116
Maximum rotational speed	n _{max}	RPM	6000
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Voltage constant	k _E	V/1000 RPM	245
Thermal time constant	T _{therm}	min	4
Stator weight with cooling jacket	m _{St}	kg	54
Rotor weight	m _{Rot}	kg	Refer to Table 1-4
35 30 25 20 15 15			Plimit S6–25% (106A) S6–40% (85A)

Table 5-31 Motor type 1FE1114–6WW11

Table 5-32 Motor type 1FE1115–6WT11

The data for duty type S6 are valid for a 2 min. duty cycle.

1) only rotor core without rotor sleeve

	Three	e–phase synchro	nous built–in	motor 1FE1116-6	WR11
Rated pow	er		P _N	kW	37.7
Rated spee	ed		n _N	RPM	1200
Rated torq	le		M _N	Nm	300
Rated curre	ent		I _N	A	109
Maximum	current		I _{max}	A	218
Maximum I	otational speed	ł	n _{max}	RPM	6500
Moment of	inertia		J _{rot}	kg m ²	Refer to Table 1-4
Voltage co	nstant		k _E	V/1000 RPM	A 200
Thermal tir	ne constant		T _{therm}	min	4
Stator weig	ht with cooling	jacket	m _{St}	kg	73
Rotor weig	ht		m _{Rot}	kg	Refer to Table 1-4
60		000 400	00		Plimit Plimit S6–25% (200A) S6–40% (160A) S6–60% (134A) S1 (109A) N RPM]
450 400 350 Iw 300 - 250 200 150 100 50 0 -					Mlimit S6–25% (200A) S6–40% (160A) S6–60% (134A) S1 (109A)

Table 5-33 Motor type 1FE1116–6WR11

Table 5-34 Motor type 1FE1116–6WT11

Three-ph	ase synchronous built-	-in motor 1FE1116-6WW	11
Rated power	P _N	kW	22
Rated speed	n _N	RPM	700
Rated torque	M _N	Nm	300
Rated current	I _N	A	60
Maximum current	I _{max}	A	120
Maximum rotational speed	n _{max}	RPM	4000
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Voltage constant	k _E	V/1000 RPM	368
Thermal time constant	T _{therm}	min	4
Stator weight with cooling jacke	t m _{St}	kg	73
Rotor weight	m _{Rot}	kg	Refer to Table 1-4
30 25 20 15 15 10 5 0 0 500 1000	1500 2000 2500	3000 3500 4000	 Plimit S6–25% (108A) S6–40% (87A) S6–60% (73A) S1 (60A) n [RPM]
500 450 400 350 250 250 150 150 100 50 0 0 1000	2000		 Mlimit S6–25% (108A) S6–40% (87A) S6–60% (73A) S1 (60A)

Table 5-35 Motor type 1FE1116–6WW11

5.3 P/n and M/n diagrams for 8–pole 1FE1 motors

Three-phase synchronous built-in motor 1FE1144-8WI 11						
Rated power	PN	kW 63				
Rated speed	n _N	RPM 1400				
Rated torque	M _N	Nm 430				
Rated current	I _N	A 133				
Maximum current	I _{max}	A 266				
Maximum rotational speed	n _{max}	RPM 6500				
Moment of inertia ¹⁾	J _{rot}	kg m ² 0.11				
Voltage constant	k _E	V/1000 RPM 218				
Thermal time constant	T _{therm}	min 4				
Stator weight with cooling jacket	m _{St}	kg 70				
Rotor weight	m _{Rot}	kg 14.5				
$ \begin{array}{c} 80 \\ 70 \\ 60 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ 0 \\ 1000 \\ 2000 \\ 300 \\ 0 \\ 300 \\ 300 \\ 0 \\ 300 \\ $	0 4000 5000 6	Plimit Plimit S6–25% (22 S6–40% (19 S6–60% (19 S6–60% (19 S1 (133A) 000 7000 n [RPM]	41A) 93A) 61A)			
800 700 600 500 400 300 200 100 0 1000 2000 300 300 200 0 1000 2000 300 0 1000 2000 300 0 0 0 0 0 0 0 0 0 0 0 0		Mlimit S6–25% (24 S6–40% (19 S6–60% (19 S6–60% (19 S6–60% (19 S1 (133A)	41A) 93A) 61A)			

Table 5-36 Motor type 1FE1144–8WL11

The data for duty type S6 are valid for a 2 min. duty cycle.

1) only rotor core without rotor sleeve

Three-phase synchronous built-in motor 1FE1145-8WN11						
Rated power	P _N	kW	104			
Rated speed	n _N	RPM	1700			
Rated torque	M _N	Nm	585			
Rated current	۱ _N	А	200			
Maximum current	I _{max}	А	400			
Maximum rotational speed	n _{max}	RPM	8000			
Moment of inertia	J _{rot}	kg m ²	0.21636			
Voltage constant	k _E	V/1000 RPM	187			
Thermal time constant	T _{therm}	min	4			
Stator weight with cooling jacket	m _{St}	kg	88.5			
Rotor weight	m _{Rot}	kg	28.30			
140 120 100 80 60 40 20 0 0 1000 2000 3000	4000 5000 6000	7000 8000	 Plimit S6–25% (360A) S6–40% (290A) S6–60% (244A) S1 (200A) Imax LT (257A) 			
1000 900 800 700 600 500 400 300 200 100 0 1000 2000 3000 0 1000 2000 3000 0 1000 2000 3000 3000 0 1000 2000 3000 100	4000 5000 6000	7000 8000 n	 Mlimit S6–25% (360A) S6–40% (290A) S6–60% (244A) S1 (200A) Imax LT (257A) 			

Table 5-37 Motor type 1FE1145–8WN11

Table 5-38 Motor type 1FE1145–8WQ11

		Three-p	hase synch	onous built-	-in motor 1F	E1145–8WS ²	11
Ra	ted power			P _N		kW	67.4
Ra	ted speed			n _N		RPM	1100
Ra	ted torque			M _N		Nm	585
Ra	ted current			I _N		А	130
Ma	ximum curre	nt		I _{max}		А	260
Ma	ximum rotati	onal speed		n _{max}		RPM	5000
Мо	ment of inert	ia		J _{rot}		kg m ²	0.21636
Vol	tage constar	nt		k _E	V/1	000 RPM	290
The	ermal time co	onstant		T _{therm}		min	4
Sta	tor weight w	ith cooling jacl	ket	m _{St}		kg	88.5
Ro	tor weight			m _{Rot}		kg	28.30
P [kW]	90 80 70 60 50 40 20 20 - 40 10 0 0	1000	2000	3000	4000		 Plimit S6–25% (235A) S6–40% (188A) S6–60% (158A) S1 (130A) S1 LT 120/150/193A n [RPM]
M [Nm]	1000 900 800 600 500 300 200 100 0 0	1000	2000	3000			 Mlimit S6–25% (235A) S6–40% (188A) S6–60% (158A) S1 (130A) S1 LT 120/150/193A n [RPM]

Table 5-39 Motor type 1FE1145-8WS11

Table 5-40 Motor type 1FE1147–8WN11

Three-phase sy	nchronous built–in	motor 1FE1147–8WQ	11
Rated power	P _N	kW	81.6
Rated speed	n _N	RPM	950
Rated torque	M _N	Nm	820
Rated current	I _N	A	158
Maximum current	I _{max}	А	316
Maximum rotational speed	n _{max}	RPM	4200
Moment of inertia	J _{rot}	kg m ²	0.28823
Voltage constant	k _E	V/1000 RPM	355
Thermal time constant	T _{therm}	min	4
Stator weight with cooling jacket	m _{St}	kg	116
Rotor weight	m _{Rot}	kg	37.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2000 2500 30	00 3500 4000	 Plimit S6–25% (285A) S6–40% (230A) S6–60% (190A) S1 (158A) n [RPM]
1200 1000 800 600 400 200 0 500 1000 1500	2000 2500 3000	D 3500 4000	Mlimit S6–25% (285A) S6–40% (230A) S6–60% (190A) S1 (158A) n [RPM]

Table 5-41 Motor type 1FE1147–8WQ11

		nchronous built_in m	otor 1EE1147_8WS1	1
Rat	ed power		kW	64.4
Rat	ed speed	n N	RPM	750
Rat	ed torque	M _N	Nm	820
Rat	ed current		A	130
Ma		-1N	Α	260
Ma	ximum rotational speed	nmax	RPM	3500
Mo	ment of inertia	Jrot	ka m ²	0.28823
Vol	tage constant	k-	V/1000 RPM	405
The	ermal time constant	Tthorm	min	4
Sta	tor weight with cooling jacket	. (nem	ka	116
Rot	or weight	mpet	ka	37.70
P [kW]	90 80 70 60 50 40 30 20 10 0 500 100 0 500 100 <	00 2000 2500	3000 3500	 Plimit S6–25% (235A) S6–40% (190A) S6–60% (160A) S1 (130A) S1 LT 120/150/193A n [RPM]
M [Nm]	1200 1000 800 600 400 200			 Mlimit S6–25% (235A) S6–40% (190A) S6–60% (160A) S1 (130A) S1 LT 120/150/193A

Table 5-42 Motor type 1FE1147–8WS11

The data for duty type S6 are valid for a 2 min. duty cycle.

1000

1500

2000

500

0

0

n [RPM]

3000

2500

3500

5.4 P/n and M/n diagrams for 4–pole 1FE1 motors

Table 5-43	Motor type	1FE1051-4HC10
	wow ype	

Three-phase s	synchronous built–in m	notor 1FE1051-4HC10)
Rated power	P _N	kW	12.6
Rated speed	n _N	RPM	24000
Rated torque	M _N	Nm	5
Rated current	I _N	A	25
Maximum current	I _{max}	A	50
Maximum rotational speed	n _{max}	RPM	40000
Moment of inertia 1)	J _{rot}	kg m ²	0.00045
Voltage constant	k _E	V/1000 RPM	15
Thermal time constant	T _{therm}	min	1
Stator weight with cooling jacket	m _{St}	kg	3.5
Rotor weight	m _{Rot}	kg	0.60
30 25 20 15 10 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 10 0 10 0 10 0 10 10 10 10	00 20000 25000 30		 Plimit S6–25% (42A) S6–40% (34.5A) S6–60% (29.5A) S1 (25A) n [RPM]
10 9 8 7 6 5 4 3 2 1 0 5000 10000 150	00 20000 25000 30		Mlimit S6–25% (42A) S6–40% (34.5A) S6–60% (29.5A) S1 (25A) n [RPM]

Table 5-44 Motor type 1FE1051–4WN11

The data for duty type S6 are valid for a 1 min. duty cycle.

Three-phase sy	nchronous built–in	motor 1FE1052-4HD10	D
Rated power	P _N	kW	31.4
Rated speed	n _N	RPM	25000
Rated torque	M _N	Nm	12
Rated current	۱ _N	A	57
Maximum current	I _{max}	A	114
Maximum rotational speed	n _{max}	RPM	40000
Moment of inertia ¹⁾	J _{rot}	kg m ²	0.00087
Voltage constant	k _E	V/1000 RPM	14
Thermal time constant	T _{therm}	min	1
Stator weight with cooling jacket	m _{St}	kg	6
Rotor weight	m _{Rot}	kg	1.15
35 30 25 20 15 10 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 15 15 15 15 15 15 15 15 15 15	20000 25000 3		 Plimit S6–25% (95A) S6–40% (75A) S6–60% (67A) S1 (57A) n [RPM]
$E = \begin{bmatrix} 20 \\ 18 \\ 16 \\ 14 \\ 12 \\ 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ 0 \\ 0 \\ 5000 \\ 10000 \\ 15000 \end{bmatrix}$	20000 25000 3	0000 35000 40000	 Mlimit S6–25% (95A) S6–40% (75A) S6–60% (67A) S1 (57A) n [RPM]

Table 5-45 Motor type 1FE1052–4HD10

The data for duty type S6 are valid for a 1 min. duty cycle.

For optimum operation, a drive converter pulse frequency of 8 kHz is required. A series reactor is required for safe and reliable operation: $L_{series} = 0.23 \text{ mH}$;

Order No. and information on how to use the series reactor, refer to Chapter 1.3

1) only rotor core without rotor sleeve

Table 5-46 Motor type 1FE1052–4HG11

The data for duty type S6 are valid for a 1 min. duty cycle.

For optimum operation, a drive converter pulse frequency of 8 kHz is required. A series reactor is required for safe and reliable operation: $L_{series} = 0.23 \text{ mH}$;

Order No. and information on how to use the series reactor, refer to Chapter 1.3

1) only rotor core without rotor sleeve

	Three-phase sy	nchronous built–in	motor 1FE1052-4WN	11
Rate	d power	P _N	kW	11
Rate	d speed	n _N	RPM	8000
Rate	d torque	M _N	Nm	13
Rate	d current	۱ _N	А	20
Maxi	mum current	I _{max}	A	40
Maxi	mum rotational speed	n _{max}	RPM	30000
Mom	ent of inertia	J _{rot}	kg m ²	0.00114
Volta	age constant	k _E	V/1000 RPM	44
Ther	mal time constant	T _{therm}	min	1
State	or weight with cooling jacket	m _{St}	kg	6
Roto	r weight	m _{Rot}	kg	1.40
P [kw]	10 5 0 0 0 5000 10000	15000 20000	25000 30000	 Plimit S6–25% (33A) S6–40% (26A) S6–60% (22A) S1 (20A)
[mn] M	30 25 20 15 10 5 0 0 5 5 10 10 10 10 10 10 10 10 10 10			 Mlimit S6–25% (33A) S6–40% (26A) S6–60% (22A) S1 (20A)
	0 5000 10000	15000 20000	25000 30000	n [KPM]

Table 5-47 Motor type 1FE1052–4WN11

Three-phase synchronous built-in motor 1FE1052-4WK11				
Rated power	P _N	kW	17.5	
Rated speed	n _N	RPM	12500	
Rated torque	M _N	Nm	13	
Rated current	I _N	A	30	
Maximum current	I _{max}	A	60	
Maximum rotational speed	n _{max}	RPM	30000	
Moment of inertia	J _{rot}	kg m ²	0.00114	
Voltage constant	k _E	V/1000 RPM	28.4	
Thermal time constant	T _{therm}	min	1	
Stator weight with cooling jacket	m _{St}	kg	6	
Rotor weight	m _{Rot}	kg	1.40	

Table 5-48 Motor type 1FE1052–4WK11

Three–phase sy	nchronous built–in ı	notor 1FE1053–4HH1	1
Rated power	P _N	kW	25.5
Rated speed	n _N	RPM	13500
Rated torque	M _N	Nm	18
Rated current	۱ _N	A	46
Maximum current	I _{max}	A	92
Maximum rotational speed	n _{max}	RPM	40000
Moment of inertia ¹⁾	J _{rot}	kg m ²	0.00128
Voltage constant	k _E	V/1000 RPM	25
Thermal time constant	T _{therm}	min	1
Stator weight with cooling jacket	m _{St}	kg	8.5
Rotor weight	m _{Rot}	kg	1.70
40 35 30 25 20 15 10 5 0 5 0 5 0 5 0 10000 1500 10000 1500 10000 1500 10000 1500 10000 1500 1000 1500 1000 1500 1000 1500 1000 1500 100			 Plimit S6–25% (77A) S6–40% (63A) S6–60% (54A) S1 (46A)
0 5000 10000 1500	0 20000 25000 3	0000 35000 40000	n [RPM]

Table 5-49 Motor type 1FE1053–4HH11

The data for duty type S6 are valid for a 1 min. duty cycle.

For optimum operation, a drive converter pulse frequency of 8 kHz is required. A series reactor is required for safe and reliable operation: $L_{series} = 0.32$ mH; Order No. and information on how to use the series reactor, refer to Chapter 1.3

1) only rotor core without rotor sleeve

Table 5-50 Motor type 1FE1053–4WN11

Three	e–phase sy	nchronous	s built–in m	otor 1FE1	053–4WJ1	1
Rated power		F	'n	k	W	23
Rated speed		r	۱ _N	RI	PM	11000
Rated torque		N	1 _N	N	lm	20
Rated current		I	N		A	36
Maximum current		۱'n	nax		A	72
Maximum rotational speed		n _r	nax	RI	PM	30000
Moment of inertia 1)		J	rot	kg	m ²	0.0019
Voltage constant		k	έ	V/100	0 RPM	39
Thermal time constant		T _{th}	ierm	r	nin	1
Stator weight with cooling j	acket	r	۱ _{St}	k	g	8.5
Rotor weight		m	Rot	k	κg	2.00
25 20 15 10 5 0 0 5000	10000	15000	20000	25000		 Plimit S6–25% (60A) S6–40% (49A) S6–60% (42A) S1 (36A) n [RPM]
35 30 25 20 15 10 5 0 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 0 5 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0	10000	15000	20000	25000		 Mlimit S6–25% (60A) S6–40% (49A) S6–60% (42A) S1 (36A)

Table 5-51 Motor type 1FE1053–4WJ11

The data for duty type S6 are valid for a 1 min. duty cycle. 1) only rotor core without rotor sleeve

Table 5-52 Motor type 1FE1072–4WH11

Three–phase sy	nchronous built–in m	otor 1FE1072–4WL11	
Rated power	P _N	kW	20
Rated speed	n _N	RPM	6800
Rated torque	M _N	Nm	28
Rated current	I _N	A	45
Maximum current	I _{max}	A	90
Maximum rotational speed	n _{max}	RPM	24000
Moment of inertia	J _{rot}	kg m ²	0.00287
Voltage constant	k _E	V/1000 RPM	46
Thermal time constant	T _{therm}	min	2.5
Stator weight with cooling jacket	m _{St}	kg	9
Rotor weight	m _{Rot}	kg	2.20
20 15 10 5 0 0 3000 6000 9000	12000 15000 1800		 Plimit S6–25% (84A) S6–40% (68A) S6–60% (56A) S1 (45A)
50 45 40 35 25 20 15 10 5 0 3000 6000 9000	12000 15000 180	00 21000 24000	 Mlimit S6–25% (84A) S6–40% (68A) S6–60% (56A) S1 (45A) n [RPM]

Table 5-53 Motor type 1FE1072–4WL11

Table 5-54 Motor type 1FE1072–4WN11

Three–phase sy	nchronous built–in m	otor 1FE1073-4WN11	
Rated power	P _N	kW 30	
Rated speed	ed n _N RPM		6800
Rated torque	M _N	Nm	42
Rated current	I _N	A	65
Maximum current	I _{max}	A	130
Maximum rotational speed	n _{max}	RPM	24000
Moment of inertia	J _{rot}	kg m ²	0.00430
Voltage constant	k _E	V/1000 RPM	49
Thermal time constant	T _{therm}	min	2.5
Stator weight with cooling jacket	m _{St}	kg	12.5
Rotor weight	m _{Rot}	kg	3.30
30 25 20 15 10 - 4 - 4 	2000 15000 18000 210	Plimi Plimi Plimi S6-2 S6-4 S6-6 S1 (6 000 24000 n [RPM]	t 25% (120A) 20% (97A) 20% (81A) 35A)
80 70 60 50 40 40 30 20 10 0 3000 6000 9000		 000 24000 n [RPI	 Mlimit S6-25% (120A) S6-40% (97A) S6-60% (81A) S1 (65A)

Table 5-55 Motor type 1FE1073–4WN11

Table 5-56 Motor type 1FE1073–4WT11

The data for duty type S6 are valid for a 2 min. duty cycle.

	Three-phase sy	nchronous built–in n	notor 1FE1074–4WM	11
Rat	ted power	P _N	kW	48
Rat	ted speed	n _N	RPM	7700
Rat	ted torque	M _N	Nm	60
Rat	ted current	۱ _N	A	97
Ma	ximum current	I _{max}	A	194
Ma	ximum rotational speed	n _{max}	RPM	20000
Мо	ment of inertia	J _{rot}	kg m ²	0.00573
Vol	tage constant	k _E	V/1000 RPM	43
The	ermal time constant	T _{therm}	min	2.5
Sta	tor weight with cooling jacket	m _{St}	kg	16.5
Rot	tor weight	m _{Rot}	kg	4.40
P [kW]	50 50 40 30 20 10 0	10000 12500 150		 Plimit S6–25% (176A) S6–40% (144A) S6–60% (117A) S1 (97A) n [RPM]
[Mm]	$ \begin{array}{c} 100 \\ 80 \\ 60 \\ 40 \\ 20 \\ 0 \\ 0 \\ 2500 \\ 5000 \\ 75$	10000 12500 150		 Mlimit S6–25% (176A) S6–40% (144A) S6–60% (117A) S1 (97A)

Table 5-57 Motor type 1FE1074–4WM11

Table 5-58 Motor type 1FE1074–4WN11

	Three-phase sy	/nchronous built–in m	otor 1FE1074–4WT11	
Rate	ed power	PN	kW	25.8
Rate	ed speed	n _N	RPM	4100
Rate	ed torque	MN	Nm	60
Rate	ed current	IN	Α	53
Мах	imum current	Imax	А	106
Мах	imum rotational speed	N _{max}	RPM	18000
Mon	nent of inertia ¹⁾	J _{rot}	kg m ²	0.00573
Volt	age constant	k _F	V/1000 RPM	80
The	rmal time constant	T _{therm}	min	2.5
Stat	or weight with cooling jacket	m _{St}	kg	16.5
Rote	or weight	m _{Rot}	kg	4.40
P [kW]	$\begin{array}{c} 30 \\ 25 \\ 20 \\ 15 \\ 15 \\ 10 \\ 5 \\ 0 \\ 0 \\ 0 \\ 3000 \\ 6000 \\ \end{array}$	9000 12000		 Plimit S6–25% (95A) S6–40% (77A) S6–60% (64A) S1 (53A) n [RPM]
[Mm]	100 90 80 70 60 50 40 30 20 10 0			 Mlimit S6–25% (95A) S6–40% (77A) S6–60% (64A) S1 (53A)

Table 5-59 Motor type 1FE1074–4WT11

The data for duty type S6 are valid for a 1 min. duty cycle.1) only rotor core without rotor sleeve

6000

9000

12000

15000

3000

18000

n [RPM]

0

Table 5-60 Motor type 1FE1082–4WN11

Det							•• ·····	
Rai	ed power				P _N	k	W	8.8
Rated speed				n _N	R	PM	2000	
Rat	ed torque			I	M _N	N	lm	42
Rated current				I _N		A	24	
Ma	ximum cur	rrent		I,	max		A	48
Ma	ximum rot	ational speed		n	max	R	PM	11000
Moment of inertia				J _{rot}	kg	m ²	0.00559	
Volt	tage const	tant			k _E	V/100	0 RPM	128
The	ermal time	constant		Tt	herm	n	nin	3
Sta	tor weight	with cooling j	jacket	r	n _{St}	ł	٨g	12
Rot	or weight			n	۱ _{Rot}	ł	٨g	3.10
P [kW]	10 9 8 7 6 5 4 2 2 1 1 0		4000	6000	8000		 12000	 Plimit S6–25% (43A) S6–40% (34A) S6–60% (29A) S1 (24A)
M [Nm]	70 60 50 40 30 20 10 0	2000	4000	6000	8000	10000		 Mlimit S6–25% (43A) S6–40% (34A) S6–60% (29A) S1 (24A)

Table 5-61 Motor type 1FE1082–4WR11

Table 5-62 Motor type 1FE1083–4WN11

T	hree–phase s	ynchronou	us built–i	in motor	1FE1084	4–4WN11	
Rated power			P _N		kW		38
Rated speed		n _N		RPM		4300	
Rated torque			M _N		Nm		84
Rated current			I _N		А		105
Maximum current			I _{max}		А		210
Maximum rotational sp	eed	r	າ _{max}		RPM		20000
Moment of inertia			J _{rot}		kg m ²	2	0.01118
Voltage constant			k _E		V/1000 F	RPM	59
Thermal time constant		Т	therm		min		3
Stator weight with cool	ing jacket		m _{St}		kg		22
Rotor weight		r	n _{Rot}		kg		6.20
35 30 25 20 15 10 5 0 0 2500	5000 7500	10000	12500	15000	17500	20000	 Plimit S6–25% (187A) S6–40% (150A) S6–60% (127A) S1 (105A) n [RPM]
$ \begin{array}{c} 140 \\ 120 \\ 100 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	5000 7500	10000	12500	15000	17500	20000	 Mlimit S6–25% (187A) S6–40% (150A) S6–60% (127A) S1 (105A) n [rpm]

Table 5-63 Motor type 1FE1084–4WN11

Table 5-64 Motor type 1FE1084–4WP11

Three-phase sy	nchronous built–in m	otor 1FE1084–4WQ11	
Rated power	P _N	kW	30
Rated speed	n _N	RPM	3400
Rated torque	M _N	Nm	84
Rated current	I _N	A	83
Maximum current	I _{max}	A	166
Maximum rotational speed	n _{max}	RPM	18000
Moment of inertia	J _{rot}	kg m ²	0.01118
Voltage constant	k _E	V/1000 RPM	76
Thermal time constant	T _{therm}	min	3
Stator weight with cooling jacket	m _{St}	kg	22
Rotor weight	m _{Rot}	kg	6.20
30 25 20 15 10 5 0 0 2000 4000 6000 8	3000 10000 12000 1	4000 16000 18000	 Plimit S6–25% (147A) S6–40% (119A) S6–60% (100A) S1 (83A) n [RPM]
$ \begin{array}{c} 140 \\ 120 \\ 100 \\ 80 \\ \hline \mathbf{E} \\ 60 \\ \mathbf{V} \\ 40 \\ 20 \\ 0 \\ 200 \\ 0 \\ 2000 \\ 4000 \\ 6000 \\ 8 \end{array} $	3000 10000 12000 1	4000 16000 18000	 Mlimit S6–25% (147A) S6–40% (119A) S6–60% (100A) S1 (83A)

Table 5-65 Motor type 1FE1084–4WQ11

Table 5-66 Motor type 1FE1084–4WT11

The data for duty type S6 are valid for a 2 min. duty cycle.

Three-phase sy	nchronous built–in m	otor 1FE1085-4WN11	
Rated power	P _N	kW	38
Rated speed	n _N	RPM	3500
Rated torque	M _N	Nm	105
Rated current	۱ _N	А	105
Maximum current	I _{max}	A	210
Maximum rotational speed	n _{max}	RPM	18000
Moment of inertia	J _{rot}	kg m ²	0.01388
Voltage constant	k _E	V/1000 RPM	75
Thermal time constant	T _{therm}	min	3
Stator weight with cooling jacket	m _{St}	kg	27
Rotor weight	m _{Rot}	kg	7.70
35 30 25 20 15 10 5 0 0 3000 6000	9000 12000	15000 18000	 Plimit S6–25% (187 A) S6–40% (150A) S6–60% (127A) S1 (105A) n [RPM]
180 160 140 140 120 ≥ 100 80 60 40 20 0 3000 6000	9000 12000	15000 18000	 Mlimit S6–25% (187 A) S6–40% (150A) S6–60% (127A) S1 (105A)

Table 5-67 Motor type 1FE1085–4WN11

Table 5-68 Motor type 1FE1085–4WT11

Three–phase sy	nchronous built–in m	otor 1FE1085-4WQ1	11
Rated power	P _N	kW	33
Rated speed	n _N	RPM	3000
Rated torque	M _N	Nm	105
Rated current	I _N	A	85
Maximum current	I _{max}	A	170
Maximum rotational speed	n _{max}	RPM	16000
Moment of inertia	J _{rot}	kg m ²	0.01388
Voltage constant	k _E	V/1000 RPM	88
Thermal time constant	T _{therm}	min	3
Stator weight with cooling jacket	m _{St}	kg	27
Rotor weight	m _{Rot}	kg	7.70
35 30 25 20 15 10 5 0 0 2000 4000 6000	8000 10000 120	00 14000 16000	 Plimit S6–25% (150A) S6–40% (120A) S6–60% (103A) S1 (85A) n [RPM]
180 160 140 120 100 80 60 40 20 0 2000 4000 6000	8000 10000 1200		 Mlimit S6–25% (150A) S6–40% (120A) S6–60% (103A) S1 (85A)

Table 5-69 Motor type 1FE1085–4WQ11

Table 5-70 Motor type 1FE1092–4WP11

Rated power P_N kW 10.5 Rated speed n_N RPM 2000 Rated torque M_N Nm 50 Rated torque M_N Nm 50 Rated current I_N A 24 Maximum current I_{max} A 48 Maximum rotational speed n_{max} RPM 10000 Moment of inertia J_{tot} $kg m^2$ 0.00961 Voltage constant Therm min 3 Stator weight with cooling jacket m_{St} kg 26 Rotor weight m_{Rot} kg 3.80 12 10			Three-p	hase synchro	onous built–i	n motor 1FE1	092–4WV11	
Rated speed n _N RPM 2000 Rated torque M _N Nm 50 Rated current I _N A 24 Maximum current I _{max} A 48 Maximum rotational speed nmax RPM 10000 Moment of inertia Jrot kg m ² 0.00961 Voltage constant kE V/1000 RPM 140 Thermal time constant T _{therm} min 3 Stator weight mRot kg 3.80 12	Rated power				P _N	k	W	10.5
Rated torque MN Nm 50 Rated current IN A 24 Maximum current Imax A 48 Maximum rotational speed nmax RPM 10000 Moment of inertia Jrot kg m² 0.00961 Voltage constant KE V/1000 RPM 140 Thermal time constant Therm min 3 Stator weight with cooling jacket mSt kg 3.80 12 Imax Kg 3.80 Imax 14 Imax Kg 3.80 Imax 12 Imax Kg 3.80 Imax 14 Imax Kg 3.80 Imax 14 Imax Kg 3.80 Imax 14 Imax Kg 3.80 Imax 15 Imax Kg 3.80 Imax 14 Imax Kg S.80 Imax 10 Imax Kg S.8	Rat	ed spe	ed		n _N	R	PM	2000
Rated current IN A 24 Maximum current Imax A 48 Maximum rotational speed nmax RPM 10000 Moment of inertia Jrot kg m² 0.00961 Voltage constant kg V1000 RPM 140 Thermal time constant Therm min 3 Stator weight mRot kg 2.6 Rotor weight mRot kg 3.80 12	Rat	ed tor	que		M _N	٩	lm	50
Maximum current Imax A 48 Maximum rotational speed nmax RPM 10000 Moment of inertia Jrot kg m² 0.00961 Voltage constant kg V/1000 RPM 140 Thermal time constant Therm min 3 Stator weight with cooling jacket mSt kg 26 Rotor weight mRot kg 3.80 12	Rat	ed cur	rent		I _N		A	24
Maximum rotational speed n_{max} RPM 10000 Moment of inertia J_{rot} kg m² 0.00961 Voltage constant kg 140 Thermal time constant Therm min 3 Stator weight with cooling jacket m _{St} kg 26 Rotor weight mRot kg 3.80 12	Maximum current				I _{max}		A	48
Moment of inertia J_{rot} kg m² 0.00961 Voltage constant kg 140 Thermal time constant Therm min 3 Stator weight with cooling jacket m _{St} kg 26 Rotor weight mRot kg 3.80 12	Max	Maximum rotational speed			n _{max}	R	PM	10000
Voltage constant k _E V/1000 RPM 140 Thermal time constant T _{therm} min 3 Stator weight with cooling jacket m _{St} kg 26 Rotor weight m _{Rot} kg 3.80 12	Mor	ment c	of inertia		J _{rot}	kg	m ²	0.00961
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Volt	age co	onstant		k _E	V/100	0 RPM	140
Stator weight with cooling jacket m_{St} kg 26 Rotor weight m_{Rot} kg 3.80 12 10	The	ermal t	ime constant		T _{therm}	n	nin	3
Rotor weight m_{Rot} kg 3.80 12 10	Stat	tor we	ight with cooling jac	ket	m _{St}		٨g	26
$ \begin{array}{c} 12 \\ 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	Rot	or wei	ght		m _{Rot}		kg	3.80
$ \begin{array}{c} 80\\ 70\\ \hline 60\\ \hline 50\\ \hline 50\\ \hline 80\\ \hline 60\\ \hline 50\\ \hline $	P [kw]	12 10 6 4 2 0 4	2000	4000	6000	8000	 10000	 Plimit S6–25% (43A) S6–40% (35A) S6–60% (29A) S1 (24A) n [RPM]
0 2000 4000 6000 8000 10000 n [RPM]	[Nm]	80 70 60 50 40 40 10 10 0	2000	4000	6000	8000		 Mlimit S6–25% (43A) S6–40% (35A) S6–60% (29A) S1 (24A)

Table 5-71 Motor type 1FE1092–4WV11

Table 5-72 Motor type 1FE1093–4WH11

			Three	e–phase sy	nchronou	s built–in n	notor 1FE1	093–4WM1	11
Rat	ted po	ower				P _N	k	W	27.5
Rated speed				n _N	R	PM	3500		
Rated torque					M _N	N	lm	75	
Rat	Rated current					I _N		A	64
Ma	ximur	n current	t		l	max		A	128
Maximum rotational speed			n	max	R	PM	18000		
Мо	ment	of inertia	l			J _{rot}	kg	m ²	Refer to Table 1-4
Vol	tage o	constant				k _E	V/100	0 RPM	80
The	ermal	time con	stant		Tt	herm	n	nin	3
Sta	tor we	eight with	n cooling j	jacket	r	n _{St}	ł	kg	36
Rot	or we	eight			n	NRot	ł	kg	Refer to Table 1-4
P [kW]	25 20 15 10 5 0		3000	6000	9000	12000	15000		 Plimit S6–25% (114A) S6–40% (92A) S6–60% (78A) S1 (64A) n [RPM]
[Mm]	120 100 80 60 40 20								 Mlimit S6–25% (114A) S6–40% (92A) S6–60% (78A) S1 (64A)
	0	0	3000	6000	9000	12000	15000	18000	n [RPM]

Table 5-73 Motor type 1FE1093–4WM11

The data for duty type S6 are valid for a 2 min. duty cycle.

Table 5-74 Motor type 1FE1093–4WN11

	Three–phase sy	nchronou	ıs built–in	motor 1FE1094-4	WK11
Rate	d power		P _N	kW	46
Rate	d speed		n _N	RPM	4400
Rate	d torque		M _N	Nm	100
Rate	d current		I _N	A	108
Maxi	mum current		I _{max}	А	216
Maxi	mum rotational speed	r	າ _{max}	RPM	18000
Mom	ent of inertia		J _{rot}	kg m ²	Refer to Table 1-4
Volta	ige constant		k _E	V/1000 RPM	1 63
Ther	mal time constant	Т	therm	min	3
State	or weight with cooling jacket		m _{St}	kg	41
Roto	r weight	r	n _{Rot}	kg	Refer to Table 1-4
P [kW]	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9000	12000	15000 18000	 Plimit S6–25% (192A) S6–40% (156A) S6–60% (131A) S1 (108A)
[Mm]	$ \begin{array}{c} 180 \\ 160 \\ 140 \\ 120 \\ 120 \\ 100 \\ 80 \\ 60 \\ 40 \\ 20 \\ 0 \\ 0 \\ 3000 \\ 6000 \\ \end{array} $	9000	12000	15000 18000	 Mlimit S6–25% (192A) S6–40% (156A) S6–60% (131A) S1 (108A)

Table 5-75 Motor type 1FE1094–4WK11

Table 5-76 Motor type 1FE1094–4WL11

		Th	ree-phas	e synchr	onous bi	uilt–in mo	tor 1FE1	094–4WS1	1
Rate	d po	wer			P_N		k	W	26
Rate	d sp	eed			n _N		RI	PM	2500
Rate	d tor	que			M _N		N	m	100
Rate	d cu	rrent			I _N			Ą	60
Maximum current				I _{max}			Ą	120	
Maximum rotational speed				n _{max}		RI	PM	13000	
Mom	nent o	of inertia			J _{rot}		kg	m²	Refer to Table 1-4
Volta	ige c	onstant			k _E		V/100	0 RPM	113
Ther	mal t	ime constant			T _{therm}	1	m	nin	3
State	or we	ight with coolir	ng jacket		m _{St}		k	g	41
Roto	r wei	ght			m _{Rot}		k	g	Refer to Table 1-4
P [kW]	30 - 25 - 20 - 15 - 10 - 5 - 0 -	2000	4000	6000			12000		 Plimit S6–25% (105A) S6–40% (85A) S6–60% (72A) S1 (60A) n [RPM]
[um]	140 120 100 80 60 40 20 0		4000	6000	8000	10000	12000		 Mlimit S6–25% (105A) S6–40% (85A) S6–60% (72A) S1 (60A)

Table 5-77 Motor type 1FE1094–4WS11

Table 5-78 Motor type 1FE1094-4WU11

Three-phase sy	nchronous built–in m	otor 1FE1095–4WN1	1
Rated power	P _N	kW	46
Rated speed	n _N	RPM	3500
Rated torque	M _N	Nm	125
Rated current	I _N	A	108
Maximum current	I _{max}	A	216
Maximum rotational speed	n _{max}	RPM	18000
Moment of inertia	J _{rot}	kg m ²	Refer to Table 1-4
Voltage constant	k _E	V/1000 RPM	79.0
Thermal time constant	T _{therm}	min	3
Stator weight with cooling jacket	m _{St}	kg	47.5
Rotor weight	m _{Rot}	kg	Refer to Table 1-4
45	9000 12000		Plimit S6–25% (192A) S6–40% (156A) S6–60% (131A) S1 (108A) n [RPM]
220 200 180 160 140 120 120 100 100 100 20 100 100	9000 12000		 Mlimit S6–25% (192A) S6–40% (156A) S6–60% (131A) S1 (108A)

Table 5-79 Motor type 1FE1095–4WN11

Table 5-80 Motor type 1FE1096–4WN11

Table 5-81Motor type 1FE1103–4WN11

Table 5-82 Motor type 1FE1104–4WN11

Three-phase sy	nchronous built-ir	n motor 1FE1105–4WN1	1
Rated power	P _N	kW	53.4
Rated speed	n _N	RPM	3000
Rated torque	M _N	Nm	170
Rated current	۱ _N	A	120
Maximum current	I _{max}	А	240
Maximum rotational speed	n _{max}	RPM	16000
Moment of inertia	J _{rot}	kg m ²	0.02608
Voltage constant	k _E	V/1000 RPM	94
Thermal time constant	T _{therm}	min	3
Stator weight with cooling jacket	m _{St}	kg	43
Rotor weight	m _{Rot}	kg	8.70
$ \begin{array}{c} 60 \\ 50 \\ 50 \\ 40 \\ 30 \\ 20 \\ 10 \\ 0 \\ 0 \\ 200 \\ 400 \\ 6000 \end{array} $	8000 10000 1		Plimit S6–25% (221A) S6–40% (180A) S6–60% (148A) S1 (120A) n [RPM]
300 250 200 150 100 50 0			Mlimit S6–25% (221A) S6–40% (180A) S6–60% (148A) S1 (120A)
0 2000 4000 6000	8000 10000 1	2000 14000 16000	n [RPM]

Table 5-83 Motor type 1FE1105–4WN11

Table 5-84 Motor type 1FE1106–4WN11

Three-phase synchronous built-in motor 1FE1106-4WR11							
Rat	ted power	P _N	kW	62			
Rat	ted speed	n _N	RPM	2900			
Rat	ted torque	M _N	Nm	204			
Rat	ted current	I _N	А	128			
Ma	ximum current	I _{max}	А	260			
Ma	ximum rotational speed	n _{max}	RPM	14000			
Мо	ment of inertia	J _{rot}	kg m ²	0.03147			
Vol	tage constant	k _E	V/1000 RPM	106			
The	ermal time constant	T _{therm}	min	3			
Sta	tor weight with cooling jacket	m _{St}	kg	51			
Rot	tor weight	m _{Rot}	kg	10.50			
P [kW]	70 60 50 40 30 20 10 0 2000 4000			 Plimit S6–25% (227A) S6–40% (184A) S6–60% (155A) S1 (128A) n [RPM]			
M [Nm]	350 300 250 200 150 100 50 0 2000 4000 6		12000 14000	 Mlimit S6–25% (227A) S6–40% (184A) S6–60% (155A) S1 (128A) n [RPM]			

Table 5-85 Motor type 1FE1106–4WR11

Table 5-86 Motor type 1FE1106–4WS11

The data for duty type S6 are valid for a 2 min. duty cycle.

		Three	-phase sy	nchronou	s built–in m	notor 1FE1	106–4WY1	1
Rated power			P _N		k	W	25	
Rated speed			n _N		RPM		1200	
Rated torque			Ν	1 _N	N	m	200	
Rated cu	urrent			I _N			A	60
Maximur	n current			۱ _n	nax	A		120
Maximur	n rotationa	al speed		n _r	nax	RI	PM	6000
Moment	of inertia			J	rot	kg	m ²	0.03147
Voltage	constant			ŀ	έE	V/100	0 RPM	225
Thermal	time const	tant		T _{tł}	nerm	m	nin	3
Stator w	eight with a	cooling ja	acket	n	۱ _{St}	k	g	51
Rotor we	eight			m	Rot	k	g	10.50
30 25 20 15 10 5 0		1000	2000	3000	4000	5000		 Plimit S6–25% (105A) S6–40% (85A) S6–60% (73A) S1 (60A)
350 300 250 200 150 100 50 0	0		2000	3000	4000	5000		 Mlimit S6–25% (105A) S6–40% (85A) S6–60% (73A) S1 (60A)

Table 5-87 Motor type 1FE1106–4WY11

Three-phase synchronous built-in motor 1FE1124-4WN11								
Rate	ed power	-	P _N			kW		63
Rated speed			n _N			RPM		3000
Rated torque			M _N			Nm		200
Rate	ed current		I _N			А		135
Мах	kimum current		I _{ma}	x		А		270
Max	kimum rotational speed		n _{ma}	х		RPM		14000
Mor	ment of inertia		J _{ro}	t		kg m²	C	0.05112
Volt	age constant		k _E		V/1	000 RPM		95
The	ermal time constant		T _{the}	m		min		4
Stat	tor weight with cooling jacket		m _S	t		kg		50.5
Rote	or weight		m _{Ro}	ot		kg		12.10
P [kW]	70					 14000	Si 	imit 6–25% (247A) 6–40% (198A) 6–60% (166A) 1 (135A) 1 (120A) LT 20/150/193A
[Nm]	350 300 250 200 150 100 50					 	n [RPN	1] imit 5–25% (247A) 5–40% (198A) 5–60% (166A) (135A) 1 (120A) LT 20/150/193A
	0 2000 4000	6000	8000	10000	12000	14000	n [RPM]	

Table 5-88	Motor type 1FE1124–4WN11
------------	--------------------------

	Three-phas	e synchro	nous bui	ilt-in moto	or 1FE112	5–4WN1	1
Ra	ited power		P _N		kW		78.5
Ra	ited speed		n _N		RPM		3000
Ra	ited torque		M _N		Nm		250
Ra	ited current		I _N		A		162
Ма	aximum current		I _{max}		A		324
Ма	aximum rotational speed		n _{max}		RPM		14000
Мс	oment of inertia		J _{rot}		kg m	2	0.06337
Vo	Itage constant		k _E		V/1000	RPM	99
Th	ermal time constant		T _{therm}		min 4		4
Sta	ator weight with cooling jacket		m _{St}		kg		61
Ro	otor weight		m _{Rot}		kg		15.00
P [kW]	90	6000			12000	 14000	Plimit S6–25% (295A) S6–40% (240A) S6–60% (200A) S1 (162A) n [RPM]
M [Nm]	400 350 300 250 200 150 100 50 0 2000 4000	6000	8000				 Mlimit S6–25% (295A) S6–40% (240A) S6–60% (200A) S1 (162A) n [RPM]

Table 5-89 Motor type 1FE1125–4WN11

Table 5-90 Motor type 1FE1125–4WP11

	Three-phase sy	/nchronous built–in m	notor 1FE1126-4WN11	l
Rate	ed power	P _N	kW	94
Rate	ed speed	n _N	RPM	3000
Rate	ed torque	M _N	Nm	300
Rate	ed current	I _N	A	200
Max	imum current	I _{max}	A	400
Max	imum rotational speed	n _{max}	RPM	14000
Morr	nent of inertia	J _{rot}	kg m ²	0.07604
Volta	age constant	k _E	V/1000 RPM	95
Ther	mal time constant	T _{therm}	min	4
State	or weight with cooling jacket	m _{St}	kg	72
Roto	or weight	m _{Rot}	kg	18
P [kw]	$ \begin{array}{c} 120 \\ 100 \\ 80 \\ 60 \\ 40 \\ 20 \\ 0 \\ 0 \\ 2000 \\ 4000 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\ 60 \\$	000 8000 10000	 	 Plimit S6–25% (365A) S6–40% (295A) S6–60% (248A) S1 (200A) n [RPM]
[Nm]	500 450 400 350 300 250 200 150 100 50 0 2000 400		12000 14000	 Mlimit S6–25% (365A) S6–40% (295A) S6–60% (248A) S1 (200A) Imax (257A) LT 200/250/257 n [RPM]

Table 5-91 Motor type 1FE1126–4WN11

Table 5-92 Motor type 1FE1126–4WP11

		Three-p	hase synchr	onous built-	in motor 1FE	1126–4WQ1	1
Rate	d power			P _N		kW	63
Rated speed				n _N	F	RPM	2000
Rated torque				M _N		Nm	300
Rate	d current			I _N		А	147
Maxi	imum currer	nt		I _{max}		А	294
Maxi	imum rotatio	onal speed		n _{max}	F	RPM	10000
Mom	nent of inerti	а		J _{rot}	k	g m²	0.07604
Volta	age constan	t		k _E	V/10	00 RPM	130
Ther	mal time co	nstant		T _{therm}		min	4
State	or weight wi	th cooling jacl	ket	m _{St}		kg	72
Roto	r weight			m _{Rot}		kg	18
P [kW]	80		4000	6000	8000		 Plimit S6–25% (270A) S6–40% (215A) S6–60% (182A) S1 (147A) n [RPM]
[Nm]	500 450 400 350 250 250 200 150 50 0 0 0		4000	6000	8000		Mlimit

Table 5-93 Motor type 1FE1126–4WQ11

The data for duty type S6 are valid for a 2 min. duty cycle.
Dimension Drawings

Note

Siemens AG reserves the right to change the motor dimensions, as part of design improvements, without prior notification. The dimension drawings, provided in this documentation, can go out–of–date.

Current dimension drawings, refer to the Intranet under: Products & Solutions, Drive Technology, Synchronous Built–in Motors 1FE1, Dimension Drawings

The individual dimension drawings for the required motors can be found as follows in the Chapter "Index":

---> refer under the index entry "Dimension drawings"

Dimension drawings with cooling jacket 1FE1000-0000-0B00

As standard, the stators are supplied with cooling jacket and cast winding overhang. In this case, the technical data in Chapter 1.3 are valid and the characteristics in Chapter 5.1.

Dimension drawings without cooling jacket 1FE1000000A00

Stators are supplied without cooling jacket without cast winding overhang, however with impregnated winding. The technical data in Chapter 1.3 are reached up to approx. 80 to 85%. Precise characteristics can be provided on request.

The following built-in motors can be supplied without cooling jacket on request

1FE105-6W--, 1FE1061-6W--, 1FE1084-6W--, 1FE109-6W--, 1FE111-6W--, 1FE107-4W--, 1FE108-4W--, 1FE109-4W--, 1FE110-4W--.

Notice

For the mounting information "rotor–companion dimensions", a magnetic, conductive shaft material (steel) with a coefficient of expansion (longitudinal) of $11 \cdot 10^{-6}$ /K for the recommended fit is used as basis.

6.1 1FE104.-6

6.1 1FE104.–6

Fig. 6-1 1FE104 –6, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

Fig. 6-2 1FE104 -6, built-in motor without rotor sleeve

6.1 1FE104.-6

6.2 1FE105.-6

6.2 1FE105.-6

Fig. 6-3 1FE105 –6, stator without cooling jacket

Fig. 6-4 1FE105 –6, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

6.2 1FE105.-6

Fig. 6-5 1FE105 –6, stator with cooling jacket, cable outlet at the lower cooling jacket diameter

Fig. 6-6 1FE105 –6, rotor without sleeve

Fig. 6-7 1FE105□–6, rotor with sleeve

6.3 1FE106.-6

Fig. 6-8 1FE106 –6, stator without cooling jacket

1FE106 \square -6, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

Fig. 6-10 1FE106 –6, stator with cooling jacket, cable outlet at the lower cooling jacket diameter

6.3 1FE106.-6

6.4 1FE108.-6

6.4 1FE108.-6

Fig. 6-13 1FE108 –6, stator without cooling jacket

Fig. 6-14 1FE108 –6, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

Fig. 6-15 1FE108 –6, stator with cooling jacket, cable outlet at the lower cooling jacket diameter

Fig. 6-17 1FE108 –6, rotor with sleeve

6.5 1FE109.-6

Fig. 6-18 1FE109 –6, stator without cooling jacket

1FE109 \square -6, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

Fig. 6-20 1FE109D-6, stator with cooling jacket, cable outlet at the lower cooling jacket diameter

Fig. 6-21 1FE109□–6, rotor without sleeve

6.6 1FE111.-6

6.6 1FE111.-6

Fig. 6-23 1FE111 –6, stator without cooling jacket

Fig. 6-24 1FE111 –6, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

6.6 1FE111.-6

L		с – – – – – – – – – – – – – – – – – – –	α
		-	Passmaß Abmaß size of fit deviation
			80 ^{H6} +0.019
⊲			80.2 ^{H6} •0.022 A
			82 ^{H5} *0.05
			82.2 ^{HD} *0.022
			92 0 0 7H6 +0.022
			0 -2-2 QR ^{H6} -0.022
æ			98.2 ^{H6} +0.022 B
			102 ^{H5} +0.015
			102 ^{H6} +0.022
			сто.0+ сН2.2H2 0 АН
		Typ 11 L2 L3 L4 L5 Ød Ød1 Ødt	102.2 ^{H6} -0.022
		-E1113-6185 150 145 30 38.5 80 ^{H6} 80.2 ^{H6} 88	105.4 ^{H6 +0.022}
,		EE1113-6E 185 150 145 30 38.5 105.2 ^{H6} 105.4 ^{H6} 110	
		E1114-6B_235 200 195 30 38.5 82 ^{H5} 82.5 90	
		E1114-6[235 200 195 30 38.5 102 ^{H5} 102.2 ^{H5} 110	
	- L1±0.25	-E1114-6Z- 235 200 195 30 38.5 92 ^{H6} 92.2 ^{H6} 100	
	indbu-Hinveis and the instructions	EE1114-6Z- 235 200 195 30 38.5 98 ^{H6} 98.2 ^{H6} 106	
		E 1114-6272 235 200 195 30 38.5 105.2 ^{H6} 105.4 ^{H6} 110	
		E1115-6285 250 245 30 38.5 102 ^{H6} 102.2 ^{H6} 110	
		E1116-6B_ 335 300 295 30 38.5 82 ^{H5} 82.2 ^{H5} 90	
		E1116-6235 300 295 30 38.5 102 ^{H6} 102.2 ^{H6} 110	
	51219 5000 - DG 1000 - DG 100	Ausrichtposition fuer Staender und Laeufer augmment position for stator and rotor	
ш		Jynamisch tariert dynamicaly balanced Auswurchtnuchestutb/balance musity made 62 5 nach/arcooding to DIN	ISN 191.0
		active states of the second states and the second states active active and the second se	
	Kante gerundet ω' Remerinen gerundet ω' freistich edge filler Rz6.3 <u>L4 min.</u>	inch toterierte Maße. Maßstab/state enterwintend Einteit/onit not toterierte Maße. Abstab/state enterwintend Einteit/onit heretenste	mm Masse/mass:
	- Uebergangsschraege	Bayer 20,03 Magazine Caroline	
ш	Instantion comment	Typ FE1115-6 - C hinzu 15.11.04 BALZM Provident 2000 mit Laeuferhuelse - IPM A 50100 16.01.04 Str/m1 2012, A 50100 16.01.04 Str/m1 2012 - 10	Format:
	Planflaeche Laeuferhuelse	AM 500791 AM 500791 With rotor steeve	Blatt / Sheet No.
	end face rotor sleeve	ex Mittelium/ Datum/ Bearb.:Versity./ OUDSUNDEUCO F(M)6	YON Charles
	1 2 3 4 4	aiz 10° / www.william 510.39116.52	b [1]

NO-COL

6.7 1FE114.-8

6.7 1FE114.–8

Fig. 6-27 1FE114 –8, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

Fig. 6-28 1FE114 -8, rotor without sleeve

Dimension Drawings

6.7 1FE114.-8

6.7 1FE114.-8

Fig. 6-29 1FE114 -8, rotor with sleeve

6.8 1FE105.-4

Fig. 6-30 1FE105 -4, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

Fig. 6-31 1FE105 -4, rotor without sleeve

Fig. 6-32 1FE105 -4, rotor without sleeve High Speed 2

6.9 1FE107.-4

6.9 1FE107.-4

Fig. 6-33 1FE107 -4, stator without cooling jacket

Fig. 6-35 1FE107 –4, stator with cooling jacket, cable outlet at the lower cooling jacket diameter

Fig. 6-36 1FE107 -4, rotor without sleeve

6.9 1FE107.-4

6.10 1FE108.-4

6.10 1FE108.-4

Fig. 6-37 1FE108 -4, stator without cooling jacket

Fig. 6-38 1FE108 –4, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

6.10 1FE108.-4

6.10 1FE108.-4

Fig. 6-39 1FE108 –4, stator with cooling jacket, cable outlet at the lower cooling jacket diameter

6.10

Dimension Drawings

1FE108.-4

6.11 1FE109.-4

6.11 1FE109.-4

Fig. 6-41 1FE109 -4, stator without cooling jacket

Fig. 6-43 1FE109D-4, stator with cooling jacket, cable outlet at the lower cooling jacket diameter

6.11 1FE109.-4

6.11 1FE109.-4

Dimension Drawings
6.12 1FE110.-4

6.12 1FE110.-4

Fig. 6-46 1FE110 -4, stator without cooling jacket

6.12 1FE110.-4

Fig. 6-48 1FE110 –4, rotor without sleeve

6.12 1FE110.-4

6.13 1FE112.-4

6.13 1FE112.-4

Fig. 6-49 1FE112 -4, stator with cooling jacket, cable outlet at the higher cooling jacket diameter

6.14 Dimension drawing for VPM 120, VPM 200, VPM 200 DYNAMIK

Fig. 6-51 Dimension drawing for VP modules

Fable 6-1	Dimensions,	weight
		<u> </u>

Module	Weight [kg]	B [mm]	B1 [mm]	T [mm]	T1 [mm]
VPM 120	approx. 6	150	125	180	20
VPM 200	approx. 11	250	225	190	30
VPM 200 DYNAMIK	approx. 13	250	225	260	30

References

General Documentation

/BU/ Catalog NC 60

Automation Systems for Machine Tools Order No.: E86060–K4460–A101–A9 Order No.: E86060–K4460–A101–A9–7600 (English)

Electronic Documentation

/CD1/ DOC ON CD

The SINUMERIK System (includes all SINUMERIK 840D/810D and SIMODRIVE 611D documents) Order No.: 6FC5298–7CA00–0BG1

Manufacturer/Service Documentation

/PJAL/ Configuration Manual, Synchronous Motors SIMODRIVE 611, MASTERDRIVES MC Synchronous Motors, General Section Order No.: 6SN1197–0AD07–0BP1

/PFK7/ Configuration Manual, Synchronous Motors

SIMODRIVE 611, MASTERDRIVES MC Synchronous Motors 1FK7 Order No.: 6SN1197–0AD06–0BP0

/PFK6/ Configuration Manual, Synchronous Motors

SIMODRIVE 611, MASTERDRIVES MC Synchronous Motors 1FK6 Order No.: 6SN1197–0AD05–0BP0

/PFT6/ Configuration Manual, Synchronous Motors SIMODRIVE 611, MASTERDRIVES MC Synchronous Motors 1FT6 Order No.: 6SN1197–0AD02–0BP0

/PFT5/ Configuration Manual, Synchronous Motors SIMODRIVE Synchronous Motors 1FT5 Order No.: 6SN1197–0AD01–0BP0

/PFS6/ Configuration Manual, Synchronous Motors MASTERDRIVES MC Synchronous Motors 1FS6, explosion protected Order No: 6SN1197–0AD08–0BP0

/PFU/ Configuration Manual, Synchronous Motor

SINAMICS, MASTERDRIVES, MICROMASTER SIEMOSYN Synchronous Motor 1FU8 Order No.: 6SN1197–0AC80–0BP0

/ASAL/ Configuration Manual, AC Induction Motors

SIMODRIVE 611, MASTERDRIVES VC/MC AC Induction Motors, General Section Order No: 6SN1197–0AC62–0BP0

/APH2/ Configuration Manual, AC Induction Motors

SIMODRIVE 611 AC Induction Motors, 1PH2 Order No.: 6SN1197–0AC63–0BP0

APH4/ Configuration Manual, AC Induction Motors

SIMODRIVE 611 AC Induction Motors, 1PH4 Order No.: 6SN1197–0AC64–0BP0

/APH7S/ Configuration Manual, AC Induction Motors

SIMODRIVE 611 AC Induction Motors, 1PH7 Order No.: 6SN1197–0AC65–0BP0

/APH7M/ Configuration Manual, AC Induction Motors

MASTERDRIVES AC Induction Motors, 1PH7 Order No.: 6SN1197–0AC66–0BP0

/APL6/ Configuration Manual, AC Induction Motors

MASTERDRIVES VC/MC AC Induction Motors, 1PH6 Order No.: 6SN1197–0AC67–0BP0

/PPM/ Configuration Manual, Hollow Shaft Motors

SIMODRIVE Hollow Shaft Motors for Main Spindle Drives 1PM6 and 1PM4 Order No.: 6SN1197–0AD03–0BP0

/PJFE/ Configuration Manual, Synchronous Built-in Motors

SIMODRIVE AC Motors for Main Spindle Drives Synchronous Built–in Motors 1FE1 Order No.: 6SN1197–0AC00–0BP4

/PMS/ Configuration Manual, Motor Spindle SIMODRIVE

ECO Motor Spindle 2SP1 Order No.: 6SN1197–0AD04–0BP0

/PJTM/ Configuration Manual, Built-in Torque Motors SIMODRIVE Built-in Torque Motors 1FW6 Order No.: 6SN197-0AD00-0BP1

/PKTM/ Configuration Manual, Complete Torque Motors

SIMOVERT MASTERDRIVES MC Complete Torque Motors 1FW3 Order No.: 6SN197–0AC70–0BP0 /PJLM/ Configuration Manual, Linear Motors SIMODRIVE 1FN1 and 1FN3 Linear Motors Order No.: 6SN1197–0AB70–0BP3

/PJU/ Configuration Manual, Drive Converters SIMODRIVE 611 Drive Converters Order No.: 6SN1197–0AA00–0BP5

/EMV/ Configuration Manual, EMC Design Guidelines

SINUMERIK, SIROTEC, SIMODRIVE Order No.: 6FC5297–0AD30–0BP1

Index

A

Accelerating time calculation, 1-30 Additive, 1-41 Advantages of synchronous motor technology, 1-16 APM rotor, 2-63 Applications, 1-15, 1-18

В

Balancing recommendations, 2-65 Brake constant K, 3-80 Braking time, 3-79

С

Cable cross-sections, 3-71 Calculating the accelerating time, 1-30 Characteristics, 5-87 Configuration information, 1-28 Connecting VPM 120, 3-83 VPM 200, 3-84 VPM 200 DYNAMIK, 3-84 Connecting cables, 3-71 Cooling, 1-41 Cooling circuit, 1-44 Cooling media, 1-41 Cooling medium pressure, 1-43 Cooling powers to be dissipated, 1-45 Cooling system, 1-43 Cooling-medium intake temperature, 1-43 Current de-rating, 1-39

D

Danger and warning information, viii, ix Degree of protection, 1-20 Derating, 1-39 Diagrams, 5-87 **Dimension drawings** 1FE104.--6, 6-182 1FE105.-4, 6-211 1FE105.--6, 6-184 1FE106.--6, 6-189 1FE107.-4, 6-214 1FE108.-4. 6-218 1FE108.-6, 6-194 1FE109.-4, 6-222 1FE109.-6, 6-199 1FE110.-4, 6-227 1FE111.-6, 6-204 1FE112.-4, 6-230 1FE114.-8, 6-208 VPM 120, 6-232 VPM 200, 6-232 VPM 200 DYNAMIK, 6-232 Dimensions of 1FE1 motors, 1-33 Disposal, xi Drive converter pulse frequencies, 1-39

Ε

Encoder system, 1-52 ESDS information and instructions, xi

F

Features, 1-18 Flow rate, 1-42 Full motor protection, 1-50

Н

High-voltage test, 3-69

I

Induction motor technology, 1-16 IPM rotor, 2-63

Κ

KTY 84, 1-49

L Line connection, 3-71

Μ

Magnetic excitation, 1-20 Magnetic forces, 2-61 Moments of inertia, 1-31 Motor rating plate, 1-23 Motor spindle, 1-17 Mounting Motor spindle, 2-60 Rotor, 2-57 Stator, 2-59

Ν

NTC K227, 1-51 NTC PT3–51F, 1-51 NTC thermistor, 1-51

ο

Order designation, 4-85 Order No. (MLFB), 4-85, 4-86 Overview of connections, 3-70

Ρ

Packaging, 2-67 Power units, 1-28 Power–speed diagrams, 5-87 PTC thermistor triplet, 1-50

R

Rating plate, 1-23 Recommended grounding, 3-76 References, A-233 Removing the rotor, 2-58 Rotor position identification Motion–based, 1-36 Saturation–based, 1-36 Special issues for specific motors, 1-37 Rotor sleeve, 2-65 Rotor sleeves, 2-65 Rotor weight, 1-31

S

Safety information/instructions for assembly, 2-55 General, ix Regarding the electrical connection, 3-69 Scope of supply, 1-22 Sleeve, 2-65 Speed-torque diagrams, 5-87 Synchronous motor technology, 1-16 System requirements, 1-19

Т

Technical data, 1-24 1FE1041-6WM10, 5-88 1FE1042-6WN10, 5-89 1FE1042-6WR10, 5-90 1FE1051-4HC10, 5-130 1FE1051-4WN11, 5-131 1FE1051-6WK10, 5-92 1FE1051-6WN10, 5-91 1FE1052-4HD10, 5-132 1FE1052–4HG11, 5-133 1FE1052-4WK11, 5-135 1FE1052-4WN11, 5-134 1FE1052-6WK10, 5-94 1FE1052-6WN10, 5-93 1FE1053-4HH11, 5-136 1FE1053-4WJ11, 5-138 1FE1053-4WN11, 5-137 1FE1054–6WN10, 5-95 1FE1061-6WH10, 5-96 1FE1061-6WY10, 5-97 1FE1064-6WN11, 5-98 1FE1064-6WQ11, 5-99 1FE1072-4WH11, 5-139 1FE1072-4WL11, 5-140 1FE1072-4WN11, 5-141 1FE1073-4WN11, 5-142 1FE1073-4WT11, 5-143 1FE1074-4WM11, 5-144 1FE1074-4WN11, 5-145 1FE1074-4WT11, 5-146 1FE1082-4WN11, 5-147 1FE1082-4WR11, 5-148 1FE1082-6WP10, 5-100 1FE1082-6WQ11, 5-101 1FE1082-6WS10, 5-102 1FE1082-6WW11, 5-103 1FE1083-4WN11, 5-149 1FE1084-4WN11, 5-150 1FE1084-4WP11, 5-151 1FE1084-4WQ11, 5-152 1FE1084–4WT11, 5-153 1FE1084-6WR11, 5-104 1FE1084-6WU11, 5-105 1FE1084-6WX11, 5-106 1FE1085-4WN11, 5-154 1FE1085-4WQ11, 5-156 1FE1085-4WT11, 5-155 1FE1091-6WN10, 5-107 1FE1091-6WS10, 5-108

1FE1092–4WP11, 5-157
1FE1092-4WV11 5-158
1EE1002_6W/N10_5_100
11 E 1092-0WIN10, 5-109
1FE1092–6WR11, 5-110
1FE1093–4WH11, 5-159
1FE1093–4WM11, 5-160
1FE1093–4WN11, 5-161
1FE1093_6W/N10_5-111
1551002 6W/\$10,5 112
1FE1093-0W310, 5-112
1FE1093–6WV11, 5-113
1FE1094–4WK11, 5-162
1FE1094–4WL11, 5-163
1FE1094–4WS11, 5-164
1FF1094-4WU11 5-165
1EE1005_1W011_5_166
1FE1095-4WN11, 5-100
1FE1096–400N11, 5-167
1FE1103–4WN11, 5-168
1FE1104–4WN11, 5-169
1FE1105–4WN11, 5-170
1FF1106-4WN11 5-171
1EE1106_/\WP11_5_172
1 E 1100 - 4 WICH, 5-172
IFE1100-4WS11, 5-173
1FE1106–4WY11, 5-174
1FE1113–6WU11, 5-114
1FE1113–6WX11, 5-115
1FE1114–6WR11, 5-116
1FE1114_6WT11_5-117
1FE1115-6W111, 5-119
1FE1116–6WR11, 5-120
1FE1116–6WT11, 5-121
1FE1116–6WW11, 5-122
1FF1124–4WN11 5-175
1EE1125_/\WN11_5-176
1 E 1125 4WD14 E 177
IFE1125-400P11, 5-177
1FE1126–4WN11, 5-178
1FE1126–4WP11, 5-179
1FE1126–4WQ11, 5-180
1FE1144–8WL11, 5-123
1FE1145-8WQ11 5-125
1EE11/5_8WQ11, 5-126
1FE1147-8VVN11, 5-127
1FE1147–8WQ11, 5-128
1FE1147–8WS11, 5-129
VP modules, 3-78
Technical features 1-21
Technical Support vi
Torminal box 2.76
i nermal motor protection, 1-48
ктү 84, 1-49
NTC thermistor, 1-51
PTC thermistor triplet, 1-50
Torque/power characteristics. 1-16

Transport, 2-67 Transport by air, 2-67 Type of construction, 1-21

v

VP module, 3-77

То	Suggestions			
SIEMENS AG	Corrections			
A&D MC MS Postfach 3180	For Publication/Manual:			
D–91050 Erlangen	SIMODRIVE Three–Phase Motors for Main Spindle Drives			
Tel.: +49 (0)180 / 5050 – 222	Synchronous Built–in Motors 1FE1			
Fax: +49 (0)9131 / 98 – 63315 [Documentation] email: mailto:motioncontrol.docu@siemens.com	Manufacturer/Service Documentation			
From	Configuration Manual			
Name	Order No.: 6SN1 197–0AC00–0BP6 Edition: 12.2005			
Address of your company/department				
Address	If you come across any misprints in this document, please let us know using this form.			
Postal code: City:	We would also be grateful for any suggestions			
Telephone: /				
leletax: /				

Suggestions and/or corrections

Siemens AG Automation & Drives Motion Control Systems Postfach 3180, D – 91050 Erlangen Federal Republic of Germany

© Siemens AG 2005 Subject to change without prior notice Order No.: 6SN1197–0AC00–0BP6

http://www.siemens.com/motioncontrol

Printed in the Federal Republic of Germany