
Cat. No. W451-E1-01
PROGRAMMING MANUAL

SYSMAC CP Series
CP1H-X40D@-@
CP1H-XA40D@-@
CP1H-Y20DT-D
CP1H CPU Unit

CP1H-X40D@-@
CP1H-XA40D@-@
CP1H-Y20DT-D

CP1H CPU Unit
Programming Manual
Produced October 2005

iv

Notice:
OMRON products are manufactured for use according to proper procedures by a qualified operator
and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed
the information provided with them. Failure to heed precautions can result in injury to people or dam-
age to property.

!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or
serious injury. Additionally, there may be severe property damage.

!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or
serious injury. Additionally, there may be severe property damage.

!Caution Indicates a potentially hazardous situation which, if not avoided, may result in minor or
moderate injury, or property damage.

OMRON Product References
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to
an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation “Ch,” which appears in some displays and on some OMRON products, often means
“word” and is abbreviated “Wd” in documentation in this sense.

The abbreviation “PLC” means Programmable Controller. “PC” is used, however, in some CX-Pro-
grammer displays to mean Programmable Controller.

Visual Aids
The following headings appear in the left column of the manual to help you locate different types of
information.

Note Indicates information of particular interest for efficient and convenient opera-
tion of the product.

1,2,3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

 OMRON, 2005
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of
OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in
this publication.
v

Unit Versions of CP-series CPU Units

Unit Versions A “unit version” has been introduced to manage CPU Units in the CP Series
according to differences in functionality accompanying Unit upgrades.

Notation of Unit Versions
on Products

The unit version is given to the right of the lot number on the nameplate of the
products for which unit versions are being managed, as shown below.

Confirming Unit Versions
with Support Software

CX-Programmer version 6.1 or higher can be used to confirm the unit version
using one of the following two methods. (See note.)

• Using the PLC Information
• Using the Unit Manufacturing Information

Note CX-Programmer version 6.1 or lower cannot be used to confirm unit versions
for CP-series CPU Units.

PLC Information

• If you know the device type and CPU type, select them in the Change
PLC Dialog Box, go online, and select PLC - Edit - Information from the
menus.

• If you don't know the device type and CPU type but are connected directly
to the CPU Unit on a serial line, select PLC - Auto Online to go online,
and then select PLC - Edit - Information from the menus.

In either case, the following PLC Information Dialog Box will be displayed.

CP1H-XA40CDR-A

CPU UNIT

Lot No. 28705 0000 Ver.1.0

OMRON Corporation MADE IN JAPAN

Unit version
(Example for Unit version 1.0)

Lot No.

CP-series CPU Unit
Product nameplate
vi

Use the above display to confirm the unit version of the CPU Unit.

Unit Manufacturing Information

In the IO Table Window, right-click and select Unit Manufacturing informa-
tion - CPU Unit.

The following Unit Manufacturing information Dialog Box will be displayed.

▲ Unit version
vii

Use the above display to confirm the unit version of the CPU Unit connected
online.

Using the Unit Version
Labels

The following unit version labels are provided with the CPU Unit.

These labels can be attached to the front of previous CPU Units to differenti-
ate between CPU Units of different unit versions.

▲ Unit version

Ver. 1.0

Ver. 1.0

Ver.

Ver.

These Labels can be
used to manage
d i f ferences in the
avai lab le funct ions
among the Uni ts .
P lace the appropr ia te
label on the f ront o f
the Uni t to show what
Uni t vers ion is ua l ly
be ing used.
viii

TABLE OF CONTENTS
PRECAUTIONS . xix
1 Intended Audience . xx

2 General Precautions . xx

3 Safety Precautions . xx

4 Operating Environment Precautions . xxii

5 Application Precautions. xxiii

6 Conformance to EC Directives . xxvi

SECTION 1
Programming Concepts . 1

1-1 Programming Concepts . 2

1-2 Precautions . 33

1-3 Checking Programs . 41

1-4 Introducing Function Blocks . 46

SECTION 2
Tasks . 49

2-1 Programming with Tasks . 50

2-2 Using Tasks . 58

2-3 Interrupt Tasks . 69

2-4 CX-Programmer Operations for Tasks . 75

SECTION 3
 Instructions. 77

3-1 Notation and Layout of Instruction Descriptions . 86

3-2 Sequence Input Instructions. 89

3-3 Sequence Output Instructions . 113

3-4 Sequence Control Instructions. 132

3-5 Timer and Counter Instructions . 169

3-6 Comparison Instructions . 211

3-7 Data Movement Instructions . 249

3-8 Data Shift Instructions . 276

3-9 Increment/Decrement Instructions. 323

3-10 Symbol Math Instructions . 339

3-11 Conversion Instructions . 392

3-12 Logic Instructions . 439

3-13 Special Math Instructions . 454

3-14 Floating-point Math Instructions . 475

3-15 Double-precision Floating-point Instructions . 528

3-16 Table Data Processing Instructions . 570

3-17 Data Control Instructions. 619
ix

TABLE OF CONTENTS

3-18 Subroutines . 672

3-19 Interrupt Control Instructions . 696

3-20 High-speed Counter/Pulse Output Instructions . 709

3-21 Step Instructions . 753

3-22 Basic I/O Unit Instructions . 770

3-23 Serial Communications Instructions . 806

3-24 Network Instructions . 846

3-25 Display Instructions . 912

3-26 Clock Instructions . 919

3-27 Debugging Instructions . 933

3-28 Failure Diagnosis Instructions . 937

3-29 Other Instructions . 961

3-30 Block Programming Instructions. 975

3-31 Text String Processing Instructions . 1009

3-32 Task Control Instructions. 1041

3-33 Model Conversion Instructions . 1048

SECTION 4
Instruction Execution Times and Number of Steps. 1067

4-1 Instruction Execution Times and Number of Steps . 1068

4-2 Function Block Instance Execution Time . 1089

Appendices
A Instruction Classifications by Function . 1091

B List of Instructions by Function Code . 1099

C Alphabetical List of Instructions by Mnemonic . 1115

Index. 1129

Revision History . 1139
x

About this Manual:

This manual describes programming the CP-series Programmable Controllers (PLCs) and includes
the sections described below. The CP Series provides advanced package-type PLCs based on
OMRON’s advanced control technologies and vast experience in automated control.

Please read this manual carefully and be sure you understand the information provided before
attempting to install or operate a CP-series PLC. Be sure to read the precautions provided in the fol-
lowing section.

Definition of the CP Series

The CP Series is centered around the CP1H CPU Units and is designed with the same basic architec-
ture as the CS and CJ Series. The Special I/O Units and CPU Bus Units of the CJ Series can thus be
used. CJ-series Basic I/O Units, however, cannot be used. Always use CPM1A Expansion Units and
CPM1A Expansion I/O Units when expanding I/O capacity.

I/O words are allocated in the same way as the CPM1A/CPM2A PLCs, i.e., using fixed areas for inputs
and outputs.

 CS/CJ/CP Series

CS1H-CPU@@H

CS1G-CPU@@H

CS1-H CPU Units

CS-series Power Supply Units
Note: Products specifically for the CS1D

Series are required to use CS1D
CPU Units.

CS-series Basic I/O Units

CS-seres CPU Bus Units

CS-series Special I/O Units

CS1 CPU Units

CS Series

CS1H-CPU@@ (-V1)

CS1G-CPU@@ (-V1)

CJ1H-CPU@@H

CJ1G-CPU@@H

CJ1G -CPU@@P
(Loop CPU Unit)

CJ1-H CPU Units

CJ1 CPU Unit

CJ Series

CJ1G-CPU@@

CJ1M CPU Unit

CJ1M-CPU@@

CS1D CPU Units

CS1D CPU Units for
Duplex-CPU System

CS1D-CPU@@ H

CS1D CPU Units for
Single-CPU System

CS1D-CPU S

CS1D Process CPU Units

CS1D-CPU@@ P

CP1H-X@@@@-@

CP1H-XA@@@@-@

CP1H-Y@@@@-@

CP1H CPU Units

CJ-series CPU Bus Units

CJ-series Special I/O Units

CP Series

CPM1A Expansion Units

CPM1A Expansion I/O Units

@@

CJ-series Basic I/O Units

CJ-series Special I/O Units

CJ-seres CPU Bus Units

CJ-series Power Supply Units
xi

Precautions provides general precautions for using the Programmable Controller and related devices.

Section 1 describes the basic concepts required to program the CP1H.

Section 2 describes the operation of tasks and how to use tasks in programming.

Section 3 describes each of the instructions that can be used in programming CP-series PLCs.
Instructions are described in order of function.

Section 4 lists the execution times and number of steps for all instructions supported by the CP1H
PLCs, and describes the execution times for function block instances.

The Appendices provide lists of the programming instructions in order of function and in order of func-
tion number.
xii

Related Manuals

The following manuals are used for the CP-series CPU Units. Refer to these manuals as required.

Cat. No. Model numbers Manual name Description

W450 CP1H-X40D@-@
CP1H-XA40D@-@
CP1H-Y20DT-D

SYSMAC CP Series
CP1H CPU Unit
Operation Manual

Provides the following information on the CP Series:

• Overview, design, installation, maintenance, and
other basic specifications

• Features
• System configuration
• Mounting and wiring
• I/O memory allocation
• Troubleshooting
Use this manual together with the CP1H Program-
mable Controllers Programming Manual (W451).

W451 CP1H-X40D@-@
CP1H-XA40D@-@
CP1H-Y20DT-D

SYSMAC CP Series
CP1H CPU Unit Pro-
gramming Manual

Provides the following information on the CP Series:

• Programming instructions
• Programming methods
• Tasks
• File memory
• Functions
Use this manual together with the CP1H Program-
mable Controllers Operation Manual (W450).

W342 CS1G/H-CPU@@H
CS1G/H-CPU@@-V1
CS1D-CPU@@H
CS1D-CPU@@S
CS1W-SCU21
CS1W-SCB21-V1/41-V1
CJ1G/H-CPU@@H
CJ1G-CPU@@P
CP1H-CPU@@
CJ1G-CPU@@
CJ1W-SCU21-V1/41-V1

SYSMAC CS/CJ-
series Communica-
tions Commands Ref-
erence Manual

Describes commands addressed to CS-series, and
CJ-series CPU Units, including C-mode commands
and FINS commands.

Note This manual describes on commands
address to CPU Units regardless of the com-
munications path. (CPU Unit serial ports,
Serial Communications Unit/Board ports, and
Communications Unit ports can be used.)
Refer to the relevant operation manuals for
information on commands addresses to Spe-
cial I/O Units and CPU Bus Units.

W446 WS02-CXPC1-E-V61 SYSMAC CX-Pro-
grammer
Ver. 6.1 Operation
Manual

Provides information on installing and operating the
CX-Programmer for all functions except for function
blocks.

W447 WS02-CXPC1-E-V61 SYSMAC CX-Pro-
grammer Ver. 6.1
Operation Manual
Function Blocks

Provides specifications and operating procedures
for function blocks. Function blocks can be used
with CX-Programmer Ver. 6.1 or higher and either a
CS1-H/CJ1-H CPU Unit with a unit version of 3.0 or
a CP1H CPU Unit. Refer to W446 for operating pro-
cedures for functions other than function blocks.

W444 CXONE-AL@@C-E CX-One FA Inte-
grated Tool Package
Setup Manual

Provides an overview of the CX-One FA Integrated
Tool and installation procedures.

W445 CXONE-AL@@C-E CX-Integrator Opera-
tion Manual

Describes CX-Integrator operating procedures and
provides information on network configuration (data
links, routing tables, Communications Units setup,
etc.

W344 WS02-PSTC1-E CX-Protocol Opera-
tion Manual

Provides operating procedures for creating protocol
macros (i.e., communications sequences) with the
CX-Protocol and other information on protocol mac-
ros.

The CX-Protocol is required to create protocol mac-
ros for user-specific serial communications or to
customize the standard system protocols.
xiii

xiv

Read and Understand this Manual
Please read and understand this manual before using the product. Please consult your OMRON
representative if you have any questions or comments.

Warranty and Limitations of Liability

WARRANTY

OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a
period of one year (or other period if specified) from date of sale by OMRON.

OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE
PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS
DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR
INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.

LIMITATIONS OF LIABILITY

OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES,
LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS,
WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT
LIABILITY.

In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which
liability is asserted.

IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS
REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS
WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO
CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.
xv

Application Considerations

SUITABILITY FOR USE

OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the
combination of products in the customer's application or use of the products.

At the customer's request, OMRON will provide applicable third party certification documents identifying
ratings and limitations of use that apply to the products. This information by itself is not sufficient for a
complete determination of the suitability of the products in combination with the end product, machine,
system, or other application or use.

The following are some examples of applications for which particular attention must be given. This is not
intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses
listed may be suitable for the products:

• Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or
uses not described in this manual.

• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical
equipment, amusement machines, vehicles, safety equipment, and installations subject to separate
industry or government regulations.

• Systems, machines, and equipment that could present a risk to life or property.

Please know and observe all prohibitions of use applicable to the products.

NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND
INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

PROGRAMMABLE PRODUCTS

OMRON shall not be responsible for the user's programming of a programmable product, or any
consequence thereof.
xvi

Disclaimers

CHANGE IN SPECIFICATIONS

Product specifications and accessories may be changed at any time based on improvements and other
reasons.

It is our practice to change model numbers when published ratings or features are changed, or when
significant construction changes are made. However, some specifications of the products may be changed
without any notice. When in doubt, special model numbers may be assigned to fix or establish key
specifications for your application on your request. Please consult with your OMRON representative at any
time to confirm actual specifications of purchased products.

DIMENSIONS AND WEIGHTS

Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when
tolerances are shown.

PERFORMANCE DATA

Performance data given in this manual is provided as a guide for the user in determining suitability and does
not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must
correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and
Limitations of Liability.

ERRORS AND OMISSIONS

The information in this manual has been carefully checked and is believed to be accurate; however, no
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.
xvii

xviii

PRECAUTIONS

This section provides general precautions for using the CP-series Programmable Controllers (PLCs) and related devices.

The information contained in this section is important for the safe and reliable application of Programmable
Controllers. You must read this section and understand the information contained before attempting to set up or
operate a PLC system.

1 Intended Audience . xx
2 General Precautions . xx
3 Safety Precautions. xx
4 Operating Environment Precautions . xxii
5 Application Precautions . xxiii
6 Conformance to EC Directives . xxvi

6-1 Applicable Directives . xxvi
6-2 Concepts . xxvi
6-3 Conformance to EC Directives . xxvi
6-4 Relay Output Noise Reduction Methods . xxvi
6-5 Conditions for Meeting EMC Directives

when Using CPM1A Relay I/O Units . xxvi
xix

Intended Audience 1
1 Intended Audience
This manual is intended for the following personnel, who must also have
knowledge of electrical systems (an electrical engineer or the equivalent).

• Personnel in charge of installing FA systems.

• Personnel in charge of designing FA systems.

• Personnel in charge of managing FA systems and facilities.

2 General Precautions
The user must operate the product according to the performance specifica-
tions described in the operation manuals.

Before using the product under conditions which are not described in the
manual or applying the product to nuclear control systems, railroad systems,
aviation systems, vehicles, combustion systems, medical equipment, amuse-
ment machines, safety equipment, and other systems, machines, and equip-
ment that may have a serious influence on lives and property if used
improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are
sufficient for the systems, machines, and equipment, and be sure to provide
the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be
sure to read this manual before attempting to use the Unit and keep this man-
ual close at hand for reference during operation.

!WARNING It is extremely important that a PLC and all PLC Units be used for the speci-
fied purpose and under the specified conditions, especially in applications that
can directly or indirectly affect human life. You must consult with your OMRON
representative before applying a PLC System to the above-mentioned appli-
cations.

3 Safety Precautions

!WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing
so may result in electric shock.

!WARNING Do not touch any of the terminals or terminal blocks while the power is being
supplied. Doing so may result in electric shock.

!WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do
so may result in malfunction, fire, or electric shock.

!WARNING Provide safety measures in external circuits (i.e., not in the Programmable
Controller), including the following items, to ensure safety in the system if an
abnormality occurs due to malfunction of the PLC or another external factor
affecting the PLC operation. Not doing so may result in serious accidents.

• Emergency stop circuits, interlock circuits, limit circuits, and similar safety
measures must be provided in external control circuits.
xx

Safety Precautions 3
• The PLC will turn OFF all outputs when its self-diagnosis function detects
any error or when a severe failure alarm (FALS) instruction is executed.
As a countermeasure for such errors, external safety measures must be
provided to ensure safety in the system.

• The PLC or outputs may remain ON or OFF due to deposits on or burning
of the output relays, or destruction of the output transistors. As a counter-
measure for such problems, external safety measures must be provided
to ensure safety in the system.

• When the 24-V DC output (service power supply to the PLC) is over-
loaded or short-circuited, the voltage may drop and result in the outputs
being turned OFF. As a countermeasure for such problems, external
safety measures must be provided to ensure safety in the system.

!WARNING Fail-safe measures must be taken by the customer to ensure safety in the
event of incorrect, missing, or abnormal signals caused by broken signal lines,
momentary power interruptions, or other causes. Not doing so may result in
serious accidents.

!Caution Execute online edit only after confirming that no adverse effects will be
caused by extending the cycle time. Otherwise, the input signals may not be
readable.

!Caution Confirm safety at the destination node before transferring a program to
another node or editing the I/O area. Doing either of these without confirming
safety may result in injury.

!Caution Tighten the screws on the terminal block of the AC Power Supply Unit to the
torque specified in this manual. The loose screws may result in burning or
malfunction.

!Caution Do not touch anywhere near the power supply parts or I/O terminals while the
power is ON, and immediately after turning OFF the power. The hot surface
may cause burn injury.

!Caution Pay careful attention to the polarities (+/-) when wiring the DC power supply. A
wrong connection may cause malfunction of the system.

!Caution When connecting the PLC to a computer or other peripheral device, either
ground the 0 V side of the external power supply or do not ground the external
power supply at all. Otherwise the external power supply may be shorted
depending on the connection methods of the peripheral device. DO NOT
ground the 24 V side of the external power supply, as shown in the following
diagram.

24 V

0 V 0 V

Non-insullated DC power supply

0 V

Peripheral device FG FG CPU Unit FG

Twisted-pair
cable

FG
xxi

Operating Environment Precautions 4
!Caution After programming (or reprogramming) using the IOWR instruction, confirm
that correct operation is possible with the new ladder program and data before
starting actual operation. Any irregularities may cause the product to stop
operating, resulting in unexpected operation in machinery or equipment.

!Caution The CP1H CPU Units automatically back up the user program and parameter
data to flash memory when these are written to the CPU Unit. I/O memory
(including the DM Area, Counter present values and Completion Flags, and
HR Area), however, is not written to flash memory. The DM Area, Counter
present values and Completion Flags, and HR Area can be held during power
interruptions with a battery. If there is a battery error, the contents of these
areas may not be accurate after a power interruption. If the contents of the
DM Area, Counter present values and Completion Flags, and HR Area are
used to control external outputs, prevent inappropriate outputs from being
made whenever the Battery Error Flag (A402.04) is ON.

4 Operating Environment Precautions

!Caution Do not operate the control system in the following locations:

• Locations subject to direct sunlight.

• Locations subject to temperatures or humidity outside the range specified
in the specifications.

• Locations subject to condensation as the result of severe changes in tem-
perature.

• Locations subject to corrosive or flammable gases.

• Locations subject to dust (especially iron dust) or salts.

• Locations subject to exposure to water, oil, or chemicals.

• Locations subject to shock or vibration.

!Caution Take appropriate and sufficient countermeasures when installing systems in
the following locations:

• Locations subject to static electricity or other forms of noise.

• Locations subject to strong electromagnetic fields.

• Locations subject to possible exposure to radioactivity.

• Locations close to power supplies.

!Caution The operating environment of the PLC System can have a large effect on the
longevity and reliability of the system. Improper operating environments can
lead to malfunction, failure, and other unforeseeable problems with the PLC
System. Make sure that the operating environment is within the specified con-
ditions at installation and remains within the specified conditions during the
life of the system.
xxii

Application Precautions 5
5 Application Precautions
Observe the following precautions when using the PLC System.

!WARNING Always heed these precautions. Failure to abide by the following precautions
could lead to serious or possibly fatal injury.

• Always connect to 100 Ω or less when installing the Units. Not connecting
to a ground of 100 Ω or less may result in electric shock.

• Always turn OFF the power supply to the PLC before attempting any of
the following. Not turning OFF the power supply may result in malfunction
or electric shock.

• Mounting or dismounting Expansion Units or any other Units

• Connecting or removing the Memory Cassette or Option Board

• Setting DIP switches or rotary switches

• Connecting or wiring the cables

• Connecting or disconnecting the connectors

!Caution Failure to abide by the following precautions could lead to faulty operation of
the PLC or the system, or could damage the PLC or PLC Units. Always heed
these precautions.

• Install external breakers and take other safety measures against short-cir-
cuiting in external wiring. Insufficient safety measures against short-cir-
cuiting may result in burning.

• Mount the Unit only after checking the connectors and terminal blocks
completely.

• Be sure that all the terminal screws and cable connector screws are tight-
ened to the torque specified in the relevant manuals. Incorrect tightening
torque may result in malfunction.

• Wire all connections correctly according to instructions in this manual.

• Always use the power supply voltage specified in the operation manuals.
An incorrect voltage may result in malfunction or burning.

• Take appropriate measures to ensure that the specified power with the
rated voltage and frequency is supplied. Be particularly careful in places
where the power supply is unstable. An incorrect power supply may result
in malfunction.

• Leave the label attached to the Unit when wiring. Removing the label may
result in malfunction.

• Remove the label after the completion of wiring to ensure proper heat dis-
sipation. Leaving the label attached may result in malfunction.

• Use crimp terminals for wiring. Do not connect bare stranded wires
directly to terminals. Connection of bare stranded wires may result in
burning.

• Do not apply voltages to the input terminals in excess of the rated input
voltage. Excess voltages may result in burning.

• Do not apply voltages or connect loads to the output terminals in excess
of the maximum switching capacity. Excess voltage or loads may result in
burning.
xxiii

Application Precautions 5
• Be sure that the terminal blocks, connectors, Option Boards, and other
items with locking devices are properly locked into place. Improper locking
may result in malfunction.

• Disconnect the functional ground terminal when performing withstand
voltage tests. Not disconnecting the functional ground terminal may result
in burning.

• Wire correctly and double-check all the wiring or the setting switches
before turning ON the power supply. Incorrect wiring may result in burn-
ing.

• Check that the DIP switches and data memory (DM) are properly set
before starting operation.

• Check the user program for proper execution before actually running it on
the Unit. Not checking the program may result in an unexpected opera-
tion.

• Resume operation only after transferring to the new CPU Unit and/or Spe-
cial I/O Units the contents of the DM, HR, and CNT Areas required for
resuming operation. Not doing so may result in an unexpected operation.

• Confirm that no adverse effect will occur in the system before attempting
any of the following. Not doing so may result in an unexpected operation.

• Changing the operating mode of the PLC (including the setting of the
startup operating mode).

• Force-setting/force-resetting any bit in memory.

• Changing the present value of any word or any set value in memory.

• Do not pull on the cables or bend the cables beyond their natural limit.
Doing either of these may break the cables.

• Do not place objects on top of the cables. Doing so may break the cables.

• When replacing parts, be sure to confirm that the rating of a new part is
correct. Not doing so may result in malfunction or burning.

• Before touching the Unit, be sure to first touch a grounded metallic object
in order to discharge any static buildup. Not doing so may result in mal-
function or damage.

• Do not touch the Expansion I/O Unit Connecting Cable while the power is
being supplied in order to prevent malfunction due to static electricity.

• Do not turn OFF the power supply to the Unit while data is being trans-
ferred.

• When transporting or storing the product, cover the PCBs with electrically
conductive materials to prevent LSIs and ICs from being damaged by
static electricity, and also keep the product within the specified storage
temperature range.

• Do not touch the mounted parts or the rear surface of PCBs because
PCBs have sharp edges such as electrical leads.

• Double-check the pin numbers when assembling and wiring the connec-
tors.

• Wire correctly according to specified procedures.

• Do not connect pin 6 (+5V) on the RS-232C Option Board on the CPU
Unit to any external device other than the NT-AL001 or CJ1W-CIF11 Con-
version Adapter. The external device and the CPU Unit may be damaged.

• Use the dedicated connecting cables specified in this manual to connect
the Units. Using commercially available RS-232C computer cables may
cause failures in external devices or the CPU Unit.
xxiv

Application Precautions 5
• Check that data link tables and parameters are properly set before start-
ing operation. Not doing so may result in unexpected operation. Even if
the tables and parameters are properly set, confirm that no adverse
effects will occur in the system before running or stopping data links.

• Transfer a routing table to the CPU Unit only after confirming that no
adverse effects will be caused by restarting CPU Bus Units, which is auto-
matically done to make the new tables effective.

• The user program and parameter area data in the CPU Unit is backed up
in the built-in flash memory. The BKUP indicator will light on the front of
the CPU Unit when the backup operation is in progress. Do not turn OFF
the power supply to the CPU Unit when the BKUP indicator is lit. The data
will not be backed up if power is turned OFF.

• Do not turn OFF the power supply to the PLC while the Memory Cassette
is being accessed. Doing so may corrupt the data in the Memory Cas-
sette. The 7-segment LED will light to indicate writing progress while the
Memory Cassette is being accessed. Wait for the LED display to go out
before turning OFF the power supply to the PLC.

• Before replacing the battery, supply power to the CPU Unit for at least 5
minutes and then complete battery replacement within 5 minutes of turn
OFF the power supply. Memory data may be corrupted if this precaution is
not observed.

• Always use the following size wire when connecting I/O Units, Special I/O

Units, and CPU Bus Units: AWG22 to AWG18 (0.32 to 0.82 mm2).

• UL standards required that batteries be replaced only by experienced
technicians. Do not allow unqualified persons to replace batteries. Also,
always follow the replacement procedure provided in the manual.

• Never short-circuit the positive and negative terminals of a battery or
charge, disassemble, heat, or incinerate the battery. Do not subject the
battery to strong shocks or deform the barry by applying pressure. Doing
any of these may result in leakage, rupture, heat generation, or ignition of
the battery. Dispose of any battery that has been dropped on the floor or
otherwise subjected to excessive shock. Batteries that have been sub-
jected to shock may leak if they are used.

• Always construct external circuits so that the power to the PLC it turned
ON before the power to the control system is turned ON. If the PLC power
supply is turned ON after the control power supply, temporary errors may
result in control system signals because the output terminals on DC Out-
put Units and other Units will momentarily turn ON when power is turned
ON to the PLC.

• Fail-safe measures must be taken by the customer to ensure safety in the
event that outputs from Output Units remain ON as a result of internal cir-
cuit failures, which can occur in relays, transistors, and other elements.

• If the I/O Hold Bit is turned ON, the outputs from the PLC will not be
turned OFF and will maintain their previous status when the PLC is
switched from RUN or MONITOR mode to PROGRAM mode. Make sure
that the external loads will not produce dangerous conditions when this
occurs. (When operation stops for a fatal error, including those produced
with the FALS(007) instruction, all outputs from Output Unit will be turned
OFF and only the internal output status will be maintained.)
xxv

Conformance to EC Directives 6
6 Conformance to EC Directives

6-1 Applicable Directives
• EMC Directives

• Low Voltage Directive

6-2 Concepts
EMC Directives
OMRON devices that comply with EC Directives also conform to the related
EMC standards so that they can be more easily built into other devices or the
overall machine. The actual products have been checked for conformity to
EMC standards (see the following note). Whether the products conform to the
standards in the system used by the customer, however, must be checked by
the customer.

EMC-related performance of the OMRON devices that comply with EC Direc-
tives will vary depending on the configuration, wiring, and other conditions of
the equipment or control panel on which the OMRON devices are installed.
The customer must, therefore, perform the final check to confirm that devices
and the overall machine conform to EMC standards.

Note The applicable EMC (Electromagnetic Compatibility) standard is EN61131-2.

Low Voltage Directive
Always ensure that devices operating at voltages of 50 to 1,000 V AC and 75
to 1,500 V DC meet the required safety standards for the PLC (EN61131-2).

6-3 Conformance to EC Directives
The CP1H PLCs comply with EC Directives. To ensure that the machine or
device in which the CP1H PLC is used complies with EC Directives, the PLC
must be installed as follows:

1,2,3... 1. The CP1H PLC must be installed within a control panel.

2. You must use reinforced insulation or double insulation for the DC power
supplies used for I/O Units and CPU Units requiring DC power. The output
holding time must be 10 ms minimum for the DC power supply connected
to the power supply terminals on Units requiring DC power.

3. CP1H PLCs complying with EC Directives also conform to EN61131-2.
Radiated emission characteristics (10-m regulations) may vary depending
on the configuration of the control panel used, other devices connected to
the control panel, wiring, and other conditions. You must therefore confirm
that the overall machine or equipment complies with EC Directives.

6-4 Relay Output Noise Reduction Methods
The CP1H PLCs conforms to the Common Emission Standards (EN61131-2)
of the EMC Directives. However, noise generated by relay output switching
may not satisfy these Standards. In such a case, a noise filter must be con-
nected to the load side or other appropriate countermeasures must be pro-
vided external to the PLC.

Countermeasures taken to satisfy the standards vary depending on the
devices on the load side, wiring, configuration of machines, etc. Following are
examples of countermeasures for reducing the generated noise.
xxvi

Conformance to EC Directives 6
Countermeasures
Countermeasures are not required if the frequency of load switching for the
whole system with the PLC included is less than 5 times per minute.

Countermeasures are required if the frequency of load switching for the whole
system with the PLC included is more than 5 times per minute.

Note Refer to EN61131-2 for more details.

Countermeasure Examples
When switching an inductive load, connect an surge protector, diodes, etc., in
parallel with the load or contact as shown below.

Circuit Current Characteristic Required element

AC DC

Yes Yes If the load is a relay or solenoid, there is
a time lag between the moment the cir-
cuit is opened and the moment the load
is reset.

If the supply voltage is 24 or 48 V, insert
the surge protector in parallel with the
load. If the supply voltage is 100 to
200 V, insert the surge protector
between the contacts.

The capacitance of the capacitor must
be 1 to 0.5 µF per contact current of
1 A and resistance of the resistor must
be 0.5 to 1 Ω per contact voltage of 1 V.
These values, however, vary with the
load and the characteristics of the
relay. Decide these values from experi-
ments, and take into consideration that
the capacitance suppresses spark dis-
charge when the contacts are sepa-
rated and the resistance limits the
current that flows into the load when
the circuit is closed again.

The dielectric strength of the capacitor
must be 200 to 300 V. If the circuit is an
AC circuit, use a capacitor with no
polarity.

No Yes The diode connected in parallel with
the load changes energy accumulated
by the coil into a current, which then
flows into the coil so that the current will
be converted into Joule heat by the
resistance of the inductive load.
This time lag, between the moment the
circuit is opened and the moment the
load is reset, caused by this method is
longer than that caused by the CR
method.

The reversed dielectric strength value
of the diode must be at least 10 times
as large as the circuit voltage value.
The forward current of the diode must
be the same as or larger than the load
current.
The reversed dielectric strength value
of the diode may be two to three times
larger than the supply voltage if the
surge protector is applied to electronic
circuits with low circuit voltages.

Yes Yes The varistor method prevents the impo-
sition of high voltage between the con-
tacts by using the constant voltage
characteristic of the varistor. There is
time lag between the moment the cir-
cuit is opened and the moment the load
is reset.
If the supply voltage is 24 or 48 V, insert
the varistor in parallel with the load. If
the supply voltage is 100 to 200 V,
insert the varistor between the con-
tacts.

CR method

Power
supply

In
du

ct
iv

e
lo

ad

C

R

Diode method

Power
supply

In
du

ct
iv

e
lo

ad

Varistor method

Power
supply

In
du

ct
iv

e
lo

ad
xxvii

Conformance to EC Directives 6
When switching a load with a high inrush current such as an incandescent
lamp, suppress the inrush current as shown below.

6-5 Conditions for Meeting EMC Directives when Using CPM1A Relay
Expansion I/O Units

EN61131-2 immunity testing conditions when using the CPM1A-40EDR with
an CP1W-CN811 I/O Connecting Cable are given below.

Recommended Ferrite Core
Ferrite Core (Data Line Filter): 0443-164151 manufactured by Nisshin Electric

Minimum impedance: 90 Ω at 25 MHz, 160 Ω at 100 MHz

Recommended Connection Method

1,2,3... 1. Cable Connection Method

2. Connection Method
As shown below, connect a ferrite core to each end of the CP1W-CN811
I/O Connecting Cable.

OUT

COM

R
OUT

COM

R

Countermeasure 1

Providing a dark current of
approx. one-third of the rated
value through an incandescent

Countermeasure 2

Providing a limiting resistor

lamp

30

32 33

SYSMAC
CP1H

BATTERY

MEMORY

AC100-240V

PERIPHERAL
POWER

ERR/ALM

BKUP

100CH 101CH
1CH

EXP

L1 L2/N COM 01 03 05 07 09 11 01 03 05 07 09 11
00 02 04 06 08 10 00 02 04 06 08 10

00 01 02 03 04 06 00 01 03 04 06
COM COM COM COM 05 07 COM 02 COM 05 07

IN

OUT

CH

NC

NC

NC

NC

NC

NC

COM

COM COM COM COM COM COM03 06 01 03 06

00 02 04 06 08 10

00 01 02 04 05 07 00 02 04 05 07

00 02 04 06 08 10
01 03 05 07 09 11 01 03 05 07 09 11

IN

40EDR
OUT

CH CH

CH CH EXP

CH

CH

CH

111009080706050403020100

111009080706050403020100

0706050403020100

0706050403020100
xxviii

SECTION 1
Programming Concepts

This section describes the basic concepts required to program the CP1H.

1-1 Programming Concepts. 2

1-1-1 Programs and Tasks . 2

1-1-2 Basic Information on Instructions . 4

1-1-3 Instruction Location and Execution Conditions 6

1-1-4 Addressing I/O Memory Areas. 7

1-1-5 Specifying Instruction Operands . 8

1-1-6 Data Formats. 13

1-1-7 Instruction Variations . 17

1-1-8 Execution Conditions . 17

1-1-9 I/O Instruction Timing . 19

1-1-10 Refresh Timing . 20

1-1-11 Program Capacity . 22

1-1-12 Basic Ladder Programming Concepts . 22

1-1-13 Inputting Mnemonics . 27

1-1-14 Program Examples . 28

1-2 Precautions . 33

1-2-1 Condition Flags. 33

1-2-2 Special Program Sections . 38

1-3 Checking Programs . 41

1-3-1 CX-Programmer . 41

1-3-2 Program Checks with the CX-Programmer 42

1-3-3 Program Execution Check . 43

1-3-4 Checking Fatal Errors . 45

1-4 Introducing Function Blocks. 46

1-4-1 Overview and Features . 46

1-4-2 Function Block Specifications . 47

1-4-3 Files Created with CX-Programmer Ver. 6.0 48
1

Programming Concepts Section 1-1
1-1 Programming Concepts

1-1-1 Programs and Tasks
Tasks specify the sequence and interrupt conditions under which individual
programs will be executed. They are broadly grouped into the following types:

1,2,3... 1. Tasks executed sequentially that are called cyclic tasks.

2. Tasks executed by interrupt conditions that are called interrupt tasks.

Note Interrupt tasks can be executed cyclically in the same way as cyclic tasks.
These are called “extra cyclic tasks.”

Programs allocated to cyclic tasks will be executed sequentially by task num-
ber and I/O will be refreshed once per cycle after all tasks (more precisely
tasks that are in executable status) are executed. If an interrupt condition
goes into effect during processing of the cyclic tasks, the cyclic task will be
interrupted and the program allocated to the interrupt task will be executed.

In the above example, programming would be executed in the following order:
start of A, B, remainder of A, C, and then D. This assumes that the interrupt
condition for interrupt task 100 was established during execution of program
A. When execution of program B is completed, the rest of program A would be
executed from the place where execution was interrupted.

With earlier OMRON PLCs, one continuous program is formed from several
continuous parts. The programs allocated to each task are single programs
that terminate with an END instruction, just like the single program in earlier
PLCs.

Allocation

I/O refreshing

Allocation

Allocation

Allocation

Interrupt condition
goes into effect

Cyclic
task n

Cyclic
task 1

Cyclic
task 0

Interrupt
task 100

Program D

Program C

Program B

Program A
2

Programming Concepts Section 1-1
One feature of the cyclic tasks is that they can be enabled (executable status)
and disabled (standby status) by the task control instructions. This means that
several program components can be assembled as a task, and that only spe-
cific programs (tasks) can then be executed as needed for the current product
model or process being performed (program step switching). Therefore perfor-
mance (cycle time) is greatly improved because only required programs will
be executed as needed.

A task that has been executed will be executed in subsequent cycles, and a
task that is on standby will remain on standby in subsequent cycles unless it is
executed again from another task.

Note Unlike earlier programs that can be compared to reading a scroll, tasks can
be compared to reading through a series of individual cards.

• All cards are read in a preset sequence starting from the lowest number.

• All cards are designated as either active or inactive, and cards that are
inactive will be skipped. (Cards are activated or deactivated by task con-
trol instructions.)

• A card that is activated will remain activated and will be read in subse-
quent sequences. A card that is deactivated will remain deactivated and
will be skipped until it is reactivated by another card.

I/O refreshing

Allocation

CP1H

I/O refreshing

Earlier system

One continuous
subprogram

Task 3

Task 2

Task 1

Tasks can be put into non-
executing (standby) status.
3

Programming Concepts Section 1-1
1-1-2 Basic Information on Instructions
Programs consist of instructions. The conceptual structure of the inputs to and
outputs from an instruction is shown in the following diagram.

Power Flow The power flow is the execution condition that is used to control the execute
and instructions when programs are executing normally. In a ladder program,
power flow represents the status of the execution condition.

Input Instructions

• Load instructions indicate a logical start and outputs the execution condi-
tion.

• Intermediate instructions input the power flow as an execution condition
and output the power flow to an intermediate or output instruction.

Earlier program:
Like a scroll

CP-series program:
Like a series of cards that can be activated
or deactivated by other cards.

Activated Deactivated

Flags

Instruction

Flag

Power flow (P.F., execution condition)

Instruction condition

Power flow (P.F., execution condition)*1

Instruction condition*2

Operands
(sources)

Operands
(destinations)

Memory

*1: Input instructions only.

*2: Not output for all instructions.

Outputs the
execution condition.

=
D0

#1215

Outputs the
execution condition.
4

Programming Concepts Section 1-1
Output Instructions

Output instructions execute all functions, using the power flow as an execution
condition.

Instruction Conditions Instruction conditions are special conditions related to overall instruction exe-
cution that are output by the following instructions. Instruction conditions have
a higher priority than power flow (P.F.) when it comes to deciding whether or
not to execute an instruction. An instruction may become not be executed or
may act differently depending on instruction conditions. Instruction conditions
are reset (canceled) at the start of each task, i.e., they are reset when the task
changes.

The following instructions are used in pairs to set and cancel certain instruc-
tion conditions. These paired instructions must be in the same task.

Flags In this context, a flag is a bit that serves as an interface between instructions.

Operands Operands specify preset instruction parameters (boxes in ladder diagrams)
that are used to specify I/O memory area contents or constants. An instruction
can be executed entering an address or constant as the operands. Operands
are classified as source, destination, or number operands.

Input block Output block

Power flow for
output instruction

LD power flow

Instruction
condition

Description Setting
instruction

Canceling
instruction

Interlocked An interlock turns OFF part of the program. Special conditions, such as
turning OFF output bits, resetting timers, and holding counters are in
effect.

IL(002) ILC(003)

BREAK(514)
execution

Ends a FOR(512) - NEXT(513) loop during execution. (Prevents execu-
tion of all instructions until to the NEXT(513) instruction.)

BREAK(514) NEXT(513)

Executes a JMP0(515) to JME0(516) jump. JMP0(515) JME0(516)

Block program
execution

Executes a program block from BPRG(096) to BEND(801). BPRG(096) BEND(801)

Input flags Output flags

• Differentiation Flags
Differentiation result flags. The status of these flags
are input automatically to the instruction for all dif-
ferentiated up/down output instructions and the
DIFU(013)/DIFD(014) instructions.

• Carry (CY) Flag
The Carry Flag is used as an unspecified operand
in data shift instructions and addition/subtraction
instructions.

• Flags for Special Instructions
These include teaching flags for FPD(269) instruc-
tions and network communications enabled flags

• Differentiation Flags
Differentiation result flags. The status of these flags are output
automatically from the instruction for all differentiated up/down
output instructions and the UP(521)/DOWN(522) instruction.

• Condition Flags
Condition Flags include the Always ON/OFF Flags, as well as
flags that are updated by results of instruction execution. In user
programs, these flags can be specified by labels, such as ER, CY,
>, =, A1, A0, rather than by addresses.

• Flags for Special Instructions
These include MSG(046) execution completed flags.

D0

#0

Example

S (source)

D (destination)

N (number)
5

Programming Concepts Section 1-1
Note Operands are also called the first operand, second operand, and so on, start-
ing from the top of the instruction.

1-1-3 Instruction Location and Execution Conditions
The following table shows the possible locations for instructions. Instructions
are grouped into those that do and those do not require execution conditions.

Note (1) There is another group of instruction that executes a series of mnemonic
instructions based on a single input. These are called block programming
instructions. Refer to the CP-series CP1H CPU Unit Programming Man-
ual for details on these block programs.

(2) If an instruction requiring an execution condition is connected directly to
the left bus bar without a logical start instruction, a program error will oc-
cur when checking the program on a CX-Programmer.

Operand types Operand
symbol

Description

Source Specifies the address of the data
to be read or a constant.

S Source Oper-
and

Source operand other than control
data (C)

C Control data Compound data in a source oper-
and that has different meanings
depending bit status.

Destination
(Results)

Specifies the address where data
will be written.

D (R) ---

Number Specifies a particular number used
in the instruction, such as a jump
number or subroutine number.

N ---

First operand

Second operand

#0

D0

Instruction type Possible location Execution
condition

Diagram Examples

Input instructions Logical start (Load
instructions)

Connected directly
to the left bus bar
or is at the begin-
ning of an instruc-
tion block.

Not required. LD, LD TST(350),
LD > (and other
symbol compari-
son instructions)

Intermediate
instructions

Between a logical
start and the out-
put instruction.

Required. AND, OR, AND
TEST(350), AND
> (and other ADD
symbol compari-
son instructions),
UP(521),
DOWN(522),
NOT(520), etc.

Output instructions Connected directly
to the right bus
bar.

Required. Most instructions
including OUT and
MOV(021).

Not required. END(001),
JME(005),
FOR(512),
ILC(003), etc.
6

Programming Concepts Section 1-1
1-1-4 Addressing I/O Memory Areas

Bit Addresses

Example: The address of bit 03 in word 0001 in the CIO Area would be as
shown below. This address is given as “CIO 1.03” in this manual.

Example: Bit 08 in word H010 in the HR Area is given as shown below.

Word Addresses

Example: The address of word 0010 (bits 00 to 15) in the CIO Area is given
as shown below. This address is given as “CIO 10” in this manual.

@@@@.@@

Bit number (00 to 15)

Word address
(Leading zeros are omitted.)

1.03

Bit number (03)

Word address: CIO 1

CIO 0

CIO 1

CIO 2

15 14 13 12 11 10 08 07 06 05 04 0309 02 01 00 Bit number

Word
Bit address:
CIO 1.03 (CIO 1.03)

H10.08

Bit number: 08

Word address: H10

@@@@

Word address
(Leading zeros are omitted.)

10

Word address
7

Programming Concepts Section 1-1
Example: The address of word W5 (bits 00 to 15) in the Work Area is given
as shown below.

Example: The address of word D200 (bits 00 to 15) in the DM Area is given
as shown below.

1-1-5 Specifying Instruction Operands

W5

Word address

D200

Word address

Operand Description Notation Application
examples

Specifying bit
addresses

The word and bit numbers are specified
directly to specify a bit (input bits).

Note The same addresses are used to
access timer/counter Completion Flags
and Present Values. There is also only
one address for a Task Flag.

Specifying
word
addresses

The word number is specified directly to spec-
ify the 16-bit word.

Specifying
indirect DM
addresses in
Binary Mode

The offset from the beginning of the area is
specified. The contents of the address will be
treated as binary data (00000 to 32767) to
specify the word address in Data Memory
(DM). Add the @ symbol at the front to specify
an indirect ad-dress in Binary Mode.

@@@@.@@

Word address

Bit number
(00 to 15)

1.02

Bit number: 02

Word number: CIO 1

1.02

@@@@

Word address

3

D200

Word number: D200

Word number: 3

MOV(021)

3

D200

@D@@@@@

Contents

D

00000 to 32767
(0000 to 7FFF hex)

@D300

0 1 0 0 Contents

Specifies D256.

Add the @ symbol.

Hexadecimal 256

MOV(021)

#1

@D300
8

Programming Concepts Section 1-1
Specifying
indirect DM
addresses in
BCD Mode

The offset from the beginning of the area is
specified. The contents of the address will be
treated as BCD data (0000 to 9999) to specify
the word address in Data Memory (DM). Add
an asterisk (*) at the front to specify an indirect
address in BCD Mode.

Specifying a
register
directly

An index register (IR) or a data register (DR) is
specified directly by specifying IR@ (@: 0 to
15) or DR@ (@: 0 to 15).

IR0

Stores the PLC
memory
address for
CIO 10 in IR0.

IR1

Stores the PLC
memory
address for
CIO 10 in IR1.

Operand Description Notation Application
examples

*D@@@@@

D

00000 to 9999
(BCD)Contents

*D200

0 1 0 0

Specifies D100.

Contents

Add an asterisk (*).

BCD: 100

MOV(021)

#1

*D200

MOVR(560)

1.02

IR0

MOVR(560)

10

IR1

Operand Description Notation Application examples

Specifying
an indirect
address
using a reg-
ister

Indirect
address
(No offset)

The bit or word with the PLC memory
address contained in IR@ will be speci-
fied.

Specify ,IR@ to specify bits and words
for instruction operands.

,IR0

,IR1

Loads the bit with the PLC memory
address in IR0.

Stores #0001 in the word with the PLC
memory in IR1.

Constant
offset

The bit or word with the PLC memory
address in IR@ + or – the constant is
specified.
Specify +/– constant ,IR@. Constant off-
sets range from –2048 to +2047 (deci-
mal). The offset is converted to binary
data when the instruction is executed.

+5,IR0

+31,IR1

Loads the bit with the PLC memory
address in IR0 + 5.

Stores #0001 in the word with the PLC
memory address in IR1 + 31

,IR0

MOV(021)

#1

,IR1

+5,IR0

MOV(021)

#1

+31 ,IR1
9

Programming Concepts Section 1-1
Specifying
an indirect
address
using a reg-
ister

DR offset The bit or word with the PLC memory
address in IR@ + the contents of DR@ is
specified.
Specify DR@ ,IR@. DR (data register)
contents are treated as signed-binary
data. The contents of IR@ will be given a
negative offset if the signed binary value
is negative.

DR0 ,IR0

DR0 ,IR1

Loads the bit with the PLC memory
address in IR0 + the value in DR0.

Stores #0001 in the word with the PLC
memory address in IR1 + the value in
DR0.

Auto Incre-
ment

The contents of IR@ is incremented by
+1 or +2 after referencing the value as
an PLC memory address.
+1: Specify ,IR@+
+2: Specify ,IR@ + +

,IR0 ++

,IR1 +

Increments the contents of IR0 by 2
after the bit with the PLC memory
address in IR0 is loaded.

Increments the contents of IR1 by 1
after #0001 is stored in the word with
the PLC memory address in IR1.

Auto Dec-
rement

The contents of IR@ is decremented by
–1 or –2 after referencing the value as
an PLC memory address.

–1: Specify ,–IR@
–2: Specify ,– –IR@

,– –IR0

,–IR1

After decrementing the contents of IR0
by 2, the bit with the PLC memory
address in IR0 is loaded.

After decrementing the contents of IR1
by 1, #0001 is stored in the word with
the PLC memory address in IR1.

Operand Description Notation Application examples

DR0,IR0

MOV(021)

#1

DR0 ,IR1

,IR0 ++

MOV(021)

#1

,IR1 +

,−−IR

MOV(021)

#1

,−IR1
10

Programming Concepts Section 1-1
Data Operand Data form Symbol Range Application example

16-bit con-
stant

All binary data or
a limited range of
binary data

Unsigned binary # #0000 to #FFFF

Signed decimal ± –32768 to
+32767

Unsigned deci-
mal

& &0 to &65535

All BCD data or a
limited range of
BCD data

BCD # #0000 to #9999

32-bit con-
stant

All binary data or
a limited range of
binary data

Unsigned binary # #00000000 to
#FFFFFFFF

Signed binary + –2147483648 to
+2147483647

Unsigned deci-
mal

& (See Note.) &0 to
&429467295

All BCD data or a
limited range of
BCD data

BCD # #00000000 to
#99999999

MOV(021)

#5A

D100

+(400)

D200

−128

D300

CMP(020)

D400

&999

−B(414)

D500

#2000

D600

MOVL(498)

#17FFF

D100

+L(401)

D200

−65536

D300

CMPL(060)

D400

&99999

−BL(415)

D500

#1000000

D600
11

Programming Concepts Section 1-1
ASCII Characters

Text string Description Symbol Examples

Text string data is stored in ASCII
(one byte except for special charac-
ters) in order from the leftmost to the
rightmost byte and from the right-
most (smallest) to the leftmost word.
00 hex (NUL code) is stored in the
rightmost byte of the last word if
there is an odd number of charac-
ters.

0000 hex (2 NUL codes) is stored in
the leftmost and rightmost vacant
bytes of the last word + 1 if there is
an even number of characters.

ASCII characters that can be used in a text string includes alphanumeric characters, Katakana and sym-
bols (except for special characters). The characters are shown in the following table.

Bits 0 to 3 Bits 4 to 7

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Hex 0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 0 Space 0 @ P ` p 0 @ P

0001 1 ! 1 A Q a q ! 1 A Q

0010 2 “ 2 B R b r ” 2 B R

0011 3 # 3 C S c s # 3 C S

0100 4 $ 4 D T d t $ 4 D T

0101 5 % 5 E U e u % 5 E U

0110 6 & 6 F V f v & 6 F V

0111 7 ’ 7 G W g w ’ 7 G W

1000 8 (8 H X h x (8 H X

1001 9) 9 I Y i y) 9 I Y

1010 A * : J Z j z * : J Z

1011 B + ; K [k { + ; K [

1100 C , < L \ l | , < L \

1101 D - = M] m } - = M]

1110 E . > N ^ n ~ . > N ^

1111 F / ? O _ o / ? O _

Data Operand Data form Symbol Range Application example

'ABCDE'

'A' 'B'
'C' 'D'
'E' NUL

41 42
43 44
45 00

'ABCD'

'A' 'B'
'C' 'D'
NUL NUL

41 42
43 44
00 00

↓

41 42
43 44
45 00

41 42
43 44
45 00

D100
D101
D102

D200
D201
D202

MOV$(664)

D100

D200
12

Programming Concepts Section 1-1
1-1-6 Data Formats
The following table shows the data formats that the CP Series can handle.

Data type Data format Decimal 4-digit
hexadecimal

Unsigned
binary

0 to
65535

0000 to FFFF

Signed
binary

0 to
–32768
0 to
+32767

Negative:
8000 to FFFF
Positive: 0000
to 7FFF

BCD
(binary
coded dec-
imal)

0 to 9999 0000 to 9999

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

23 22 21 20

3276816384 81924092 2048 1024 512 256 128 64 12 16 8 4 2 1

23 22 21 2023 22 21 2023 22 21 20

Decimal

Hex

Binary

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

23 22 21 20

3276816384 81924092 2048 1024 512 256 128 64 12 16 8 4 2 1

23 22 21 2023 22 21 2023 22 21 20

Binary

Decimal

Hex

Sign bit: 0: Positive, 1: Negative

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

23 22 21 2023 22 21 2023 22 21 2023 22 21 20

Decimal
0 to 9 0 to 9 0 to 9 0 to 9

Binary
13

Programming Concepts Section 1-1
Signed Binary Data

In signed binary data, the leftmost bit indicates the sign of binary 16-bit data.
The value is expressed in 4-digit hexadecimal.

Positive Numbers: A value is positive or 0 if the leftmost bit is 0 (OFF). In 4-
digit hexadecimal, this is expressed as 0000 to 7FFF hex.

Negative Numbers: A value is negative if the leftmost bit is 1 (ON). In 4-digit
hexadecimal, this is expressed as 8000 to FFFF hex. The absolute of the neg-
ative value (decimal) is expressed as a two’s complement.

Single-pre-
cision
floating-
point deci-
mal

Note This format conforms to IEEE754 standards for single-precision floating-
point data and is used only with instructions that convert or calculate float-
ing-point data. It can be used to set or monitor from the I/O memory Edit
and Monitor Screen on the CX-Programmer. As such, users do not need to
know this format although they do need to know that the formatting takes
up two words.

--- ---

Double-
precision
floating-
point deci-
mal

Note This format conforms to IEEE754 standards for double-precision floating-
point data and is used only with instructions that convert or calculate float-
ing-point data. It can be used to set or monitor from the I/O memory Edit
and Monitor Screen on the CX-Programmer. As such, users do not need to
know this format although they do need to know that the formatting takes
up four words.

--- ---

Data type Data format Decimal 4-digit
hexadecimal

31 30 29 23 22 21 20 19 18 17 3 2 1 0

Sign of
mantissa

Exponent Mantissa

 x 1.[Mantissa] x 2Exponent

Sign (bit 31)

Mantissa

Exponent

1: negative or 0: positive

The 23 bits from bit 00 to bit 22 contain the mantissa,
i.e., the portion below the decimal point in 1.@@@.....,
in binary.

The 8 bits from bit 23 to bit 30 contain the exponent.
The exponent is expressed in binary as 127 plus n in
2n.

Value = (−1)Sign

Binary

63 62 61 52 51 50 49 48 47 46 3 2 1 0

Exponent Mantissa

 x 1.[Mantissa] x 2Exponent

Sign (bit 63)

Mantissa

Exponent

SignValue = (−1)

Sign of
mantissa Binary

1: negative or 0: positive

The 52 bits from bit 00 to bit 51 contain the mantissa,
i.e., the portion below the decimal point in 1.@@@.....,
in binary.

The 11 bits from bit 52 to bit 62 contain the exponent
The exponent is expressed in binary as 1023 plus n
in 2n.
14

Programming Concepts Section 1-1
Example: To treat –19 in decimal as signed binary, 0013 hex (the absolute
value of 19) is subtracted from FFFF hex and then 0001 hex is added to yield
FFED hex.

Complements

Generally the complement of base x refers to a number produced when all
digits of a given number are subtracted from x – 1 and then 1 is added to the
rightmost digit. (Example: The ten’s complement of 7556 is 9999 – 7556 + 1 =
2444.) A complement is used to express a subtraction and other functions as
an addition.

Example: With 8954 – 7556 = 1398, 8954 + (the ten’s complement of 7556) =
8954 + 2444 = 11398. If we ignore the leftmost bit, we get a subtraction result
of 1398.

Two’s Complements

A two’s complement is a base-two complement. Here, we subtract all digits
from 1 (2 – 1 = 1) and add one.

Example: The two’s complement of binary number 1101 is 1111 (F hex) –
1101 (D hex) + 1 (1 hex) = 0011 (3 hex). The following shows this value
expressed in 4-digit hexadecimal.

The two’s complement b hex of a hex is FFFF hex – a hex + 0001 hex = b hex.
To determine the two’s complement b hex of “a hex,” use b hex = 10000 hex –
a hex.

Example: to determine the two’s complement of 3039 hex, use 10000 hex –
3039 hex = CFC7 hex.

Similarly use a hex = 10000 hex – b hex to determine the value a hex from the
two’s complement b hex.

Example: To determine the real value from the two’s complement CFC7 hex
use 10000 hex – CFC7 hex = 3039 hex.

The CP Series has two instructions: NEG(160)(2’S COMPLEMENT) and
NEGL(161) (DOUBLE 2’S COMPLEMENT) that can be used to determine the
two’s complement from the true number or to determine the true number from
the two’s complement.

F F F F

1111 1111 1111 1111

0 0 1 3

0000 0000 0001 0011−)

F F E C

1111 1111 1110 1100

0 0 0 1

0000 0000 0000 0001+)

F F E D

1111 1111 1110 1101

True number

Two's complement
15

Programming Concepts Section 1-1
Signed BCD Data

Signed BCD data is a special data format that is used to express negative
numbers in BCD. Although this format is found in applications, it is not strictly
defined and depends on the specific application. The CP Series supports the
following instructions to convert the data formats: SIGNED BCD-TO-BINARY:
BINS(470), DOUBLE SIGNED BCD-TO-BINARY: BISL(472), SIGNED
BINARY-TO-BCD: BCDS(471), and DOUBLE SIGNED BINARY-TO-BCD:
BDSL(473). Refer to the CP-series CPU Unit Programming Manual (W450)
for more information.

Decimal Hexadecimal Binary BCD

0 0 0000 0000

1 1 0001 0001

2 2 0010 0010

3 3 0011 0011

4 4 0100 0100

5 5 0101 0101

6 6 0110 0110

7 7 0111 0111

8 8 1000 1000

9 9 1001 1001

10 A 1010 0001 0000

11 B 1011 0001 0001

12 C 1100 0001 0010

13 D 1101 0001 0011

14 E 1110 0001 0100

15 F 1111 0001 0101

16 10 10000 0001 0110

Decimal Unsigned binary (4-digit
hexadecimal)

Signed binary (4-digit
hexadecimal)

+65,535 FFFF Cannot be expressed.

+65534 FFFE

 .
 .
 .

 .
 .
 .

+32,769 8001

+32,768 8000

+32,767 7FFF 7FFF

+32,766 7FFE 7FFE

 .
 .
 .

 .
 .
 .

.

.

.

+2 0002 0002

+1 0001 0001

0 0000 0000

–1 Cannot be expressed. FFFF

–2 FFFE

 .
 .
 .

.

.

.

–32,767 8001

–32,768 8000
16

Programming Concepts Section 1-1

1-1-7 Instruction Variations
The following variations are available for instructions to differentiate executing
conditions and to refresh data when the instruction is executed (immediate
refresh).

1-1-8 Execution Conditions
The CP Series offers the following types of basic and special instructions.

• Non-differentiated instructions executed every cycle

• Differentiated instructions executed only once

Non-differentiated
Instructions

Output instructions that required execution conditions are executed once
every cycle while the execution condition is valid (ON or OFF).

Input instructions that create logical starts and intermediate instructions read
bit status, make comparisons, test bits, or perform other types of processing
every cycle. If the results are ON, power flow is output (i.e., the execution con-
dition is turned ON).

Input-differentiated Instructions

Upwardly Differentiated
Instructions (Instruction
Preceded by @)

• Output Instructions: The instruction is executed only during the cycle in
which the execution condition turned ON (OFF → ON) and are not exe-
cuted in the following cycles.

Variation Symbol Description

Differentiation ON @ Instruction that differentiates when the execu-
tion condition turns ON.

OFF % Instruction that differentiates when the execu-
tion condition turns OFF.

Immediate refreshing ! Refreshes data in the I/O area specified by
the operands or the Special I/O Unit words
when the instruction is executed.

@

Instruction (mnemonic)

Differentiation variation

Immediate refresh variation

Example

Non-differentiated
output instruction

Example
Non-differentiated input instruction

Example

Executes the MOV instruction once when
CIO 1.02 goes OFF → ON.

(@) Upwardly-differ
entiated instruction @MOV

1.02
17

Programming Concepts Section 1-1
• Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an ON execution
condition (power flow) when results switch from OFF to ON. The execu-
tion condition will turn OFF the next cycle.

• Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from OFF to ON. The
execution condition will turn ON the next cycle.

Downwardly Differentiated
Instructions (Instruction
preceded by %)

• Output instructions: The instruction is executed only during the cycle in
which the execution condition turned OFF (ON → OFF) and is not exe-
cuted in the following cycles.

• Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output the execution condi-
tion (power flow) when results switch from ON to OFF. The execution con-
dition will turn OFF the next cycle.

Note Unlike the upwardly differentiated instructions, downward differen-
tiation variation (%) can only be added to LD, AND, OR, SET and
RSET instructions. To execute downward differentiation with other
instructions, combine the instructions with a DIFD or a DOWN in-
struction.

Example
Upwardly differentiated input instruction

ON execution condition created for one
cycle only when CIO 1.03 goes from
OFF to ON.

1.03

Upwardly differentiated input instruction 1.03
Example

OFF execution condition created for one
cycle only when CIO 1.03 goes from
OFF to ON.

1.02
Example

%SET

Executes the SET instruction once
when CIO 1.02 goes ON to OFF.

(%) Downwardly dif-
ferentiated instruction

1.03
Example

Downwardly differentiated instruction

Will turn ON when the CIO 1.03 switches
from ON → OFF and will turn OFF after
one cycle.
18

Programming Concepts Section 1-1
• Input Instructions (Logical Starts and Intermediate Instructions): The
instruction reads bit status, makes comparisons, tests bits, or perform
other types of processing every cycle and will output an OFF execution
condition (power flow stops) when results switch from ON to OFF. The
execution condition will turn ON the next cycle.

1-1-9 I/O Instruction Timing
The following timing chart shows different operating timing for individual
instructions using a program comprised of only LD and OUT instructions.

Differentiated Instructions • A differentiated instruction has an internal flag that tells whether the previ-
ous value is ON or OFF. At the start of operation, the previous value flags
for upwardly differentiated instruction (DIFU and @ instructions) are set to
ON and the previous value flags for downwardly differentiated instructions
(DIFD and % instructions) are set to OFF. This prevents differentiation
outputs from being output unexpectedly at the start of operation.

Downwardly differentiated input instruction
Example

1.03

OFF execution condition created for one
cycle only when CIO 1.03 goes from ON
to OFF.

A

A

A

A

A

A

A

A

A

B1

B2

B3

B4

B5

B6

B7

B8

B9

B10

A

A

B11

B12

!

!

!

!

A

!

!

!

!

!

!

I/O refreshInstruction
executed.

CPU pro-
cessing

Input read

Input
read

Input
read

Input
read

Input
read

Input
read

Input
read

Input
read

Input
readInput

read

Input
read

Input
read
19

Programming Concepts Section 1-1
• An upwardly differentiated instruction (DIFU or @ instruction) will output
ON only when the execution condition is ON and flag for the previous
value is OFF.

• Use in Interlocks (IL - ILC Instructions)
In the following example, the previous value flag for the differentiated
instruction maintains the previous interlocked value and will not output a
differentiated output at point A because the value will not be updated
while the interlock is in effect.

• Use in Jumps (JMP - JME Instructions): Just as for interlocks, the pre-
vious value flag for a differentiated instruction is not changed when the
instruction is jumped, i.e., the previous value is maintained. Upwardly and
downwardly differentiate instructions will output the execution condition
only when the input status has changed from the status indicated by the
previous value flag.

Note (a) Do not use the Always ON Flag or A200.11 (First Cycle Flag) as
the input bit for an upwardly differentiated instruction. The instruc-
tion will never be executed.

(b) Do not use Always OFF Flag as the input bit for a downwardly dif-
ferentiated instruction. The instruction will never be executed.

1-1-10 Refresh Timing
The following methods are used to refresh external I/O.

• Cyclic refresh

• Immediate refresh (! specified instruction, IORF instruction)

Cyclic Refresh Every program allocated to a ready cyclic task or a task where interrupt condi-
tion has been met will execute starting from the beginning program address
and will run until the END(001) instruction. After all ready cyclic tasks or tasks
where interrupt condition have been met have executed, cyclic refresh will
refresh all I/O points at the same time.

Note Programs can be executed in multiple tasks. I/O will be refreshed after the
final END(001) instruction in the program allocated to the highest number
(among all ready cyclic tasks) and will not be refreshed after the END(001)
instruction in programs allocated to other cyclic tasks.

IL

0.00

ILC

DIFU

10.00

0.01

0.00

0.01

10.01

A

IL is
executing

IL is
executing
20

Programming Concepts Section 1-1
Execute IORF(097) for all required words or use instructions with the immedi-
ate refresh option prior to the END(001) instruction if I/O refreshing is required
in other tasks.

Immediate Refresh

Instructions with Refresh
Variation (!)

I/O will be refreshed as shown below when an instruction is executing if an
real I/O bit in the built-in I/O of the CPU Unit is specified as an operand.

• When a bit operand is specified for an instruction, I/O will be refreshed for
the 16 bits of the word containing the bit.

• When a word operand is specified for an instruction, I/O will be refreshed
for the 16 bits that are specified.

• Inputs will be refreshed for input or source operand just before an instruc-
tion is executed.

• Outputs will be refreshed for outputs or destination (D) operands just after
an instruction is execute.

Add an exclamation mark (!) (immediate refresh option) in front of the instruc-
tion.

Note Immediate refreshing is not supported for real I/O data allocated to CPM1A
Expansion Units or Expansion I/O Units, but IORF(097) is supported for them.

Units Refreshed for
IORF(097)

An I/O REFRESH instruction (IORF(097)) that refreshes real I/O data in a
specified word range is available as a special instruction for CPM1A Expan-
sion Units and Expansion I/O Units. All or just a specified range of real I/O bits
can be refreshed during a cycle with this instruction.

Note IORF(097) cannot be used for real I/O bits allocated to the built-in I/O of the
CPU Unit. Use instructions with the immediate refresh option for this I/O.

IORF(097) can also be used to refresh words allocated to CJ-series Special
I/O Units.

CIO 1

15 0

CIO 2

15 0

CIO 3

15 0

CIO 4

15 0

Top

! LD 1.01

! OUT 2.09

END

END

Top

! MOV 3 4

I/O refresh

Cyclic refresh
(batch processing)

16-bit units

16-bit units

All real data
21

Programming Concepts Section 1-1
DLNK(226) The CPU BUS UNIT I/O REFRESH instruction (DLNK(226)) can be used to
refresh memory allocated to CJ-series CPU Bus Units in the CIO and DM
Areas, as well as data link data and other data specific to the CPU Bus Units.
The unit number of the CPU Bus Unit is specified when DLNK(226) is exe-
cuted to refresh all of the following data at the same time.

• Words allocated to the Unit in CIO Area

• Words allocated to the Unit in DM Area

• Special refreshing for the Unit (e.g., data links for Controller Link Units or
remote I/O for DeviceNet Units)

1-1-11 Program Capacity
The maximum program capacities of the CP-series CPU Units for all user pro-
grams (i.e., the total capacity of all tasks) are given in the following table. All
capacities are given as the maximum number of steps. The capacities must
not be exceeded, and writing the program will be disabled if an attempt is
made to exceed the capacity.

Each instruction is from 1 to 7 steps long. Refer to SECTION 4 Instruction
Execution Times and Number of Steps for the specific number of steps in
each instruction. (The length of each instruction will increase by 1 step if a
double-length operand is used.)

Note Memory capacity for CP-series PLCs is measured in steps, whereas memory
capacity for previous OMRON PLCs, such as the C200HX/HG/HE and CV-
series PLCs, was measured in words. Refer to the information at the end of
SECTION 4 Instruction Execution Times and Number of Steps for guidelines
on converting program capacities from previous OMRON PLCs.

1-1-12 Basic Ladder Programming Concepts
Instructions are executed in the order listed in memory (mnemonic order). The
basic programming concepts as well as the execution order must be correct.

General Structure of the
Ladder Diagram

A ladder diagram consists of left and right bus bars, connecting lines, input
bits, output bits, and special instructions. A program consists of one or more
program runs. A program rung is a unit that can be partitioned when the bus is
split horizontally. In mnemonic form, a rung is all instructions from a LD/LD
NOT instruction to the output instruction just before the next LD/LD NOT
instructions. A program rung consists of instruction blocks that begin with an
LD/LD NOT instruction indicating a logical start.

Series CPU Unit type Model Max. program capacity

CP Series CP1H
CPU Units

XA CP1H-XA40D@-@ 20K steps

X CP1H-X40D@-@
Y CP1H-Y20DT-D
22

Programming Concepts Section 1-1
Mnemonics A mnemonic program is a series of ladder diagram instructions given in their
mnemonic form. It has program addresses, and one program address is
equivalent to one instruction.

Basic Ladder Program Concepts

1,2,3... 1. When ladder diagrams are executed by PLCs, the signal flow (power flow)
is always from left to right. Programming that requires power flow from right
to left cannot be used. Thus, flow is different from when circuits are made
up of hard-wired control relays. For example, when the circuit “a” is imple-
mented in a PLC program, power flows as though the diodes in brackets

Input bit
Connecting line

Output bit

Rungs

Left bus bar

Special
instruction

Right bus bar

Instruction blocks

Program Address Instruction (Mnemonic) Operand

0 LD 0.00

1 AND 0.01

2 LD 0.02

3 AND NOT 0.03

4 LD NOT 1.00

5 AND 1.01

6 OR LD

7 AND LD

8 OUT 102.00

9 END

0.00 0.01 0.02 0.03 102.00

1.00 1.01

Example
23

Programming Concepts Section 1-1

)

were inserted and coil R2 cannot be driven with contact D included. The
actual order of execution is indicated on the right with mnemonics. To
achieve operation without these imaginary diodes, the circuit must be re-
written. Also, circuit “b” power flow cannot be programmed directly and
must be rewritten.

In circuit “a,” coil R2 cannot be driven with contact D included.

In circuit “b,” contact E included cannot be written in a ladder diagram. The
program must be rewritten.

2. There is no limit to the number of I/O bits, work bits, timers, and other input
bits that can be used. Rungs, however, should be kept as clear and simple
as possible even if it means using more input bits to make them easier to
understand and maintain.

3. There is no limit to the number of input bits that can be connected in series
or in parallel in series or parallel rungs.

4. Two or more output bits can be connected in parallel.

5. Output bits can also be used as input bits.

A B

A B

C D

C D

E

(1) (6)

(2) ((3)) (4)

(9)

(7)

(10)
((8))

((5))
R1

R2

R1

R2

E

(6) AND B
(7) OUT R1
(8) LD TR0
(9) AND E
(10) OUT R2

(1) LD A
(2) LD C
(3) OUT TR0
(4) AND D
(5) OR LD

Circuit "a"

Signal flow Order of execution (mnemonic

Circuit " b"

0.00 0.05

102.00

TIM

0000

#100

102.00

102.00
24

Programming Concepts Section 1-1
Restrictions

1,2,3... 1. A ladder program must be closed so that signals (power flow) will flow from
the left bus bar to the right bus bar. A rung error will occur if the program is
not closed (but the program can be executed).

2. Output bits, timers, counters and other output instructions cannot be con-
nected directly to the left bus bar. If one is connected directly to the left bus
bar, a rung error will occur during the programming check by the CX-Pro-
grammer. (The program can be executed, but the OUT and MOV(021) will
not be executed.)

Insert an unused N.C. work bit or the ON Condition Flag (Always ON Flag)
if the input must be kept ON at all times.

3. An input bit must always be inserted before and never after an output in-
struction like an output bit. If it is inserted after an output instruction, then
a location error will occur during the CX-Programmer program check.

MOV

Input condition must be provided.

MOV

ON (Always ON Flag)

Unused work bit

102.010.00 0.03

0.01 102.01

0.04
25

Programming Concepts Section 1-1
4. The same output bit cannot be programmed in an output instruction more
than once. Instructions in a ladder program are executed in order from the
top rung in a single cycle, so the result of output instruction in the lower
rungs will be ultimately reflected in the output bit and the results of any pre-
vious instructions controlling the same bit will be overwritten and not out-
put.

5. An input bit cannot be used in an OUTPUT instruction (OUT).

6. An END(001) instruction must be inserted at the end of the program in
each task.

• If a program without an END(001) instruction starts running, a program
error indicating No End Instruction will occur, the ERR/ALM LED on the
front of the CPU Unit will light, and the program will not be executed.

• If a program has more than one END(001) instruction, then the program
will only run until the first END(001) instruction.

• Debugging programs will run much smoother if an END(001) instruction is
inserted at various break points between sequence rungs and the
END(001) instruction in the middle is deleted after the program is
checked.

100.00

100.00

(Output bit)

(Output bit)

0.00

(Input bit)

000000
000001

000000
000001

000000
000001

000000
000001

000000
000001

000000
000001

END

END

END

END

END

END

END

END

Task (program)

Task (program)

Task (program)

Task (program)

Task (program)

Task (program)

Will not be executed.

Will not be executed.
26

Programming Concepts Section 1-1
1-1-13 Inputting Mnemonics
A logical start is accomplished using an LD/LD NOT instruction. The area
from the logical start until the instruction just before the next LD/LD NOT
instruction is considered a single instruction block.

Create a single rung consisting of two instruction blocks using an AND LD
instruction to AND the blocks or by using an OR LD instruction to OR the
blocks. The following example shows a complex rung that will be used to
explain the procedure for inputting mnemonics (rung summary and order).

1,2,3... 1. First separate the rung into small blocks (a) to (f).

0.00 0.01
(a)

10.00 10.01
(b)

(1)

5.00
(c)

(2)

0.02
(d)

0.03

(3)

0.04 0.05
(e)

0.06
(f)

(4)

(5)

0.030.00 0.01 0.02

10.00

W0.000.04 0.05

10.01

5.00

0.06
27

Programming Concepts Section 1-1
2. Program the blocks from top to bottom and then from left to right.

1-1-14 Program Examples

Parallel/Series Rungs

Program the parallel instruction in the A block and then the B block.

0.00
(a)

0.01

LD 0.00
AND 0.01

10.00
(b)

10.01

LD 10.00
AND 10.01

OR LD

5.00
(c)

OR 5.00

0.02
(a)

AND 0.02
AND NOT 0.03

0.03

(c)

0.06
(f)

OR 0.06

0.04 0.05

LD 0.04
AND 0.05

AND LD

W0.00

OUT W0.00

(1)

(2)

(3)

(4)

(5)

 200 LD 0.00
 201 AND 0.01

 202 LD 10.00
 203 AND 10.01
 204 OR LD ---
 205 OR 5.00
 206 AND 0.02
 207 AND NOT 0.03
 208 LD 0.04

 209 AND 0.05

 210 OR 0.06
 211 AND LD ---

 212 OUT W0.00

(a)

(b)

(c)

(d)

(e)

(f)

(1) (2)

(3)

(4)

(5)

Instruction OperandAddress

0.030.00 0.01 0.02

102.00

102.00

LD
AND
OR
AND

0.03
OUT

0.00
0.01
102.00
0.02

102.00
AND NOT

Instruction Operands

a b

A block B block

a

b

28

Programming Concepts Section 1-1
Series/Parallel Rungs

• Separate the rung into A and B blocks, and program each individually.

• Connect A and B blocks with an AND LD.

• Program A block.

• Program B1 block and then program B2 block.

• Connect B1 and B2 blocks with an OR LD and then A and B blocks with an
AND LD.

Example of Series
Connection in a
Series Rung

• Program A1 block, program A2 block, and then connect A1 and A2 blocks
with an OR LD.

• Program B1 and B2 the same way.

• Connect A block and B block with an AND LD.

0.010.00 0.030.02

102.01

102.01

a b

a

b
0.04

LD

0.01
LD
AND
OR

OR
AND LD ---
OUT

AND NOT
0.00

0.02

0.03
102.01
0.04

102.01

Instruction Operands

A block B block

0.00 0.01 0.02

102.02

102.02

a b

a
0.03

0.04

b2

b1

b1

b2

b1 + b2

a · b

0.00
AND
LD

0.03
0.04

AND
OR LD ---
AND LD ---

OUT

LD NOT

AND NOT

LD NOT

0.01
0.02

102.02

102.02

Instruction Operands

B1 block

B2 block

B blockA block

0.010.00 0.04

0.07

102.03

a b

a1

a1 b1

a2

b2

b1 + b2

a · b

0.030.02

0.05

0.06

a2 b2

b1

a1 + a2

LD

0.01
0.02

AND
OR LD ---
LD

AND
LD
AND

OR LD ---

AND LD ---

OUT

Instruction Operands

0.00

0.03

0.04

0.05
0.06
0.07

102.03

AND NOT
LD NOT

A block B block

A2 block B2 block

B1 blockA1 block
29

Programming Concepts Section 1-1
• Repeat for as many A to n blocks as are present.

Complex Rungs

5.00

a b c n

A block B block C block n block

Z

0.00

0.03

0.01

0.02

102.04

0.050.04

0.070.06

0.00

0.03

0.01

0.02

Z0.00

Z

0.030.02 0.00

0.01

LD

LD
LD
AND
OR LD ---
AND LD ---

LD
AND
OR LD ---
LD
AND
OR LD ---
OUT

0.00
0.01
0.02
0.03

0.04
0.05

0.06
0.07

102.04

Instruction Operand

The diagram above is based on the diagram below.

A simpler program can be written by rewriting
this as shown below.

0.00

0.03

0.02 102.05

0.05

b

0.01

a d

0.04

0.06 0.07

e

c

0.00

0.03

0.02 102.05

0.03

0.01

0.00 0.050.04

0.060.04 0.070.00

LD

0.01
AND
LD

0.04
LD
LD

0.07
OR LD ---

AND LD ---
OR LD ---
AND LD ---
OUT

LD NOT

AND NOT

AND NOT

0.00

0.02
0.03

0.05
0.06

102.05

a

b

c

d

e

d + e
(d + e) · c
(d + e) · c + b
((d + e) · c + b) · a

Instruction Operand
Block

Block

Block Block

Block

The above rung can be rewritten as follows:
30

Programming Concepts Section 1-1
Rungs Requiring
Caution or Rewriting

OR and OL LD Instructions

With an OR or OR NOT instruction, an OR is taken with the results of the lad-
der logic from the LD or LD NOT instruction to the OR or OR NOT instruction,
so the rungs can be rewritten so that the OR LD instruction is not required.

Example: An OR LD instruction will be needed if the rungs are programmed
as shown without modification. A few steps can be eliminated by rewriting the
rungs as shown.

Output Instruction Branches

A TR bit will be needed if there is a branch before an AND or AND NOT
instruction. The TR bit will not be needed if the branch comes at a point that is
connected directly to output instructions and the AND or AND NOT instruction
or the output instructions can be continued as is.

Example: A temporary storage bit TR0 output instruction and load (LD)
instruction are needed at a branch point if the rungs are programmed without
modification. A few steps can be eliminated by rewriting the rungs.

0.03

#100

0.00
0.01
0.02

H0.00

H0.00

0001

T1
102.06

LD
OR
OR
OR

OUT

TIM

AND

OUT

AND NOT 10 sec

Instruction Operand

Error display

If a holding bit is in use, the ON/OFF status would
be held in memory even if the power is turned OFF,
and the error signal would still be in effect when
power is turned back ON.

0.00 0.03 H0.00

T1 102.06

0.02

H0.00

0.01
TIM

0001
#100

Error
input

0.00

0.01

102.00

102.00

0.01

0.00

102.00102.00

0.00 0.01 102.08 0.00 102.09

102.09

TR0

102.080.01

Output instruction 2

Output instruction 1
31

Programming Concepts Section 1-1
Mnemonic Execution Order

PLCs execute ladder programs in the order the mnemonics are entered so
instructions may not operate as expected, depending on the way rungs are
written. Always consider mnemonic execution order when writing ladder dia-
grams.

Example: CIO 102.10 in the above diagram cannot be output. By rewriting the
rung, as shown above, CIO 102.10 can be turned ON for one cycle.

Rungs Requiring Rewriting

PLCs execute instructions in the order the mnemonics are entered so the sig-
nal flow (power flow) is from left to right in the ladder diagram. Power flows
from right to left cannot be programmed.

Example: The program can be written as shown in the diagram at the left
where TR0 receives the branch. The same value is obtained, however, by the
rungs at the right, which are easier to understand. It is recommended, there-
fore, that the rungs at the left be rewritten to the rungs at the right.

Rewrite the rungs on the left below. They cannot be executed.

The arrows show signal flow (power flow) when the rungs consist of control
relays.

0.00 110.00 0.00

0.00

102.10

102.10110.00

110.00

110.00

0.00 0.03 102.11 0.01 102.11

TR0

102.12

0.01 0.02

102.120.04

0.02 0.03

0.00

0.040.01

A

C

B

D

R1

R2

E

A

C

B

D

E

A

C

E

R1

R2
32

Precautions Section 1-2
1-2 Precautions

1-2-1 Condition Flags

Using Condition
Flags

Conditions flags are shared by all instructions, and will change during a cycle
depending on results of executing individual instructions. Therefore, be sure
to use Condition Flags on a branched output with the same execution condi-
tion immediately after an instruction to reflect the results of instruction execu-
tion. Never connect a Condition Flag directly to the bus bar because this will
cause it to reflect execution results for other instructions.

Example: Using Instruction A Execution Results

The same execution condition (a) is used for instructions A and B to execute
instruction B based on the execution results of instruction A. In this case,
instruction B will be executed according to the Condition Flag only if instruc-
tion A is executed.

If the Condition Flag is connected directly to the left bus bar, instruction B will
be executed based on the execution results of a previous rung if instruction A
is not executed.

Note Condition Flags are used by all instruction within a single program (task) but
they are cleared when the task switches. Therefore execution results in the
preceding task will not be reflected later tasks. Since conditions flags are
shared by all instructions, make absolutely sure that they do not interfere with
each other within a single ladder-diagram program. The following is an exam-
ple.

LD

AND

a

=

Correct Use

Instruction A

Instruction B

Instruction Operand

Mnemonic

Condition Flag
Example: =

Reflects instruction A
execution results.

Instruction A

Instruction B

Instruction B

Instruction A

Incorrect Use

Preceding rung

Condition Flag
Example: =

Reflects the execution results of
the preceding rung if instruction
A is not executed.
33

Precautions Section 1-2
Using Execution Results in N.C. and N.C. Inputs

The Condition Flags will pick up instruction B execution results as shown in
the example below even though the N.C. and N.O. input bits are executed
from the same output branch.

Make sure each of the results is picked up once by an OUTPUT instruction to
ensure that execution results for instruction B will be not be picked up.

Condition Flag
Example: =

Condition Flag
Example: =

Reflects instruction B execution
results.

Reflects instruction A execution
results.

Instruction B

Instruction A

Incorrect
Use

Instruction A

Instruction B

Reflects instruction A
execution results.Condition Flag

Example: =

Condition Flag
Example: =

Reflects instruction A
execution results.

Correct
Use
34

Precautions Section 1-2
Example: The following example will move #200 to D200 if D100 contains
#10 and move #300 to D300 if D100 does not contain #10.

The Equals Flag will turn ON if D100 in the rung above contains #10. #200 will
be moved to D200 for instruction (1), but then the Equals Flag will be turned
OFF because the #200 source data is not 0000 hex. The MOV instruction at
(2) will then be executed and #300 will be moved to D300. A rung will there-
fore have to be inserted as shown below to prevent execution results for the
first MOVE instruction from being picked up.

(1)

(2)

Reflects MOV execution results.

Reflects CMP execution results.

Incorrect
Use

#10

D100

#200

D200

#300

D300

Correct
Use

#10

D100

#200

D200

#300

D300

Reflects CMP execution results.
35

Precautions Section 1-2
Using Execution Results from Differentiated Instructions

With differentiated instructions, execution results for instructions are reflected
in Condition Flags only when execution condition is met, and results for a pre-
vious rung (rather than execution results for the differentiated instruction) will
be reflected in Condition Flags in the next cycle. You must therefore be aware
of what Condition Flags will do in the next cycle if execution results for differ-
entiated instructions to be used.

In the following for example, instructions A and B will execute only if execution
condition C is met, but the following problem will occur when instruction B
picks up execution results from instruction A. If execution condition C remains
ON in the next cycle after instruction A was executed, then instruction B will
unexpectedly execute (by the execution condition) when the Condition Flag
goes from OFF to ON because of results reflected from a previous rung.

In this case then, instructions A and B are not differentiated instructions, the
DIFU (of DIFD) instruction is used instead as shown below and instructions A
and B are both upwardly (or downwardly) differentiated and executed for one
cycle only.

Note The CP1H CPU Units support instructions to save and load the Condition
Flag status (CCS(282) and CCL(283)). These can be used to access the sta-
tus of the Condition Flags at other locations in a task or in a different task.

Incorrect
Use

Condition Flag
Example: =

Instruction B

Instruction A

Reflects execution results for instruction
A when execution condition is met.
Reflects execution results for a previous
rung in the next cycle.

Previous rung

Correct
Use

Previous rung

Instruction A

Instruction B

Reflects instruction A execution results.
Condition Flag
Example: =
36

Precautions Section 1-2
Main Conditions Turning ON Condition Flags

Error Flag The ER Flag will turn ON under special conditions, such as when operand
data for an instruction is incorrect. The instruction will not be executed when
the ER Flag turns ON.

When the ER Flag is ON, the status of other Condition Flags, such as the <,
>, OF, and UF Flags, will not change and status of the = and N Flags will vary
from instruction to instruction.

Refer to the descriptions of individual instructions in the CP-series CP1H CPU
Unit Programming Manual (W450) for the conditions that will cause the ER
Flag to turn ON. Caution is required because some instructions will turn OFF
the ER Flag regardless of conditions.

Note The PLC Setup Settings for when an instruction error occurs determines
whether operation will stop when the ER Flag turns ON. In the default setting,
operation will continue when the ER Flag turns ON. If Stop Operation is spec-
ified when the ER Flag turns ON and operation stops (treated as a program
error), the program address at the point where operation stopped will be
stored at in A298 to A299. At the same time, A295.08 will turn ON.

Equals Flag The Equals Flag is a temporary flag for all instructions except when compari-
son results are equal (=). It is set automatically by the system, and it will
change. The Equals Flag can be turned OFF (ON) by an instruction after a
previous instruction has turned it ON (OFF). The Equals Flag will turn ON, for
example, when MOV or another move instruction moves 0000 hex as source
data and will be OFF at all other times. Even if an instruction turns the Equals
Flag ON, the move instruction will execute immediately and the Equals Flag
will turn ON or OFF depending on whether the source data for the move
instruction is 0000 hex or not.

Carry Flag The CY Flag is used in shift instructions, addition and subtraction instructions
with carry input, addition and subtraction instruction borrows and carries, as
well as with Special I/O Unit instructions, PID instructions, and FPD instruc-
tions. Note the following precautions.

Note (1) The CY Flag can remain ON (OFF) because of execution results for a cer-
tain instruction and then be used in other instruction (an addition and sub-
traction instruction with carry or a shift instruction). Be sure to clear the
Carry Flag when necessary.

(2) The CY Flag can be turned ON (OFF) by the execution results for a cer-
tain instruction and be turned OFF (ON) by another instruction. Be sure
the proper results are reflected in the Carry Flag when using it.

Less Than and Greater
Than Flags

The < and > Flags are used in comparison instruction, as well as in the LMT,
BAND, ZONE, PID and other instructions.
The < or > Flag can be turned OFF (ON) by another instruction even if it is
turned ON (OFF) by execution results for a certain instruction.

Negative Flag The N Flag is turned OFF when the leftmost bit of the instruction execution
results word is “1” for certain instructions and it is turned OFF unconditionally
for other instruction.

Specifying Operands for
Multiple Words

With the CP-series PLCs, an instruction will be executed as written even if an
operand requiring multiple words is specified so that all of the words for the
operand are not in the same area. In this case, words will be taken in order of
the PLC memory addresses. The Error Flag will not turn ON.
37

Precautions Section 1-2
As an example, consider the results of executing a block transfer with
XFER(070) if 20 words are specified for transfer beginning with W500. Here,
the Work Area, which ends at W511, will be exceeded, but the instruction will
be executed without turning ON the Error Flag. In the PLC memory
addresses, the present values for timers are held in memory after the Work
Area, and thus for the following instruction, W500 to W511 will be transferred
to D0 to D11 and the present values for T0 to T7 will be transferred to D12 to
D19.

Note Refer to the appendix Memory Map of PLC Memory Addresses in the CP-
series CP1H CPU Unit Operation Manual (W450) for specific PLC memory
addresses.

1-2-2 Special Program Sections
CP-series programs have special program sections that will control instruction
conditions. The following special program sections are available.

Instruction
Combinations

The following table shows which of the special instructions can be used inside
other program sections.

Note Instructions that specify program areas cannot be used for programs in other
tasks. Refer to 2-2-2 Task Instruction Limitations for details.

T0

W500

W511
&10

D0
T7

D0

D11

D12

D19

to to to to

to to to to
First destination word

First source word

Number of words

Trans-
ferred.

Program section Instructions Instruction condition Status

Subroutine SBS, SBN and RET instruc-
tions

Subroutine program is
executed.

The subroutine program section between
SBN and RET instructions is executed.

IL - ILC section IL and ILC instructions Section is interlocked The output bits are turned OFF and tim-
ers are reset. Other instructions will not
be executed and previous status will be
maintained.

Step Ladder section STEP S instructions and
STEP instructions

FOR-NEXT loop FOR instructions and NEXT
instructions

Break in progress. Looping

JMP0 - JME0 section JMP0 instructions and JME0
instructions

Jump

Block program section BPRG instructions and
BEND instructions

Block program is exe-
cuting.

The block program listed in mnemonics
between the BPRG and BEND instruc-
tions is executed.

Subroutine IL - ILC
section

Step ladder
section

FOR - NEXT
loop

JMP0 - JME0
section

Block program
section

Subroutine Not possible. Not possible. Not possible. Not possible. Not possible. Not possible.

IL - ILC OK Not possible. Not possible. OK OK Not possible.

Step ladder
section

Not possible. OK Not possible. Not possible. OK Not possible.

FOR - NEXT
loop

OK OK Not possible. OK OK Not possible.

JMP0 - JME0 OK OK Not possible. Not possible. Not possible. Not possible.

Block pro-
gram section

OK OK OK Not possible. OK Not possible.
38

Precautions Section 1-2
Subroutines Place all the subroutines together just before the END(001) instruction in all
programs but after programming other than subroutines. (Therefore, a subrou-
tine cannot be placed in a step ladder, block program, FOR - NEXT, or JMP0 -
JME0 section.) If a program other than a subroutine program is placed after a
subroutine program (SBN to RET), that program will not be executed.

Instructions Not
Available in
Subroutines

The following instructions cannot be placed in a subroutine.

Note Block Program Sections
A subroutine can include a block program section. If, however, the block pro-
gram is in WAIT status when execution returns from the subroutine to the
main program, the block program section will remain in WAIT status the next
time it is called.

Instructions Not Available in Step Ladder Program Sections

Subroutine

Subroutine

Program

Program

Function Mnemonic Instruction

Process Step Control STEP(008) Define step ladder section

SNXT(009) Step through the step ladder

Function Mnemonic Instruction

Sequence Control FOR(512), NEXT(513), and
BREAK(514)

FOR, NEXT, and BREAK
LOOP

END(001) END

IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR

JMP(004) and JME(005) JUMP and JUMP END

CJP(510) and CJPN(511) CONDITIONAL JUMP and
CONDITIONAL JUMP NOT

JMP0(515) and JME0(516) MULTIPLE JUMP and MULTI-
PLE JUMP END

Subroutines SBN(092) and RET(093) SUBROUTINE ENTRY and
SUBROUTINE RETURN
39

Precautions Section 1-2
Note (1) A step ladder program section can be used in an interlock section (be-
tween IL and ILC). The step ladder section will be completely reset when
the interlock is ON.

(2) A step ladder program section can be used between MULTIPLE JUMP
(JMP0) and MULTIPLE JUMP END (JME0).

Instructions Not
Supported in Block
Program Sections

The following instructions cannot be placed in block program sections.

Block Programs IF(802) (NOT), ELSE(803),
and IEND(804)

Branching instructions

BPRG(096) and BEND(801) BLOCK PROGRAM
BEGIN/END

EXIT(806) (NOT) CONDITIONAL BLOCK EXIT
(NOT)

LOOP(809) and LEND(810)
(NOT)

Loop control

WAIT(805) (NOT) ONE CYCLE WAIT (NOT)

TIMW(813) and TIMWX(816) TIMER WAIT

TMHW(815) and
TMHWX(817)

HIGH-SPEED TIMER WAIT

CNTW(814) and CNTWX(818) COUNTER WAIT

BPPS(811) and BPRS(812) BLOCK PROGRAM PAUSE
and RESTART

Function Mnemonic Instruction

Classification by
Function

Mnemonic Instruction

Sequence Control FOR(512), NEXT(513),
and BREAK(514)

FOR, NEXT, and BREAK
LOOP

END(001) END

IL(002) and ILC(003) INTERLOCK and INTER-
LOCK CLEAR

JMP0(515) and JME0(516) MULTIPLE JUMP and
MULTIPLE JUMP END

Sequence Input UP(521) CONDITION ON

DOWN(522) CONDITION OFF

Sequence Output DIFU DIFFERENTIATE UP

DIFD DIFFERENTIATE DOWN

KEEP KEEP

OUT OUTPUT

OUT NOT OUTPUT NOT

Timer/Counter TIM and TIMX(550) TIMER

TIMH(015) and
TIMHX(551)

HIGH-SPEED TIMER

TMHH(540) and
TMHHX(552)

ONE-MS TIMER

TTIM(087) and
TTIMX(555)

ACCUMULATIVE TIMER

TIML(542) and
TIMLX(553)

LONG TIMER

MTIM(543) and
MTIMX(554)

MULTI-OUTPUT TIMER

CNT and CNTX(546) COUNTER

CNTR(012) and
CNTRX(548)

REVERSIBLE COUNTER
40

Checking Programs Section 1-3
Note (1) Block programs can be used in a step ladder program section.

(2) A block program can be used in an interlock section (between IL and ILC).
The block program section will not be executed when the interlock is ON.

(3) A block program section can be used between MULTIPLE JUMP (JMP0)
and MULTIPLE JUMP END (JME0).

(4) A JUMP instruction (JMP) and CONDITIONAL JUMP instruction
(CJP/CJPN) can be used in a block program section. JUMP (JMP) and
JUMP END (JME) instructions, as well as CONDITIONAL JUMP
(CJP/CJPN) and JUMP END (JME) instructions cannot be used in the
block program section unless they are used in pairs. The program will not
execute properly unless these instructions are paired.

1-3 Checking Programs
CP-series programs can be checked at the following stages.

• Input check during CX-Programmer input and other operations

• Program check by CX-Programmer

• Instruction check during execution

• Fatal error check (program errors) during execution

1-3-1 CX-Programmer
The program will be automatically checked by the CX-Programmer at the fol-
lowing times.

The results of checking are output to the text tab of the Output Window. Also,
the left bus bar of illegal program sections will be displayed in red in ladder
view.

Subroutines SBN(092) and RET(093) SUBROUTINE ENTRY
and SUBROUTINE
RETURN

Data Shift SFT SHIFT

Ladder Step Control STEP(008) and
SNXT(009)

STEP DEFINE and STEP
START

Data Control PID PID CONTROL

Block Program BPRG(096) BLOCK PROGRAM
BEGIN

Damage Diagnosis FPD(269) FAILURE POINT DETEC-
TION

Instructions with a differen-
tiation option

@XXX Instruction with upward dif-
ferentiation

%XXX Instruction with downward
differentiation

Classification by
Function

Mnemonic Instruction

Timing Checked contents

When inputting ladder
diagrams

Instruction inputs, operand inputs, programming patterns

When loading files All operands for all instructions and all programming pat-
terns

When downloading files Models supported by the CP Series and all operands for all
instructions

During online editing Capacity, etc.
41

Checking Programs Section 1-3
1-3-2 Program Checks with the CX-Programmer
The errors that are detected by the program check provided by the CX-Pro-
grammer are listed in the following table.

The CX-Programmer does not check range errors for indirectly addressed
operands in instructions. Indirect addressing errors will be detected in the pro-
gram execution check and the ER Flag will turn ON, as described in the next
section. Refer to individual instruction descriptions for details.

When the program is checked on the CX-Programmer, the operator can spec-
ify program check levels A, B, and C (in order of the seriousness of the error),
as well as a custom check level.

Area Check
Illegal data: Ladder
diagramming

Instruction locations
I/O lines
Connections
Instruction and operation completeness

Instruction support
by PLC

Instructions and operands supported by PLC
Instruction variations (NOT, !, @, and %)
Object code integrity

Operand ranges Operand area ranges
Operand data types
Access check for read-only words
Operand range checks, including the following.
• Constants (#, &, +, –)
• Control codes
• Area boundary checks for multi-word operands
• Size relationship checks for multi-word operands
• Operand range overlaps
• Multi-word allocations
• Double-length operands
• Area boundary checks for offsets

Program capacity
for PLC

Number of steps
Overall capacity
Number of tasks

Syntax Call check for paired instructions
• IL–ILC
• JMP–JME, CJP/CJPN–JME
• SBS–SBN–RET, MCRO–SBN–RET
• STEP–SNXT
• BPRG–BEND
• IF–IEND
• LOOP–LEND
Restricted programming locations for BPRG–BEND
Restricted programming locations for SBN–RET
Restricted programming locations for STEP–SNXT
Restricted programming locations for FOR–NEXT
Restricted programming locations for interrupt tasks
Required programming locations for BPRG–BEND
Required programming locations for FOR–NEXT
Illegal nesting
END(001) instruction
Number consistency

Ladder diagram
structure

Stack overflows
42

Checking Programs Section 1-3
Note Output duplication is not checked between tasks, only within individual tasks.

Multi-word Operands Memory area boundaries are checked for multi-word operands for the pro-
gram check as shown in the following table.

1-3-3 Program Execution Check
Operand and instruction location checks are performed on instructions during
input and during program checks from the CX-Programmer. These are not,
however, final checks.

The following checks are performed during instruction execution.

Instruction
Processing Errors

An instruction processing error will occur if incorrect data was provided when
executing an instruction or an attempt was made to execute an instruction out-
side of a task. Here, data required at the beginning of instruction processing
was checked and as a result, the instruction was not executed, the ER Flag
(Error Flag) will be turned ON and the EQ and N Flags may be retained or
turned OFF depending upon the instruction.

Output duplication

(See note.)

Duplicate output check

• By bit
• By word
• Timer/counter instructions
• Long words (2-word and 4-word)
• Multiple allocated words
• Start/end ranges
• FAL numbers
• Instructions with multiple output operands

Tasks Check for tasks set for starting at beginning of operation
Task program allocation

Area Check

Check items The following functionality is provided by the CX-Programmer for
multi-word operands that exceed a memory area boundary.
• The program cannot be transferred to the CPU Unit.
• The program also cannot be read from the CPU Unit.
• Compiling errors are generated for the program check.
• Warnings will appear on-screen during offline programming.
• Warnings will appear on-screen during online editing in PRO-

GRAM or MONITOR mode.

Type of error Flag that turns ON for error Stop/Continue operation

1. Instruction Processing Error ER Flag

Note The Instruction Processing
Error Flag (A295.08) will
also turn ON if Stop Opera-
tion is specified when an
error occurs.

A setting in the PLC Setup can be used to spec-
ify whether to stop or continue operation for
instruction processing errors. The default is to
continue operation.

A program error will be generated and operation
will stop only if Stop Operation is specified.

2. Access Error AER Flag

Note The Access Error Flag
(A295.10) will turn ON if
Stop Operation is specified
when an error occurs.

A setting in the PLC Setup can be used to spec-
ify whether to stop or continue operation for
instruction processing errors. The default is to
continue operation.
A program error will be generated and operation
will stop only if Stop Operation is specified.

3. Illegal Instruction Error Illegal Instruction Error Flag
(A295.14)

Fatal (program error)

4. UM (User Memory) Overflow
Error

UM Overflow Error Flag (A295.15) Fatal (program error)
43

Checking Programs Section 1-3
The ER Flag (error Flag) will turn OFF if the instruction (excluding input
instructions) ends normally. Conditions that turn ON the ER Flag will vary with
individual instructions. See descriptions of individual instructions in for details.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the Instruction Processing Error Flag (A295.08)
will turn ON if an instruction processing error occurs and the ER Flag turns
ON.

Illegal Access Errors Illegal access errors indicate that the wrong area was accessed in one of the
following ways when the address specifying the instruction operand was
accessed.

1,2,3... 1. A read or write was executed for a parameter area.

2. A write was executed in a memory area that is not mounted (See note.).

3. A write was executed in a read-only area.

4. The value specified in an indirect DM address in BCD mode was not BCD
(e.g., *D1 contains #A000).

Note An IR register containing the internal memory address of a bit is
used as a word address or an IR containing the internal memory
address of a word is used as a bit address.

Instruction processing will continue and the Error Flag (ER Flag) will not turn
ON if an access error occurs, but the Access Error Flag (AER Flag) will turn
ON.

If Instruction Errors are set to Stop Operation in the PLC Setup, then opera-
tion will stop (fatal error) and the “Illegal Access Error Flag” (A295.10) will turn
ON if an illegal access error occurs and the AER Flag turns ON.

Note The Access Error Flag (AER Flag) will not be cleared after a task is executed.
If Instruction Errors are set to Continue Operation, this Flag can be monitored
until just before the END(001) instruction to see if an illegal access error has
occurred in the task program. (The status of the final AER Flag after the entire
user program has been executed will be monitored if the AER Flag is moni-
tored on the CX-Programmer.)

Other Errors

Illegal Instruction Errors Illegal instruction errors indicate that an attempt was made to execute instruc-
tion data other than that defined in the system. This error will normally not
occur as long as the program is created on a the CX-Programmer.

In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the Illegal Instruction Flag (A295.14) will
turn ON.

UM (User Memory)
Overflow Errors

UM overflow errors indicate that an attempt was made to execute instruction
data stored beyond the last address in the user memory (UM) defined as pro-
gram storage area. This error will normally not occur as long as the program is
created on the CX-Programmer.

In the rare even that this error does occur, it will be treated as a program error,
operation will stop (fatal error), and the UM Overflow Flag (A295.15) will turn
ON.
44

Checking Programs Section 1-3
1-3-4 Checking Fatal Errors
The following errors are fatal program errors and the CPU Unit will stop run-
ning if one of these occurs. When operation is stopped by a program error, the
task number where operation stopped will be stored in A294 and the program
address will be stored in A298/A299. The cause of the program error can be
determined from this information.

Note If the Error Flag or Access Error Flag turns ON, it will be treated as a program
error and it can be used to stop the CPU from running. Specify operation for
program errors in the PLC Setup.

Address Description Stored Data

A294 The type of task and the task number at the
point where operation stopped will be stored
here if operation stops due to a program error.

Note FFFF hex will be stored if there are no
active cyclic tasks in a cycle, i.e., if there
are no cyclic tasks to be executed.

Cyclic task: 0000 to 001F hex (cyclic tasks 0 to 31)
Interrupt task: 8000 to 80FF hex (interrupt tasks 0 to 255)

A298/A299 The program address at the point where opera-
tion stopped will be stored here in binary if
operation stops due to a program error.

Note If the END(001) instruction is missing
(A295.11 will be ON), the address where
END(001) was expected will be stored.

Note If there is a task execution error (A295.12
will be ON), FFFFFFFF hex will be stored
in A298/A299.

A298: Rightmost portion of program address
A299: Leftmost portion of program address

Program error Description Related flags

No END Instruction An END instruction is not present in the
program.

The No END Flag (A295.11) turns ON.

Error During Task Execution No task is ready in the cycle.
No program is allocated to a task.
The corresponding interrupt task number is
not present even though the execution
condition for the interrupt task was met.

The Task Error Flag (295.12) turns ON.

Instruction Processing Error (ER
Flag ON) and Stop Operation set
for Instruction Errors in PLC Setup

The wrong data values were provided in
the operand when an attempt was made to
execute an instruction.

The ER Flag turns ON and the Instruc-
tion Processing Error Flag (A295.08)
turns ON if Stop Operation set for
Instruction Errors in PLC Setup.

Illegal Access Error (AER Flag ON)
and Stop Operation set for Instruc-
tion Errors in PLC Setup

A read or write was executed for a parame-
ter area.

A write was executed in a memory area
that is not mounted.
A write was executed in a read-only area.

The value specified in an indirect DM
address in BCD mode was not BCD.

AER Flag turns ON and the Illegal
Access Error Flag (A295.10) turns ON
if Stop Operation set for Instruction
Errors in PLC Setup

Indirect DM BCD Error and Stop
Operation set for Instruction Errors
in PLC Setup

The value specified in an indirect DM
address in BCD mode is not BCD.

AER Flag turns ON and the DM Indi-
rect BCD Error Flag (A295.09) turns
ON if Stop Operation set for Instruction
Errors in PLC Setup

Differentiation Address Overflow
Error

During online editing, more than 131,072
differentiated instructions have been
inserted or deleted.

The Differentiation Overflow Error Flag
(A295.13) turns ON.
45

Introducing Function Blocks Section 1-4
1-4 Introducing Function Blocks
Function blocks can be used with CP-series CPU Units. Refer to the CX-Pro-
grammer Ver. 6.1 Operation Manual Function Blocks (W447) for details on
actually using function blocks.

1-4-1 Overview and Features
Function blocks conforming to the IEC 61131-3 standard can be used with
CX-Programmer Ver. 5.0 and higher. These function blocks are supported by
CS/CJ-series CPU Units with unit version 3.0 or later and by CP-series CPU
Units. The following features are supported.

• User-defined processes can be converted to block format by using func-
tion blocks.

• Function block algorithms can be written in the ladder programming lan-
guage or in the structured text (ST) language. (See note.)

• When ladder programming is used, ladder programs created with non-
CX-Programmer Ver. 4.0 or earlier can be reused by copying and past-
ing.

• When ST language is used, it is easy to program mathematical pro-
cesses that would be difficult to enter with ladder programming.

Note The ST language is an advanced language for industrial control
(primarily Programmable Logic Controllers) that is described in IEC
61131-3. The ST language supported by CX-Programmer con-
forms to the IEC 61131-3 standard.

• Function blocks can be created easily because variables do not have to
be declared in text. They are registered in variable tables.
A variable can be registered automatically when it is entered in a ladder or
ST program. Registered variables can also be entered in ladder programs
after they have been registered in the variable table.

• A single function block can be converted to a library function as a single
file, making it easy to reuse function blocks for standard processing.

• A program check can be performed on a single function block to easily
confirm the function block’s reliability as a library function.

• Programs containing function blocks (ladder programming language or
structured text (ST) language) can be downloaded or uploaded in the
same way as standard programs that do not contain function blocks.
Tasks containing function blocks, however, cannot be downloaded in task
units (uploading is possible).

• One-dimensional array variables are supported, so data handling is eas-
ier for many applications.

UM (User Memory) Overflow Error An attempt was made to execute instruc-
tion data stored beyond the last address in
user memory (UM) defined as program
storage area.

The UM (User Memory) Overflow Flag
(A295.5) turns ON.

Illegal Instruction Error An attempt was made to execute an
instruction that cannot be executed.

The Illegal Instruction Flag (A295.14)
turns ON.

Program error Description Related flags
46

Introducing Function Blocks Section 1-4
Note The IEC 61131 standard was defined by the International Electro-
technical Commission (IEC) as an international programmable log-
ic controller (PLC) standard. The standard is divided into 7 parts.
Specifications related to PLC programming are defined in Part 3
Textual Languages (IEC 61131-3).

• A function block (ladder programming language or structured text (ST)
language) can be called from another function block (ladder programming
language or structured text (ST) language). Function blocks can be
nested up to 8 levels and ladder/ST language function blocks can be com-
bined freely.

1-4-2 Function Block Specifications
For specifications that are not listed in the following table, refer to the CX-Pro-
grammer Ver. 6.0 Operation Manual Function Blocks (W447).

Note The structured text (ST language) conforms to the IEC 61131-3 standard, but
CX-Programmer Ver. 5.0 supports only assignment statements, selection
statements (CASE and IF statements), iteration statements (FOR, WHILE,
REPEAT, and EXIT statements), RETURN statements, arithmetic operators,
logical operators, comparison functions, numeric functions, and comments.

Item Specifications

Model number WS02-CXPC1-E-V6

Setup disk CD-ROM

Compatible CPU Units CP-series CPU Units with unit version 1.0 or later

CS/CJ-series CS1-H, CJ1-H, and CJ1M CPU Units with unit version 3.0 or
later are compatible.
Device Type CPU Type

• CS1G-H CS1G-CPU42H/43H/44H/45H
• CS1H-H CS1H-CPU63H/64H/65H/66H/67H
• CJ1G-H CJ1G-CPU42H/43H/44H/45H
• CJ1H-H CJ1H-CPU65H/66H/67H
• CJ1M CJ1M-CPU11/12/13/21/22/23

CS/CJ/CP Series Function Restrictions

• Instructions Not Supported in Function Block Definitions
Block Program Instructions (BPRG and BEND), Subroutine Instructions
(SBS, GSBS, RET, MCRO, and SBN), Jump Instructions (JMP, CJP, and
CJPN), Step Ladder Instructions (STEP and SNXT), Immediate Refresh
Instructions (!), I/O REFRESH (IORF), ONE-MS TIMER (TMHH).

Compatible
computers

Computer IBM PC/AT or compatible

CPU 133 MHz Pentium or faster with Windows 98, 98SE, or NT 4.0 (with service
pack 6 or higher)

OS Microsoft Windows 95, 98, 98SE, Me, 2000, XP, or NT 4.0 (with service pack
6 or higher)

Memory 64 Mbytes min. with Windows 98, 98SE, or NT 4.0 (with service pack 6 or
higher)
Refer to the CX-Programmer Ver. 6.0 Operation Manual (W437) for details.

Hard disk space 100 Mbytes min. available disk space

Monitor SVGA (800 × 600 pixels) min.

Note Use “small font” for the font size.

CD-ROM drive One CD-ROM drive min.

COM port One RS-232C port min.
47

Introducing Function Blocks Section 1-4
1-4-3 Files Created with CX-Programmer Ver. 6.0
Project Files (*.cxp) and
File Memory Program
Files (*.obj)

Projects created using CX-Programmer that contain function block definitions
and projects with instances are saved in the same standard project files
(*.cxp) and file memory program files (*.obj).

The following diagram shows the contents of a project. The function block def-
initions are created at the same directory level as the program within the rele-
vant PLC directory.

Function Block Library
Files (*.cxf)

A function block definition created in a project with CX-Programmer Ver. 6.0
can be saved as a file (1 definition = 1 file), enabling definitions to be loaded
into other programs and reused.

Note When function blocks are nested, all of the nested (destination) function block
definitions are included in this function block library file (.cxf).

Project Text Files
Containing Function
Blocks (*.cxt)

Data equivalent to that in project files created with CX-Programmer Ver. 6.0
(*.cxp) can be saved as CXT text files (*.cxt).

FunctionBlock1

FunctionBlock2

Project file (.cxp)

PLC1

PLC2

Global symbol table

I/O table

PLC Setup

PLC memory table

Program (with rung comments)

Local symbol table

Section 1 (with instances)

Section 2 (with instances)

END section (with instances)

Function block def initions

Each function block can be
stored in a separate
definition file (.cxf).

Instances created
in program
sections.
48

SECTION 2
Tasks

This section describes the operation of tasks and how to use tasks in programming.

2-1 Programming with Tasks. 50

2-1-1 Overview. 50

2-1-2 Tasks and Programs . 52

2-1-3 Basic CPU Unit Operation . 53

2-1-4 Types of Tasks . 54

2-1-5 Task Execution Conditions and Settings . 56

2-1-6 Cyclic Task Status. 56

2-1-7 Status Transitions . 57

2-2 Using Tasks . 58

2-2-1 TASK ON and TASK OFF . 58

2-2-2 Task Instruction Limitations . 61

2-2-3 Flags Related to Tasks . 62

2-2-4 Examples of Tasks . 65

2-2-5 Designing Tasks . 66

2-2-6 Global Subroutine. 68

2-3 Interrupt Tasks. 69

2-3-1 Types of Interrupt Tasks . 69

2-3-2 Interrupt Task Flags and Words . 73

2-3-3 Application Precautions . 74

2-4 CX-Programmer Operations for Tasks . 75
49

Programming with Tasks Section 2-1
2-1 Programming with Tasks

2-1-1 Overview
CP1H control operations can be divided by functions, controlled devices, pro-
cesses, developers, or any other criteria and each operation can be pro-
grammed in a separate unit called a “task.” Using tasks provides the following
advantages:

1,2,3... 1. Programs can be developed simultaneously by several people.

Individually designed program parts can be assembled with very little effort
into a single user program.

2. Programs can be standardized in modules.

More specifically, the following the CX-Programmer functions will be com-
bined to develop programs that are standalone standard modules rather
than programs designed for specific systems (machines, devices). This
means that programs developed separately by several people can be
readily combine.

• Programming using symbols

• Global and local designation of symbols

• Automatic allocation of local symbols to addresses

3. Improved overall response.

Overall response is improved because the system is divided into an overall
control program as well as individual control programs, and only specific
programs will be executed as needed.

4. Easy revision and debugging.

• Debugging is much more efficient because tasks can be developed
separately by several people, and then revised and debugged by indi-
vidual task.

• Maintenance is simple because only the task that needs revising will
be changed in order to make specification or other changes.

• Debugging is more efficient because it is easy to determine whether
an address is specific or global and addresses between programs only
need to be checked once during debugging because symbols are des-
ignated globally or locally and local symbols are allocated automatical-
ly to addresses through the CX-Programmer.

5. Easy to switch programs.

A task control instruction in the program can be used to execute product-
specific tasks (programs) when changing operation is necessary.

6. Easily understood user programs.

Programs are structured in blocks that make the programs much simpler
to understand for sections that would conventionally be handled with in-
structions like jump.
50

Programming with Tasks Section 2-1
Note Unlike earlier programs that can be compared to reading a scroll, tasks can
be compared to reading through a series of individual cards.

• All cards are read in a preset sequence starting from the lowest number.

• All cards are designated as either active or inactive, and cards that are
inactive will be skipped. (Cards are activated or deactivated by task con-
trol instructions.)

• A card that is activated will remain activated and will be read in subse-
quent sequences. A card that is deactivated will remain deactivated and
will be skipped until it is reactivated by another card.

I/O refreshing

Allocation

CP1H

I/O refreshing

Earlier system

One continuous
subprogram

Task 3

Task 2

Task 1

Tasks can be
put into non-
executing
(standby)
status.

Program
development and
debugging is
possible by more
than one person.
51

Programming with Tasks Section 2-1
2-1-2 Tasks and Programs
Up to 288 programs (tasks) can be controlled. Individual programs are allo-
cated 1:1 to tasks. Tasks are broadly grouped into the following types:

• Cyclic tasks

• Interrupt tasks

Each program allocated to a task is executed independently and must end
with an END(001) instruction. I/O refreshing will be executed only after all task
programs in a cycle have been executed.

Allocation

I/O refreshing

Allocation

Allocation

Allocation

Interrupt condition
goes into effect

Cyclic
task n

Cyclic
task 1

Cyclic
task 0

Interrupt
task 100

Program D

Program C

Program B

Program A
52

Programming with Tasks Section 2-1
2-1-3 Basic CPU Unit Operation
The CPU Unit will execute cyclic tasks starting at the task with the lowest
number. It will also interrupt cyclic task execution to execute an interrupt task
if an interrupt occurs.

Note All Condition Flags (ER, CY, Equals, AER, etc.) and instruction conditions
(interlock ON, etc.) will be cleared at the beginning of a task. Therefore Condi-
tion Flags cannot be read nor can INTERLOCK/INTERLOCK CLEAR (IL/ILC)
instructions, JUMP/JUMP END (JMP/JME) instructions, or SUBROUTINE
CALL/SUBROUTINE ENTRY (SBS/SBN) instructions be split between two
tasks.

Interrupt task can be executed as cyclic tasks by starting them with TKON.
These are called “extra cyclic tasks.” Extra cyclic tasks (interrupt task numbers
0 to 255) are executed starting at the lowest task number after execution of
the normal cyclic task (celiac task numbers 0 to 31) has been completed.

Executed in order starting
at the lowest number.

Cyclic task 0

Cyclic task 1

Interrupt task 5

Interrupt
occurs.

Cyclic task n

I/O refresh

Peripheral processing
53

Programming with Tasks Section 2-1
2-1-4 Types of Tasks
Tasks are broadly classified as either cyclic tasks or interrupt tasks. Interrupt
tasks are further divided into scheduled, input, high-speed counter, and exter-
nal interrupt tasks. Interrupt tasks can also be executed as extra cyclic tasks.

Cyclic Tasks A cyclic task that is READY will be executed once each cycle (from the top of
the program until the END(001) instruction) in numerical order starting at the
task with the lowest number. The maximum number of cyclic tasks is 32.
(Cyclic task numbers: 00 to 31).

Interrupt Tasks An interrupt task will be executed if an interrupt occurs even if a cyclic task
(including extra cyclic tasks) is currently being executed. The interrupt task
will be executed using any time in the cycle, including during user program
execution, I/O refreshing, or peripheral servicing, when the execution condi-
tion for the interrupt is met.

Interrupt tasks can also be executed as extra cyclic tasks.

END

END

END

END

Cyclic task 0

Executed in order starting at
lowest number of the cyclic tasks.

Normal cyclic tasks

Cyclic task n

Extra cyclic task 0

Executed in order starting at lowest
number of the extra cyclic tasks.

Extra cyclic tasks
Extra cyclic task m

I/O refresh

Peripheral
processing
54

Programming with Tasks Section 2-1
Input Interrupts (Direct
Mode and Counter Mode)

An interrupt task can be executed each time one of the built-in inputs on the
CPU Unit turns ON or OFF (Direct Mode) or when a specified number of
inputs has been counted (Count Mode). For an X or XA CPU Unit, up to eight
input interrupt tasks can be used (interrupt task numbers 140 to 147). For a Y
CPU Unit, up to six input interrupt tasks can be used (interrupt task numbers
140, 141, or 144 to 147).

Scheduled Interrupt Tasks A scheduled interrupt task will be executed at a fixed interval based on the
internal timer of the CPU Unit. Only one scheduled interrupt tasks can be
used (interrupt task number:2).

High-speed Counter
Interrupts

Pulse inputs to a built-in high-speed counter in the CPU Unit can be counted
to trigger execution of an interrupt.

External Interrupt Tasks A user-specified interrupt task (interrupt task numbers 0 to 255) can be exe-
cuted when an external interrupt occurs.

The interrupt task will be executed when requested by a user program running
in a CJ-series Special I/O Unit or CJ-series CPU Bus Unit.

Up to 256 external interrupt tasks can be used (interrupt task numbers: 0 to
255). If an external interrupt task has the same number as scheduled, input,
or high-speed counter interrupt task, the interrupt task will be executed for
either condition (the two conditions will operate with OR logic) but basically
task numbers should not be duplicated.

Note If another interrupt task is being executed when an input, scheduled, high-
speed counter, or external interrupt occurs, then these interrupt tasks will not
be executed until the interrupt task that is currently being executed has been
completed. If multiple interrupts occur simultaneously, then interrupt tasks will
be executed sequentially starting at the lowest interrupt task number.

Extra Cyclic Tasks An interrupt tasks can be executed every cycle, just like the normal cyclic
tasks. Extra cyclic tasks (interrupt task numbers 0 to 255) are executed start-
ing at the lowest task number after execution of the normal cyclic task (cyclic
task numbers 0 to 31) has been completed. The maximum number of extra
cyclic tasks is 256 (Interrupt task numbers: 0 to 255). Cycle interrupt tasks,
however, are different from normal cyclic tasks in that they are started with
TKON(820), i.e., they cannot be started automatically at startup.

If an extra cyclic task has the same number as a scheduled, input, or high-
speed counter interrupt task, the interrupt task will be executed for either con-
dition (the two conditions will operate with OR logic). Do not use interrupt
tasks both as normal interrupt tasks and as extra cyclic tasks.

Note (1) Also, TKON(820) and TKOF(821) cannot be used in extra cyclic tasks,
meaning that normal cyclic tasks and other extra cyclic tasks cannot be
controlled from within an extra cyclic task.

(2) The differences between normal cyclic tasks and extra cyclic tasks are
listed in the following table.

Item Extra cyclic tasks Normal cyclic tasks

Activating at startup Not supported. Supported. (Set from CX-
Programmer.)

Using TKON(820)
and TKOF(821)
inside task

Not supported. Supported.

Task Flags Not supported. Supported. (Cyclic task
numbers 00 to 31 corre-
spond to Task Flags TK00 to
TK31.)
55

Programming with Tasks Section 2-1
2-1-5 Task Execution Conditions and Settings
The following table describes task execution conditions, related settings, and
status.

2-1-6 Cyclic Task Status
This section describes cyclic task status, including extra cyclic tasks.

Cyclic tasks always have one of four statuses: Disabled, READY, RUN (exe-
cutable), and standby (WAIT).

Disabled Status (INI) A task with Disabled status is not executed. All cyclic tasks have Disabled sta-
tus in PROGRAM mode. Any cycle task that shifted from this to another status
cannot return to this status without returning to PROGRAM mode.

READY Status A task attribute can be set to control when the task will go to READY status.
The attribute can be set to either activate the task using the TASK ON instruc-
tion or when RUN operation is started.

Initial Task Execution
Flag (A200.15) and
Task Start Flag
(A200.14)

Not supported. Supported.

Index (IR) and data
(DR) register values

Not defined when task is
started (same as normal
interrupt tasks). Values at
the beginning of each
cycle are undefined.
Always set values before
using them. Values set in
the previous cycle cannot
be read.

Undefined at the beginning
of operation. Values set in
the previous cycle can be
read.

Item Extra cyclic tasks Normal cyclic tasks

Task No. Execution condition Related Setting

Cyclic tasks 0 to 31 Executed once each cycle if READY
(set to start initially or started with the
TKON(820)instruction) when the right
to execute is obtained.

None

Interrupt
tasks

Scheduled
interrupt task 0

Interrupt task 2 Executed once every time the preset
period elapses according to the inter-
nal timer of CPU Unit.

• The scheduled interrupt time is set
(0 to 9999) through the SET INTER-
RUPT MASK instruction
(MSKS(690)).

• Scheduled interrupt unit (10 ms, 1.0
ms, or 0.1 ms) is set in PLC Setup.

Input interrupt
tasks 0 to 7

Interrupt tasks
140 to 147

Executed when the corresponding
CPU Unit built-in input turns ON.

• Masks for designated inputs are
canceled through the SET INTER-
RUPT MASK instruction
(MSKS(690)).

High-speed
counter inter-
rupt tasks

Interrupt tasks
0 to 255

Executed when corresponding target
or range comparison condition is met
for CPU Unit built-in high-speed
counter.

External inter-
rupt tasks

Interrupt tasks
0 to 255

Executed when requested by a user
program in a Special I/O Unit or CPU
Bus Unit.

None (always enabled)

Extra cyclic tasks 0 to 255 Interrupt tasks
0 to 255

Executed once each cycle if READY
(started with the TKON(820) instruc-
tion) when the right to execute is
obtained.

None (always enabled)
56

Programming with Tasks Section 2-1
Instruction-activated
Tasks

A TASK ON instruction (TKON(820)) is used to switch an instruction-activated
cyclic task from Disabled status or Standby status to READY status.

Operation-activated Tasks An operation-activated cyclic task will switch from Disabled status to READY
status when the operating mode is changed from PROGRAM to RUN or
MONITOR mode. This applies only to normal cyclic tasks.

Note The CX-Programmer can be used to set one or more tasks to go to READY
status when operation is started for task numbers 0 through 31. The setting,
however, is not possible with extra cyclic tasks.

RUN Status A cyclic task that is READY will switch to RUN status and be executed when
the task obtains the right to execute.

Standby Status A TASK OFF (TKOF(821)) instruction can be used to change a cyclic task
from Disabled status to Standby status.

Note The task programs for CP-series PLCs can be monitored online from the CX-
Programmer to see if they are executing or stopped. The status indications on
the CX-Programmer are as follows:

• Running: The task is in READY or RUN status. (There is no way to tell the
difference between these.)

• Stopped: The task is in INI or WAIT status. (There is no way to tell the dif-
ference between these.)

2-1-7 Status Transitions

Note (1) Activation at the start of operation is possible for normal cyclic tasks only.
It is not possible for extra cyclic tasks.

(2) A task in RUN status will be put into Standby status by the TKOF(821) in-
struction even when the TKOF(821) instruction is executed within that
task.

Standby status functions exactly the same way as a jump (JMP-JME). Output
status for the Standby task will be maintained.

INI (Disabled) status READY status RUN status

Executed

TKOF(821) instruction (See note 2.)TKON(820) instruction

Standby status

Right to execute obtained.
Activated at the start of
operation (See note 1.) or the
TKON(820) instruction

Standby status Jump
57

Using Tasks Section 2-2
Instructions will not be executed in Standby status, so instruction execution
time will not be increased. Programming that does not need to be executed all
the time can be made into tasks and assigned Standby status to reduce cycle
time.

Note Standby status simply means that a task will be skipped during task execu-
tion. Changing to Standby status will not end the program.

2-2 Using Tasks

2-2-1 TASK ON and TASK OFF
The TASK ON (TKON(820)) and TASK OFF (TKOF(821)) instructions switch a
cyclic task (including extra cyclic tasks) between READY and Standby status
from a program.

The TASK ON and TASK OFF instructions can be used to change any cyclic
task between READY or Standby status at any time. A cyclic task that is in
READY status will maintain that status in subsequent cycles, and a cyclic task
that is in Standby status will maintain that status in subsequent cycles.

The TASK ON and TASK OFF instructions can be used only with cyclic tasks
and not with interrupt tasks.

Conventional program

Executes under
set conditions

Executes under
set conditions

All instructions will
be executed un-
less jumps or other
functions are used.

Task

Reduced cycle time

N: Task No.

N: Task No.

A task will go to READY status when the
execution condition is ON, and the corre-
sponding Task Flag will turn ON.

A task will go to Standby status when
the execution condition is ON, and the
corresponding Task Flag will turn OFF.
58

Using Tasks Section 2-2
Note At least one cyclic task must be in READY status in each cycle. If there is not
cyclic task in READY status, the Task Error Flag (A295.12) will turn ON, and
the CPU Unit will stop running.

Tasks and the
Execution Cycle

A cyclic task (including an extra cyclic task) that is in READY status will main-
tain that status in subsequent cycles.

Cyclic task 1

Cyclic task 2

Cyclic task 3

Cyclic task 1

Cyclic task 2

Cyclic task 3

Cyclic task 0

Cyclic task 1

Cyclic task 2

Cyclic task 3

Cyclic task 0

Cyclic task 3

Cyclic task 0

1) Task 0 will be
in READY
status at the
start of opera-
tion.

Other tasks will re-
main in Disabled
status.

2) Task 1 will go to
READY status if A is
ON, and tasks 2 and
3 will remain on
Disabled status.

READY status

Standby status/Disabled status

3) Task 0 will go to
Standby status if D
is ON.

Other tasks will remain in
their current status.

Example: Cyclic Task
Cyclic task 0
(READY status
at the start of
operation)

Cyclic task 1

Cyclic task 2

Cyclic task 1

Cyclic task 2

Cyclic task 1

Cyclic task 2

READY status

READY status

READY sta-
tus at the
start of op-
eration

READY
status

TKON(820)
59

Using Tasks Section 2-2
A cyclic task that is in Standby status will maintain that status in subsequent
cycles. The task will have to be activated using the TKON(820) instruction in
order to switch from Standby to READY status.

If a TKOF(821) instruction is executed for the task it is in, the task will stop
being executed where the instruction is executed, and the task will shift to
Standby status.

Cyclic Task Numbers
and the Execution
Cycle (Including Extra
Cyclic Tasks)

If task m turns ON task n and m > n, task n will go to READY status the next
cycle.

Example: If task 5 turns ON task 2, task 2 will go to READY status the next
cycle.

If task m turns ON task n and m < n, task n will go to READY status the same
cycle.

Example: If task 2 turns ON task 5, task 5 will go to READY status in the
same cycle.

If task m places task n in Standby status and m > n, will go to Standby status
the next cycle.

Example: If task 5 places task 2 in Standby status, task 2 will go to Standby
status the next cycle.

If task m places task n in Standby status and m < n, task n will go to Standby
status in the same cycle.

Example: If task 2 places task 5 in Standby status, task 5 will go to Standby
status in the same cycle.

Relationship of Tasks
to I/O Memory

There are two different ways to use Index Registers (IR) and Data Registers
(DR): 1) Independently by task or 2) Shared by all task.

With independent registers, IR0 used by cyclic task 1 for example is different
from IR0 used by cyclic task 2. With shared registers, IR0 used by cyclic task
1 for example is the same as IR0 used by cyclic task 2.

The setting that determines if registers are independent or shared is made
from the CX-Programmer.

Cyclic task 1

Cyclic task 2

Cyclic task 1

Cyclic task 2RUN status RUN sta

TKON
(820)

Standby
status

Stan
statu

TKOF(821)

Task execution will
stop here and the task
will shift to Standby
status.

Task 2
60

Using Tasks Section 2-2
• Other words and bits in I/O Memory are shared by all tasks. CIO 10.00 for
example is the same bit for both cyclic task 1 and cyclic task 2. Therefore,
be very careful in programming any time I/O memory areas other than the
IR and DR Areas are used because values changed with one task will be
used by other tasks.

Note IR and DR values are not set when interrupt tasks (including extra
cyclic tasks) are started. If IR and DR are used in an interrupt task,
these values must be set by the MOVR/MOVRW (MOVE TO REG-
ISTER and MOVE TIMER/COUNTER PV TO REGISTER) instruc-
tions within the interrupt task. After the interrupt task has been
executed, IR and DR will return to their values prior to the interrupt
automatically.

Relationship of Tasks to
Timer Operation

Timer present values for TIM, TIMX, TIMH, TIMHX, TMHH, TMHHX, TIMW,
TIMWX, TMHW, and TMHWX programmed for timer numbers T0000 to
T2047 will be updated even if the task is switched or if the task containing the
timer is changed to Standby status or back to READY status.

If the task containing TIM goes to Standby status and is the returned to
READY status, the Completion Flag will be turned ON if the TIM instruction is
executed when the present value is 0. (Completion Flags for timers are
updated only when the instruction is executed.) If the TIM instruction is exe-
cuted when the present value is not yet 0, the present value will continue to be
updated just as it was while the task was in READY status.

• The present values for timers programmed with timer numbers T2048 to
T4095 will be maintained when the task is in Standby status.

Relationship of Tasks to
Condition Flags

All Condition Flags will be cleared before execution of each task. Therefore
Condition Flag status at the end of task 1 cannot be read in task 2. CCS(282)
and CCL(283) can be used to read Condition Flag status from another part of
the program, e.g., from another task.

2-2-2 Task Instruction Limitations

Instructions Required
in the Same Task

The following instructions must be placed within the same task. Any attempt
to split instructions between two tasks will cause the ER Flag to turn ON and
the instructions will not be executed.

I/O memory Relationship to tasks

CIO, Auxiliary, Data Memory and all other
memory areas except the IR and DR Areas.

Shared with other tasks.

Index registers (IR) and data registers (DR)
(See note.)

Used separately for each task.

Mnemonic Instruction

JMP/JME JUMP/JUMP END

CJP/JME CONDITIONAL JUMP/JUMP END

CJPN/JME CONDITIONAL JUMP NOT/CONDITIONAL JUMP END

JMP0/JME0 MULTIPLE JUMP/JUMP END

FOR/NEXT FOR/NEXT

IL/ILC INTERLOCK/INTERLOCK CLEAR

SBS/SBN/RET SUBROUTINE CALL/SUBROUTINE ENTRY/SUBROUTINE
RETURN

MCRO/SBN/RET MACRO/SUBROUTINE ENTRY/SUBROUTINE RETURN

BPRG/BEND BLOCK PROGRAM BEGIN/BLOCK PROGRAM END

STEP S/STEP STEP DEFINE
61

Using Tasks Section 2-2
Instructions Not
Allowed in Interrupt
Tasks

The following instructions cannot be placed in interrupt tasks. Any attempt to
execute one of these instructions in an interrupt task will cause the ER Flag to
turn ON and the instruction will not be executed.The following instructions can
be used if an interrupt task is being used as an extra task.

The operation of the following instructions is unpredictable in an interrupt task:
TIMER: TIM and TIMX(550), HIGH-SPEED TIMER: TIMH(015) and
TIMHX(551), ONE-MS TIMER: TMHH(540) and TMHHX(552), ACCUMULA-
TIVE TIMER: TTIM(087) and TTIMX(555), MULTIPLE OUTPUT TIMER:
MTIM(543) and MTIMX(554), LONG TIMER: TIML(542) and TIMLX(553),
TIMER WAIT: TIMW(813) and TIMWX(816), HIGH-SPEED TIMER WAIT:
TMHW(815) and TMHWX(817), PID CONTROL: PID(190), FAILURE POINT
DETECTION: FPD(269), and CHANGE SERIAL PORT SETUP: STUP(237).

2-2-3 Flags Related to Tasks

Flags Related to
Cyclic Tasks

The following flag work only for normal cyclic tasks. They do not work for extra
cyclic tasks.

Task Flags
(TK00 to TK31)

A Task Flag is turned ON when a cyclic task in READY status and is turned
OFF when the task is in Disabled (INI) or in Standby (WAIT) status. Task num-
bers 00 to 31 correspond to Task Flags TK00 to TK31.

Note Task Flags are used only with cyclic tasks and not with interrupt tasks. With
an interrupt task, A441.15 will turn ON if an interrupt task executes after the
start of operation, and the number of the interrupt task that required for maxi-
mum processing time will be stored in two-digit hexadecimal in A441.00 to
A441.07.

Initial Task Execution Flag
(A200.15)

The Initial Task Execution Flag will turn ON when cyclic tasks shift from Dis-
abled (INI) to READY status, the tasks obtain the right to execute, and the
tasks are executed the first time. It will turn OFF when the first execution of the
tasks has been completed.

Mnemonic Instruction

TKON(820) TASK ON

TKOF(821) TASK OFF

STEP STEP DEFINE

SNXT STEP NEXT

STUP CHANGE SERIAL PORT SETUP

DI DISABLE INTERRUPT

EI ENABLE INTERRUPT

Cycle Cycle Cycle

Task Flag for task 3

Task 3
Disabled READY READY Standby

Task n

Initial Task
Execution Flag

Disabled Disabled

Ready Ready
62

Using Tasks Section 2-2
The Initial Task Execution Flag tells whether or not the cyclic tasks are being
executed for the first time. This flag can thus be used to perform initialization
processing within the tasks.

Note Even though a Standby cyclic task is shifted back to READY status through
the TKON(820) instruction, this is not considered an initial execution and the
Initial Task Execution Flag (A200.15) will not turn ON. The Initial Task Execu-
tion Flag (A200.15) will also not turn ON if a cyclic task is shifted from Dis-
abled to RUN status or if it is put in Standby status by another task through the
TKOF(821) instruction before the right to execute actually is obtained.

Task Start Flag (A200.14) The Task Start Flag can be used to perform initialization processing each time
the task cycle is started. The Task Start Flag turns OF whenever cycle task
status changes from Disabled (INI) or Standby (WAIT) status to READY status
(whereas the Initial Task Execution Flag turns ON only when status changes
from Disabled (INI) to READY).

The Task Start Flag can be used to perform initialization processing whenever
a task goes from Standby to RUN status, i.e., when a task on Standby is
enabled using the TRON(820) instruction.

Flags Related to All Tasks

Task Error Flag (A295.12) The Task Error Flag will turn ON if one of the following task errors occurs.

• No cyclic tasks (including extra cyclic tasks) are READY during a cycle.

• The program allocated to a cyclic task (including extra cyclic tasks) does
not exist. (This situation will not occur when using the CX-Programmer.)

• No program is allocated to an activated interrupt task.

A200.15

Initial Task Execution Flag

Initializing
processing

Task n

Task Start Flag

Disabled Disabled

Ready Ready

A200.14

Task Start Flag

Initialization
processing
63

Using Tasks Section 2-2
Task Number when
Program Stopped (A294)

The type of task and the current task number when a task stops execution
due to a program error will be stored as follows:

This information makes it easier to determine where the fatal error occurred,
and it will be cleared when the fatal error is cleared. The program address
where task operation stopped is stored in A298 (rightmost bits of the program
address) and in A299 (leftmost bits of the program address).

Type A294

Cyclic task 0000 to 001F hex (correspond to task numbers 0 to 31)

Interrupt task 8000 to 80FF hex (correspond to interrupt task numbers 0 to 255)
64

Using Tasks Section 2-2
2-2-4 Examples of Tasks
An overall control task that is set to go to READY status at the start of opera-
tion is generally used to control READY/Standby status for all other cyclic
tasks (including extra cyclic tasks). Of course, any cyclic task can control the
READY/Standby status of any other cyclic task as required by the application.

Combinations of the above classifications are also possible, e.g., classifica-
tion by function and process.

A B C

Cyclic task 1 Cyclic task 2 Cyclic task 3

MMI task

Product A task

Machining task

Product B task

Product C task

From Program Mode to Operating or Monitor Mode.

Cyclic task 0 with the startup at
the start of operation attribute
(overall control task)

Tasks Separated by Function

Overall control task

Conveyor task

Error monitoring
task

Communications
task

Analog processing
task

Tasks Separated by Product

Overall control task

Tasks Separated by Process

Assembly task

Conveyor task

Overall control task

Developer C task

Developer B task

Developer A task

Overall control
task

Tasks Separated by Developer

Overall control task

A-section control
task

B-section control
task

C-section control
task

Tasks Separated by Controlled Section
65

Using Tasks Section 2-2
2-2-5 Designing Tasks
We recommend the following guidelines for designing tasks.

1,2,3... 1. Use the following standards to study separating tasks.

a. Summarize specific conditions for execution and non-execution.

b. Summarize the presence or absence of external I/O.

c. Summarize functions.

Keep data exchanged between tasks for sequence control, analog
control, man-machine interfacing, error processing and other process-
es to an absolute minimum in order to maintain a high degree of au-
tonomy.

d. Summarize execution in order of priority.

Separate processing into cyclic and interrupt tasks.

2. Be sure to break down and design programs in a manner that will ensure
autonomy and keep the amount of data exchanged between tasks (pro-
grams) to an absolute minimum.

3. Generally, use an overall control task to control the READY/Standby status
of the other tasks.

4. Allocate the lowest numbers to tasks with the highest priority.
Example: Allocate a lower number to the control task than to processing
tasks.

5. Allocate lower numbers to high-priority interrupt tasks.

6. A task in READY status will be executed in subsequent cycles as long as
the task itself or another task does not shift it to Standby status. Be sure to
insert a TKOF(821) (TASK OFF) instruction for other tasks if processing is
to be branched between tasks.

7. Use the Initial Task Execution Flag (A200.15) or the Task Start Flag
(A200.14) in the execution condition to execution instructions to initialize
tasks. The Initial Task Execution Flag will be ON during the first execution
of each task. The Task Start Flag each time a task enters READY status.

Breakdown by execution and non-execution conditions

E
xt

er
na

l I
/O

O
rd

er
 p

rio
rit

y

Input
proces-
sing

Overall
control
(may in-
clude error
processing
in some
cases)

Breakdown by function

Interrupt

Error processing

Sequence control

Analog control

Man-machine interfacing

Output
processing

E
xt

er
na

l o
ut

pu
ts

Minimize data
exchange
66

Using Tasks Section 2-2
8. Assign I/O memory into memory shared by tasks and memory used only
for individual tasks, and then group I/O memory used only for individual
tasks by task.

Relationship of Tasks to
Block Programs

Up to 128 block programs can be created in the tasks. This is the total number
for all tasks. The execution of each entire block program is controlled from the
ladder diagram, but the instructions within the block program are written using
mnemonics. In other words, a block program is formed from a combination of
a ladder instruction and mnemonic code.

Using a block program makes it easier to write logic flow, such as conditional
branching and process stepping, which can be hard to write using ladder dia-
grams. Block programs are located at the bottom of the program hierarchy,
and the larger program units represented by the task can be split into small
program units as block programs that operate with the same execution condi-
tion (ON condition).

0.00

0.01

Task 0

Task 1

Task n

Program

Block program 000

Block program 001

Block program n

Block program area 000

Block program area 001
67

Using Tasks Section 2-2
2-2-6 Global Subroutine
A subroutine in one task cannot be called from other tasks. A subroutine
called a global subroutine can be created in interrupt task number 0, and this
subroutine can be called from cyclic tasks (including extra cyclic tasks).

GSBS(750) is used to call a global subroutine. The subroutine number must
be between 0 and 1,023. The global subroutine is defined at the end of inter-
rupt task number 0 (just before END(001)) between GSBN(751) and
GRET(752) instructions.

Global subroutines can be used to create a library of standard program sec-
tions that can be called whenever necessary.

GSBN
n

GSBS
n

GSBS
n

GRET

END

Cyclic task (including
extra cyclic task)

Multiple tasks Cyclic task (including
extra cyclic task)

Call

Call

Exe-
cution

Return

Return

Interrupt task 0

n = 0 to 1,023

Global subroutine
(shared subroutine
used for standard
programming)
68

Interrupt Tasks Section 2-3
2-3 Interrupt Tasks

2-3-1 Types of Interrupt Tasks

List of Interrupt Tasks

Input Interrupt Tasks:
Tasks 140 to 147

Input interrupt tasks are disabled by default when cyclic task execution is
started. To enable input interrupts, execute the SET INTERRUPT MASK
instruction (MSKS(690)) in a cyclic task for the interrupt number.

Using inputs as interrupt inputs must be enabled in advance in the PLC Setup.

Note Do not enable unneeded input interrupt tasks. If the interrupt input is triggered
by noise and there isn’t a corresponding interrupt task, a fatal error (task
error) will cause the program to stop.

Type Task
No.

Execution condition Setting procedure Number of
interrupts

Application examples

Input Inter-
rupts
0 to 7

140 to
147

An interrupt occurs when
an interrupt input built
into the CPU Unit turns
ON or OFF in Direct
Mode or when a specified
number of ON or OFF
signals is detected for the
interrupt input in Counter
Mode.

Use the SET INTERRUPT
MASK instruction
MSKS(690) to enable inter-
rupt inputs.

8 points Increasing response
speed to specific inputs

High-speed
counter
interrupts

0 to
255

An interrupt occurs when
a condition is met for a
target value or range
comparison for the
present value of a high-
speed counter.

Use the COMPARISON
TABLE LOADinstruction
(CTBL(882)) to specify the
execution condition and the
interrupt to execute.

256 points Performing positioning
operations based on
counting encoder pulses

Scheduled
Interrupt
0

2 An interrupt occurs at a
scheduled time (fixed
intervals).

Use the SET INTERRUPT
MASK instruction
(MSKS(690)) to set the inter-
rupt interval. See Scheduled
interrupt interval in PLC
Setup.

1 point Monitoring operating sta-
tus at fixed intervals

External
Interrupts

0 to
255

Interrupts are requested
by an Special I/O Unit or
CPU Bus Unit.

None (always valid) 256 points Performing processing
required by CJ-series
Special I/O Units
69

Interrupt Tasks Section 2-3
Example: The following example shows execution input interrupt task 143
when CIO 0.03 (interrupt input No. 3) turns ON.

MSKS

113

#0000

END

END

END

MSKS

103

#0000

COM 01 03 05

00 02 04 06

Cyclic task MSKS(690) enables the specified
input interrupt (ON, Direct Mode).

Input interrupt 3
(ON/OFF designation)

ON designation
Input interrupt 3
(interrupt designation)
Interrupts enabled in
Direct Mode.

Cyclic task Interrupt

Input interrupt task 143

CIO 0.03

Interrupt
input

Input interrupt
number

Interrupt
task number

CIO 0.00 0 140

CIO 0.01 1 141

CIO 0.02 2 142

CIO 0.03 3 143

CIO 1.00 4 144

CIO 1.01 5 145

CIO 1.02 6 146

CIO 1.03 7 147
70

Interrupt Tasks Section 2-3
High-speed Counter
Interrupt Tasks:
Tasks 0 to 255

High-speed counter interrupt tasks are enabled by executing the COMPARI-
SON TABLE LOADinstruction (CTBL(882)) to specify the execution condition
and the interrupt to execute. The comparison condition consists of target val-
ues or a comparison range.

Example

The following example illustrates executing high-speed interrupt task 10 when
the present value of high-speed counter 0 equals the target value when the
present value is incremented.

Scheduled Interrupt
Task: Task 2

Scheduled interrupt tasks are disabled in the default PLC Setup at the start of
cyclic task execution. Perform the following steps to enable scheduled inter-
rupt tasks.

1,2,3... 1. Execute the SET INTERRUPT MASK instruction MSKS(690) from a cyclic
task and set the time (cycle) for the specified scheduled interrupt.

2. Set the Scheduled interrupt interval in PLC Setup.

Note The interrupt time setting affects the cyclic task in that the shorter the interrupt
time, the more frequently the task executes and the longer the cycle time.

Example: The following examples shows executed scheduled interrupt task
every second.

END

END

END

D0 0001
D1 2710
D2 0000
D3 000A

CTBL

#0000
#0000

D0

0 0 0 0 2 7 1 0

COM 01 03 05 07 09
00 02 04 06 08

Cyclic task

Cyclic task

Match

Interrupt task 143

PV of high-speed counter 0

Comparison

High-speed counter 0
increment input

High-speed counter 0
decrement inputHigh-speed counter 0

reset input

Target value for high-speed counter 0Target
value
comparison
started with
CTBL(82).

One target value
Target value: 0000 2710 hex (10,000)
Compare when incrementing (bit 15: ON),
Interrupt task: 10 (0A hex)

High-speed counter 0

Register comparison table and
start comparison.
First word in comparison table
71

Interrupt Tasks Section 2-3
Scheduled Interrupt Numbers and Interrupt Task Number

PLC Setup Settings Set the Scheduled interrupt interval on the Timings Tab Page of the PLC
Setup to 0.1, 1.0, or 10 ms.

External Interrupt
Tasks: Tasks 0 to 255

External interrupt tasks can be received at any time. External interrupt pro-
cessing is performed at the CPU Unit in PLCs containing CJ-series Special
I/O Units or CPU Bus Units. Settings don’t have to be made in the CPU Unit.
The specified interrupt task must be programmed in the CPU Unit.

Note If an external interrupt task (0 to 255) has the same number as the scheduled
interrupt task (task), an input interrupt task (140 to 147), or a high-speed
counter task (0 to 255), the interrupt task will be executed for either interrupt
condition (external interrupt or the other interrupt condition). As a rule, task
numbers should not be duplicated.

Interrupt Task Priority and
Order of Execution

All interrupt tasks have the same priority, i.e., once execution of any interrupt
task has started, it will be completed through the end of the task even if
another interrupt occurs during execution. For example, execution of an input
interrupt task will not be interrupted to execute the scheduled interrupt task,
i.e., the scheduled interrupt task will be executed only after completing the
input interrupt task.

&100
14

Cyclic task

Cyclic task

Scheduled interrupt 0 (Interrupt No.
14: Reset start)
Interrupt internal: 100 x 10 ms

Scheduled interrupt time unit in PLC
Setup = 10 ms (0.01 s)

Every second

Interrupt

Scheduled interrupt (Interrupt task 2)

Scheduled
interrupt number

interrupt task

0 2

Name Settings

Scheduled interrupt interval 10 ms (default)

1.0 ms

0.1 ms
72

Interrupt Tasks Section 2-3
If more than one interrupt occurs at the same time, the interrupt tasks will be
executed in the following order: Input interrupt tasks (Direct Mode or Counter
Mode), High-speed interrupt tasks, External interrupt tasks, Scheduled inter-
rupt task.

If more than one of the same type of interrupt occurs at the same time, the
one with the lower task number will be executed first.

Keep in mind that the above order of execution means that time may be
required to execute a programmed task even after an interrupt has occurred if
the user program allows the possibility of more than one interrupt occurring at
the same time. For example, the user must give special consideration to the
scheduled interrupt, which may not be executed at the expected time if other
interrupts occur.

2-3-2 Interrupt Task Flags and Words

Maximum Interrupt
Task Processing Time
(A440)

The maximum processing time for an interrupt task is stored in binary data in
0.1-ms units and is cleared at the start of operation.

Interrupt Task with
Maximum Processing
Time (A441)

The interrupt task number with maximum processing time is stored in binary
data. Here, 8000 to 80FF hex correspond to task numbers 00 to FF hex.

A441.15 will turn ON when the first interrupt occurs after the start of opera-
tion. The maximum processing time for subsequent interrupt tasks will be
stored in the rightmost two digits in hexadecimal and will be cleared at the
start of operation.

Interrupt Task Error
Flag (Nonfatal Error)
(A402.13)

If Interrupt Task Error Detection is turned ON in the PLC Setup, the Interrupt
Task Error Flag will turn ON if an interrupt task error occurs.

Interrupt Task Error
Flag (A426.15)/Task
Number Generating
the Interrupt Task
Error (A426.00 to
A426.11)

If A402.13 turns ON, then the following data will be stored in A426.15 and
A426.00 to A426.11.

Task Number when
Program Stopped
(A294)

The type of task and the current task number when a program stops due to a
program error will be stored in the following locations.

A402.13 Interrupt Task Error
Description

A426.15 A426.00 to A426.11

Interrupt Task Error (If
Interrupt Task Error
Detection is turned ON
in the PLC Setup)

When trying to refresh
I/O for a large number
of words using
IORF(097) from an
interrupt task while a
CJ-series Special I/O
Unit is being refreshed
by cyclic I/O refreshing.

ON The unit number of the
CJ-series Special I/O
Unit being refreshed
will be stored in 12 bits
of binary data (unit
number 0 to 95: 000 to
05F hex).

Type A294

Interrupt task 8000 to 80FF hex (corresponds to interrupt task 0 to 255)

Cyclic task 0000 to 001F hex (corresponds to task 0 to 31)
73

Interrupt Tasks Section 2-3
2-3-3 Application Precautions

Executing IORF(097)
for a Special I/O Unit

If an IORF(097) instruction has to be executed from an interrupt task for a CJ-
series Special I/O Unit, be sure to turn OFF cyclic refresh for the Special I/O
Unit (using the unit number) in the PLC Setup.

A interrupt task error will occur if you try to refresh a Special I/O Unit with an
IORF(097) instruction from an interrupt task while the Unit is also being
refreshed by cyclic I/O refresh or by I/O refresh instructions (IORF(097) or
immediate refresh instructions (!)). If Interrupt Task Error Detection is turned
ON in the PLC Setup when an interrupt task error occurs, A402.13 (Interrupt
Task Error Flag) will turn ON and the unit number of the Special I/O Unit for
which I/O refreshing has been duplicated will be stored in A426 (Interrupt
Task Error, Task Number). The CPU Unit will continue running.

PLC Setup Settings Select or clear the Detect Interrupt Task Error Checkbox in the Execute Pro-
cess Area on the Settings Tab Page in the PLC Setup.

Related Auxiliary Area Flags/Words

Disabling Interrupts The following processing will be interrupted to execute an interrupt task.

• Instruction execution

• Refreshing for CPU Unit built-in I/O, CPM1A Expansion Units, CPM1A
Expansion I/O Units, or CJ-series Special I/O Units

• Peripheral servicing

Data Concurrency
between Cyclic and
Interrupt Tasks

Data may not be concurrent if a cyclic (including extra cyclic tasks) and an
interrupt task are reading and writing the same I/O memory addresses. Use
the following procedure to disable interrupts during memory access by cyclic
task instructions.

IORF

END

D1
D2

CP1H

Do not executed
IORF(097) in an interrupt
task if cyclic refreshing is
enabled for Special I/O
Units in the PLC Setup.

Disable cyclic refresh-
ing for Special I/O Units
in the PLC Setup before
executing the
IORF(097) instruction in
an interrupt task.

CJ-series Special I/O Unit

I/O refresh

Interrupt task

 Incorrect Use Correct Use

Name Setting Description

Detect Interrupt Task
Error

Cleared Interrupt task errors not detected.

Selected Interrupt Task Error Flag (A402.13) turned
ON when an interrupt task error is detected.

Name Address Description

Interrupt Task Error
Flag

A402.13 Turns ON if you try to refresh a CJ-series Special I/O Unit with IORF(097)
from an interrupt task while that Unit is being refreshed by cyclic I/O refresh.

Interrupt Task Error
Unit Number

A426 Bits 00 to
11

The unit number of the Special I/O Unit undergoing duplicate refreshing will
be stored here when A402.13 turns ON.

Interrupt Task Error
Factor Flag

Bit 15 Turns ON to indicate the cause of the error when A402.13 turns ON.
74

CX-Programmer Operations for Tasks Section 2-4
• Immediately prior to reading or writing by a cyclic task instruction, use a
DISABLE INTERRUPT (DI(693)) instruction to disable execution of inter-
rupt tasks.

• Use an ENABLE INTERRUPT instruction (EI(694)) immediately after pro-
cessing in order to enable interrupt task execution.

Problems may occur with data concurrency even if DI(693) and EI(694) are
used to disable interrupt tasks during execution of an instruction that requires
response reception and processing (such as a network instruction or serial
communications instruction).

2-4 CX-Programmer Operations for Tasks
Note Use the CX-Programmer to create cyclic tasks (including extra cyclic tasks).

Be sure to use the CX-Programmer to allocate the task types and task num-
bers.

CX-Programmer Specify the task type and number as attributes for each program.

1,2,3... 1. Select View/Properties, or click the right button and select Properties
from the popup menu, to display the program that will be allocated a task.

2. Click the General Tab, and select the Task Type and Task No. For a cyclic
task, select the Operation start Option to start the task at startup if re-
quired.

Cyclic task

Reading and writing I/O
memory common to
interrupt tasks.

Processing with interrupt task
execution enabled

Disabled

Enabled
Interrupt task

Interrupt task
75

CX-Programmer Operations for Tasks Section 2-4
76

SECTION 3
 Instructions

This section describes each of the instructions that can be used in programming CP-series PLCs. Instructions are described
in order of function.

3-1 Notation and Layout of Instruction Descriptions . 86

3-2 Sequence Input Instructions . 89

3-2-1 LOAD: LD . 89

3-2-2 LOAD NOT: LD NOT . 91

3-2-3 AND: AND. 93

3-2-4 AND NOT: AND NOT. 95

3-2-5 OR: OR . 97

3-2-6 OR NOT: OR NOT . 98

3-2-7 AND LOAD: AND LD. 100

3-2-8 OR LOAD: OR LD. 102

3-2-9 Differentiated and Immediate Refreshing Instructions. 105

3-2-10 Operation Timing for I/O Instructions . 106

3-2-11 TR Bits . 107

3-2-12 NOT: NOT(520) . 108

3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522) 109

3-2-14 BIT TEST: TST(350) and TSTN(351) . 110

3-3 Sequence Output Instructions . 113

3-3-1 OUTPUT: OUT . 113

3-3-2 OUTPUT NOT: OUT NOT . 114

3-3-3 KEEP: KEEP(011) . 115

3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014). 119

3-3-5 SET and RESET: SET and RSET. 122

3-3-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531) 124

3-3-7 SINGLE BIT SET/RESET: SETB(532)/RSTB(533) 127

3-3-8 SINGLE BIT OUTPUT: OUTB(534) . 130

3-4 Sequence Control Instructions . 132

3-4-1 END: END(001) . 132

3-4-2 NO OPERATION: NOP(000). 133

3-4-3 Overview of Interlock Instructions . 133

3-4-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003) . 136

3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD,
MULTI-INTERLOCK DIFFERENTIATION RELEASE,
and MULTI-INTERLOCK CLEAR: MILH(517), MILR(518),
and MILC(519). 140

3-4-6 JUMP and JUMP END: JMP(004) and JME(005). 154

3-4-7 CONDITIONAL JUMP: CJP(510)/CJPN(511) 158

3-4-8 MULTIPLE JUMP and JUMP END: JMP0(515) and JME0(516) . 162

3-4-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513) 164

3-4-10 BREAK LOOP: BREAK(514) . 167
77

3-5 Timer and Counter Instructions. 169

3-5-1 TIMER: TIM/TIMX(550) . 171

3-5-2 HIGH-SPEED TIMER: TIMH(015)/TIMHX(551) 175

3-5-3 ONE-MS TIMER: TMHH(540)/TMHHX(552). 179

3-5-4 ACCUMULATIVE TIMER: TTIM(087)/TTIMX(555) 182

3-5-5 LONG TIMER: TIML(542)/TIMLX(553). 185

3-5-6 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554) 188

3-5-7 COUNTER: CNT/CNTX(546). 194

3-5-8 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548) 197

3-5-9 RESET TIMER/COUNTER: CNR(545)/CNRX(547). 201

3-5-10 Example Timer and Counter Applications . 204

3-5-11 Indirect Addressing of Timer/Counter Numbers 207

3-6 Comparison Instructions . 211

3-6-1 Input Comparison Instructions (300 to 328). 211

3-6-2 Time Comparison Instructions (341 to 346). 217

3-6-3 COMPARE: CMP(020) . 222

3-6-4 DOUBLE COMPARE: CMPL(060) . 224

3-6-5 SIGNED BINARY COMPARE: CPS(114) 227

3-6-6 DOUBLE SIGNED BINARY COMPARE: CPSL(115) 229

3-6-7 MULTIPLE COMPARE: MCMP(019) . 232

3-6-8 TABLE COMPARE: TCMP(085) . 235

3-6-9 BLOCK COMPARE: BCMP(068) . 237

3-6-10 EXPANDED BLOCK COMPARE: BCMP2(502). 240

3-6-11 AREA RANGE COMPARE: ZCP(088). 244

3-6-12 DOUBLE AREA RANGE COMPARE: ZCPL(116) 246

3-7 Data Movement Instructions . 249

3-7-1 MOVE: MOV(021). 249

3-7-2 MOVE NOT: MVN(022) . 250

3-7-3 DOUBLE MOVE: MOVL(498) . 252

3-7-4 DOUBLE MOVE NOT: MVNL(499) . 253

3-7-5 MOVE BIT: MOVB(082) . 255

3-7-6 MOVE DIGIT: MOVD(083) . 257

3-7-7 MULTIPLE BIT TRANSFER: XFRB(062). 259

3-7-8 BLOCK TRANSFER: XFER(070) . 262

3-7-9 BLOCK SET: BSET(071) . 264

3-7-10 DATA EXCHANGE: XCHG(073) . 266

3-7-11 DOUBLE DATA EXCHANGE: XCGL(562) 267

3-7-12 SINGLE WORD DISTRIBUTE: DIST(080) 269

3-7-13 DATA COLLECT: COLL(081) . 271

3-7-14 MOVE TO REGISTER: MOVR(560) . 272

3-7-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561). . 274

3-8 Data Shift Instructions . 276

3-8-1 SHIFT REGISTER: SFT(010) . 276

3-8-2 REVERSIBLE SHIFT REGISTER: SFTR(084) 278

3-8-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017). 281
78

3-8-4 WORD SHIFT: WSFT(016). 283

3-8-5 ARITHMETIC SHIFT LEFT: ASL(025). 285

3-8-6 DOUBLE SHIFT LEFT: ASLL(570). 286

3-8-7 ARITHMETIC SHIFT RIGHT: ASR(026) 288

3-8-8 DOUBLE SHIFT RIGHT: ASRL(571) . 289

3-8-9 ROTATE LEFT: ROL(027). 291

3-8-10 DOUBLE ROTATE LEFT: ROLL(572) . 292

3-8-11 ROTATE RIGHT: ROR(028) . 294

3-8-12 DOUBLE ROTATE RIGHT: RORL(573) . 296

3-8-13 ROTATE LEFT WITHOUT CARRY: RLNC(574) 297

3-8-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576). 299

3-8-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575) 301

3-8-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577) . . . 302

3-8-17 ONE DIGIT SHIFT LEFT: SLD(074) . 304

3-8-18 ONE DIGIT SHIFT RIGHT: SRD(075). 305

3-8-19 SHIFT N-BIT DATA LEFT: NSFL(578) . 307

3-8-20 SHIFT N-BIT DATA RIGHT: NSFR(579). 309

3-8-21 SHIFT N-BITS LEFT: NASL(580) . 311

3-8-22 DOUBLE SHIFT N-BITS LEFT: NSLL(582) 313

3-8-23 SHIFT N-BITS RIGHT: NASR(581) . 316

3-8-24 DOUBLE SHIFT N-BITS RIGHT: NSRL(583) 319

3-9 Increment/Decrement Instructions . 323

3-9-1 INCREMENT BINARY: ++(590) . 323

3-9-2 DOUBLE INCREMENT BINARY: ++L(591) 325

3-9-3 DECREMENT BINARY: – –(592). 327

3-9-4 DOUBLE DECREMENT BINARY: – –L(593). 329

3-9-5 INCREMENT BCD: ++B(594) . 331

3-9-6 DOUBLE INCREMENT BCD: ++BL(595) 333

3-9-7 DECREMENT BCD: – –B(596) . 335

3-9-8 DOUBLE DECREMENT BCD: – –BL(597). 337

3-10 Symbol Math Instructions . 339

3-10-1 SIGNED BINARY ADD WITHOUT CARRY: +(400) 340

3-10-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401) 342

3-10-3 SIGNED BINARY ADD WITH CARRY: +C(402). 344

3-10-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403) . . . 346

3-10-5 BCD ADD WITHOUT CARRY: +B(404) . 348

3-10-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405) 349

3-10-7 BCD ADD WITH CARRY: +BC(406) . 351

3-10-8 DOUBLE BCD ADD WITH CARRY: +BCL(407). 352

3-10-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: –(410) 354

3-10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY:
–L(411) . 356

3-10-11 SIGNED BINARY SUBTRACT WITH CARRY: –C(412) 360

3-10-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY:
–CL(413). 362

3-10-13 BCD SUBTRACT WITHOUT CARRY: –B(414) 364
79

3-10-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –BL(415) 366

3-10-15 BCD SUBTRACT WITH CARRY: –BC(416). 369

3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417) 370

3-10-17 SIGNED BINARY MULTIPLY: *(420). 372

3-10-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421) 374

3-10-19 UNSIGNED BINARY MULTIPLY: *U(422) 375

3-10-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423). 377

3-10-21 BCD MULTIPLY: *B(424). 378

3-10-22 DOUBLE BCD MULTIPLY: *BL(425). 380

3-10-23 SIGNED BINARY DIVIDE: /(430) . 381

3-10-24 DOUBLE SIGNED BINARY DIVIDE: /L(431) 383

3-10-25 UNSIGNED BINARY DIVIDE: /U(432) . 385

3-10-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433). 387

3-10-27 BCD DIVIDE: /B(434). 388

3-10-28 DOUBLE BCD DIVIDE: /BL(435) . 390

3-11 Conversion Instructions. 392

3-11-1 BCD-TO-BINARY: BIN(023) . 392

3-11-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058) 393

3-11-3 BINARY-TO-BCD: BCD(024). 395

3-11-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(059) 396

3-11-5 2’S COMPLEMENT: NEG(160) . 398

3-11-6 DOUBLE 2’S COMPLEMENT: NEGL(161) 400

3-11-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600) 401

3-11-8 DATA DECODER: MLPX(076) . 403

3-11-9 DATA ENCODER: DMPX(077) . 407

3-11-10 ASCII CONVERT: ASC(086) . 411

3-11-11 ASCII TO HEX: HEX(162) . 414

3-11-12 COLUMN TO LINE: LINE(063). 418

3-11-13 LINE TO COLUMN: COLM(064) . 420

3-11-14 SIGNED BCD-TO-BINARY: BINS(470) . 422

3-11-15 DOUBLE SIGNED BCD-TO-BINARY: BISL(472) 425

3-11-16 SIGNED BINARY-TO-BCD: BCDS(471). 428

3-11-17 DOUBLE SIGNED BINARY-TO-BCD: BDSL(473) 430

3-11-18 GRAY CODE CONVERT: GRY(474) . 433

3-12 Logic Instructions . 439

3-12-1 LOGICAL AND: ANDW(034) . 439

3-12-2 DOUBLE LOGICAL AND: ANDL(610) . 440

3-12-3 LOGICAL OR: ORW(035) . 442

3-12-4 DOUBLE LOGICAL OR: ORWL(611). 443

3-12-5 EXCLUSIVE OR: XORW(036). 445

3-12-6 DOUBLE EXCLUSIVE OR: XORL(612). 447

3-12-7 EXCLUSIVE NOR: XNRW(037) . 448

3-12-8 DOUBLE EXCLUSIVE NOR: XNRL(613) 450

3-12-9 COMPLEMENT: COM(029) . 452

3-12-10 DOUBLE COMPLEMENT: COML(614) . 453
80

3-13 Special Math Instructions . 454

3-13-1 BINARY ROOT: ROTB(620). 454

3-13-2 BCD SQUARE ROOT: ROOT(072). 456

3-13-3 ARITHMETIC PROCESS: APR(069) . 459

3-13-4 FLOATING POINT DIVIDE: FDIV(079) . 470

3-13-5 BIT COUNTER: BCNT(067). 473

3-14 Floating-point Math Instructions . 475

3-14-1 FLOATING TO 16-BIT: FIX(450). 481

3-14-2 FLOATING TO 32-BIT: FIXL(451) . 483

3-14-3 16-BIT TO FLOATING: FLT(452) . 484

3-14-4 32-BIT TO FLOATING: FLTL(453) . 486

3-14-5 FLOATING-POINT ADD: +F(454). 487

3-14-6 FLOATING-POINT SUBTRACT: –F(455) 489

3-14-7 FLOATING-POINT MULTIPLY: *F(456). 491

3-14-8 FLOATING-POINT DIVIDE: /F(457) . 493

3-14-9 DEGREES TO RADIANS: RAD(458) . 495

3-14-10 RADIANS TO DEGREES: DEG(459) . 496

3-14-11 SINE: SIN(460) . 498

3-14-12 COSINE: COS(461) . 499

3-14-13 TANGENT: TAN(462) . 501

3-14-14 ARC SINE: ASIN(463) . 503

3-14-15 ARC COSINE: ACOS(464) . 505

3-14-16 ARC TANGENT: ATAN(465) . 506

3-14-17 SQUARE ROOT: SQRT(466) . 508

3-14-18 EXPONENT: EXP(467) . 510

3-14-19 LOGARITHM: LOG(468) . 512

3-14-20 EXPONENTIAL POWER: PWR(840) . 514

3-14-21 Single-precision Floating-point Comparison Instructions 515

3-14-22 FLOATING-POINT TO ASCII: FSTR(448) 519

3-14-23 ASCII TO FLOATING-POINT: FVAL(449) 524

3-15 Double-precision Floating-point Instructions . 528

3-15-1 DOUBLE FLOATING TO 16-BIT: FIXD(841). 533

3-15-2 DOUBLE FLOATING TO 32-BIT: FIXLD(842) 535

3-15-3 16-BIT TO DOUBLE FLOATING: DBL(843) 536

3-15-4 32-BIT TO DOUBLE FLOATING: DBLL(844) 537

3-15-5 DOUBLE FLOATING-POINT ADD: +D(845) 539

3-15-6 DOUBLE FLOATING-POINT SUBTRACT: –D(846) 541

3-15-7 DOUBLE FLOATING-POINT MULTIPLY: *D(847). 543

3-15-8 DOUBLE FLOATING-POINT DIVIDE: /D(848) 545

3-15-9 DOUBLE DEGREES TO RADIANS: RADD(849) 547

3-15-10 DOUBLE RADIANS TO DEGREES: DEGD(850) 548

3-15-11 DOUBLE SINE: SIND(851) . 550

3-15-12 DOUBLE COSINE: COSD(852) . 551

3-15-13 DOUBLE TANGENT: TAND(853) . 553

3-15-14 DOUBLE ARC SINE: ASIND(854) . 554
81

3-15-15 DOUBLE ARC COSINE: ACOSD(855) . 556

3-15-16 DOUBLE ARC TANGENT: ATAND(856) 558

3-15-17 DOUBLE SQUARE ROOT: SQRTD(857) 560

3-15-18 DOUBLE EXPONENT: EXPD(858) . 561

3-15-19 DOUBLE LOGARITHM: LOGD(859) . 563

3-15-20 DOUBLE EXPONENTIAL POWER: PWRD(860) 565

3-15-21 Double-precision Floating-point Input Instructions 566

3-16 Table Data Processing Instructions . 570

3-16-1 SET STACK: SSET(630) . 570

3-16-2 PUSH ONTO STACK: PUSH(632) . 573

3-16-3 FIRST IN FIRST OUT: FIFO(633) . 576

3-16-4 LAST IN FIRST OUT: LIFO(634) . 578

3-16-5 DIMENSION RECORD TABLE: DIM(631). 581

3-16-6 SET RECORD LOCATION: SETR(635) . 583

3-16-7 GET RECORD NUMBER: GETR(636) . 585

3-16-8 DATA SEARCH: SRCH(181) . 587

3-16-9 SWAP BYTES: SWAP(637). 589

3-16-10 FIND MAXIMUM: MAX(182) . 591

3-16-11 FIND MINIMUM: MIN(183) . 594

3-16-12 SUM: SUM(184) . 597

3-16-13 FRAME CHECKSUM: FCS(180) . 600

3-16-14 STACK SIZE READ: SNUM(638) . 603

3-16-15 STACK DATA READ: SREAD(639). 606

3-16-16 STACK DATA OVERWRITE: SWRIT(640) 609

3-16-17 STACK DATA INSERT: SINS(641). 612

3-16-18 STACK DATA DELETE: SDEL(642) . 615

3-17 Data Control Instructions . 619

3-17-1 PID CONTROL: PID(190) . 619

3-17-2 PID CONTROL WITH AUTOTUNING: PIDAT(191) 631

3-17-3 LIMIT CONTROL: LMT(680) . 641

3-17-4 DEAD BAND CONTROL: BAND(681) . 643

3-17-5 DEAD ZONE CONTROL: ZONE(682) . 646

3-17-6 TIME-PROPORTIONAL OUTPUT: TPO(685) 648

3-17-7 SCALING: SCL(194). 656

3-17-8 SCALING 2: SCL2(486) . 660

3-17-9 SCALING 3: SCL3(487) . 664

3-17-10 AVERAGE: AVG(195) . 668

3-18 Subroutines . 672

3-18-1 SUBROUTINE CALL: SBS(091) . 672

3-18-2 MACRO: MCRO(099) . 678

3-18-3 SUBROUTINE ENTRY: SBN(092). 682

3-18-4 SUBROUTINE RETURN: RET(093) . 684

3-18-5 GLOBAL SUBROUTINE CALL: GSBS(750) 685

3-18-6 GLOBAL SUBROUTINE ENTRY: GSBN(751) 692

3-18-7 GLOBAL SUBROUTINE RETURN: GRET(752) 695
82

3-19 Interrupt Control Instructions . 696

3-19-1 SET INTERRUPT MASK: MSKS(690) . 696

3-19-2 READ INTERRUPT MASK: MSKR(692) 700

3-19-3 CLEAR INTERRUPT: CLI(691) . 703

3-19-4 DISABLE INTERRUPTS: DI(693) . 706

3-19-5 ENABLE INTERRUPTS: EI(694) . 707

3-20 High-speed Counter/Pulse Output Instructions. 709

3-20-1 MODE CONTROL: INI(880) . 709

3-20-2 HIGH-SPEED COUNTER PV READ: PRV(881). 713

3-20-3 COUNTER FREQUENCY CONVERT: PRV2(883). 719

3-20-4 REGISTER COMPARISON TABLE: CTBL(882) 722

3-20-5 SPEED OUTPUT: SPED(885) . 726

3-20-6 SET PULSES: PULS(886) . 731

3-20-7 PULSE OUTPUT: PLS2(887) . 734

3-20-8 ACCELERATION CONTROL: ACC(888) 741

3-20-9 ORIGIN SEARCH: ORG(889) . 747

3-20-10 PULSE WITH VARIABLE DUTY FACTOR: PWM(891) 751

3-21 Step Instructions . 753

3-21-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009) 754

3-22 Basic I/O Unit Instructions . 770

3-22-1 I/O REFRESH: IORF(097). 770

3-22-2 7-SEGMENT DECODER: SDEC(078) . 773

3-22-3 DIGITAL SWITCH INPUT – DSW(210) . 776

3-22-4 TEN KEY INPUT – TKY(211) . 780

3-22-5 HEXADECIMAL KEY INPUT – HKY(212) 783

3-22-6 MATRIX INPUT: MTR(213) . 787

3-22-7 7-SEGMENT DISPLAY OUTPUT – 7SEG(214) 791

3-22-8 INTELLIGENT I/O READ: IORD(222) . 795

3-22-9 INTELLIGENT I/O WRITE: IOWR(223) . 798

3-22-10 CPU BUS UNIT I/O REFRESH: DLNK(226) 801

3-23 Serial Communications Instructions . 806

3-23-1 Serial Communications. 806

3-23-2 PROTOCOL MACRO: PMCR(260) . 807

3-23-3 TRANSMIT: TXD(236) . 816

3-23-4 RECEIVE: RXD(235) . 821

3-23-5 TRANSMIT VIA SERIAL COMMUNICATIONS UNIT:
TXDU(256). 826

3-23-6 RECEIVE VIA SERIAL COMMUNICATIONS UNIT: RXDU(255) 834

3-23-7 CHANGE SERIAL PORT SETUP: STUP(237) 842

3-24 Network Instructions. 846

3-24-1 About Network Instructions . 846

3-24-2 About Explicit Message Instructions . 861

3-24-3 NETWORK SEND: SEND(090) . 866

3-24-4 NETWORK RECEIVE: RECV(098) . 872

3-24-5 DELIVER COMMAND: CMND(490) . 878
83

3-24-6 EXPLICIT MESSAGE SEND: EXPLT(720) 885

3-24-7 EXPLICIT GET ATTRIBUTE: EGATR(721) 892

3-24-8 EXPLICIT SET ATTRIBUTE: ESATR(722) 899

3-24-9 EXPLICIT WORD READ: ECHRD(723) . 904

3-24-10 EXPLICIT WORD WRITE: ECHWR(724) 908

3-25 Display Instructions . 912

3-25-2 SEVEN-SEGMENT LED WORD DATA DISPLAY: SCH(047) . . . 914

3-25-3 SEVEN-SEGMENT LED CONTROL: SCTRL(048) 916

3-26 Clock Instructions . 919

3-26-1 CALENDAR ADD: CADD(730) . 919

3-26-2 CALENDAR SUBTRACT: CSUB(731) . 922

3-26-3 HOURS TO SECONDS: SEC(065) . 925

3-26-4 SECONDS TO HOURS: HMS(066) . 928

3-26-5 CLOCK ADJUSTMENT: DATE(735) . 930

3-27 Debugging Instructions . 933

3-27-1 Trace Memory Sampling: TRSM(045) . 933

3-28 Failure Diagnosis Instructions . 937

3-28-1 FAILURE ALARM: FAL(006). 937

3-28-2 SEVERE FAILURE ALARM: FALS(007) 945

3-28-3 FAILURE POINT DETECTION: FPD(269) 951

3-29 Other Instructions . 961

3-29-1 SET CARRY: STC(040) . 961

3-29-2 CLEAR CARRY: CLC(041) . 961

3-29-3 EXTEND MAXIMUM CYCLE TIME: WDT(094) 962

3-29-4 SAVE CONDITION FLAGS: CCS(282) . 964

3-29-5 LOAD CONDITION FLAGS: CCL(283). 966

3-29-6 CONVERT ADDRESS FROM CV: FRMCV(284) 967

3-29-7 CONVERT ADDRESS TO CV: TOCV(285) 971

3-30 Block Programming Instructions. 975

3-30-1 Introduction . 975

3-30-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801) 979

3-30-3 BLOCK PROGRAM PAUSE/RESTART: BPPS(811)/BPRS(812) . 982

3-30-4 Branching: IF(802), ELSE(803), and IEND(804). 984

3-30-5 CONDITIONAL BLOCK EXIT (NOT): EXIT (NOT)(806) 988

3-30-6 ONE CYCLE AND WAIT (NOT): WAIT(805)/WAIT(805) NOT. . 991

3-30-7 TIMER WAIT: TIMW(813) and TIMWX(816) 995

3-30-8 COUNTER WAIT: CNTW(814) and CNTWX(818) 998

3-30-9 HIGH-SPEED TIMER WAIT: TMHW(815) and TMHWX(817) . . 1001

3-30-10 Loop Control: LOOP(809)/LEND(810)/LEND(810) NOT 1004

3-31 Text String Processing Instructions . 1009

3-31-1 Text String Processing Overview . 1009

3-31-2 MOV STRING: MOV$(664) . 1010

3-31-3 CONCATENATE STRING: +$(656) . 1012

3-31-4 GET STRING LEFT: LEFT$(652) . 1014

3-31-5 GET STRING RIGHT: RGHT$(653) . 1017
84

3-31-6 GET STRING MIDDLE: MID$(654). 1019

3-31-7 FIND IN STRING: FIND$(660). 1021

3-31-8 STRING LENGTH: LEN$(650). 1023

3-31-9 REPLACE IN STRING: RPLC$(661) . 1025

3-31-10 DELETE STRING: DEL$(658) . 1027

3-31-11 EXCHANGE STRING: XCHG$(665) . 1030

3-31-12 CLEAR STRING: CLR$(666) . 1031

3-31-13 INSERT INTO STRING: INS$(657) . 1033

3-31-14 String Comparison Instructions (670 to 675) 1036

3-32 Task Control Instructions. 1041

3-32-1 TASK ON: TKON(820) . 1041

3-32-2 TASK OFF: TKOF(821) . 1044

3-33 Model Conversion Instructions . 1048

3-33-1 BLOCK TRANSFER: XFERC(565) . 1050

3-33-2 SINGLE WORD DISTRIBUTE: DISTC(566). 1052

3-33-3 DATA COLLECT: COLLC(567) . 1055

3-33-4 MOVE BIT: MOVBC(568). 1060

3-33-5 BIT COUNTER: BCNTC(621) . 1062

3-33-6 GET VARIABLE ID: GETID(286) . 1063
85

Notation and Layout of Instruction Descriptions Section 3-1
3-1 Notation and Layout of Instruction Descriptions
Instructions are described in groups by function. Refer to Appendix C Alpha-
betical List of Instructions by Mnemonic for a list of instructions by mnemonic
that lists the page number in this section for each instruction.

The description of each instruction is organized as described in the following
table.

Item Contents

Name and Mnemonic The heading of each section consists of the name of the instruction followed by the
mnemonic with the function code in parentheses. Example: MOVE BIT: MOVB(082)

Purpose The basic purpose of the instruction is described after the section heading.

Ladder Symbol and Operand
Names

The ladder symbol used to represent the instruction on the CX-Programmer is
shown, as in the example for the MOVE BIT instruction given below. The name of
each operand is also provided with the ladder symbol.

Variations Variations The variations that can be used to control execution of the instruction under special
conditions are given using the mnemonic form. Any variation that is not supported by
an instruction is given as “Not supported.”
• Executed Each Cycle for ON Condition: The instruction is executed as long as it

receives an ON execution condition.
• Executed Once for Upward Differentiation: The instruction is executed during the

next cycle only after the execution condition changes from OFF to ON.
• Executed Once for Downward Differentiation: The instruction is executed during the

next cycle only after the execution condition changes from ON to OFF.
• Always Executed: The instruction does not require an execution condition and is

executed each cycle.
• Creates ON Condition....: The instruction is executed each cycle to create an execu-

tion condition for the next instruction.

Variations Executed Each Cycle for ON Condition MOVB(082)

Variations Variations Executed Once for Upward Differentia-
tion

@MOVB(082)

Executed Once for Downward Differenti-
ation

Not supported

Immediate
Refreshing
Specification

Immediate refreshing can be specified for some instructions to refresh I/O when the
instruction is executed. If immediate refreshing is supported, the specification is
given using the mnemonic form. If immediate refreshing is not support by an instruc-
tion “Not supported” is given.

Immediate Refreshing Specification Not supported.

Applicable Program Areas The program areas in which the instruction can be used are specified. “OK” indicates
the areas in which the instruction can be used.

Block program
areas

Step program
areas

Subroutines Interrupt tasks

OK OK OK OK

MOVB(082)

S

C

D

S: Source word or data

C: Control word

D: Destination word
86

Notation and Layout of Instruction Descriptions Section 3-1
Constants Constants input for operands are given as listed below.

Operand Descriptions and Operand Specifications

• Operands Specifying Bit Strings (Normally Input as Hexadecimal):
Only the hexadecimal form is given for operands specifying bit strings,
e.g., only “#0000 to #FFFF” is specified as the S operand for the
MOV(021) instruction. On the CX-Programmer, however, bit strings can
be input in decimal form by using the & prefix.

• Operands Specifying Numeric Values (Normally Input as Decimal, Includ-
ing Jump Numbers):
Both the decimal and hexadecimal forms are given for operands specify-
ing numeric values, e.g., “#0000 to #FFFF” and “&0 to &65535” are given
for the N operand for the XFER(070) instruction.

Operands Where necessary, the meaning of words and bits used in specific operands, such as
control words, is given.

Operand Specifications The memory areas addresses that can be used each operand are listed in a table
like the following one. The letters used in the column headings on the left are the
same as those used in the ladder symbol. “---” is used to indicate when an area can-
not be specific for an operand.

Area S C D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Description The function of the instruction and the operands used in the instruction are
described.

Flags The flags table indicates the status of the condition flags immediately after execution
of the instruction. Any flags that are not listed are not affected by the instruction.
“OFF” indicates that a flag is turned OFF immediately after execution of the instruc-
tion regardless of the results of executing the instruction.

Name Label Operation

Error Flag ER ON if control data is within ranges.
OFF in all other cases.

Equals Flag = OFF

Negative Flag N OFF

Precautions Special precautions required in using the instruction are provided. Be sure to read
and follow these precautions.

Example An example of using the instruction with specific operands is provided to further
explain the function of the instruction.

Item Contents

15 8 07

C m n

Source bit: 00 to 0F
(0 to 15 decimal)

Destination bit: 00 to 0F
(0 to 15 decimal)
87

Notation and Layout of Instruction Descriptions Section 3-1
• Operands Indicating Control Numbers (Except for Jump Numbers):
The decimal form is given for control numbers, e.g., “0 to 1023” is given
for the N operand for the SBS(091) instruction.

Examples

In the examples, constants are given using the CX-Programmer notation, e.g.,
operands specifying numeric values are given in decimal for with an & prefix,
as shown in the following example.

The input methods for constants for the CX-Programmer are given in the fol-
lowing table.

Note When operands are input on the CX-Programmer, the input ranges will be dis-
played along with the appropriate prefixes.

Condition Flags Flag names are used for condition flags in this section. With the CX-Program-
mer, the condition flags are registered in advance as global symbols.

Operand CX-Programmer

Operands specifying bit strings (normally
input as hexadecimal)

Input as decimal with an & prefix or input
as hexadecimal with an # prefix. (See
note.)Operands specifying numeric values

(normally input as decimal)

Operands specifying control numbers
(except for jump numbers)

Input as decimal with an # prefix. (See
note.)

XFER

&10

D100

D200

Flag name
(Used in this section.)

CX-Programmer label

Error Flag P_ER

Access Error Flag P_AER

Carry Flag P_CY

Greater Than Flag P_GT

Equals Flag P_EQ

Less Than Flag P_LT

Negative Flag P_N

Overflow Flag P_OF

Underflow Flag P_UF

Greater Than or Equals Flag P_GE

Not Equal Flag P_NE

Less Than or Equals Flag P_LE

Always ON Flag P_On

Always OFF Flag P_Off
88

Sequence Input Instructions Section 3-2
3-2 Sequence Input Instructions

3-2-1 LOAD: LD
Purpose Indicates a logical start and creates an ON/OFF execution condition based on

the ON/OFF status of the specified operand bit.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Bus bar Starting point of block

Variations Restarts Logic and Creates ON Each Cycle
Operand Bit is ON

LD

Restarts Logic and Creates ON Once for
Upward Differentiation

@LD

Restarts Logic and Creates ON Once for
Downward Differentiation

%LD

Immediate Refreshing Specification !LD

Combined
Variations

Refreshes Input Bit, Restarts Logic, and
Creates ON Once for Upward Differentiation

!@LD

Refreshes Input Bit, Restarts Logic, and
Creates ON Once for Downward Differentiation

!%LD

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area LD operand bit

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK00 to TK31

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, A1, A0

Clock Pulses 0.0 2s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area TR0 to TR15

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---
89

Sequence Input Instructions Section 3-2
Description LD is used for the first normally open bit from the bus bar or for the first nor-
mally open bit of a logic block. If there is no immediate refreshing specifica-
tion, the specified bit in I/O memory is read. If there is an immediate
refreshing specification, the status of the Basic Input Unit’s input terminal is
read and used.

LD is used in the following circumstances as an instruction for indicating a log-
ical start.

• When directly connecting to the bus bar.

• When logic blocks are connected by AND LD or OR LD, i.e., at the begin-
ning of a logic block.

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a programming error
will occur with the program check by the CX-Programmer.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a pro-
gramming error will occur. For details, refer to 3-2-7 AND LOAD: AND LD and
3-2-8 OR LOAD: OR LD.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for LD. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for LD. An immediate refresh
instruction updates the status of the input bit for CPU Unit built-in inputs just
before the instruction is executed.

For LD, it is possible to combine immediate refreshing and up or down differ-
entiation (!@ or !%). If either of these is specified, the built-in input is
refreshed from the CPU Unit just before the instruction is executed and the
execution condition is turned ON for one cycle only after the status goes from
OFF to ON, or from ON to OFF.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
, –(– –)IR0 to, –(– –)IR15

Area LD operand bit
90

Sequence Input Instructions Section 3-2
Example

3-2-2 LOAD NOT: LD NOT
Purpose Indicates a logical start and creates an ON/OFF execution condition based on

the reverse of the ON/OFF status of the specified operand bit.

Ladder Symbol

Variations

Applicable Program Areas

Instruction Operand

LD 0.00

LD 0.01

LD 0.02

AND 0.03

OR LD ---

AND LD ---

LD NOT 0.04

AND 0.05

OR LD ---

OUT 100.00

100.000.00 0.01

0.02 0.03

0.04

0.05

OR LD
AND LD

OR LD

Bus bar Starting point of block

Variations Restarts Logic and Creates ON Each Cycle Operand
Bit is OFF

LD NOT

Restarts Logic and Creates ON Once for Upward
Differentiation

@LD NOT

Restarts Logic and Creates ON Once for Downward
Differentiation

%LD NOT

Immediate Refreshing Specification !LD NOT

Combined
Variations

Refreshes Input Bit, Restarts Logic, and Creates ON
Once for Upward Differentiation

!@LD NOT

Refreshes Input Bit, Restarts Logic, and Creates ON
Once for Downward Differentiation

!%LD NOT

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
91

Sequence Input Instructions Section 3-2
Operand Specifications

Description LD NOT is used for the first normally closed bit from the bus bar, or for the first
normally closed bit of a logic block. If there is no immediate refreshing specifi-
cation, the specified bit in I/O memory is read and reversed. If there is an
immediate refreshing specification, the status of the Basic Input Unit’s input
terminal is read, reversed, and used.

LD NOT is used in the following circumstances as an instruction for indicating
a logical start.

• When directly connecting to the bus bar.

• When logic blocks are connected by AND LD or OR LD. (Used at the
beginning of a logic block.)

The AND LOAD and OR LOAD instructions are used to connect in series or in
parallel logic blocks beginning with LD or LD NOT.

At least one LOAD or LOAD NOT instruction is required for the execution con-
dition when output-related instructions cannot be connected directly to the
bus bar. If there is no LOAD or LOAD NOT instruction, a program error will
occur with the program check by the CX-Programmer.

When logic blocks are connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus1. If they do not match, a program-
ming error will occur.

Flags There are no flags affected by this instruction.

Precautions Immediate refreshing (!) can be specified for LD NOT. An immediate refresh
instruction updates the status of the input bit for a CPU Unit built-in input just
before the instruction is executed.

Area LD NOT bit operand

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK00 to TK31

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.0 2s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
92

Sequence Input Instructions Section 3-2
Example

3-2-3 AND: AND
Purpose Takes a logical AND of the status of the specified operand bit and the current

execution condition.

Ladder Symbol

Variations

Applicable Program Areas

Instruction Operand

LD 0.00

LD 0.01

LD 0.02

AND 0.03

OR LD ---

AND LD ---

LD NOT 0.04

AND 0.05

OR LD ---

OUT 100.00

100.000.00 0.01

0.02 0.03

0.04

0.05

OR LD
AND LD

OR LD

Variations Creates ON Each Cycle AND Result is ON AND

Creates ON Once for Upward Differentiation @AND

Creates ON Once for Downward Differentiation %AND

Immediate Refreshing Specification !AND

Combined
Variations

Refreshes Input Bit and Creates ON Once for
Upward Differentiation

!@AND

Refreshes Input Bit and Creates ON Once for
Downward Differentiation

!%AND

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
93

Sequence Input Instructions Section 3-2
Operand Specifications

Description AND is used for a normally open bit connected in series. AND cannot be
directly connected to the bus bar, and cannot be used at the beginning of a
logic block. If there is no immediate refreshing specification, the specified bit
in I/O memory is read. If there is an immediate refreshing specification, the
status of the CPU Unit’s input terminal is read.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for AND. If dif-
ferentiate up (@) is specified, the execution condition is turned ON for one
cycle only after the status of the operand bit goes from OFF to ON. If differen-
tiate down (%) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for AND. An immediate refresh
instruction updates the status of the input bit for CPU Unit built-in inputs just
before the instruction is executed.

For AND, it is possible to combine immediate refreshing and up or down differ-
entiation (!@ or !%). If either of these is specified, the input is refreshed from
the CPU Unit just before the instruction is executed and the execution condi-
tion is turned ON for one cycle only after the status goes from OFF to ON, or
from ON to OFF.

Area AND bit operand

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK00 to TK31

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
94

Sequence Input Instructions Section 3-2
Example

3-2-4 AND NOT: AND NOT
Purpose Reverses the status of the specified operand bit and takes a logical AND with

the current execution condition.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Operand

LD 0.00

AND 0.01

LD 0.02

AND 0.03

LD 0.04

AND NOT 0.05

OR LD ---

AND LD ---

OUT 100.00

100.000.00 0.01 0.02 0.03

0.04 0.05

Variations Creates ON Each Cycle AND NOT Result is ON AND NOT

Creates ON Once for Upward Differentiation @AND NOT

Creates ON Once for Downward Differentiation %AND NOT

Immediate Refreshing Specification !AND NOT

Combined
Variations

Refreshes Input Bit and Creates ON Once for
Upward Differentiation

!@AND NOT

Refreshes Input Bit and Creates ON Once for
Downward Differentiation

!%AND NOT

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area AND NOT bit operand

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK00 to TK31

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER
95

Sequence Input Instructions Section 3-2
Description AND NOT is used for a normally closed bit connected in series. AND NOT
cannot be directly connected to the bus bar, and cannot be used at the begin-
ning of a logic block. If there is no immediate refreshing specification, the
specified bit in I/O memory is read. If there is an immediate refreshing specifi-
cation, the status the CPU Unit’s input terminals is read.

Flags There are no flags affected by this instruction.

Precautions Immediate refreshing (!) can be specified for AND NOT. An immediate refresh
instruction updates the status of the input bit for CPU Unit built-in inputs just
before the instruction is executed.

Example

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area AND NOT bit operand

Instruction Operand

LD 0.00

AND 0.01

LD 0.02

AND 0.03

LD 0.04

AND NOT 0.05

OR LD ---

AND LD ---

OUT 100.00

100.000.00 0.01 0.02 0.03

0.04 0.05
96

Sequence Input Instructions Section 3-2
3-2-5 OR: OR
Purpose Takes a logical OR of the ON/OFF status of the specified operand bit and the

current execution condition.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Bus bar

Variations Creates ON Each Cycle OR Result is ON OR

Creates ON Once for Upward Differentiation @OR

Creates ON Once for Downward Differentiation %OR

Immediate Refreshing Specification !OR

Combined
Variations

Refreshes Input Bit and Creates ON Once for
Upward Differentiation

!@OR

Refreshes Input Bit and Creates ON Once for
Downward Differentiation

!%OR

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area OR bit operand

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK00 to TK31

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
97

Sequence Input Instructions Section 3-2
Description OR is used for a normally open bit connected in parallel. A normally open bit
is configured to form a logical OR with a logic block beginning with a LOAD or
LOAD NOT instruction (connected to the bus bar or at the beginning of the
logic block). If there is no immediate refreshing specification, the specified bit
in I/O memory is read. If there is an immediate refreshing specification, the
status of the CPU Unit’s input terminal is read.

Flags There are no flags affected by this instruction.

Precautions Differentiate up (@) or differentiate down (%) can be specified for OR. If differ-
entiate up (@) is specified, the execution condition is turned ON for one cycle
only after the status of the operand bit goes from OFF to ON. If differentiate
down (%) is specified, the execution condition is turned ON for one cycle only
after the status of the operand bit goes from ON to OFF.

Immediate refreshing (!) can be specified for OR. An immediate refresh
instruction updates the status of the input bit for a CPU Unit built-in input just
before the instruction is executed.

For OR, it is possible to combine immediate refreshing and up or down differ-
entiation (!@ or !%). If either of these is specified, the input is refreshed from
the CPU Unit just before the instruction is executed and the execution condi-
tion is turned ON for one cycle only after the status of the operand bit goes
from OFF to ON, or from ON to OFF.

Example

3-2-6 OR NOT: OR NOT
Purpose Reverses the status of the specified bit and takes a logical OR with the current

execution condition.

Ladder Symbol

Instruction Operand

LD 0.00

AND 0.01

AND 0.02

OR 0.03

AND 0.04

LD 0.05

AND 0.06

OR NOT 0.07

AND LD ---

OUT 100.00

100.000.060.05

0.07

0.040.020.010.00

0.03

Bus bar
98

Sequence Input Instructions Section 3-2
Variations

Applicable Program Areas

Operand Specifications

Description OR NOT is used for a normally closed bit connected in parallel. A normally
closed bit is configured to form a logical OR with a logic block beginning with a
LOAD or LOAD NOT instruction (connected to the bus bar or at the beginning
of the logic block). If there is no immediate refreshing specification, the speci-
fied bit in I/O memory is read. If there is an immediate refreshing specification,
the status of the CPU Unit’s input terminal is read.

Flags There are no flags affected by this instruction.

Precautions Immediate refresh (!) can be specified for OR NOT. An immediate refresh
instruction updates the status of the input bit from a CPU Unit built-in input
just before the instruction is executed.

Variations Creates ON Each Cycle OR NOT Result is ON OR NOT

Creates ON Once for Upward Differentiation @OR NOT

Creates ON Once for Downward Differentiation %OR NOT

Immediate Refreshing Specification !OR NOT

Combined
Variations

Refreshes Input Bit and Creates ON Once for
Upward Differentiation

!@OR NOT

Refreshes Input Bit and Creates ON Once for
Downward Differentiation

!%OR NOT

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area OR NOT bit operand

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flag Area TK00 to TK31

Condition Flags ER, CY, N, OF, UF, >, =, <, >=, <>, <=, A1, A0

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

TR Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
99

Sequence Input Instructions Section 3-2
Example

3-2-7 AND LOAD: AND LD
Purpose Takes a logical AND between logic blocks.

Ladder Symbol

Variations

Applicable Program Areas

Description AND LD connects in series the logic block just before this instruction with
another logic block.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the
same rungs.

Instruction Operand

LD 0.00

AND 0.01

AND 0.02

OR 0.03

AND 0.04

LD 0.05

AND 0.06

OR NOT 0.07

AND LD ---

OUT 100.00

100.000.060.05

0.07

0.040.020.010.00

0.03

Logic block Logic block

Variations Creates ON Each Cycle AND Result is ON AND LD

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

LD

LD

AND LD

Logic block A

Logic block B

Serial connection between logic block A and logic block B.

to

to
100

Sequence Input Instructions Section 3-2
In the following diagram, the two logic blocks are indicated by dotted lines.
Studying this example shows that an ON execution condition will be produced
when either of the execution conditions in the left logic block is ON (i.e., when
either CIO 0.00 or CIO 0.01 is ON) and either of the execution conditions in
the right logic block is ON (i.e., when either CIO 0.02 is ON or CIO 0.03 is
OFF).

Flags There are no flags affected by this instruction.

Precautions Three or more logic blocks can be connected in series using this instruction to
first connect two of the logic blocks and then to connect the next and subse-
quent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in series.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a program
error will occur.

Example

Coding Example (1)

Coding Example (2)

0.00 0.02

0.01 0.03

100.00

Instruction Operand

LD 0.00

OR NOT 0.01

LD NOT 0.02

OR 0.03

AND LD ---

LD 0.04

OR 0.05

AND LD ---

.

.
.
.

OUT 100.00

Instruction Operand

LD 0.00

OR NOT 0.01

LD NOT 0.02

OR 0.03

LD 0.04

OR 0.05

.

.
.
.

0.00 0.02 0.04 100.00

0.01 0.03 0.05
101

Sequence Input Instructions Section 3-2
The AND LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of AND LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before AND LOAD is not more than eight. To use nine or more,
program using method (1). If there are nine or more with method (2), then a
program error will occur during the program check by the CX-Programmer.

Coding

Second LD: Used for first bit of next block connected in series to previous
block.

3-2-8 OR LOAD: OR LD
Purpose Takes a logical OR between logic blocks.

Ladder Symbol

Variations

Applicable Program Areas

AND LD ---

AND LD ---

.

.
.
.

OUT 100.00

Address Instruction Operand

000000 LD 0.00

000001 OR 0.01

000002 LD 0.02

000003 OR NOT 0.03

000004 AND LD ---

000005 OUT 100.00

Instruction Operand

Logic block

Logic block

Variations Creates ON Each Cycle AND Result is ON OR LD

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
102

Sequence Input Instructions Section 3-2
Description AND LD connects in parallel the logic block just before this instruction with
another logic block.

The logic block consists of all the instructions from a LOAD or LOAD NOT
instruction until just before the next LOAD or LOAD NOT instruction on the
same rungs.

The following diagram requires an OR LOAD instruction between the top logic
block and the bottom logic block. An ON execution condition would be pro-
duced either when CIO 0.00 is ON and CIO 0.01 is OFF or when CIO 0.02
and CIO 0.03 are both ON. The operation of and mnemonic code for the OR
LOAD instruction is exactly the same as those for a AND LOAD instruction
except that the current execution condition is ORed with the last unused exe-
cution condition.

Flags There are no flags affected by this instruction.

Precautions Three or more logic blocks can be connected in parallel using this instruction
to first connect two of the logic blocks and then to connect the next and subse-
quent ones in order. It is also possible to continue placing this instruction after
three or more logic blocks and connect them together in parallel.

When a logic block is connected by AND LOAD or OR LOAD instructions, the
total number of AND LOAD/OR LOAD instructions must match the total num-
ber of LOAD/LOAD NOT instructions minus 1. If they do not match, a pro-
gramming error will occur.

Example

Coding Example (1)

LD

LD

OR LD

to

to

Logic block A

Logic block B

Parallel connection between logic block A and logic block B.

0.00 0.01 100.00

0.02 0.03

Instruction Operand

LD 0.00

AND NOT 0.01

LD NOT 0.02

AND NOT 0.03

OR LD ---

0.00 0.01 100.00

0.02 0.03

0.04 0.05
103

Sequence Input Instructions Section 3-2
Coding Example (2)

The OR LOAD instruction can be used repeatedly. In programming method
(2) above, however, the number of OR LOAD instructions becomes one less
than the number of LOAD and LOAD NOT instructions before that.

In method (2), make sure that the total number of LOAD and LOAD NOT
instructions before OR LOAD is not more than eight. To use nine or more, pro-
gram using method (1). If there are nine or more with method (2), then a pro-
gram error will occur during the program check by the CX-Programmer.

Coding

Second LD: Used for first bit of next block connected in series to previous
block.

LD 0.04

AND 0.05

OR LD ---

.

.
.
.

OUT 100.00

Instruction Operand

LD 0.00

AND NOT 0.01

LD NOT 0.02

AND NOT 0.03

LD 0.04

AND 0.05

.

.
.
.

OR LD ---

OR LD ---

.

.
.
.

OUT 100.01

Address Instruction Operand

000100 LD 0.00

000101 AND NOT 0.01

000102 LD 0.02

000103 AND 0.03

000104 OR LD ---

000105 OUT 100.00

Instruction Operand
104

Sequence Input Instructions Section 3-2
3-2-9 Differentiated and Immediate Refreshing Instructions
The LOAD, AND, and OR instructions have differentiated and immediate
refreshing variations in addition to their ordinary forms, and there are also two
combinations available.

The LOAD NOT, AND NOT, OR NOT, OUT, and OUT NOT instructions have
immediate refreshing variations in addition to their ordinary forms.

The I/O timing for data handled by instructions differs for ordinary and differ-
entiated instructions, immediate refreshing instructions, and immediate
refreshing differentiated instructions.

Ordinary and differentiated instructions are executed using data input by pre-
vious I/O refresh processing, and the results are output with the next I/O pro-
cessing. Here “I/O refreshing” means the data exchanged between the CPU’s
internal memory and CPU Unit built-in I/O, CPM1A Expansion Units, and
CPM1A Expansion I/O Units.

In addition to the above I/O refreshing, an immediate refresh instruction
exchanges data with the I/O Unit for those words that are accessed by the
instruction. An immediate refresh instruction refreshes all of the bits in the
word containing the specified bit.

Note Immediate refresh instructions (i.e., instructions with !) can be used only for
built-in I/O on the CPU Unit. They cannot be used for I/O on CPM1A Expan-
sion Units or CPM1A Expansion I/O Units. Use IORF(097) for I/O on CPM1A
Expansion Units or CPM1A Expansion I/O Units.

Instruction variation Mnemonic Function I/O refresh

Ordinary LD, AND, OR, LD NOT,
AND NOT, OR NOT

The ON/OFF status of the specified bit
is taken by the CPU with cyclic refresh-
ing, and it is reflected in the next instruc-
tion execution.

Cyclic refreshing

OUT, OUT NOT After the instruction is executed, the ON/
OFF status of the specified bit is output
with the next cyclic refreshing.

Differentiated up @LD, @AND, @OR The instruction is executed once when
the specified bit turns from OFF to ON
and the ON state is held for one cycle.

Differentiated down %LD, %AND, %OR The instruction is executed once when
the specified bit turns from ON to OFF
and the ON state is held for one cycle.

Immediate refresh !LD, !AND, !OR, !LD NOT,
!AND NOT, !OR NOT

The input data for the specified bit is
taken by the CPU and the instruction is
executed.

Before instruction execu-
tion

!OUT, !OUT NOT After the instruction is executed, the
data for the specified bit is output.

After instruction execution

Differentiated up /
immediate refresh

!@LD, !@AND, !@OR The input data for the specified bit is
refreshed by the CPU, and the instruc-
tion is executed once when the bit turns
from OFF to ON and the ON state is
held for one cycle.

Before instruction execu-
tion

Differentiated down /
immediate refresh

!%LD, !%AND, !%OR The input data for the specified bit is
refreshed by the CPU, and the instruc-
tion is executed once when the bit turns
from ON to OFF and the ON state is
held for one cycle.
105

Sequence Input Instructions Section 3-2
3-2-10 Operation Timing for I/O Instructions
The following chart shows the differences in the timing of instruction opera-
tions for a program configured from LD and OUT.

↓

↑

!

!

!

!

!

!

!

!

!↓

!↑

!

↓

↑

!↓

!↑

I/O refreshingInstruction execution

CPU
processing

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input
received

Input receivedInput
received
106

Sequence Input Instructions Section 3-2
3-2-11 TR Bits
TR bits are used to temporarily retain the ON/OFF status of execution condi-
tions in a program when programming in mnemonic code. They are not used
when programming directly in ladder program form because the processing is
automatically executed by the CX-Programmer. The following diagram shows
a simple application using two TR bits.

Using TR0 to TR15 TR0 to TR15 are used only with LOAD and OUTPUT instructions. There are
no restrictions on the order in which the bit addresses are used.

Sometimes it is possible to simplify a program by rewriting it so that TR bits
are not required. The following diagram shows one case in which a TR bit is
unnecessary and one in which a TR bit is required.

In instruction block (1), the ON/OFF status at point A is the same as for output
CIO 100.00, so AND 0.01 and OUT 100.01 can be coded without requiring a
TR bit. In instruction block (2), the status of the branching point and that of
output CIO 100.02 are not necessarily the same, so a TR bit must be used. In
this case, the number of steps in the program could be reduced by using
instruction block (1) in place of instruction block (2).

TR0 to TR15
Considerations

TR bits are used only for retaining (OUT TR0 to TR15) and restoring (LD TR0
to TR15) the ON/OFF status of branching points in programs with many out-
put branches. They are thus different from general bits, and cannot be used
with AND or OR instructions, or with instructions that include NOT.

 00200 LD 0.00
 00201 OUT TR0
 00202 AND 0.01
 00203 OUT TR1
 00204 AND 0.02
 00205 OUT 100.00
 00206 LD TR1
 00207 AND 0.03
 00208 OUT 100.01
 00209 LD TR0
 00210 AND 0.04
 00211 OUT 100.02
 00212 LD TR0
 00213 AND NOT 0.05
 00214 OUT 100.03

100.00

100.01

100.02

100.03

0.02

0.03

0.010.00

0.04

0.05

Instruction OperandsAddress

(1)

(2)

0.00

0.02

0.01

0.03

100.00

100.01

100.02

100.03
107

Sequence Input Instructions Section 3-2
TR0 to TR15 output
Duplication

A TR bit address cannot be repeated within the same block in a program with
many output branches, as shown in the following diagram. It can, however, be
used again in a different block.

3-2-12 NOT: NOT(520)
Purpose Reverses the execution condition.

Ladder Symbol

Variations

Applicable Program Areas

Description NOT(520) is placed between an execution condition and another instruction to
invert the execution condition.

Flags There are no flags affected by NOT(520)

Precautions NOT(520) is an intermediate instruction, i.e., it cannot be used as a right-hand
instruction. Be sure to program a right-hand instruction after NOT(520).

Example NOT(520) reverses the execution condition in the following example.

0.00

0.10

0.01 0.02 100.00

0.03

0.04

100.01

100.02

0.11 0.12 110.00

0.13

0.14

1.00

1.01

0.15

110.01

110.02

110.03

110.04

to

NOT(520)

Variations Reverses the Execution Condition Each Cycle NOT(520)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

0.00 0.01 100.00

0.02
108

Sequence Input Instructions Section 3-2
The following table shows the operation of this program section.

3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522)
Purpose UP(521) turns ON the execution condition for the next instruction for one cycle

when the execution condition it receives goes from OFF to ON. DOWN(522)
turns ON the execution condition for the next instruction for one cycle when
the execution condition it receives goes from ON to OFF.

Ladder Symbols

Variations

Applicable Program Areas

Description UP(521) is placed between an execution condition and another instruction to
turn the execution condition into an up-differentiated condition. UP(521)
causes the connecting instruction to be executed just once when the execu-
tion condition goes from OFF to ON.

DOWN(522) is placed between an execution condition and another instruction
to turn the execution condition into a down-differentiated condition.
DOWN(522) causes the connecting instruction to be executed just once when
the execution condition goes from ON to OFF.

The DIFU(013) and DIFD(014) instructions can also be used for the same
purpose, but they require work bits. UP(521) and DOWN(522) simplify pro-
gramming by reducing the number of work bits and program addresses
needed.

Flags There are no flags affected by UP(521) and DOWN(522).

Precautions UP(521) and DOWN(522) are intermediate instructions, i.e., they cannot be
used as right-hand instructions. Be sure to program a right-hand instruction
after UP(521) or DOWN(522).

Input bit status Output bit status

CIO 0.00 CIO 0.01 CIO 0.02 CIO 0.03

1 1 1 0

1 1 0 0

1 0 1 1

0 1 1 0

1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 1

UP(521)

DOWN(522)

Variations Creates ON Once for Upward Differentiation UP(521)

Immediate Refreshing Specification Not supported

Variations Creates ON Once for Downward Differentiation UP(522)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
109

Sequence Input Instructions Section 3-2
The operation of UP(521) and DOWN(522) depends on the execution condi-
tion for the instruction as well as the execution condition for the program sec-
tion when it is programmed in an interlocked program section, a jumped
program section, or a subroutine. Refer to 3-4-4 INTERLOCK and INTER-
LOCK CLEAR: IL(002) and ILC(003), 3-4-6 JUMP and JUMP END: JMP(004)
and JME(005), and 3-19 Interrupt Control Instructions for details.

Examples When CIO 0.00 goes from OFF to ON in the following example, CIO 100.00 is
turned ON for just one cycle.

When CIO 0.00 goes from ON to OFF in the following example, CIO 100.01 is
turned ON for just one cycle.

3-2-14 BIT TEST: TST(350) and TSTN(351)
Purpose LD TST(350), AND TST(350), and OR TST(350) are used in the program like

LD, AND, and OR; the execution condition is ON when the specified bit in the
specified word is ON, and OFF when the bit is OFF.

LD TSTN(351), AND TSTN(351), and OR TSTN(351) are used in the program
like LD NOT, AND NOT, and OR NOT; the execution condition is OFF when
the specified bit in the specified word is ON, and ON when the bit is OFF.

Ladder Symbols

0.00 100.00

0.00

100.00

Cycle
time

0.00

0.00

100.01

100.01

Cycle
time

TST(350)

S

N

TSTN(351)

S

N

S: Source word

N: Bit number

S: Source word

N: Bit number
110

Sequence Input Instructions Section 3-2
Variations

Applicable Program Areas

Operands N: Bit number

The bit number must be between 0000 and 000F hexadecimal or between
&0000 and &0015 decimal. Only the rightmost bit (0 to F hexadecimal) of the
contents of the word is valid when a word address is specified.

Operand Specifications

Description LD TST(350), AND TST(350), and OR TST(350) can be used in the program
like LD, AND, and OR; the execution condition is ON when the specified bit in
the specified word is ON and OFF when the bit is OFF. Unlike LD, AND, and
OR, bits in the DM area can be used as operands in TST(350).

LD TSTN(351), AND TSTN(351), and OR TSTN(351) can be used in the pro-
gram like LD NOT, AND NOT, and OR NOT; the execution condition is OFF
when the specified bit in the specified word is ON and ON when the bit is OFF.
Unlike LD NOT, AND NOT, and OR NOT, bits in the DM area can be used as
operands in TSTN(351).

Flags

Variations Executed Each Cycle TST(350)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle TSTN(351)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants --- #0000 to #000F (binary) or
&0 to &15

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 , IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Name Label Operation

Error Flag ER OFF or unchanged

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged
111

Sequence Input Instructions Section 3-2
Precautions TST(350) and TSTN(351) are intermediate instructions, i.e., they cannot be
used as right-hand instructions. Be sure to program a right-hand instruction
after TST(350) or TSTN(351).

Examples LD TST(350) and LD TSTN(351)

In the following example, CIO 100.01 is turned ON when bit 3 of D10 is ON.

In the following example, CIO 100.02 is turned ON when bit 3 of D10 is OFF.

AND TST(350) and AND TSTN(351)

In the following example, CIO 100.01 is turned ON when CIO 0.00 and bit 3 of
D10 are both ON.

In the following example, CIO 100.02 is turned ON when CIO 0.01 is ON and
bit 3 of D10 is OFF.

OR TST(350) and OR TSTN(351)

In the following example, CIO 100.01 is turned ON when CIO 0.00 or bit 3 of
D10 is ON.

&3

D10

100.01

&3

D10

100.02

&3

0.00 100.01

D10

&3

0.01 100.02

D10

&3

0.00

D10

100.01
112

Sequence Output Instructions Section 3-3
In the following example, CIO 100.02 is turned ON when CIO 0.01 is ON or bit
3 of D10 is OFF.

3-3 Sequence Output Instructions

3-3-1 OUTPUT: OUT
Purpose Outputs the result (execution condition) of the logical processing to the speci-

fied bit.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

&3

0.01 100.02

D10

Variations Executed Each Cycle for ON Condition OUT

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification !OUT

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area OUT bit operand

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A448.00 to A959.15

Timer Area ---

Counter Area ---

TR Area TR0 to TR15

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---
113

Sequence Output Instructions Section 3-3
Description If there is no immediate refreshing specification, the status of the execution
condition (power flow) is written to the specified bit in I/O memory. If there is
an immediate refreshing specification, the status of the execution condition
(power flow) is also written to the CPU Unit’s output terminal in addition to the
output bit in I/O memory.

Flags There are no flags affected by this instruction.

Precautions Immediate refreshing (!) can be specified for OUT and OUT NOT. An immedi-
ate refresh instruction updates the status of the output terminal on the CPU
Unit just after the instruction is executed at the same time as it writes the sta-
tus of the execution condition (power flow) to the specified output bit in I/O
memory.

Example

3-3-2 OUTPUT NOT: OUT NOT
Purpose Reverses the result (execution condition) of the logical processing, and out-

puts it to the specified bit.

Ladder Symbol

Variations

Applicable Program Areas

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to ,IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area OUT bit operand

Instruction Operand

LD 0.00

OUT 100.00

OUT NOT 100.01

0.00 100.00

100.01

Variations Executed Each Cycle for ON Condition OUT NOT

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification !OUT NOT

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK
114

Sequence Output Instructions Section 3-3
Operand Specifications

Description If there is no immediate refreshing specification, the status of the execution
condition (power flow) is reversed and written to a specified bit in I/O memory.
If there is an immediate refreshing specification, the status of the execution
condition (power flow) is reversed and also written to the CPU Unit’s output
terminal in addition to the output bit in I/O memory.

Flags There are no flags affected by this instruction.

Example

3-3-3 KEEP: KEEP(011)
Purpose Operates as a latching relay.

Ladder Symbol

Area OUT bit operand

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A448.00 to A959.15

Timer Area ---

Counter Area ---

TR Area TR0 to TR15

DM Area ---

Indirect DM addresses in
binary

Indirect DM addresses in
BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to ,IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Instruction Operand

LD 0.00

OUT 0.01

OUT NOT 0.02

0.00 100.00

100.01

KEEP(011)

B

S (Set)

R (Reset)

B: Bit
115

Sequence Output Instructions Section 3-3
Variations

Applicable Program Areas

Operand Specifications

Description When S turns ON, the designated bit will go ON and stay ON until reset,
regardless of whether S stays ON or goes OFF. When R turns ON, the desig-
nated bit will go OFF. The relationship between execution conditions and
KEEP(011) bit status is shown below.

Variations Executed Each Cycle for ON Condition KEEP(011)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification !KEEP(011)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area B

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A448.00 to A959.15

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Set

Reset

ON

OFF

ON

OFF

ON

OFFStatus of C

S execution condition

R execution condition
116

Sequence Output Instructions Section 3-3
If S and R are ON simultaneously, the reset input takes precedence.

The set input (S) cannot be received while R is ON.

KEEP(011) has an immediate refreshing variation (!KEEP(011)). When an
external output bit has been specified for B in a !KEEP(011) instruction, any
changes to B will be refreshed when !KEEP(011) is executed and reflected
immediately in the output bit for the CPU Unit built-in output.

KEEP(011) operates like the self-maintaining bit, but a self-maintaining bit
programmed with KEEP(011) requires one less instruction.

Self-maintaining bits programmed with KEEP(011) will maintain status even in
an interlock program section, unlike the self-maintaining bit programmed with-
out KEEP(011).

Set

Reset

Status of C

Set

Reset

Status of C

0.02 0.03 100.00

100.00

0.02

0.03

100.00

Output bit C will maintain its
previous status in an interlock.

Output bit C will be turned
OFF in an interlock.
117

Sequence Output Instructions Section 3-3
KEEP(011) can be used to create flip-flops as shown below.

If a holding bit is used for B, the bit status will be retained even during a power
interruption. KEEP(011) can thus be used to program bits that will maintain
status after restarting the PLC following a power interruption. An example of
this that can be used to produce a warning display following a system shut-
down for an emergency situation is shown below.

The status of I/O Area bits can be retained in the event of a power interruption
by turning ON the IOM Hold Bit and setting IOM Hold Bit Hold in the PLC
Setup. In this case, I/O Area bits used in KEEP(011) will maintain status after
restarting the PLC following a power interruption, just like holding bits. Be sure
to restart the PLC after changing the PLC Setup; otherwise the new settings
will not be used.

Flags No flags are affected by KEEP(011).

Precautions Never use an input bit in a normally closed condition on the reset (R) for
KEEP(011) when the input device uses an AC power supply. The delay in
shutting down the PLC’s DC power supply (relative to the AC power supply to
the input device) can cause the operand bit of KEEP(011) to be reset. This sit-
uation is shown below.

The operands for KEEP(011) are input in a different order in ladder diagrams
and mnemonic code.
Ladder diagram order: Set input → KEEP(011) → Reset input
Mnemonic code order:Set input → Reset input → KEEP(011)

0.02

H0.00
0.03

0.04

0.05

H0.00 100.00

Reset input

Indicates
emergency
situation

Activates
warning
display

NEVER

S

R
A

KEEP

120000

A

Input Unit
118

Sequence Output Instructions Section 3-3
Example When CIO 0.00 goes ON in the following example, CIO 100.00 is turned ON.
CIO 100.00 remains ON until CIO 0.01 goes ON.

When CIO 0.02 goes ON and CIO 0.03 goes OFF in the following example,
CIO 100.01 is turned ON. CIO 100.01 remains ON until CIO 0.04 or CIO 0.05
goes ON.

Coding

Note KEEP(011) is input in different orders on in ladder and mnemonic form. In lad-
der form, input the set input, KEEP(011), and then the reset input. In mne-
monic form, input the set input, the reset input, and then KEEP(011).

3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014)
Purpose DIFU(013) turns the designated bit ON for one cycle when the execution con-

dition goes from OFF to ON (rising edge).
DIFD(014) turns the designated bit ON for one cycle when the execution con-
dition goes from ON to OFF (falling edge).

Ladder Symbols

Address Instruction Operand

000100 LD 0.00

000101 LD 0.01

000102 KEEP (011) 100.00

000103 LD 0.02

000104 AND NOT 0.03

000105 LD 0.04

000106 OR 0.05

000107 KEEP (011) 100.01

0.00

0.01

0.02

0.04

0.05

0.03

100.00

100.01

DIFU(013)

B

DIFD(014)

B

B: Bit

B: Bit
119

Sequence Output Instructions Section 3-3
Variations

Applicable Program Areas

Operand Specifications

Description When the execution condition goes from OFF to ON, DIFU(013) turns B ON.
When DIFU(013) is reached in the next cycle, B is turned OFF.

When the execution condition goes from ON to OFF, DIFD(014) turns B ON.
When DIFD(014) is reached in the next cycle, B is turned OFF.

Variations Executed Each Cycle for ON Condition Not supported

Executed Once for Upward Differentiation DIFU(013)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification !DIFU(013)

Variations Executed Each Cycle for ON Condition Not supported

Executed Once for Upward Differentiation DIFD(014)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification !DIFD(014)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area B

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A448.00 to A959.15

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to ,15–(– –) IR

Status of B

1 cycle

Execution condition

Status of B
1 cycle

Execution condition
120

Sequence Output Instructions Section 3-3
DIFU(013) and DIFD(014) have immediate refreshing variations (!DIFU(013)
and !DIFD(014)). When an external output bit has been specified for B in one
of these instructions, any changes to B will be refreshed when the instruction
is executed and reflected immediately in the output bit for the CPU Unit built-in
output.

UP(521) and DOWN(522) can be used to execute an instruction for just one
cycle when the execution condition goes from OFF → ON or ON → OFF.
Refer to 3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522) for details.

Flags No flags are affected by DIFU(013) and DIFD(014).

Precautions The operation of DIFU(013) or DIFD(014) depends on the execution condition
for the instruction itself as well as the execution condition for the program sec-
tion when it is programmed in an interlocked program section, a jumped pro-
gram section, or a subroutine. Refer to 3-4-4 INTERLOCK and INTERLOCK
CLEAR: IL(002) and ILC(003), 3-4-6 JUMP and JUMP END: JMP(004) and
JME(005), and 3-19 Interrupt Control Instructions for details.

If DIFU(013) is used in a FOR-NEXT loop and the loop repeats in a cycle, the
controlled bit will be always ON or always OFF within that loop.

Examples Operation of DIFU(013)

When CIO 0.00 goes from OFF to ON in the following example, CIO 100.00 is
turned ON for one cycle.

Operation of DIFD(014)

When CIO 0.00 goes from ON to OFF in the following example, CIO 100.00 is
turned ON for one cycle.

100.00

0.00

100.00 0.00

1 cycle 1 cycle

100.00

100.00

0.00

0.00

1 cycle 1 cycle
121

Sequence Output Instructions Section 3-3
3-3-5 SET and RESET: SET and RSET
Purpose SET turns the operand bit ON when the execution condition is ON.

RSET turns the operand bit OFF when the execution condition is ON.

Ladder Symbols

Variations

Applicable Program Areas

Operand Specifications

SET

B

RSET

B

B: Bit

B: Bit

Variations Executed Each Cycle for ON Condition SET

Executed Once for Upward Differentiation @SET

Executed Once for Downward Differentiation %SET

Immediate Refreshing Specification !SET

Combined
variations

Executed Once and Bit Refreshed
Immediately for Upward Differentiation

!@SET

Executed Once and Bit Refreshed
Immediately for Downward Differentiation

!%SET

Variations Executed Each Cycle for ON Condition RSET

Executed Once for Upward Differentiation @RSET

Executed Once for Downward Differentiation %RSET

Immediate Refreshing Specification !RSET

Combined
Variations

Immediate Refreshing Once for Upward
Differentiation

!@RSET

Immediate Refreshing Once for Downward
Differentiation

!%RSET

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A448.00 to A959.15

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---
122

Sequence Output Instructions Section 3-3
Description SET turns the operand bit ON when the execution condition is ON, and does
not affect the status of the operand bit when the execution condition is OFF.
Use RSET to turn OFF a bit that has been turned ON with SET.

RSET turns the operand bit OFF when the execution condition is ON, and
does not affect the status of the operand bit when the execution condition is
OFF. Use SET to turn ON a bit that has been turned OFF with RSET.

SET and RSET have immediate refreshing variations (!SET and !RSET).
When an external output bit has been specified for B in one of these instruc-
tions, any changes to B will be refreshed when the instruction is executed and
reflected immediately in the output bit for the CPU Unit built-in output.

The set and reset inputs for a KEEP(011) instruction must be programmed
with the instruction, but the SET and RSET instructions can be programmed
completely independently. Furthermore, the same bit may be used as the
operand in any number of SET or RSET instructions.

Flags No flags are affected by SET and RSET.

Precautions SET and RSET cannot be used to set and reset timers and counters.

When SET or RSET is programmed between IL(002) and ILC(003) or
JMP(004) and JME(005), the status of the specified bit will not be changed if
the program section is interlocked or jumped.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to ,–(– –) IR15

Area B

Status of B

Execution condition
of SET

Execution condition
of RSET

Status of B
123

Sequence Output Instructions Section 3-3
Example Differences between OUT/OUT NOT and SET/RSET

The operation of SET differs from that of OUT because the OUT instruction
turns the operand bit OFF when its execution condition is OFF. Likewise,
RSET differs from OUT NOT because OUT NOT turns the operand bit ON
when its execution condition is OFF.

3-3-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531)
Purpose SETA(530) turns ON the specified number of consecutive bits.

RSTA(531) turns OFF the specified number of consecutive bits.

Ladder Symbols

Variations

Applicable Program Areas

0.00

0.01

0.02

100.00

100.01

100.01

CIO 100.01 is turned ON when
CIO 0.01 goes ON; it remains
ON until CIO 0.02 goes ON.

CIO 100.00 is turned ON/OFF
when CIO 0.00 goes ON/OFF.

SETA(530)

D

N1

N2

RSTA(531)

D

N1

N2

D: Beginning word

N1: Beginning bit

N2: Number of bits

D: Beginning word

N1: Beginning bit

N2: Number of bits

Variations Executed Each Cycle for ON Condition SETA(530)

Executed Once for Upward Differentiation @SETA(530)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition RSTA(531)

Executed Once for Upward Differentiation @RSTA(531)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
124

Sequence Output Instructions Section 3-3
Operands D: Beginning Word

Specifies the first word in which bits will be turned ON or OFF.

N1: Beginning Bit

Specifies the first bit which will be turned ON or OFF. N1 must be #0000 to
#000F (&0 to &15).

N2: Number of Bits

Specifies the number of bits which will be turned ON or OFF. N2 must be
#0000 to #FFFF (&0 to &65535).

Note The bits being turned ON or OFF must be in the same data area. (The range
of words is roughly D to D+N2÷16.)

Operand Specifications

Description The operation of SETA(530) and RSTA(531) are described separately below.

Operation of SETA(530)

SETA(530) turns ON N2 bits, beginning from bit N1 of D, and continuing to the
left (more-significant bits). All other bits are left unchanged. (No changes will
be made if N2 is set to 0.)

D

to

D: 4,096 words max.

Area D N1 N2

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses in
binary

@ D0 to @ D32767

(n = 0 to C)

Indirect DM addresses in BCD *D0 to *D32767
(n = 0 to C)

Constants --- #0000 to #000F
(binary) or &0 to
&15

#0000 to #FFFF
(binary) or &0 to
&65535

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15
125

Sequence Output Instructions Section 3-3
Bits turned ON by SETA(530) can be turned OFF by any other instructions,
not just RSTA(531).

SETA(530) can be used to turn ON bits in data areas that are normally
accessed by words only, such as the DM area.

Operation of RSTA(531)

RSTA(531) turns OFF N2 bits, beginning from bit N1 of D, and continuing to
the left (more-significant bits). All other bits are left unchanged. (No changes
will be made if N2 is set to 0.)

Bits turned OFF by RSTA(531) can be turned ON by any other instructions,
not just SETA(530).

RSTA(531) can be used to turn OFF bits in data areas that are normally
accessed by words only, such as the DM area.

Flags

Examples SETA(530) Example

When CIO 0.00 is turned ON in the following example, the 20 bits (0014 hexa-
decimal) beginning with bit 5 of CIO 200 are turned ON.

N2 bits are set to 1 (ON).

N2 bits are reset to 0 (OFF).

Name Label Operation

Error Flag ER ON if N1 is not within the specified range of 0000 to 000F.

OFF in all other cases.

&5

&20

0.00

200

D: 200
201

N1: Bit 5

N2: 20 bits
126

Sequence Output Instructions Section 3-3
RSTA(531) Example

When CIO 0.01 is turned ON in the following example, the 20 bits (0014 hexa-
decimal) beginning with bit 3 of CIO 210 are turned OFF.

3-3-7 SINGLE BIT SET/RESET: SETB(532)/RSTB(533)
Purpose SETB(532) turns ON the specified bit.

RSTB(533) turns OFF the specified bit.

Ladder Symbols

Variations

Applicable Program Areas

Operands D: Word Address

Specifies the word in which the bit will be turned ON or OFF.

N: Beginning Bit

Specifies the bit which will be turned ON or OFF. N must be #0000 to #000F
(&0 to &15).

&3

&20

0.01

210

D: 210
211

N1: Bit 3

N2: 20 bits

RSTB(533)

D

N

D: Word address
N: Bit number

SETB(532)

D

N

D: Word address
N: Bit number

Variations Executed Each Cycle for ON Condition SETB(532)

Executed Once for Upward Differentiation @SETB(532)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification !SETB(532)

Combined
Variations

Executed Once and Bit Refreshed
Immediately for Upward Differentiation

!@SETB(532)

Executed Once and Bit Refreshed
Immediately for Downward Differentiation

Not supported

Variations Executed Each Cycle for ON Condition RSTB(533)

Executed Once for Upward Differentiation @RSTB(533)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification !RSTB(533)

Combined
Variations

Executed Once and Bit Refreshed
Immediately for Upward Differentiation

!@RSTB(533)

Executed Once and Bit Refreshed
Immediately for Downward Differentiation

Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
127

Sequence Output Instructions Section 3-3
Operand Specifications

Description The functions of SETB(532) and RSTB(533) are described separately below.

Operation of SETB(532)

SETB(532) turns ON bit N of word D when the execution condition is ON. The
status of the bit is not affected when the execution condition is OFF. Unlike
SET, SETB(532) can turn ON a bit in the DM area.

Bits turned ON by SETB(532) can be turned OFF by any other instruction, not
just RSTB(533).

Area D N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in BCD *D0 to *D32767

Constants --- #0000 to #000F (binary)
or &0 to &15

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

ON
OFF

ON
OFF

15

This bit is turned ON.

Execution condition

Bit N of word D
128

Sequence Output Instructions Section 3-3
Operation of RSTB(533)

RSTB(533) turns OFF bit N of word D when the execution condition is ON.
The status of the bit is not affected when the execution condition is OFF. (Use
SETB(532) to turn ON the bit.) Unlike RST, RSTB(533) can turn OFF a bit in
the DM area.

Bits turned OFF by RSTB(533) can be turned ON by any other instruction, not
just SETB(532).

Flags

Precautions SETB(532) and RSTB(533) cannot set/reset timers and counters.

When SETB(532) or RSTB(533) is programmed between IL(002) and
ILC(003) or JMP(004) and JME(005), the status of the specified bit will not be
changed if the program section is interlocked or jumped, i.e., when the inter-
lock condition or jump condition is OFF.

SETB(532) and RSTB(533) have immediate refreshing variations
(!SETB(532) and !RSTB(533)). When an external output bit has been speci-
fied in one of these instructions, any changes to the specified bit will be
refreshed when the instruction is executed and reflected immediately in the
output bit for the CPU Unit built-in output.

Differences between SET/RSET and SETB(532)/RSTB(533)

The SET and RSET instructions operate somewhat differently from
SETB(532) and RSTB(533).

1. The instructions operate in the same way when the specified bit is in the
CIO, W, H, or A Area.

2. The SETB(532) and RSTB(533) instructions can control bits in the DM Ar-
ea, unlike SET and RSET.

Differences between OUTB(534) and SETB(532)/RSTB(533)

The OUTB(534) instruction operates somewhat differently from SETB(532)
and RSTB(533).

1. The SETB(532) and RSTB(533) instructions change the status of the
specified bit only when their execution condition is ON. These instructions
have no effect on the status of the specified bit when their execution con-
dition is OFF.

2. The OUTB(534) instruction turns ON the specified bit when its execution
condition is ON and turns OFF the specified bit when its execution condi-
tion is OFF.

ON
OFF

ON
OFF

15

This bit is turned OFF.

Execution condition

Bit N of word D

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0000 to 000F
(&0 to &15).
OFF in all other cases.
129

Sequence Output Instructions Section 3-3
3. The set and reset inputs for a KEEP(011) instruction must be programmed
with the instruction, but the SETB(532) and RSTB(533) instructions can be
programmed completely independently. Furthermore, the same bit may be
used as the operand in any number of SETB(532) and RSTB(533) instruc-
tions.

3-3-8 SINGLE BIT OUTPUT: OUTB(534)
Purpose OUTB(534) outputs the status of the instruction’s execution condition to the

specified bit. OUTB(534) can control a bit in the DM Area, unlike OUT.

Ladder Symbols

Variations

Applicable Program Areas

Operands D: Word Address

Specifies the word containing the bit to be controlled.

N: Beginning Bit

Specifies the bit to be controlled. N must be #0000 to #000F (&0 to &15).

Operand Specifications

0.00

SETB
D0
&2

0.01

RSTB
D2
&2

Bit 02 of D0 is turned ON
when CIO 0.00 is ON.

Bit 02 of D0 is turned OFF
when CIO 0.01 is ON.

OUTB(534)

D

N

D: Word address
N: Bit number

Variations Executed Each Cycle for ON Condition OUTB(534)

Executed Once for Upward Differentiation @OUTB(534)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification !OUTB(534)

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area D N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in BCD *D0 to *D32767

Constants --- #0000 to #000F (binary)
or &0 to &15
130

Sequence Output Instructions Section 3-3
Description When the execution condition is ON, OUTB(534) turns ON bit N of word D.
When the execution condition is OFF, OUTB(534) turns OFF bit N of word D.

If the immediate refreshing version is not used, the status of the execution
condition (power flow) is written to the specified bit in I/O memory. If the imme-
diate refreshing version is used, the status of the execution condition (power
flow) is written to the CPU Unit’s output terminal as well as the output bit in I/O
memory.

Flags There are no flags affected by this instruction.

Precautions Immediate refreshing (!OUTB(534)) can be specified. An immediate refresh
instruction updates the status of the output terminal just after the instruction is
executed on an output bit allocated to a CPU Unit built-in output, at the same
time as it writes the status of the execution condition (power flow) to the spec-
ified output bit in I/O memory.

When OUTB(534) is programmed between IL(002) and ILC(003), the speci-
fied bit will be turned OFF if the program section is interlocked. (This is the
same as an OUT instruction in an interlocked program section.)

When a word is specified for the bit number (N), only bits 00 to 03 of N are
used. For example, if N contains FFFA hex, OUTB(534) will control bit 10 of
word D.

Example

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area D N

15 0

D

N

ON

OFF

ON

OFF

This bit is turned OFF.

Execution condition

Bit N of word D

0.00

OUTB
D0
&10

Bit 10 of D0 is turned OFF
when CIO 0.00 is OFF.
131

Sequence Control Instructions Section 3-4
3-4 Sequence Control Instructions

3-4-1 END: END(001)
Purpose Indicates the end of a program.

Ladder Symbol

Variations

Applicable Program Areas

Description END(001) completes the execution of a program for that cycle. No instructions
written after END(001) will be executed.

Execution proceeds to the program with the next task number. When the pro-
gram being executed has the highest task number in the program, END(001)
marks the end of the overall main program.

Precautions Always place END(001) at the end of each program. A programming error will
occur if there is not an END(001) instruction in the program.

END(001)

Variations Executed Each Cycle for ON Condition END(001)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed Not allowed OK

I/O refreshing

Task 1

Task 2

Task n Program Z

Program A

Program B

To the next task number

To the next task number

End of the main program
132

Sequence Control Instructions Section 3-4
3-4-2 NO OPERATION: NOP(000)
Purpose This instruction has no function. (No processing is performed for NOP(000).)

Ladder Symbol There is no ladder symbol associated with NOP(000).

Variations

Applicable Program Areas

Description No processing is performed for NOP(000), but this instruction can be used to
set aside lines in the program where instructions will be inserted later. When
the instructions are inserted later, there will be no change in program
addresses.

Flags No flags are affected by NOP(000).

Precautions NOP(000) can only be used with mnemonic displays, not with ladder pro-
grams.

3-4-3 Overview of Interlock Instructions
Interlock Instructions The following instruction combinations can be used to interlock outputs in a

program section.

• INTERLOCK and INTERLOCK CLEAR (IL(002) and IL(003))

• MULTI-INTERLOCK DIFFERENTIATION HOLD and MULTI-INTERLOCK
CLEAR (MILH(517) and MILC(519))*

Note MILH(517) holds the status of the Differentiation Flag, so differen-
tiated instructions that were interlocked are executed after the in-
terlock is cleared.

• MULTI-INTERLOCK DIFFERENTIATION RELEASE and MULTI-INTER-
LOCK CLEAR (MILR(518) and MILC(519))*

Note MILR(518) does not hold the status of the Differentiation Flag, so
differentiated instructions that were interlocked are not executed af-
ter the interlock is cleared.

Variations Executed Each Cycle for ON Condition NOP(000)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
133

Sequence Control Instructions Section 3-4
Differences between
Interlocks and Multiple
Interlocks

Regular interlocks (IL(002) and IL(003)) cannot be nested, but multiple inter-
locks (MILH(517), MILR(518), and MILC(519)) can be nested. Ladder pro-
gramming can be simplified by nesting multiple interlocks, as shown in the
following diagram.

Differences between
MILH(517) and MILR(518)

Differentiated instructions (DIFU, DIFD, or instructions with a @ or % prefix)
operate differently in interlocks created with MILH(517) and MILR(518).

The operation of differentiated instructions in an interlock created with
MILH(517) is identical to the operation in an interlock created with IL(002).

For details, refer to 3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD,
MULTI-INTERLOCK DIFFERENTIATION RELEASE, and MULTI-INTER-
LOCK CLEAR: MILH(517), MILR(518), and MILC(519).

Precautions Do not combine interlocks created with different interlock instructions (IL-ILC,
MILH-MILC, and MILR-MILC). The interlocks may not operate properly if dif-
ferent interlock methods are used together. For details on combining instruc-
tions, refer to 3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-
INTERLOCK DIFFERENTIATION RELEASE, and MULTI-INTERLOCK
CLEAR: MILH(517), MILR(518), and MILC(519).

a
MILH

0

A1

b
MILH

1

A2

c
MILH

2

A3

MILC

2

MILC

1

MILC

0

a
IL

A1

ILC

a
IL

A2

b

b c

ILC

a
IL

A3

ILC

Interlocks with MILH and MILC Interlocks with IL and ILC
134

Sequence Control Instructions Section 3-4
For example, an MILH(517) instruction cannot be inserted between IL(002)
and IL(003).

Note The different interlocks (IL-ILC, MILH-MILC, and MILR-MILC) can be used
together as long as the interlocked program sections do not overlap.

For example, all three interlock methods can be used without overlapping, as
shown in the following diagram.

Differences between
Interlocks and Jumps

The following table shows the differences between interlocks (created with
IL(002)/ILC(003), MILH(517)/MILC(519), or MILR(518)/MILC(519)) and jumps
created with JMP(004)/JME(005).

IL

MILH

ILC

MILH(517) is in an interlocked area
between IL(002) and ILC.(003).

IL

MILH

MILC

ILC

MILR

MILC

Different interlock methods can be
used as long as the interlocked
areas do not overlap.

Item Treatment in IL(002)/ILC(003), MILH(517)/
MILC(519), or MILR(518)/MILC(519))

Treatment in
JMP(004)/JME(005)

Instruction execution Instructions other than OUT, OUT NOT,
OUTB(534), and timer instructions are not
executed.

No instructions are executed.

Output status in instructions Except for outputs in OUT, OUT NOT,
OUTB(534), and timer instructions, all out-
puts retain their previous status.

All outputs retain their previous status.

Bits in OUT, OUT NOT,
OUTB(534)

OFF All outputs retain their previous status.

Status of timer instructions
(except (TTIM(087),
TTIMX(555), MTIM(543), and
MTIMX(554))

Reset Operating timers (TIM, TIMX(550),
TIMH(015), TIMHX(551), TMHH(540),
TMHHX(552) only) continue timing because
the PVs are updated even when the timer
instruction is not being executed.
135

Sequence Control Instructions Section 3-4
3-4-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003)
Purpose Interlocks all outputs between IL(002) and ILC(003) when the execution con-

dition for IL(002) is OFF. IL(002) and ILC(003) are normally used in pairs.

Ladder Symbols

Variations

Applicable Program Areas

Description When the execution condition for IL(002) is OFF, the outputs for all instruc-
tions between IL(002) and ILC(003) are interlocked. When the execution con-
dition for IL(002) is ON, the instructions between IL(002) and ILC(003) are
executed normally.

The following table shows the treatment of various outputs in an interlocked
section between IL(002) and ILC(003).

Note Bits and words in all other instructions including TTIM(087), TTIMX(555),
MTIM(543), MTIMX(554), SET, RSET, CNT, CNTX(546), CNTR(012),
CNTRX(548), SFT, and KEEP(011) retain their previous status.

If there are bits which you want to remain ON in an interlocked program sec-
tion, set these bits to ON with SET just before IL(002).

IL(002)

ILC(003)

Variations Interlocks when OFF/Does Not interlock when ON IL(002)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition ILC(003)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK

Instruction Treatment

Bits specified in OUT, OUT NOT, or OUTB(534) OFF

TIM, TIMX(550), TIMH(015),
TIMHX(551), TMHH(540),
TMHHX(552), TIML(542), and
TIMXL(553)

Completion Flag OFF (reset)

PV Time set value (reset)

Bits/words specified in all other instructions (See note.) Retain previous status.

Execution
condition

Execution
condition ON

Execution
condition OFF

Interlocked section
of the program

Outputs
interlocked.

Normal
execution
136

Sequence Control Instructions Section 3-4
It is often more efficient to switch a program section with IL(002) and
ILC(003). When several processes are controlled with the same execution
condition, it takes fewer program steps to put these processes between
IL(002) and ILC(003).

The following table shows the differences between IL(002)/ILC(003) and
JMP(004)/JME(005).

Flags

Precautions The cycle time is not shortened when a section of the program is interlocked
because the interlocked instructions are executed internally.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between IL(002) and ILC(003). Changes in the execution condition
for DIFU(013), DIFD(014), or a differentiated instruction are not recorded if the
DIFU(013) or DIFD(014) is in an interlocked section and the execution condi-
tion for the IL(002) is OFF.

Item Treatment in
IL(002)/ILC(003)

Treatment in
JMP(004)/JME(005)

Instruction execution Instructions other than OUT, OUT NOT,
OUTB(534), and timer instructions are
not executed.

No instructions are executed.

Output status in instructions Except for outputs in OUT, OUT NOT,
OUTB(534), and timer instructions, all
outputs retain their previous status.

All outputs retain their previous status.

Bits in OUT, OUT NOT, OUTB(534) OFF All outputs retain their previous status.

Status of timer instructions
(except (TTIM(087), TTIMX(555),
MTIM(543), and MTIMX(554))

Reset Operating timers (TIM, TIMX(550),
TIMH(015), TIMHX(551), TMHH(540),
TMHHX(552) only) continue timing
because the PVs are updated even
when the timer instruction is not being
executed.

Name Label Operation

Error Flag ER OFF

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged
137

Sequence Control Instructions Section 3-4
In general, IL(002) and ILC(003) are used in pairs, although it is possible to
use more than one IL(002) with a single ILC(003) as shown in the following
diagram. If IL(002) and ILC(003) are not paired, an error message will appear
when the program check is performed but the program will be executed prop-
erly.

IL(002) and ILC(003) cannot be nested, as in the following diagram. (Use
MILH(517)/MILR(518) and MILC(519) when it is necessary to nest interlocks.)

Differential Instruction in
Interlocks

Differentiated instructions (DIFU(013), DIFD(014), or instructions with a @ or
% prefix) written between IL(002) and ILC(003) are executed according to
changes in memory status between when the interlock is started and when it
is released. If a differentiated condition is met, it will be effected when the
interlock is released.

Execution condition Program section

a b A B

OFF ON Interlocked Interlocked

OFF OFF Interlocked Interlocked

ON OFF Not interlocked Interlocked

ON ON Not interlocked Not interlocked
138

Sequence Control Instructions Section 3-4
For example, if the input condition for DIFU(013) is OFF when an interlock is
started and ON when the interlock is released, the operand bit of DIFU(013)
will be turned ON when the interlock is released.

IL(002) affects differentiated operation in the same way as MILH(517).

Timing Chart

1. Assume that the input condition for DIFU(013) (CIO 0.01) is OFF when CIO 0.00 turns OFF
 (i.e., when the interlock is started.
2. Assume that CIO 0.01 turns ON while CIO 0.00 is OFF (i.e., while the interlock is in effect).
3. DIFU(013) will be executed to turn ON CIO 100.00 when CIO 0.00 turns ON
 (i.e., when the interlock is released) if the input condition for DIFU(013) (CIO 0.01) is still ON.

No interlocked. Interlocked. No interlocked.

CIO 0.00

CIO 0.01

CIO 10.00

DIFU(013) executed.

Differentiation condition

1 cycle
139

Sequence Control Instructions Section 3-4
Examples When CIO 0.00 is OFF in the following example, all outputs between IL(002)
and ILC(003) are interlocked. When CIO 0.00 is ON in the following example,
the instructions between IL(002) and ILC(003) are executed normally.

3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-INTERLOCK
DIFFERENTIATION RELEASE, and MULTI-INTERLOCK CLEAR:
MILH(517), MILR(518), and MILC(519)

Purpose Interlocks all outputs between MILH(517) (or MILR(518)) and MILC(519)
when the execution condition for MILH(517) (or MILR(518)) is OFF. MILH(517)
(or MILR(518)) and MILC(519) are normally used in pairs.

Unlike the IL(002)/ILC(003) interlocks, the MILH(517)/MILC(519) and
MILR(518)/MILC(519) interlocks can be nested. The operation of differenti-
ated instructions is different for interlocks created with MILH(517) and
MILR(518).

Ladder Symbols

CIO 0.00
ON

CIO 0.00 OFF

OFF

OFF

0.00

0.01

0.02

100.00

H0.00

100.03

Reset

Retained

Retained

Normal
execution

Outputs
interlocked

MILH(517)

N

D

N: Interlock Number

D: Interlock Status Bit

MILR(518)

N

D

N: Interlock Number

D: Interlock Status Bit
140

Sequence Control Instructions Section 3-4
Operands N: Interlock Number

The interlock number must be between 0 and 15. Match the interlock number
of the MILH(517) (or MILR(518)) instruction with the same number in the cor-
responding MILC(519) instruction.

The interlock numbers can be used in any order.

D: Interlock Status Bit

• ON when the program section is not interlocked.

• OFF when the program section is interlocked.

When the interlock is engaged, the Interlock Status Bit can be force-set to
release the interlock. Conversely, when the interlock is not engaged, the Inter-
lock Status Bit can be force-reset to engage the interlock.

Operand Specifications

Variations

Applicable Program Areas The following table shows the applicable program areas for MILH(517),
MILR(518), and MILC(519).

MILC(519)

N N: Interlock Number

Area N D

CIO Area --- CIO 0.00 to CIO 6143.15

Work Area --- W0.00 to W511.15

Holding Bit Area --- H0.00 to H511.15

Auxiliary Bit Area --- A0.00 to A959.15

Timer Area --- ---

Counter Area --- ---

DM Area --- ---

Indirect DM addresses
in binary

--- ---

Indirect DM addresses
in BCD

--- ---

Constants 0 to 15 ---

Data Registers --- ---

Index Registers --- ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to –
2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Variations Interlocks when OFF/Does Not interlock when ON MILH(517) and
MILR(518)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition MILC(519)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK
141

Sequence Control Instructions Section 3-4
Description When the execution condition for MILH(517) (or MILR(518)) with interlock
number N is OFF, the outputs for all instructions between that MILH(517)/
MILR(518) instruction and the next MILC(519) with interlock number N are
interlocked.

When the execution condition for MILH(517) (or MILR(518)) with interlock
number N is ON, the instructions between that MILH(517)/MILR(518) instruc-
tion and the next MILC(519) with interlock number N are executed normally.

Interlock Status

The following table shows the treatment of various outputs in an interlocked
section between MILH(517)/MILR(518) instruction and the next MILC(519).

Note Bits and words in all other instructions including TTIM(087), TTIMX(555),
MTIM(543), MTIMX(554), SET, RSET, CNT, CNTX(546), CNTR(012),
CNTRX(548), SFT, and KEEP(011) retain their previous status.

The MILH(517)/MILR(518) instruction turns OFF the Interlock Status Bit
(operand D) when the interlock is in engaged and turns ON the bit when the
interlock is not engaged. Consequently, the Interlock Status Bit can be moni-
tored to check whether or not the interlock for a given interlock number is
engaged.

Nesting

Interlocks are nested when an interlocked program section (MILH(517)/
MILR(518) and MILC(519) combination) is placed within another interlocked
program section (MILH(517)/MILR(518) and MILC(519) combination). Inter-
locks can be nested up to 16 levels.

Nesting can be used for the following kinds of applications.

Instruction Treatment

Bits specified in OUT, OUT NOT, or OUTB(534) OFF

TIM, TIMX(550), TIMH(015),
TIMHX(551), TMHH(540),
TMHHX(552), TIML(542), and
TIMXL(553)

Completion Flag OFF (reset)

PV Time set value (reset)

Bits/words specified in all other instructions (See note.) Retain previous status.

MILH

n

d

MILC

n

Input condition

Interlocked program
section

Input condition ON
(Normal operation) Input condition OFF

Normal
operation
Interlock
Status Bit
(d) ON

Outputs interlocked.
(Outputs OFF,
timers reset, etc.)
Interlock Status Bit
(d) OFF
142

Sequence Control Instructions Section 3-4
• Example 1

Interlocking the entire program with one condition and interlocking a part
of the program with another condition (1 nesting level)

• A1 and A2 are interlocked when the Emergency Stop Button is ON.

• A2 is interlocked when Conveyor RUN is OFF.

• Example 2

Interlocking the entire program with one condition and interlocking two
overlapping parts of the program with other conditions (2 nesting levels)

• A1, A2, and A3 are interlocked when the Emergency Stop Button is
ON.

• A2 and A3 are interlocked when Conveyor RUN is OFF.

Global interlock
(Emergency stop)

A1 (Peripheral processing)

Partial interlock
(Conveyor RUN)

A2 (Conveyor operation)

MILH

0

MILC

1

MILC

0

MILH

1

Global interlock
(Emergency stop)

Partial interlock
(Conveyor RUN)

A1 (Peripheral processing)

A2 (Conveyor operation)

When the Emergency Stop is ON (input
condition OFF), both A1 and A2 are
interlocked.
When the Emergency Stop is OFF (input
condition ON), A1 is executed normally
and A2 is controlled by the Conveyor
RUN switch as described below.

When the Conveyor RUN switch is OFF
(input condition OFF), A2 is interlocked.
When the Conveyor RUN switch is ON
(input condition ON), A2 is executed
normally.

Global interlock
(Emergency stop)

A1 (Peripheral processing)

Partial interlock
(Conveyor RUN)

A2 (Conveyor operation)

Partial interlock
(Arm RUN)

A3 (Arm operation)
143

Sequence Control Instructions Section 3-4
• A3 is interlocked when Arm RUN is OFF.

Differences between MILH(517) and MILR(518)

Differentiated instructions (DIFU(013), DIFD(014), or instructions with a @ or
% prefix) operate differently in interlocks created with MILH(517) and
MILR(518).

When a program section is interlocked with MILR(518), a differentiated
instruction will not be executed when the interlock is cleared even if the differ-
entiation condition was activated during the interlock (comparing the status of
the execution condition when the interlock started to its status when the inter-
lock was cleared).

When a program section is interlocked with MILH(517), a differentiated
instruction will be executed when the interlock is cleared if the differentiation
condition was activated during the interlock (comparing the status of the exe-
cution condition when the interlock started to its status when the interlock was
cleared).

MILH

0

MILC

2

MILC

1

MILC

0

MILH

1

MILH

2

Global interlock
(Emergency stop)

Partial interlock
(Conveyor RUN)

A1 (Peripheral processing)

A2 (Conveyor operation)

Partial interlock
(Arm RUN)

A3 (Arm operation)

When the Emergency Stop is ON (input
condition OFF), A1, A2, and A3 are
interlocked.
When the Emergency Stop is OFF (input
condition ON), A1 is executed normally and A2
and A3 are controlled by the Conveyor RUN
and Arm RUN switches as described below.

When the Conveyor RUN switch is OFF (input
condition OFF), both A2 and A3 are interlocked.
When the Conveyor RUN switch is ON (input
condition ON), A2 is executed normally and A3 is
controlled by the Arm RUN switch as described
below.

When the Arm RUN switch is OFF (input
condition OFF), A3 is interlocked.
When the Arm RUN switch is ON (input
condition ON), A3 is executed normally.
144

Sequence Control Instructions Section 3-4
• Operation of Differentiated Instructions in an MILH(517) Interlock

If there is a differentiated instruction (DIFU, DIFD, or instruction with a @
or % prefix) between MILH(517) and the corresponding MILC(519), that in-
struction will be executed after the interlock is cleared if the differentiation
condition of the instruction was established. (The system compares the ex-
ecution condition’s status when the interlock started to its status when the
interlock was cleared.)

In the same way, a differentiated instruction will be executed if its execution
condition is established at the same time that the interlock is started or
cleared.

Many other conditions in the program may cause the differentiation condi-
tion to be reset even if it was established during the interlock. In this case,
the differentiation instruction will not be executed when the interlock is
cleared.

• Example
When a DIFFERENTIATE UP (DIFU(013)) instruction is being used
and the input condition is OFF when the interlock starts and ON when
the interlock is cleared, DIFU(013) will be executed when the interlock
is cleared. (Differentiated instructions operate the same in the
MILH(517) interlock as they would in an IL(002) interlock.)

Instruction Operation of Differentiated Instructions

MILH(517)
MULTI-INTERLOCK DIFFER-
ENTIATION HOLD

A differentiated instruction (DIFU, DIFD, or
instruction with a @ or % prefix) will be exe-
cuted after the interlock is cleared if the differ-
entiation condition of the instruction was
established while the instruction was inter-
locked. (The status of the execution condition
when the interlock started is compared to its
status when the interlock was cleared.)

MILR(518)
MULTI-INTERLOCK DIFFER-
ENTIATION RELEASE

A differentiated instruction (DIFU, DIFD, or
instruction with a @ or % prefix) will not be
executed after the interlock is cleared even if
the differentiation condition of the instruction
was established while the instruction was inter-
locked.

MILH

0

MILC

0

DIFU

100.00

0.00

0.01

1. When CIO 0.00 is OFF (interlock starts), the DIFU's CIO 0.01 input condition is OFF.
2. The DIFU's CIO 0.01 input condition goes from OFF to ON while CIO 0.00 is OFF (DIFU interlocked),
3. When CIO 0.00 goes from OFF to ON (interlock cleared), DIFU is executed if CIO 0.01 is still ON.
145

Sequence Control Instructions Section 3-4

ON.
Timing Chart

• Operation of Differentiated Instructions in an MILR(518) Interlock

If there is a differentiated instruction (DIFU, DIFD, or instruction with a @
or % prefix) between MILR(518) and the corresponding MILC(519), that in-
struction will not be executed after the interlock is cleared even if the dif-
ferentiation condition of the instruction was established. (The system
compares the execution condition’s status in the cycle when the interlock
started to its status in the cycle when the interlock was cleared.)

In the same way, a differentiated instruction will not be executed if its exe-
cution condition is established at the same time that the interlock is started
or cleared.

• Example
When a DIFFERENTIATE UP (DIFU(013)) instruction is being used
and the input condition is OFF when the interlock starts and ON when
the interlock is cleared, DIFU(013) will not be executed when the in-
terlock is cleared.

ON
0.00

0.01

100.00

OFF

OFF

ON
ON

OFF

ON

OFF

1 cycle

DIFU(013) is executed.
MILH(517) interlock

Not interlocked Interlocked Not interlocked

Status (OFF) at
start of interlock Differentiation condition established

Status (ON) when
interlock is cleared

MILR

0

MILC

0

DIFU

100.00

0.00

0.01

1. When CIO 0.00 is OFF (interlock starts), the DIFU's CIO 0.01 input condition is OFF.

2. The DIFU's CIO 0.01 input condition goes from OFF to ON while CIO 0.00 is OFF (DIFU interlocked),

3. When CIO 0.00 goes from OFF to ON (interlock cleared), DIFU is not executed even though CIO 0.01 is still
146

Sequence Control Instructions Section 3-4
Timing Chart

Controlling Interlock Status from the CX-Programmer

An interlock can be engaged or released manually by force-resetting or force-
setting the Interlock Status Bit (specified with operand D of MILH(517) and
MILR(518)) from the CX-Programmer. The forced status of the Interlock Sta-
tus Bit has priority and overrides the interlock status calculated by program
execution.

Force-set: Releases the interlock.

Force-reset: Engages the interlock.

Note Program operation can be switched more efficiently by using interlocks with
MILH(517) or MILR(518).

ON
0.00

0.01

100.00

OFF

OFF

ON
ON

OFF

ON

OFF

DIFU(013) is not executed.
MILR(518) interlock

Not interlocked Interlocked Not interlocked

MILC

n

OFF

MILH

n

100.00

If CIO 100.00 is force-set (ON), the interlock is released.

CIO 100.00 is OFF when the interlock is engaged.

Program section
controlled by interlock

MILC

n

ON

MILH

n

100.00

If CIO 100.00 is force-reset (OFF), the interlock is engaged.

CIO 100.00 is ON when the interlock is not engaged.

Program section
controlled by interlock
147

Sequence Control Instructions Section 3-4
Instead of switching processing with compound conditions, insert an
MILH(517) or MILR(518) instruction before each process and an MILC(519)
instruction after each process.

Unlike the IL(002) interlocks, MILH(517) and MILR(518) interlocks can be
nested, so the operation of similar programs will be different if MILH(517) or
MILR(518) is used instead of ILC(002).

Program with MILH(517)/MILC(519) Interlocks

Execution condition Program section

a b A1 A2 A3

OFF ON Interlocked Interlocked Not interlocked

OFF

ON OFF Not interlocked Interlocked Not interlocked

ON ON Not interlocked Not interlocked Not interlocked

a

b

a

MILH

0

MILC

1

MILC

0

A1

A1

b

MILH

1

A2

A2

a

b

MILH

0

100.00

MILC

1

MILC

0

A1

MILH

1

100.01

A2

A3
148

Sequence Control Instructions Section 3-4
Program with IL(002)/ILC(003) Interlocks

If there are bits which you want to remain ON in a program section interlocked
by MILH(517) or MILR(518), set these bits to ON with SET just before the
MILH(517) or MILR(518) instruction.

Flags

Precautions The cycle time is not shortened when a section of the program is interlocked
by MILH(517) or MILR(518) because the interlocked instructions are executed
internally.

Execution condition Program section

a b A1 A2 A3

OFF ON Interlocked Interlocked Not interlocked

(Not controlled by
the IL(002)/
ILC(003) interlock.)

OFF

ON OFF Not interlocked Interlocked

ON ON Not interlocked Not interlocked

a

b

IL

ILC

ILC

A1

IL

A2

A3
This program section is not
controlled by the interlock.

This ILC(003)
instruction is ignored
so ...

Name Label Operation

Error Flag ER OFF
149

Sequence Control Instructions Section 3-4
When nesting interlocks, assign interlock numbers so that the nested program
section does not exceed the outer program section.

Other instructions can be input between the MILC(519) instructions, as shown
in the following diagram.

Execution condition Program section

a b A1 A2 A3

OFF ON Interlocked Interlocked Not interlocked

OFF

ON OFF Not interlocked Interlocked Interlocked

ON Not interlocked Not interlocked Not interlocked

a

b

MILH

0

MILC

0

MILC

1

A1

MILH

1

A2

A3

The nested program section
must not go beyond the outer
program section.

a

b

MILH

0

100.00

MILC

1

MILC

0

A1

MILH

1

100.01

A2

A3

Other instructions can be inserted between
two MILC(519) instructions. In this case,
sections A1 and A3 operate together. (They
are interlocked when "a" is OFF, regardless
of the ON/OFF status of "b".)
150

Sequence Control Instructions Section 3-4
If there is an ILC(003) instruction between an MILH(517) and MILC(519) pair,
the program section between MILH(517) and ILC(003) will be interlocked.

If there is an ILC(003) instruction between an MILR(518) and MILC(519) pair,
the ILC(003) instruction will be ignored and the full program section between
MILR(518) and MILC(519) will be interlocked.

If there is another MILH(517) or MILR(518) instruction with the same interlock
number between an MILH(517) and MILC(519) pair and the first MILH(517)
instruction’s interlock is engaged, the second MILH(517)/MILR(518) will not
operate.

a

MILH

0

MILC

0

A1

ILC

A2

The MILC(519) instruction is ignored.

When input condition "a" is OFF, only
program section A1 is interlocked.

If there is an ILC(003) instruction,
the interlock is cleared at that point.

a

MILR

0

MILC

0

A1

ILC

A2

The ILC(003) instruction is ignored.

When input condition "a" is OFF, program
sections A1 and A2 are interlocked.
151

Sequence Control Instructions Section 3-4
If there is another MILH(517) or MILR(518) instruction with the same interlock
number between an MILH(517) and MILC(519) pair and the first MILH(517)
instruction’s interlock is not engaged, the second MILH(517)/MILR(518) will
operate normally.

Note The MILR(518) interlocks operate in the same way if there is another
MILH(517) or MILR(518) instruction with the same interlock number between
an MILR(518) and MILC(519) pair.

If there is an MILC(519) instruction with a different interlock number between
an MILH(517)/MILR(518) and MILC(519) pair, that MILC(519) instruction will
be ignored.

If there is an MILH(517) instruction between an IL(002) and ILC(003) pair and
the IL(002) interlock is engaged, the MILH(517) instruction has no effect. In
this case, the program section between IL(002) and ILC(003) will be inter-
locked.

a

MILH

0

MILC

0

A1

b

MILH

0

A2

When input condition "a" is OFF, program
sections A1 and A2 are both interlocked,
even if input condition "b" is ON.

When input condition "a" is ON and "b"
is OFF, only program section A2 is
interlocked.

a

MILH

0

MILC

0

A1

MILC

1

A2

This MILC(519) instruction is ignored.

When input condition "a" is OFF, program
sections A1 and A2 are both interlocked.
152

Sequence Control Instructions Section 3-4
If the IL(002) interlock is not engaged and the MILH(517) instruction’s execu-
tion condition (b in this case) is OFF, the program section between MILH(517)
and ILC(003) will be interlocked.

If there is an MILC(519) instruction between an IL(002) and ILC(003) pair, that
MILC(519) instruction will be ignored and the entire program section between
IL(002) and ILC(003) will be interlocked.

a

b

IL

ILC

A1

MILH

0

A2

When input condition "a" is OFF, program
sections A1 and A2 are both interlocked.

If the program section is not interlocked
by IL(002) and "b" is OFF, program
section A2 is interlocked.

a

IL

ILC

A1

MILC

0

A2

The MILC(519) instruction is ignored.

When input condition "a" is OFF, program
sections A1 and A2 are both interlocked.
153

Sequence Control Instructions Section 3-4
Examples When W0.00 and W0.01 are both ON, the instructions between MILH(517)
with interlock number 0 and MILC(519) with interlock number 0 are executed
normally.

When W0.00 is OFF, the instructions between MILH(517) with interlock num-
ber 0 and MILC(519) with interlock number 0 are interlocked.

When W0.00 is ON and W0.01 are OFF, the instructions between MILH(517)
with interlock number 1 and MILC(519) with interlock number 1 are inter-
locked. The other instructions are executed normally.

3-4-6 JUMP and JUMP END: JMP(004) and JME(005)
Purpose When the execution condition for JMP(004) is OFF, program execution jumps

directly to the first JME(005) in the program with the same jump number.
JMP(004) and JME(005) are used in pairs.

Ladder Symbols

W0.00

0.01

0.02

200.00

H0.00

OFF

OFF

W0.00 OFF

MILH

0

100.00

W0.01
MILH

1

100.01

CNT

1

#10

SET

110.03

MILC

1

MILC

0

W0.00 and W0.01
both ON

W0.00 ON and W0.01
OFF

Executed
normally.

Executed
normally.

Outputs
interlocked. Outputs

interlocked.
Held

Held
Executed
normally.

JMP(004)

N

JME(005)

N

N: Jump number

N: Jump number
154

Sequence Control Instructions Section 3-4
Variations

Applicable Program Areas

Operands N: Jump Number

The jump number must be 0000 to 00FF (&0 to &255 decimal).

Operand Specifications

Variations Jumps when OFF/Does Not Jump when ON JMP(004)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition JME(005)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK Not allowed OK OK

Area N

JMP(004) JME(005)

CIO Area CIO 0 to CIO 6143 ---

Work Area W0 to W511 ---

Holding Bit Area H0 to H511 ---

Auxiliary Bit Area A0 to A959 ---

Timer Area T0000 to T4095 ---

Counter Area C0000 to C4095 ---

DM Area D0 to D32767 ---

Indirect DM addresses in
binary

@ D0 to @ D32767 ---

Indirect DM addresses in
BCD

*D0 to *D32767 ---

Constants #0000 to #00FF (binary) or
&0 to &255

#0000 to #00FF (binary) or
&0 to &255

Data Registers DR0 to DR15 ---

Index Registers --- ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to
–2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

155

Sequence Control Instructions Section 3-4
Description When the execution condition for JMP(004) is ON, no jump is made and the
program is executed consecutively as written.

When the execution condition for JMP(004) is OFF, program execution jumps
directly to the first JME(005) in the program with the same jump number. The
instructions between JMP(004) and JME(005) are not executed, so the status
of outputs between JMP(004) and JME(005) is maintained. In block programs,
the instructions between JMP(004) and JME(005) are skipped regardless of
the status of the execution condition.

Because all of instructions between JMP(004) and JME(005) are skipped
when the execution condition for JMP(004) is OFF, the cycle time is reduced
by the total execution time of the skipped instructions. In contrast, NOP(000)
processing is performed for instructions between JMP0(515) and JME0(516),
so the cycle time is not reduced as much with those jump instructions.

The following table compares the various jump instructions.

Flags (JMP)

Precautions All of the outputs (bits and words) in jumped instructions retain their previous
status. Operating timers (TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), and TMHHX(552)) continue timing because the PVs are updated
even when the timer instruction is not being executed.

When there are two or more JME(005) instructions with the same jump num-
ber, only the instruction with the lower address will be valid. The JME(005)
with the higher program address will be ignored.

Instructions in this section are not
executed and output status is
maintained. The instruction execution
time for these instructions is eliminated.

Instructions
jumped

Execution condition

Instructions
executed

Item JMP(004)
JME(005)

CJP(510)
JME(005)

CJPN(511)
JME(005)

JMP0(515)
JME0(516)

Execution condition for jump OFF ON OFF OFF

Number allowed 256 total No limit

Instruction processing when jumped Not executed. NOP(000) processing

Instruction execution time when
jumped

None Same as NOP(000)
instructions

Status of outputs (bits and words)
when jumped

Bits and words maintain their previous status.

Status of operating timers when
jumped

Operating timers continue timing.

Processing in block programs Always jump. Jump when ON. Jump when OFF. Not allowed.

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0 to 255 (0000
to 00FF hex).

ON if there is a JMP(004) in the program without a
JME(005) with the same jump number.
ON if there is a JMP(004) in the task without a JME(005)
with the same jump number in the task.
OFF in all other cases.
156

Sequence Control Instructions Section 3-4
When JME(005) precedes JMP(004) in the program, the instructions between
JME(005) and JMP(004) will be executed repeatedly as long as the execution
condition for JMP(004) is OFF. A Cycle Time Too Long error will occur if the
execution condition is not turned ON or END(001) is not executed within the
maximum cycle time.

In block programs, the instructions between JMP(004) and JME(005) are
always skipped regardless of the status of the execution condition for
JMP(004).

JMP(004) and JME(005) pairs must be in the same task because jumps
between tasks are not allowed. An error will occur if a JME(005) instruction is
not programmed in the same task as its corresponding JMP(004) instruction.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between JMP(004) and JME(005). When DIFU(013), DIFD(014), or
a differentiated instruction is executed in an jumped section immediately after
the execution condition for the JMP(004) has gone ON, the execution condi-
tion for the DIFU(013), DIFD(014), or differentiated instruction will be com-
pared to the execution condition that existed before the jump became effective
(i.e., before the execution condition for JMP(004) went OFF).

Program section A is executed
repeatedly as long as
execution condition a is OFF.

JMP &1

JME &1
to

Block program section
157

Sequence Control Instructions Section 3-4
Examples Basic Operation

When CIO 0.00 is OFF in the following example, the instructions between
JMP(004) and JME(005) are not executed and the outputs maintain their pre-
vious status.
When CIO 0.00 is ON in the following example, the instructions between
JMP(004) and JME(005) are executed normally.

3-4-7 CONDITIONAL JUMP: CJP(510)/CJPN(511)
Purpose The operation of CJP(510) is the basically the opposite of JMP(004). When

the execution condition for CJP(510) is ON, program execution jumps directly
to the first JME(005) in the program with the same jump number. CJP(510)
and JME(005) are used in pairs.

The operation of CJPN(511) is almost identical to JMP(004). When the execu-
tion condition for CJP(004) is OFF, program execution jumps directly to the
first JME(005) in the program with the same jump number. CJPN(511) and
JME(005) are used in pairs.

&1

CIO 0.00
ON

CIO 0.00
OFF&1

0.00

Normal
execution

Instructions
not executed.
(Outputs re-
main un-
changed.)
158

Sequence Control Instructions Section 3-4
Ladder Symbols

Variations

Applicable Program Areas

Operands N: Jump Number

The jump number must be 0000 to 00FF (0 to 255 decimal).

Operand Specifications

Description The operation of CJP(510) and CJPN(511) differs only in the execution condi-
tion. CJP(510) jumps to the first JME(005) when the execution condition is ON
and CJPN(511) jumps to the first JME(005) when the execution condition is
OFF.

CJP(510)

N

CJPN(511)

N

N: Jump number

N: Jump number

Variations Jumps when ON/Does Not Jump when OFF CJP(510)

Immediate Refreshing Specification Not supported

Variations Jumps when OFF/Does Not Jump when ON CJPN(511)

Immediate Refreshing Specification Not supported

Variations Executed Each Cycle for ON Condition JME(005)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK Not allowed OK OK

Area N

CJP(510) CJPN(511) JME(005)

CIO Area CIO 0 to CIO 6143 ---

Work Area W0 to W511 ---

Holding Bit Area H0 to H511 ---

Auxiliary Bit Area A0 to A959 ---

Timer Area T0000 to T4095 ---

Counter Area C0000 to C4095 ---

DM Area D0 to D32767 ---

Indirect DM
addresses in binary

@ D0 to @ D32767 ---

Indirect DM
addresses in BCD

*D0 to *D32767 ---

Constants #0000 to #00FF (binary) or &0 to &255 #0000 to #00FF
(binary) or &0 to
&255

Data Registers DR0 to DR15 ---

Index Registers --- ---

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047,
IR15

DR0 to DR15, IR0 to IR15

159

Sequence Control Instructions Section 3-4
Because the jumped instructions are not executed, the cycle time is reduced
by the total execution time of the jumped instructions.

Operation of CJP(510)

When the execution condition for CJP(510) is OFF, no jump is made and the
program is executed consecutively as written.

When the execution condition for CJP(510) is ON, program execution jumps
directly to the first JME(005) in the program with the same jump number.

Operation of CJPN(511)

When the execution condition for CJPN(511) is ON, no jump is made and the
program is executed consecutively as written.

When the execution condition for CJPN(511) is OFF, program execution
jumps directly to the first JME(005) in the program with the same jump num-
ber.

Flags The following table shows the flags affected by CJP(510) and CJPN(511).

Precautions All of the outputs (bits and words) in jumped instructions retain their previous
status. Operating timers (TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), and TMHHX(552)) continue timing be-cause the PVs are
updated even when the timer instruction is not being executed.

When there are two or more JME(005) instructions with the same jump num-
ber, only the instruction with the lower address will be valid. The JME(005)
with the higher program address will be ignored.

Instructions in this section are not
executed and output status is
maintained. The instruction execution
time for these instructions is eliminated.

Instructions
jumped

Execution
condition ON

Execution
condition OFF

Instructions
executed

Execution
condition ON

Execution
condition OFF

Instructions
jumped

Instructions in this section are not
executed and output status is
maintained. The instruction execution
time for these instructions is eliminated.

Instructions
executed

Name Label Operation

Error Flag ER ON if there is not a JME(005) with the same jump number
as CJP(510) or CJPN(511).
ON if N is not within the specified range of 0 to 255 (0000
to 00FF hex).

ON if there is a CJP(510) or CJPN(511) instruction in a
task without a JME(005) with the same jump number.
OFF in all other cases.
160

Sequence Control Instructions Section 3-4
When JME(005) precedes the CJP(510) or CJPN(511) instruction in the pro-
gram, the instructions in-between will be executed repeatedly as long as the
execution condition remains OFF (CJP(510)) or ON (CJPN(511)). A Cycle
Time Too Long error will occur if the jump is not completed by changing the
execution condition executing END(001) within the maximum cycle time.

The CJP(510) or CJPN(511) instructions will operate normally in block pro-
grams.

When the execution condition for the CJP(510) is ON or the execution condi-
tion for CJPN(511) is OFF, program execution will jump directly to the JME
instruction without executing instructions between CJP(510)/CJPN(511) and
JME. No execution time will be required for these instructions and the cycle
time will thus be reduced.

When the execution condition for the JMP0 is OFF, NOP processing is exe-
cuted between the JMP0 and JME0, requiring execution time. Therefore, the
cycle time will not be reduced.

When a CJP(510) or CJPN(511) instruction is programmed in a task, there
must be a JME(005) with the same jump number because jumps between
tasks are not allowed. An error will occur if a corresponding JME(005) instruc-
tion is not programmed in the same task.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed in a jumped program section. When DIFU(013), DIFD(014), or a dif-
ferentiated instruction is executed in an jumped section immediately after the
execution condition for the CJP(510) has gone OFF (ON for CJPN(511)), the
execution condition for the DIFU(013), DIFD(014), or differentiated instruction
will be compared to the execution condition that existed before the jump
became effective.
161

Sequence Control Instructions Section 3-4
Example When CIO 0.00 is ON in the following example, the instructions between
CJP(510) and JME(005) are not executed and the outputs maintain their pre-
vious status.
When CIO 0.00 is OFF in the following example, the instructions between
CJP(510) and JME(005) are executed normally.

Note For CJPN(511), the ON/OFF status of CIO 0.00 would be reversed.

3-4-8 MULTIPLE JUMP and JUMP END: JMP0(515) and JME0(516)
Purpose When the execution condition for JMP0(515) is OFF, all instructions from

JMP0(515) to the next JME0(516) in the program are processed as
NOP(000). Use JMP0(515) and JME0(516) in pairs. There is no limit on the
number of pairs that can be used in the program.

Ladder Symbols

Variations

CIO 0.00
OFF

CIO 0.00
ON&1

&1

0.00

Normal
execution

Instructions
not
executed.
(Outputs
remain un-
changed.)

JMP0(515)

JME0(516)

Variations Jumps when OFF/Does Not Jump when ON JMP0(515)

Immediate Refreshing Specification Not supported
162

Sequence Control Instructions Section 3-4
Applicable Program Areas

Description When the execution condition for JMP0(515) is ON, no jump is made and the
program executed consecutively as written.

When the execution condition for JMP0(515) is OFF, all instructions from
JMP0(515) to the next JME0(516) in the program are processed as
NOP(000). Unlike JMP(004), CJP(510), and CJPN(511), JMP0(515) does not
use jump numbers, so these instructions can be placed anywhere in the pro-
gram.

Unlike JMP(004), CJP(510), and CJPN(511) which jump directly to the first
JME(005) instruction in the program, all of the instructions between
JMP0(515) and JME0(516) are executed as NOP(000). The execution time of
the jumped instructions will be reduced, but not eliminated. The jumped
instructions themselves are not executed and their outputs (bits and words)
maintain their previous status.

Precautions Multiple pairs of JMP0(515) and JME0(516) instructions can be used in the
program, but the pairs cannot be nested.

JMP0(515) and JME0(516) cannot be used in block programs.

JMP0(515) and JME0(516) pairs must be in the same tasks because jumps
between tasks are not allowed.

The operation of DIFU(013), DIFD(014), and differentiated instructions is not
dependent solely on the status of the execution condition when they are pro-
grammed between JMP0(515) and JME0(516). When DIFU(013), DIFD(014),
or a differentiated instruction is executed in an jumped section immediately
after the execution condition for the JMP0(515) has gone ON, the execution
condition for the DIFU(013), DIFD(014), or differentiated instruction will be
compared to the execution condition that existed before the jump became
effective (i.e., before the execution condition for JMP0(515) went OFF).

Variations Executed Each Cycle for ON Condition JME0(516)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK

Instructions
executed

Instructions
executed

Execution
condition b ON Execution

condition b OFF

Instructions
jumped

Jumped instructions are processed as
NOP(000). Instruction execution times
are the same as NOP(000).

Instructions
jumped

Execution
condition a ON

Execution
condition a OFF
163

Sequence Control Instructions Section 3-4
Example When CIO 0.00 is OFF in the following example, the instructions between
JMP0(515) and JME0(516) are processed as NOP(000) instructions and the
outputs maintain their previous status.
When CIO 0.00 is ON in the following example, the instructions between
JMP0(515) and JME0(516) are executed normally.

3-4-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513)
Purpose The instructions between FOR(512) and NEXT(513) are repeated a specified

number of times. FOR(512) and NEXT(513) are used in pairs.

Ladder Symbols

Variations

CIO 0.00
ON

CIO 0.00
OFF

0.00

Instructions
processed
as
NOP(000).
(Outputs re-
main un-
changed.)

Normal
execution

FOR(512)

N

NEXT(513)

N: Number of loops

Variations Executed Each Cycle for ON Condition FOR(512)

Executed Each Cycle for ON Condition NEXT(513)

Immediate Refreshing Specification Not supported
164

Sequence Control Instructions Section 3-4
Applicable Program Areas

Operands N: Number of Loops

The number of loops must be 0000 to FFFF (0 to 65,535 decimal).

Operand Specifications

Description The instructions between FOR(512) and NEXT(513) are executed N times
and then program execution continues with the instruction after NEXT(513).
The BREAK(514) instruction can be used to cancel the loop.

If N is set to 0, the instructions between FOR(512) and NEXT(513) are pro-
cessed as NOP(000) instructions.

Loops can be used to process tables of data with a minimum amount of pro-
gramming.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) or &0 to &65,535

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, –(– –) IR15

Repeated N times

Repeated program section
165

Sequence Control Instructions Section 3-4
FOR-NEXT loops can be nested up to 15 levels. In the example below, pro-
gram sections A, B, and C are executed as follows:
A → B → B → C, A → B → B → C, and A → B → B → C

Use BREAK(514) to escape from a FOR-NEXT loop. Several BREAK(514)
instructions (the number of levels nested) are required to escape from nested
loops. The remaining instructions in the loop after BREAK(514) are processed
as NOP(000) instructions.

Alternative Looping Methods

There are two ways to repeat a program section until a given execution condi-
tion is input.

1,2,3... 1. FOR-NEXT Loop with BREAK

Start a FOR-NEXT loop with a maximum of N repetitions. Program
BREAK(514) within the loop with the desired execution condition. The loop
will end before N repetitions if the execution condition is input.

&3

&2

1 2

&3

&2

&3

Breaks FOR-NEXT loop 2.

Breaks FOR-NEXT loop 1.

Escapes from
loop when
condition a is
ON.
Remaining
instructions are
processed as
NOP(000).
166

Sequence Control Instructions Section 3-4
2. JME(005)-JMP(004) Loop

Program a loop with JME(005) before JMP(004). The instructions between
JME(005) and JMP(004) will be executed repeatedly as long as the execu-
tion condition for JMP(004) is OFF. (A Cycle Time Too Long error will occur
if the execution condition is not turned ON or END(001) is not executed
within the maximum cycle time.)

Flags

Precautions Program FOR(512) and NEXT(513) in the same task. Execution will not be
repeated if these instructions are not in the same task.

A jump instruction such as JMP(004) may be executed within a FOR-NEXT
loop, but do not jump beyond the FOR-NEXT loop.

The following instructions cannot be used within FOR-NEXT loops:

• Block programming instructions

• MULTIPLE JUMP and JUMP END: JMP(515) and JME(516)

• STEP DEFINE and STEP START: STEP(008)/SNXT(009)

Note If a loop repeats in one cycle and a differentiated bit is used in the FOR-NEXT
loop, that bit will be always ON or always OFF within that loop.

Example In the following example, the looped program section transfers the content of
D100 to the address indicated in D200 and then increments the content of
D200 by 1.

3-4-10 BREAK LOOP: BREAK(514)
Purpose Programmed in a FOR-NEXT loop to cancel the execution of the loop for a

given execution condition. The remaining instructions in the loop are pro-
cessed as NOP(000) instructions.

Ladder Symbol

Name Label Operation

Error Flag ER ON if more than 15 loops are nested.

OFF in all other cases.

Equals Flag = OFF

Negative Flag N OFF

#0000

 D200

@D200
D100

&3

D100

D200

D0

D1

D2

Repeated 3 times.

BREAK(514)
167

Sequence Control Instructions Section 3-4
Variations

Applicable Program Areas

Description Program BREAK(514) between FOR(512) and NEXT(513) to cancel the
FOR-NEXT loop when BREAK(514) is executed. When BREAK(514) is exe-
cuted, the rest of the instructions up to NEXT(513) are processed as
NOP(000).

Flags

Precautions A BREAK(514) instruction cancels only one loop, so several BREAK(514)
instructions (the number of levels nested) are required to escape from nested
loops.

BREAK(514) can be used only in a FOR-NEXT loop.

Variations Executed Each Cycle for ON Condition BREAK(514)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

N repetitions
Condition a ON

Processed as NOP(000).

Repetitions
forced to end.

Name Label Operation

Error Flag ER OFF

Equals Flag = OFF

Negative Flag N OFF
168

Timer and Counter Instructions Section 3-5
3-5 Timer and Counter Instructions
This section describes instructions used to define and handle timers and
counters.

Refresh Methods for Timer/Counter PV

■ Overview

The refresh method for present values timer and counter instructions can be
set to either BCD or binary for CP-series CPU Units.

Using binary data instead of BCD allows the SV range for timers and counter
to be increased from 0 to 9999 to 0 to 65535. It also enables using binary data
calculated with other instructions directly as a timer/counter SV. The refresh
method is valid even when setting an SV indirectly (i.e., using the contents of
memory word). (That is, the contents of the addressed word is taken as either
BCD or binary data according to the refresh method that is set.)

Refer to the CP Series CP1H Operation Manual for details on refresh meth-
ods.

■ Applicable Instructions

Instruction Mnemonic Function code Page

TIMER TIM/TIMX ---/550 171

HIGH-SPEED TIMER TIMH/TIMHX 015/551 175

ONE-MS TIMER TMHH/TIMHHX 540/552 179

ACCUMULATIVE TIMER TTIM/TTIMX 087/555 182

LONG TIMER TIML/TIMLX 542/553 185

MULTI-OUTPUT TIMER MTIM/MTIMX 543/554 188

COUNTER CNT/CNTX ---/546 194

REVERSIBLE COUNTER CNTR/CNTRX 012/548 197

RESET TIMER/COUNTER CNR/CNRX 545/547 201

Classification Instruction Mnemonic

BCD Binary

Timer/counter
instructions

TIMER TIM TIMX(550)

HIGH-SPEED TIMER TIMH(015) TIMHX(551)

ONE-MS TIMER TMHH(540) TMHHX(552)

ACCUMULATIVE TIMER TTIM(087) TTIMX(555)

LONG TIMER TIML(542) TIMLX(553)

MULTI-OUTPUT TIMER MTIM(543) MTIMX(554)

COUNTER CNT CNTX(546)

REVERSIBLE COUNTER CNTR(012) CNTRX(548)

RESET TIMER/COUNTER CNR(545) CNRX(547)

Block programming
instructions

TIMER WAIT TIMW(813) TIMWX(816)

HIGH-SPEED TIMER WAIT TMHW(815) TMHWX(817)

COUNTER WAIT CNTW(814) CNTWX(818)
169

Timer and Counter Instructions Section 3-5
Basic Timer
Specifications

The following table shows the basic specifications of the timers.

Note (1) TIM PVs are refreshed at execution for all times and also every 100 ms
for T0000 to T0015.

(2) TIMH(015)/TIMHX(551) PVs are refreshed at execution for all times and
also every 10 ms for T0000 to T0015.

Timer Operation The following table shows the effects of operating and programming condi-
tions on the operation of the timers.

Item TIM/TIMX(550) TIMH(015)/
TIMHX(551)

TMHH(540)/
TMHHX(552)

TTIM(087)/
TTIMX(555)

TIML(542)/
TIMLX(553)

MTIM(543)/
MTIMX(554)

Timing
method

Decrementing Decrementing Decrementing Incrementing Decrementing Incrementing

Timing units 0.1 s 0.01 s 0.001 s 0.1 s 0.1 s 0.1 s

Max. SV TIM: 999.9 s
TIMX: 6,553.5
s

TIMH: 99.99 s
TIMHX:
655.35 s

TMHH: 9.999 s
TMHHX:
65.535 s

TTIM: 999.9 s
TTIMX:
6,553.5 s

TIML: 115 days
TIMLX:
49,710 days

MTIM: 999.9 s
MTIMX:
6,553.5 s

Outputs/
instruction

1 1 1 1 1 8

Timer num-
bers

Used Used Used Used Not used Not used

Comp. flag
refreshing

At execution At execution By interrupt
every 1 ms

At execution At execution At execution

Timer PV
refreshing

See note 1. See note 2. Every 1 ms At execution At execution At execution

Value
after
reset

Comp.
flags

OFF OFF OFF OFF OFF OFF

PVs SV SV SV 0 SV 0

Item TIM/
TIMX(550)

TIMH(015)/
TIMHX(551)

TMHH(540)/
TMHHX(552)

TTIM(087)/
TTIMX(555)

TIML(542)/
TIMLX(553)

MTIM(543)/
MTIMX(554)

Operating mode change PV = 0
Completion Flag = OFF

--- ---

Power interrupt/reset PV = 0
Completion Flag = OFF

--- ---

Execution of CNR(545)/
CNRX(547)

Binary: PV = FFFF, Completion Flag = OFF
BCD: PV = FFFF or 9999, Completion Flag = OFF

Not applicable Not applicable

Operation in jumped pro-
gram section
(JMP(004)-JME(005))

Operating timers continue timing. Timer status is maintained.

Operation in interlocked
program section
(IL(002)-ILC(003))

PV = SV
Completion Flag = OFF

Timer status
maintained.

PV = SV
Comp. flag =
OFF

Timer status
maintained.

Forced
set

Comp. flags ON --- ---

PVs Set to 0. --- ---

Forced
reset

Comp. flags OFF --- ---

PVs Reset to SV. Set to 0. --- ---
170

Timer and Counter Instructions Section 3-5
3-5-1 TIMER: TIM/TIMX(550)
Purpose TIM or TIMX(550) operates a decrementing timer with units of 0.1-s. The set-

ting range for the set value (SV) is 0 to 999.9 s for TIM and 0 to 6,553.5 s for
TIMX(550). The timer accuracy is 0 to 0.01 s.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 and 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).
(If the set value is set to #0000, the Completion Flag will be turned ON when
TIM/TIMX(550) is executed.)

Operand Specifications

PV
refresh
method

Symbol Operands

BCD N: 0000 to 4095 (decimal)

S: #0000 to #9999 (BCD)

Binary N: 00000 to 4095 (decimal)
S: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

TIM

N

S

N: Timer number

S: Set value

TIMX(550)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TIM/TIMX(550)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A959

Timer Area 0000 to 4095 (decimal) T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767
171

Timer and Counter Instructions Section 3-5
Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIM/TIMX(550) starts decrement-
ing the PV. The PV will continue timing down as long as the timer input
remains ON and the timer’s Completion Flag will be turned ON when the PV
reaches 0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

The following timing chart shows the behavior of the timer’s PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

Flags

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area N S

SV

Timer input

Timer PV

Completion
Flag

SV

Timer input

Timer PV

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.

ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged
172

Timer and Counter Instructions Section 3-5
Precautions Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Timers created with timer numbers 16 to 4095 will not operate properly when
the CPU Unit cycle time exceeds 100 ms. Use timer numbers 0 to 15 when
the cycle time is longer than 100 ms.

The present value of timers programmed with timer numbers 0 to 15 will be
updated even when the timer is on standby. The present value of timers pro-
grammed with timer numbers 16 to 4095 will be held when the timer is on
standby.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TIM/TIMX(550) is executed.

When TIM/TIMX(550) is in a program section between IL(002) and ILC(003)
and the program section is interlocked, the PV will be reset to the SV and the
Completion Flag will be turned OFF.

When an operating TIM/TIMX(550) timer created with a timer number
between 0 and 15 is in a jumped program section (JMP(004), CJMP(510),
CJPN(511), JME(005)), the timer’s PV will continue timing. The jumped TIM/
TIMX(550) instruction will not be executed, but the PV will be refreshed each
cycle after all tasks have been executed.

When a TIM/TIMX(550) timer is forced set, its Completion Flag will be turned
ON and its PV will be set to 0. When a TIM/TIMX(550) timer is forced reset, its
Completion Flag will be turned OFF and its PV will be reset to the SV.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode
or vice versa.1

0000 OFF

Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547),
the RESET TIMER/COUNTER
instructions3

BCD: 9999
Binary: FFFF

OFF

Operation in interlocked program sec-
tion
(IL(002)–ILC(003))

Reset to SV. OFF

Operation in jumped program section
(JMP(004)–JME(005))

PV continues decre-
menting.

Retains previous sta-
tus.
173

Timer and Counter Instructions Section 3-5
The timer’s Completion Flag is refreshed only when TIM/TIMX(550) is exe-
cuted, so a delay of up to one cycle may be required for the Completion Flag
to be turned ON after the timer times out.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TIM/TIMX(550) ↔ TIMH(015)/TIMHX(551) or
TIM/TIMX(550) ↔ TMHH(540)/TMHHX(552)), be sure to reset the Comple-
tion Flag. The timer will not operate properly unless the Completion Flag is
reset.

A TIM/TIMX(550) instruction’s PV and Completion Flag can be refreshed in
the following ways depending on the timer number that is used.

Timers Created with Timer Numbers 0000 to 2047

Timers Created with Timer Numbers T0016 to T4095

Timers are reset (PV = SV, Completion Flag OFF) by power interruptions
unless the IOM Hold Bit (A500.12) is ON and the bit is protected in the PLC
Setup. It is also possible use a clock pulse bit and a counter instruction to pro-
gram a timer that will retain its PV in the event of a power interruption, as
shown in the following diagram.

Execution of TIM/
TIMX(550)

The PV is updated every time that TIM/TIMX(550) is exe-
cuted.
The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

100-ms interval refreshing If the cycle time exceeds 100 ms, the timer’s PV is
updated every 100 ms.

Execution of TIM The PV is updated every time that TIM is executed.
The Completion Flag is turned ON if the PV is 0.
The Completion Flag is turned OFF if the PV is not 0.

Count input

Reset input

Execution
condition

1-s clock
pulse bit
174

Timer and Counter Instructions Section 3-5
Example When timer input CIO 0.00 goes from OFF to ON in the following example, the
timer PV will begin counting down from the SV. Timer Completion Flag T0000
will be turned ON when the PV reaches 0000.
When CIO 0.00 goes OFF, the timer PV will be reset to the SV and the Com-
pletion Flag will be turned OFF.

3-5-2 HIGH-SPEED TIMER: TIMH(015)/TIMHX(551)
Purpose TIMH(015)/TIMHX(551) operates a decrementing timer with units of 10-ms.

The setting range for the set value (SV) is 0 to 99.99 s for TIMH(015) and 0 to
655.35 s for TIMHX(551). The timer accuracy is 0 to 0.01 s.

Ladder Symbol

Variations

Applicable Program Areas

CIO 0.00

T0000

T0000

0.00

#100

Timer input

Timer PV

Timer
Completion
Flag

PV
refresh
method

Symbol Operands

BCD N: 0000 to 4095 (decimal)

S: #0000 to #9999 (BCD)

Binary N: 00000 to 4095 (decimal)
S: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

TIMH(015)

N

S

N: Timer number

S: Set value

TIMHX(551)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TIMH(015)/
TIMHX(551)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
175

Timer and Counter Instructions Section 3-5
Operands N: Timer Number

The timer number must be between 0000 and 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 in BCD mode.

Operand Specifications

Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIMH(015)/TIMHX(551) starts
decrementing the PV. The PV will continue timing down as long as the timer
input remains ON and the timer’s Completion Flag will be turned ON when the
PV reaches 0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A959

Timer Area 0000 to 4095 (decimal) T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15

SV

Timer input

Timer PV

Completion
Flag
176

Timer and Counter Instructions Section 3-5
The following timing chart shows the behavior of the timer’s PV and Comple-
tion Flag when the timer input is turned OFF before the timer times out.

Flags

Precautions Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Timers created with timer numbers 16 to 4095 will not operate properly when
the CPU Unit cycle time exceeds 100 ms. Use timer numbers 0 to 15 when
the cycle time is longer than 100 ms.

TIMH(015)/TIMHX(551) timers created with timer numbers 0 to 15 are
refreshed every 10 ms. Use these timer numbers when the PV is being refer-
enced in the user program.

The present value of timers programmed with timer numbers 0 to 15 will be
updated even when the timer is on standby. The present value of timers pro-
grammed with timer numbers 16 to 4095 will be held when the timer is on
standby.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

SV

Timer input

Timer PV

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode or
vice versa.1

0000 OFF

Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547), the
RESET TIMER/COUNTER instructions3

BCD: 9999
Binary: FFFF

OFF

Operation in interlocked program section
(IL(002)–ILC(003))

Reset to SV. OFF

Operation in jumped program section
(JMP(004)–JME(005))

PV continues
decrementing.

Retains previous status.
177

Timer and Counter Instructions Section 3-5
Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TIMH(015)/TIMHX(551) is executed.

When an operating TIMH(015)/TIMHX(551) timer created with a timer number
between 0 and 15 is in a jumped program section (JMP(004), CJMP(510),
CJPN(511), JME(005)), the timer’s PV will continue timing. (The jumped
TIMH(015)/TIMHX(551) instruction will not be executed, but the PV will be
refreshed every 10 ms and each cycle after all tasks have been executed.)

When TIMH(015)/TIMHX(551) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When a TIMH(015)/TIMHX(551) timer is forced set, its Completion Flag will
be turned ON and its PV will be set to 0. When a TIMH(015)/TIMHX(551)
timer is forced reset, its Completion Flag will be turned OFF and its PV will be
reset to the SV.

The operation of the = Flag and N Flag depends or the model of CPU Unit.
Refer to Flags for details.

The timer’s Completion Flag is refreshed only when TIMH(015)/TIMHX(551)
is executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TIMH(015)/TIMHX(551) ↔ TIM/TIMX(550) or
TIMH(015)/TIMHX(551) ↔ TMHH(540)/TMHHX(552)), be sure to reset the
Completion Flag. The timer will not operate properly unless the Completion
Flag is reset.

A TIMH(015)/TIMHX(551) instruction’s PV and Completion Flag can be
refreshed in the following ways depending on the timer number that is used.

Timers Created with Timer Numbers T0000 to T0015

Timers Created with Timer Numbers T0016 to T4095

Execution of
TIMH(015)/
TIMHX(551)

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

10-ms interval
refreshing

The timer’s PV is updated every 10 ms.

Execution of
TIMH(015)/
TIMHX(551)

The PV is updated every time that TIMH(015) is executed.
The Completion Flag is turned ON if the PV is 0.
The Completion Flag is turned OFF if the PV is not 0.
178

Timer and Counter Instructions Section 3-5
Example When timer input CIO 0.00 goes from OFF to ON in the following example, the
timer PV will begin counting down from the SV (#0064 = 100 = 1.00 s). The
Timer Completion Flag, T0000, will be turned ON when the PV reaches 0000.
When CIO 0.00 goes OFF, the timer PV will be reset to the SV and the Com-
pletion Flag will be turned OFF.

3-5-3 ONE-MS TIMER: TMHH(540)/TMHHX(552)
Purpose TMHH(540)/TMHHX(552) operates a decrementing timer with units of 1-ms.

The setting range for the set value (SV) is 0 to 9.999 s for TMHH(540) and 0
to 65.535 for TMHHX(552). The timer accuracy is –0.001 to 0 s.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 and 0015 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).

CIO 0.00

T0000

T0000

#0100
(1.00 s)

0.00 Timer input

Timer PV

Timer Completion
Flag

PV
refresh
method

Symbol Operands

BCD N: 0000 to 15 (decimal)

S: #0000 to #9999 (BCD)

Binary N: 00000 to 15 (decimal)
S: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

TMHH(540)

N

S

N: Timer number

S: Set value

TMHHX(552)

N

S

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TMHH(540)/
TMHHX(552)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
179

Timer and Counter Instructions Section 3-5
Operand Specifications

Description When the timer input is OFF, the timer specified by N is reset, i.e., the timer’s
PV is reset to the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TMHH(540)/TMHHX(552) starts
decrementing the PV. The PV will continue timing down as long as the timer
input remains ON and the timer’s Completion Flag will be turned ON when the
PV reaches 0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

Flags

Precautions Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A959

Timer Area 0000 to 0015 (decimal) T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged
180

Timer and Counter Instructions Section 3-5
The Completion Flag is updated only when TMHH(540)/TMHHX(552) is exe-
cuted. The Completion Flag can thus be delayed by up to one cycle time from
the actual set value.

The present value of timers programmed with timer numbers 0000 to 2047 will
be updated even when the timer is on standby. The present value of timers
programmed with timer numbers 2048 to 4095 will be held when the timer is
on standby.

Timers will be reset or paused in the following cases. (When a timer is reset,
its PV is reset to the SV and its Completion Flag is turned OFF.)

Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TMHH(540)/TMHHX(552) is executed.

When an operating TMHH(540)/TMHHX(552) timer is in a jumped program
section (JMP(004), CJMP(510), CJPN(511), JME(005)), the timer’s PV will
continue timing. (The jumped TMHH(540)/TMHHX(552) instruction will not be
executed, but the PV will be refreshed every 1 ms.)

When TMHH(540)/TMHHX(552) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When a TMHH(540)/TMHHX(552) timer is forced set, its Completion Flag will
be turned ON and its PV will be set to 0000. When a TMHH(540)/
TMHHX(552) timer is forced reset, its Completion Flag will be turned OFF and
its PV will be reset to the SV.

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

If online editing is used to convert a timer to another kind of timer with the
same timer number (such as TMHH(540)/TMHHX(552) ↔ TIM/TIMX(550) or
TMHH(540)/TMHHX(552) ↔ TIMH(015)/TIMHX(551)), be sure to reset the
Completion Flag. The timer will not operate properly unless the Completion
Flag is reset.

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode or
vice versa.1

0000 OFF

Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547), the
RESET TIMER/COUNTER instructions3

BCD: 9999
Binary: FFFF

OFF

Operation in interlocked program section
(IL(002)–ILC(003))

Reset to SV. OFF

Operation in jumped program section
(JMP(004)–JME(005))

PV continues
decrement-
ing.

Retains previous status.
181

Timer and Counter Instructions Section 3-5
A TMHH(540)/TMHHX(552) instruction’s PV and Completion Flag are
refreshed as shown in the following table.

3-5-4 ACCUMULATIVE TIMER: TTIM(087)/TTIMX(555)
Purpose TTIM(087)/TTIMX(555) operates an incrementing timer with units of 0.1-s.

The setting range for the set value (SV) is 0 to 999.9 s for TTIM(087) and 0 to
6,553.5 s for TTIMX(555). The timer accuracy is –0.01 to 0 s.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Timer Number

The timer number must be between 0000 to 4095 (decimal).

S: Set Value

The set value must be between #0000 and 9999 (BCD).

Operand Specifications

Execution of
TMHH(540)/
TMHHX(552)

The Completion Flag is turned ON if the PV is 0000.
The Completion Flag is turned OFF if the PV is not 0000.

1-ms interval refreshing The timer’s PV is updated every 1 ms.

PV
refresh
method

Symbol Operands

BCD N: 0000 to 15
(decimal)

S: #0000 to #9999
(BCD)

Binary N: 00000 to 15
(decimal)

S: &0 to &65535
(decimal)
#0000 to #FFFF
(hex)

TTIM(087)

N

S

Timer input

Reset input

N: Timer number

S: Set value

TTIMX(555)

N

S

Timer input

Reset input

N: Timer number

S: Set value

Variations Executed Each Cycle for ON Condition TTIM(087)/
TTIMX(555)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A959

Timer Area 0000 to 4095 (decimal) T0000 to T4095
182

Timer and Counter Instructions Section 3-5
Description When the timer input is ON, TTIM(087)/TTIMX(555) increments the PV. When
the timer input goes OFF, the timer will stop incrementing the PV, but the PV
will retain its value. The PV will resume timing when the timer input goes ON
again. The timer’s Completion Flag will be turned ON when the PV reaches
the SV.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. There are three ways to restart the timer: the timer’s PV can
be changed to a non-zero value (by MOV(021), for example), the reset input
can be turned ON, or CNR(545)/CNRX(547) can be executed.

Flags

Precautions Timer numbers are shared by the TIM, TIMX(550), TIMH(015), TIMHX(551),
TMHH(540), TMHHX(552), TTIM(087), TTIMX(555), TIMW(813),
TIMWX(816), TMHW(815), and TMHWX(817) instructions. If two timers share
the same timer number, but are not used simultaneously, a duplication error
will be generated when the program is checked, but the timers will operate
normally. Timers which share the same timer number will not operate properly
if they are used simultaneously.

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15

Area N S

SV

Timer input

Timer PV

Reset input

PV maintained.

Timing resumes.

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a timer.
ON if in BCD mode and S does not contain BCD data.
OFF in all other cases.
183

Timer and Counter Instructions Section 3-5
Timers will be reset or paused in the following cases. (When a TTIM(087)/
TTIMX(555) timer is reset, its PV is reset to 0000 and its Completion Flag is
turned OFF.)

Note (1) If the IOM Hold Bit (A500.12) has been turned ON, the status of timer
Completion Flags and PVs will be maintained when the operating mode
is changed.

(2) If the IOM Hold Bit (A500.12) has been turned ON and the status of the
IOM Hold Bit itself is protected in the PLC Setup, the status of timer Com-
pletion Flags and PVs will be maintained even when the power is inter-
rupted.

(3) The PV will be set to the SV when TTIM(087)/TTIMX(555) is executed.

When TTIM(087)/TTIMX(555) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will retain its previous
value (it will not be reset). Be sure to take this fact into account when
TTIM(087)/TTIMX(555) is programmed between IL(002) and ILC(003).

When an operating TTIM(087)/TTIMX(555) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
TTIM(087)/TTIMX(555) is programmed between JMP(004) and JME(005).

When a TTIM(087)/TTIMX(555) timer is forced set, its Completion Flag will be
turned ON and its PV will be reset to 0000. When a TTIM(087)/TTIMX(555)
timer is forced reset, its Completion Flag will be turned OFF and its PV will be
reset to 0000. The forced set and forced reset operations take priority over the
status of the timer and reset inputs.

The timer’s PV is refreshed only when TTIM(087)/TTIMX(555) is executed, so
the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units.

The timer’s Completion Flag is refreshed only when TTIM(087)/TTIMX(555) is
executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

Typical timers such as TIM/TIMX(550) are decrementing counters and the PV
shows the time remaining until the timer times out. The PV of TTIM(087)/
TTIMX(555) shows how much time has elapsed, so the PV can be used
unchanged in many calculations and display outputs.

Example When timer input CIO 0.00 is ON in the following example, the timer PV will
begin counting up from 0. Timer Completion Flag T0001 will be turned ON
when the PV reaches the SV.
If the reset input is turned ON, the timer PV will be reset to 0000 and the Com-
pletion Flag (T0001) will be turned OFF. (Usually the reset input is turned ON
to reset the timer and then the timer input is turned ON to start timing.)

Condition PV Completion Flag

Operating mode changed from RUN or
MONITOR mode to PROGRAM mode or
vice versa.1

0000 OFF

Power supply interrupted and reset2 0000 OFF

Execution of CNR(545)/CNRX(547), the
RESET TIMER/COUNTER instructions3

BCD: 9999
Binary: FFFF

OFF

Operation in interlocked program section
(IL(002)–ILC(003))

Retains previ-
ous status.

Retains previous status.

Operation in jumped program section
(JMP(004)–JME(005))

Retains previ-
ous status.

Retains previous status.
184

Timer and Counter Instructions Section 3-5
If the timer input is turned OFF before the SV is reached, the timer will stop
timing but the PV will be maintained. The timer will resume from its previous
PV when the timer input is turned ON again.

3-5-5 LONG TIMER: TIML(542)/TIMLX(553)
Purpose TIML(542)/TIMLX(553) operates a decrementing timer with units of 0.1 s that

can time up to 115 days for TIML(542) and 4,971 days for TIMLX(543). The
timer accuracy is 0 to 0.01 s.

Ladder Symbol BCD

Binary

Variations

CIO 0.00

T0001

CIO 0.01

T0001

0.00

0.01 #100

Timer input

Timer PV

Timer Completion
Flag

Reset input

PV maintained.

Timing resumes.

TIML(542)

D1

D2

S

D1: Completion Flag

D2: PV word

S: SV word

TIMLX(543)

D1

D2

S

D1: Completion Flag

D2: PV word

S: SV word

Variations Executed Each Cycle for ON Condition TIML(542)/
TIMLX(553)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
185

Timer and Counter Instructions Section 3-5
Applicable Program Areas

Operands D1: Completion Flag
Bit 0 of D1 acts as the Completion Flag for TIML(542)/TIMLX(553).

D2: PV Word
D2+1 and D2 contain the 8-digit binary or BCD PV. (D2 and D2+1 must be in
the same data area.) The PV can range from #00000000 to #99999999 for
TIML(542) and &00000000 to &4294967294 (decimal) or #00000000 to
#FFFFFFFF (hexadecimal) for TIMLX(553).

S: SV Word
S+1 and S contain the 8-digit binary or BCD SV. (S and S+1 must be in the
same data area.) The SV must be between #00000000 to #99999999 for
TIML(542) and &00000000 to &4294967294 (decimal) or #00000000 to
#FFFFFFFF (hexadecimal) for TIMLX(553).

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

15
D1

0

Completion FlagDo not use.

D2D2+1D2

SS+1S

Area D1 D2 S

CIO Area CIO 0 to
CIO 6143

CIO 0 to CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A448 to A959 A448 to A958 A0 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- BCD:
#00000000 to
99999999 (BCD)
“&” cannot be
used.
Binary:
&00000000 to
&4294967294
(decimal) or
#00000000 to
#FFFFFFFF (hex)

Data Registers ---
186

Timer and Counter Instructions Section 3-5
Description TIML(542)/TIMLX(553) is a decrementing ON-delay timer with units of 0.1-s
that uses an 8-digit SV and an 8-digit PV.

When the timer input is OFF, the timer is reset, i.e., the timer’s PV is reset to
the SV and its Completion Flag is turned OFF.

When the timer input goes from OFF to ON, TIML(542)/TIMLX(553) starts
decrementing the PV in D2+1 and D2. The PV will continue timing down as
long as the timer input remains ON and the timer’s Completion Flag will be
turned ON when the PV reaches 0000 0000.

The status of the timer’s PV and Completion Flag will be maintained after the
timer times out. To restart the timer, the timer input must be turned OFF and
then ON again or the timer’s PV must be changed to a non-zero value (by
MOV(021), for example).

Flags

Precautions Unlike most timers, TIML(542)/TIMLX(553) does not use a timer number.
(Timer area PV refreshing is not performed for TIML(542)/TIMLX(553).)

Since the Completion Flag for TIML(542)/TIMLX(553) is in a data area it can
be forced set or forced reset like other bits, but the PV will not change.

The timer’s PV is refreshed only when TIML(542)/TIMLX(553) is executed, so
the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units.

The timer’s Completion Flag is refreshed only when TIML(542)/TIMLX(553) is
executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

When TIML(542)/TIMLX(553) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will be reset to the SV
and the Completion Flag will be turned OFF.

When an operating TIML(542)/TIMLX(553) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
TIML(542)/TIMLX(553) is programmed between JMP(004) and JME(005).

Be sure that the words specified for the Completion Flag and PV (D1, D2, and
D2+1) are not used in other instructions. If these words are affected by other
instructions, the timer might not time out properly.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area D1 D2 S

SV

Timer input

Timer PV

Completion Flag
(Bit 00 of D1)

Name Label Operation

Error Flag ER ON if the PV contained in D2+1 and D2 is not BCD.
ON if the SV contained in S+1 and S is not BCD.

OFF in all other cases.
187

Timer and Counter Instructions Section 3-5
Example When timer input CIO 0.00 is ON in the following example, the timer PV (in
D101 and D100) will be set to the SV (in D201 and D200) and the PV will
begin counting down. The timer Completion Flag (CIO 200.00) will be turned
ON when the PV reaches 0000 0000.
When CIO 0.00 goes OFF, the timer PV will be reset to the SV and the Com-
pletion Flag will be turned OFF.

3-5-6 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554)
Purpose MTIM(543)/MTIMX(554) operates a 0.1-s incrementing timer with eight inde-

pendent SVs and Completion Flags. The set value is 0 to 999.9 s for
MTIM(543) and 0 to 6,553.5 s for MTIMX(554), and the timer accuracy is 0 to
0.01 s.

Ladder Symbol BCD

Binary

D1: 200

D2: D100

S: D200

D101

D201

CIO 0.00

(CIO 200.00)

(CIO 200.00)

0 0 0

1 0

0.00

200

D100

D200

Timer input

Timer PV
(D101 and D100)

Timer SV:
(D201 and D200)

Timer SV:
(100,000 decimal= 10,000 s)

Timer's PV (LSB)
Timer's PV (MSB)

Timer Completion
Flag

Timer Completion
Flag

MTIM(543)

D1

D2

S

D1: Completion Flags

D2: PV word

S: First SV word

MTIMX(554)

D1

D2

S

D1: Completion Flags

D2: PV word

S: First SV word
188

Timer and Counter Instructions Section 3-5
Variations

Applicable Program Areas

Operands D1: Completion Flags

D1 contains the eight Completion Flags as well as the pause and reset bits.

D2: PV Word

D2 contains the 4-digit binary or BCD PV.

S: First SV Word

S through S+7 contain the eight independent SVs.
Each SV must be as follows:

Note S through S+7 must be in the same data area.

Variations Executed Each Cycle for ON Condition MTIM(543)/
MTIMX(554)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

Data Range

BCD #0000 to #9999

Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Range

BCD #0000 to #9999

Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Range

BCD One word for each of 8 timer SV:

#0000 to #9999

Binary One word for each of 8 timer SV:

&0 to &65535 (decimal)
#0000 to #FFFF (hex)

15 1
D1

9 8 6 4 27 5 3 0

Completion Flags
Reset bit

Do not use.

Pause bit

Corresponding bit
(Completion Flag) in D1
189

Timer and Counter Instructions Section 3-5
Operand Specifications

Description When the execution condition for MTIM(543)/MTIMX(554) is ON and the reset
and timer bits are both OFF, MTIM(543)/MTIMX(554) increments the PV in
D2. If the pause bit is turned ON, the timer will stop incrementing the PV, but
the PV will retain its value. MTIM(543)/MTIMX(554) will resume timing when
the pause bit goes OFF again.

The PV (content of D2) is compared to the eight SVs in S through S+7 each
time that MTIM(543)/MTIMX(554) is executed, and if any of the SVs is less
than or equal to the PV, the corresponding Completion Flag (D1 bits 00
through 07) is turned ON.

When the PV reaches 9999, the PV will be reset to 0000 and all of the Com-
pletion Flags will be turned OFF. If the reset bit is turned ON while the timer is
operating or paused, the PV will be reset to 0000 and all of the Completion
Flags will be turned OFF.

Area D1 D2 S

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6136

Work Area W0 to W511 W0 to W504

Holding Bit Area H0 to H511 H0 to H504

Auxiliary Bit Area A448 to A959 A0 to A952

Timer Area T0000 to T4095 T0000 to T4088

Counter Area C0000 to C4095 C0000 to C4088

DM Area D0 to D32767 D0 to D32760

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in BCD *D0 to *D32767

Constants ---

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
190

Timer and Counter Instructions Section 3-5
The following table shows the operation of MTIM(543)/MTIMX(554) for the
four possible combinations of the reset and pause bits.

The reset and pause bits are effective only when the execution condition for
MTIM(543)/MTIMX(554) is ON.

Flags

Precautions Unlike most timers, MTIM(543)/MTIMX(554) does not use a timer number.
(Timer area PV refreshing is not performed for MTIM(543)/MTIMX(554).)

When the PV reaches 9999, the PV will be reset to 0000 and all of the Com-
pletion Flags will be turned OFF.

If in BCD mode and an SV in S through S+7 does not contain BCD data, that
SV will be ignored. An error will not occur and the Error Flag will not be turned
ON.

Since the Completion Flag for MTIM(543)/MTIMX(554) is in a data area it can
be forced set or forced reset like other bits, but the PV will not change.

Reset bit
(Bit 08)

Pause bit
(Bit 09)

Operation

OFF OFF The PV will be updated and the corresponding Completion
Flag will be turned ON when SV ≤ PV.

ON The PV will not be updated and MTIM(543)/MTIMX(554)
will be treated as NOP(000).

ON OFF The PV will be reset to 0000 and the Completion Flags will
be turned OFF. The PV will not be updated.ON

SV 7

SV 2

SV 1
SV 0

0

0

toto

Timer input

Timer PV (D2)

Bit 7

Timer PV

Timer SVs

Bit 2

Bit 1

Bit 0

Completion
flags (D1)

Name Label Operation

Error Flag ER ON if the PV contained in D2 is not BCD.

OFF in all other cases.
191

Timer and Counter Instructions Section 3-5
When eight or fewer SVs are required, set the word after the last SV to 0000.
MTIM(543)/MTIMX(554) will ignore the SV that is set to 0000 and all of the
remaining SVs.

The timer’s PV is refreshed only when MTIM(543)/MTIMX(554) is executed,
so the timer will not operate properly when the cycle time exceeds 100 ms
because the timer increments in 100-ms units. To ensure precise timing and
prevent problems caused by long cycle times, input the same MTIM(543)/
MTIMX(554) instruction at several points in the program.

The timer’s Completion Flag is refreshed only when MTIM(543)/MTIMX(554)
is executed, so a delay of up to one cycle may be required for the Completion
Flag to be turned ON after the timer times out.

When MTIM(543)/MTIMX(554) is in a program section between IL(002) and
ILC(003) and the program section is interlocked, the PV will retain its previous
value (it will not be reset). Be sure to take this fact into account when
MTIM(543)/MTIMX(554) is programmed between IL(002) and ILC(003).

When an operating MTIM(543)/MTIMX(554) timer is in a program section
between JMP(004) and JME(005) and the program section is jumped, the PV
will retain its previous value. Be sure to take this fact into account when
MTIM(543)/MTIMX(554) is programmed between JMP(004) and JME(005).

Be sure that the words specified for the Completion Flags and PV (D1 and
D2) are not used in other instructions. If these words are affected by other
instructions, the timer might not time out properly.

If a word in the CIO area is specified for D1, the SET and RSET instructions
can be used to control the pause and reset bits.

Example When CIO 0.00 is ON and the pause bit (CIO 200.09) is OFF in the following
example, the timer will start operating when the reset bit (CIO 200.08) is
turned from ON to OFF. The timer’s PV will begin timing up from 0000.

The eight SVs in D200 through D207 are compared to the PV and the corre-
sponding Completion Flags (CIO 200.00 through CIO 200.07) are turned ON
when the SV ≤ PV.

to to

These SVs
are ignored.
192

Timer and Counter Instructions Section 3-5
D1: 100

D2: D100

S: D200

S+1: D201

S+2: D202
S+3: D203

S+4: D204
S+5: D205
S+6: D206

S+7: D207

0.00

200

D100

D200

Reset bit

Completion Flags

Timer PV

Timer SVs

(Incrementing)

Pause bit

Corresponding completion
flag ON when SV ≤ PV.

CIO 0.00

CIO 200.08

CIO 200.09

SV 7

SV 1

SV 0

200.00

200.01

200.07

Timer input

Timer SVs

Reset bit

PV maintained.

Timing resumes.

Completion Flags

Pause bit

Max. PV = 9999

Timer input must remain ON
while the timer is timing.
193

Timer and Counter Instructions Section 3-5
3-5-7 COUNTER: CNT/CNTX(546)
Purpose CNT/CNTX(546) operates a decrementing counter. The setting range 0 to

9,999 for CNT and 0 to 65,535 for CNTX(546).

Ladder Symbol BCD

Binary

Variations

Applicable Program Areas

Operands N: Counter Number
The counter number must be between 0000 and 4095 (decimal).

S: Set Value

Operand Specifications

CNT

N

S

Count input

Reset input

N: Counter number

S: Set value

CNTX(546)

N

S

Count input

Reset input

N: Counter number

S: Set value

Variations Executed Each Cycle for ON Condition CNT/
CNTX(546)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Data Range

BCD #0000 to #9999

Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit
Area

--- A0 to A959

Timer Area --- T0000 to T4095

Counter Area 0000 to 4095 (decimal) C0000 to C4095

DM Area --- D0 to D32767

Indirect DM
addresses in
binary

--- @ D0 to @ D32767
194

Timer and Counter Instructions Section 3-5
Description The counter PV is decremented by 1 every time that the count input goes from
OFF to ON. The Completion Flag is turned ON when the PV reaches 0.

Once the Completion Flag is turned ON, reset the counter by turning the reset
input ON or by using the CNR(545)/CNRX(547) instruction. Otherwise, the
counter cannot be restarted.

The counter is reset and the count input is ignored when the reset input is ON.
(When a counter is reset, its PV is reset to the SV and the Completion Flag is
turned OFF.)

Flags

Precautions Counter numbers are shared by the CNT, CNTX(546), CNTR(012),
CNTRX(548), CNTW(814), and CNTWX(818) instructions. If two counters
share the same counter number but are not used simultaneously, a duplica-
tion error will be generated when the program is checked but the counters will
operate normally. Counters which share the same counter number will not
operate properly if they are used simultaneously.

A counter’s PV is refreshed when the count input goes from OFF to ON and
the Completion Flag is refreshed each time that CNT/CNTX(546) is executed.
The Completion Flag is turned ON if the PV is 0 and it is turned OFF if the PV
is not 0.

Indirect DM
addresses in
BCD

--- *D0 to *D32767

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect address-
ing using Index
Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area N S

SV

Count input

Counter PV

Reset input

Completion
Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a counter.
ON if in BCD mode and S does not contain BCD data.

OFF in all other cases.

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged
195

Timer and Counter Instructions Section 3-5
When a CNT/CNTX(546) counter is forced set, its Completion Flag will be
turned ON and its PV will be reset to 0000. When a CNT/CNTX(546) counter
is forced reset, its Completion Flag will be turned OFF and its PV will be set to
the SV.

Be sure to reset the counter by turning the reset input from
OFF → ON → OFF before beginning counting with the count input, as shown
in the following diagram. The count input will not be received if the reset input
is ON.

The reset input will take precedence and the counter will be reset if the reset
input and count input are both ON at the same time. (The PV will be reset to
the SV and the Completion Flag will be turned OFF.)

The operation of the = Flag and N Flag depends on the model of the CPU
Unit. Refer to Flags, above, for details.

Note If online editing is used to add a counter, the counter must be reset before it
will work properly. If the counter is not reset, the previous value will be used as
the counter’s present value (PV), and the counter may not operate properly
after it is written.

SV

Reset input

Counter PV

Count input

Ready to start
counting

Completion
Flag

SV

Reset input

Counter PV

Count input

Completion
Flag

Count input
can be re-
ceived.

Reset input
takes pre-
cedence.

Count input
can be re-
ceived.
196

Timer and Counter Instructions Section 3-5
Counter PVs are retained even through a power interruption. If you want to
restart counting from the SV instead of resuming the count from the retained
PV, add the First Cycle Flag (A200.11) as a reset input to the counter.

3-5-8 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548)
Purpose CNTR(012)/CNTRX(548) operates a reversible counter.

Ladder Symbol BCD

Binary

Variations

Applicable Program Areas

Operands N: Counter Number

The counter number must be between 0000 and 4095 (decimal).

S: Set Value

First Cycle Flag
(A200.11)

CNTR(012)

N

S

Increment input

Reset input

Decrement input

N: Counter number

S: Set value

CNTRX(548)

N

S

Increment input

Reset input

Decrement input

S: Set value

N: Counter number

Variations Executed Each Cycle for ON Condition CNTR(012)/
CNTRX(548)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Data Range

BCD #0000 to #9999

Binary &0 to &65535 (decimal)
#0000 to #FFFF (hex)
197

Timer and Counter Instructions Section 3-5
Operand Specifications

Description The counter PV is incremented by 1 every time that the increment input goes
from OFF to ON and it is decremented by 1 every time that the decrement
input goes from OFF to ON. The PV can fluctuate between 0 and the SV.

When incrementing, the Completion Flag will be turned ON when the PV is
incremented from the SV back to 0 and it will be turned OFF again when the
PV is incremented from 0 to 1.

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit
Area

--- A0 to A959

Timer Area --- T0000 to T4095

Counter Area 0000 to 4095 (decimal) C0000 to C4095

DM Area --- D0 to D32767

Indirect DM
addresses in
binary

--- @ D0 to @ D32767

Indirect DM
addresses in
BCD

--- *D0 to *D32767

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect address-
ing using Index
Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Increment input

Counter PV

Decrement input

SV

+1

Counter PV

Completion Flag
198

Timer and Counter Instructions Section 3-5
When decrementing, the Completion Flag will be turned ON when the PV is
decremented from 0 up to the SV and it will be turned OFF again when the PV
is decremented from the SV to SV–1.

Flags

Precautions Counter numbers are shared by the CNT, CNTX(546), CNTR(012),
CNTRX(548), CNTW(814), and CNTWX(818) instructions. If two counters
share the same counter number but are not used simultaneously, a duplica-
tion error will be generated when the program is checked but the counters will
operate normally. Counters which share the same counter number will not
operate properly if they are used simultaneously.

The PV will not be changed if the increment and decrement inputs both go
from OFF to ON at the same time. When the reset input is ON, the PV will be
reset to 0 and both count inputs will be ignored.

The Completion Flag will be ON only when the PV has been incremented
from the SV to 0 or decremented from 0 to the SV; it will be OFF in all other
cases.

When inputting the CNTR(012)/CNTRX(548) instruction with mnemonics, first
enter the increment input (II), then the decrement input (DI), the reset input
(R), and finally the CNTR(012)/CNTRX(548) instruction. When entering with
the ladder diagrams, first input the increment input (II), then the CNTR(012)/
CNTRX(548) instruction, the decrement input (DI), and finally the reset input
(R).

SV −1
Counter PV

Completion Flag

Name Label Operation

Error Flag ER ON if N is indirectly addressed through an Index Register
but the address in the Index Register is not the PV
address of a counter.
ON if in BCD mode and S does not contain BCD data.

OFF in all other cases.
199

Timer and Counter Instructions Section 3-5
Examples Basic Operation of CNTR(012)/CNTRX(548)

The counter PV is reset to 0 by turning the reset input (CIO 0.02) ON and
OFF. The PV is incremented by 1 each time that the increment input
(CIO 0.00) goes from OFF to ON. When the PV is incremented from the SV
(3), it is automatically reset to 0 and the Completion Flag is turned ON.

Likewise, the PV is decremented by 1 each time that the decrement input
(CIO 0.01) goes from OFF to ON. When the PV is decremented from 0, it is
automatically set to the SV (3) and the Completion Flag is turned ON.

SV

0.00

0.01

0.02

#3

Increment input
CIO 0.00

Counter PV
C0001

Completion Flag
C0001

Decrement input
CIO 0.01

Reset input
CIO 0.02

Increment input

Reset input

Decrement
input
200

Timer and Counter Instructions Section 3-5
Specifying the SV in a Word

In the following example, the SV for CNTR(012) 0007 is determined by the
content of CIO 1. The content of CIO 1 can be controlled by an external switch
so that the set value can be changed manually from the switch.

3-5-9 RESET TIMER/COUNTER: CNR(545)/CNRX(547)
Purpose Resets the timers or counters within the specified range of timer or counter

numbers.

Ladder Symbol BCD

Binary

SV:
CIO 1

0.00

0.01

0.02

0.03

0.04

0.05

200.07

200.08

Increment input

Decrement input

Completion Flag

Roll-over Roll-back

Fixed SV:
5000

CNR(545)

N1

N2

N1: First number in range

N2: Last number in range

CNRX(547)

N1

N2

N1: First number in range

N2: Last number in range
201

Timer and Counter Instructions Section 3-5
Variations

Applicable Program Areas

Operands N1: First Number in Range

N1 must be a timer number between T0000 and T4095 or a counter number
between C0000 and C4095.

N2: Last Number in Range

N2 must be a timer number between T0000 and T4095 or a counter number
between C0000 and C4095.

Note N1 and N2 must be in the same data area, i.e., N1 and N2 must be timer num-
bers or counter numbers.

Operand Specifications

Description CNR(545)/CNRX(547) resets the Completion Flags of all timers or counters
from N1 to N2. At the same time, the PVs will all be set to the maximum value
(9999 for BCD and FFFF for binary). (The PV will be set to the SV the next
time that the timer or counter instruction is executed.)

Variations Executed Each Cycle for ON Condition CNR(545)/
CNRX(547)

Executed Once for Upward Differentiation @CNR(545)/
CNRX(547)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N1 N2

CIO Area --- ---

Work Area --- ---

Holding Bit Area --- ---

Auxiliary Bit Area --- ---

Timer Area C0000 to C4095 C0000 to C4095

Counter Area T0000 to T4095 T0000 to T4095

DM Area --- ---

Indirect DM addresses
in binary

--- ---

Indirect DM addresses
in BCD

--- ---

Constants --- ---

Data Registers --- ---

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
202

Timer and Counter Instructions Section 3-5
Timers Reset by CNR(545)/CNRX(547)

The following timers will be reset if their timer numbers fall within the specified
range: TIM, TIMX(550), TIMH(015), TIMHX(551), TMHH(540), TMHHX(552),
TTIM(087), TTIMX(555), TIMW(813), TIMWX(816), TMHW(815), and
TMHWX(817). When a timer is reset, its Completion Flag is turned OFF and
its PV is set to the maximum value of 9999.

Note The TIML(542), TIMLX(553), MTIM(543), and MTIMX(554) timers are not
reset by CNR(545)/CNRX(547) because these timers do not use timer num-
bers.

Counters Reset by CNR(545)/CNRX(547)

The following counters will be reset if their counter numbers fall within the
specified range: CNT, CNTX(546), CNTR(012), CNTRX(548), CNTW(814),
and CNTWX(818). When a counter is reset, its Completion Flag is turned
OFF and its PV is set to the maximum value of 9999.

Flags

Precautions CNR(545)/CNRX(547) does not reset the timer/counter instructions them-
selves, it resets the PVs and Completion Flags allocated to those instructions.
In most cases, the effect of CNR(545)/CNRX(547) is different from directly
resetting the instructions. For example, when a TIM/TIMX(550) instruction is
reset directly its PV is set to the SV, but when that timer is reset by CNR(545)/
CNRX(547) its PV is set to the maximum value of 9999.

When N1 and N2 are specified with N1>N2, only the Completion Flag for the
timer/counter number will be reset.

Example When CIO 0.00 is ON in the following example, the Completion Flags for tim-
ers T0002 to T0005 are turned OFF and the timers’ PVs are set to the maxi-
mum value of 9999.

When CIO 0.01 is ON, the Completion Flags for counters C0003 to C0007 are
turned OFF and the counters’ PVs are set to the maximum value of 9999.

Name Label Operation

Error Flag ER ON if N1 is indirectly addressed through an Index Register but
the address in the Index Register is not the PV address of a
timer or counter.
ON if N2 is indirectly addressed through an Index Register but
the address in the Index Register is not the PV address of a
timer or counter.
ON if N1 and N2 are not in the same data area.

OFF in all other cases.

0.00

0.01
203

Timer and Counter Instructions Section 3-5
3-5-10 Example Timer and Counter Applications
The following examples show various applications of timer and counter
instructions including long-term timers, a two-stage counter, ON/OFF delay,
one-shot bit, and flicker bit.

Example 1:
Long-term Timers

The following program examples show three ways to create long-term timers
with standard TIM and CNT instructions.

Two TIM Instructions

In this example, two TIM instructions are combined to make a 30-minute
timer.

TIM and CNT Instructions

In this example, a TIM instruction and a CNT instruction are combined to
make a 500-second timer.

TIM 0001 generates a pulse every 5 s and CNT 0002 counts these pulses.
The set value for this combination is the timer interval × counter SV. In this
case, the timer SV would be 5 s × 100 = 500 s. With this combination, the
long-term timer’s PV is actually the PV of a counter, which is maintained
through power interruptions.

000000 LD 0.00
000001 TIM 0001

#9000
000002 LD T0001
000003 TIM 0002

#9000
000004 LD T0002
000005 OUT 200.00

T0001

T0002 200.00

0.00
Instruction OperandsAddress

000000 LD 100.00
000001 LD 0.01
000002 CNT 0002

#100
000003 LD 0.00
000004 100.00
000005 C0002
000006 TIM 0001

#50
000007 LD T0001
000008 OUT 100.00
000009 LD C0002
000010 OUT 201.01

100.00

0.01

0.00 100.00

#100

#50

100.00

200.01

AND NOT
AND NOT

Instruction Operands

Count up

Address

Start
204

Timer and Counter Instructions Section 3-5
Clock Pulse and CNT Instruction

In this example, a CNT instruction counts the pulses from the 1-s clock pulse
to make a 700-second timer.

If the First Cycle Flag (A200.11) is ORed with the counter’s reset input
(CIO 0.01), the counter’s PV will be reset to the SV (0700) when program exe-
cution begins rather than resuming the count from the previous PV.

Example 2:
Two-stage Counter

When an SV higher than 9999 is required, two counters can be combined as
shown in the following example. In this case, two CNT instructions are com-
bined to make a BCD counter with an SV of 20,000.

0.00

0.01

A200.11

C0001

000000 LD 0.00
000001 AND 1 s
000002 LD NOT 0.01

000005 LD
#700
C0001

000006 OUT 200.02

000004 CNT 0001

#700

200.02

000003 OR A200.11

Instruction OperandsAddressP_1 s (1-s clock)

000000 LD 0.00
000001 AND 0.01
000002 LD NOT 0.02
000003 OR C0001
000004 OR C0002
000005 CNT 0001

#100
000006 LD C0001
000007 LD NOT 0.02
000008 CNT 0002

#200
000009 LD C0002
000010 OUT 200.03

0.00 0.01

0.02 #100

0.02
#200
200.03

Instruction OperandsAddress
205

Timer and Counter Instructions Section 3-5
Example 3:
ON/OFF Delay

In this example two TIM timers are combined with KEEP(011) to make an ON
delay and an OFF delay. CIO 100.00 will be turned ON 5.0 seconds after
CIO 0.00 goes ON and it will be turned OFF 3.0 seconds after CIO 0.00 goes
OFF.

Example 4:
One-shot Bit

A TIM timer can be combined with OUT or OUT NOT to control how long a
particular bit is ON or OFF. In this example, CIO 100.00 will be ON for 1.5 sec-
onds (the SV of T0001) after CIO 0.00 goes ON.

CIO 0.00

CIO 100.00

5.0 s 3.0 s

000000 LD 0.00
000001 TIM 0001

#50
000002 LD 1.00
000003 AND NOT 0.00
000004 TIM 0002

#30
000005 LD T0001
000006 LD T0002
000007 KEEP(011) 100.00

0.00

0.001.00

#50

#30

100.00

Instruction OperandsAddress

000000 LD 0.00
000001 LD W0.00
000002 AND NOT 0.01
000003 OR ---
000004 OUT W0.00
000005 LD W0.00
000006 TIM 0001

#15
000007 LD T0001
000008 OUT W0.01
000009 LD W0.00
000010 AND NOT W0.01
000011 OUT 100.00

CIO 0.00

CIO 100.00

1.5 s 1.5 s

0.00 W0.00

W0.00 0.01

W0.00

W0.00 W0.01

#15

W0.01

100.00

LD

Instruction OperandsAddress
206

Timer and Counter Instructions Section 3-5
Example 5:
Flicker Bit

The following program examples show two ways to create flicker bits. The
second example just mimics a clock pulse.

Two TIM Instructions

Two TIM timers can be combined to make a bit turn ON and OFF at regular
intervals while the execution condition is ON. In this example, CIO 200.00 will
be OFF for 1.0 second and then ON for 1.5 seconds as long as CIO 0.00 is
ON.

Clock Pulse

The desired execution condition can be combined with a clock pulse to mimic
the clock pulse (0.1 s, 0.2 s, or 1.0 s).

3-5-11 Indirect Addressing of Timer/Counter Numbers
Timer and counter numbers can be indirectly addressed using Index Regis-
ters. When Index Registers will be used for indirect addressing, use
MOVRW(561) (MOVE TIMER/COUNTER PV TO REGISTER) to set the PLC
memory address of the desired timer or counter’s PV to the desired Index
Register.

The following timers and counters can be indirectly addressed using Index
Registers: TIM, TIMX(550), TIMH(015), TIMHX(551), TTIM(087),
TTIMX(555), TMHH(540), TMHHX(552), TIMW(813), TIMWX(816),
TMHW(815), TMHWX(817), CNT, CNTX(546), CNTR(012), CNTRX(548),
CNTW(814), and CNTWX(818). (These are the timers and counters that use
timer and counter numbers.)

CIO 0.00

CIO 200.00

1.5 s1.0 s 1.5 s1.0 s

000000 LD 0.00
000001 AND T0002
000002 TIM 0001

#10
000003 LD 200.00
000004 TIM 0002

#15
000005 LD T0001
000006 OUT 200.00

0.00

200.00

#10

#15

200.00

Instruction OperandsAddress

000000 LD 0.00
000001 AND 1s
000002 OUT 100.00

0.00 P_1 s 100.00

0.00

100.00

Instruction OperandsAddress

1-s clock pulse

1-s clock
pulse
207

Timer and Counter Instructions Section 3-5
The timer or counter instruction will not be executed if the PLC memory
address in the specified Index Register is not the address of a timer or counter
PV.

Using Index Registers to indirectly address timers and counters can reduce
the size of the program and increase flexibility. For example, common subrou-
tines can be created.

Example The following example shows a program section that uses indirect addressing
to define and start 100 timers with SVs contained in D100 through D199. IR0
contains the PLC memory address of the timer PV and IR1 contains the PLC
memory address of the timer Completion Flag.

1,2,3... 1. MOVRW(561) moves the PLC memory address of the PV for timer T0000
to IR0. Afterwards IR0 can be used in place of the timer number.

DM address Content Function

D100 0010 SV for T0000

D101 0100 SV for T0001

D102 0050 SV for T0002

.

.

.

.

.

.

.

.

.

D199 0999 SV for T0099

1

2

3

4

5

P_On

P_On

&100

FOR
&100

@D0

++

NEXT

2000.00

D0

D0

(Always ON
Flag)

(Always ON
Flag)
208

Timer and Counter Instructions Section 3-5
2. MOVR(560) moves the PLC memory address of the Completion Flag for
timer T0000 to IR1.

3. MOVR(560) moves the PLC memory address of CIO 2000.00 into IR2.

4. MOV(021) moves &100 into D0 for indirect addressing of the timer SVs.

5. The content of IR0, IR1, IR2, and D0 are incremented by 1 each time as
this loop is executed 100 times, starting timers T0 through T99.

The loop in the program above has 4 input parameters which are used to start
all 100 timers with this common subroutine.

IR0 The PLC memory address of the timer’s PV
IR1 The PLC memory address of the timer’s Completion Flag
IR2 The PLC memory address of the timer’s execution condition
D0 The DM address of the word containing the timer’s SV

The subroutine above is equivalent to the 400 instructions below.

2000.00

T0000

2000.01

T0001

2006.02

T0099

D100

2000.00

D101

2000.01

D199

2006.02
209

Timer and Counter Instructions Section 3-5
210

Comparison Instructions Section 3-6
3-6 Comparison Instructions
This section describes instructions used to compare data of various lengths
and in various ways.

3-6-1 Input Comparison Instructions (300 to 328)
Purpose Input comparison instructions compare two values (constants and/or the con-

tents of specified words) and create an ON execution condition when the
comparison condition is true. Input comparison instructions are available to
compare signed or unsigned data of one-word or double length data.

Note Refer to 3-14-21 Single-precision Floating-point Comparison Instructions for
details on single-precision floating-point input comparison instructions and 3-
15-21 Double-precision Floating-point Input Instructions for details on double-
precision floating-point input comparison instructions.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications for Instructions for One-word Data

Instruction Mnemonic Function
code

Page

Input Comparison Instructions =, <>, <, <=, >, >=

(S, L) (LD, AND, OR)

300 to 328 211

Time Comparison Instructions =DT, <>DT, <DT, <=DT, >DT,
>=DT (LD, AND, OR)

341 to 346 217

COMPARE CMP 020 222

DOUBLE COMPARE CMPL 060 224

SIGNED BINARY COMPARE CPS 114 227

DOUBLE SIGNED BINARY
COMPARE

CPSL 115 229

MULTIPLE COMPARE MCMP 019 232

TABLE COMPARE TCMP 085 235

BLOCK COMPARE BCMP 068 237

EXPANDED BLOCK COMPARE BCMP2 502 240

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Symbol & options

Variations Creates ON Each Cycle Comparison is True Input compari-
son instruction

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959

Timer Area T0000 to T4095
211

Comparison Instructions Section 3-6
Operand Specifications for Instructions for Double-length Data

Description The input comparison instruction compares S1 and S2 as signed or unsigned
values and creates an ON execution condition when the comparison condition
is true. Unlike instructions such as CMP(020) and CMPL(060), the result of an
input comparison instruction is reflected directly as an execution condition, so
it is not necessary to access the result of the comparison through an Arith-
metic Flag and the program is simpler and faster.

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S1 S2

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned decimal)

Data Registers ---

Index Registers IR0 to IR15 (for unsigned data only)

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2
212

Comparison Instructions Section 3-6
Inputting the Instructions

The input comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Options

The input comparison instructions can compare signed or unsigned data and
they can compare one-word or double values. If no options are specified, the
comparison will be for one-word unsigned data. With the three input types and
two options, there are 72 different input comparison instructions.

Unsigned input comparison instructions (i.e., instructions without the S option)
can handle unsigned binary or BCD data. Signed input comparison instruc-
tions (i.e., instructions with the S option) handle signed binary data.

Input type Operation

LD The instruction can be connected directly to the left bus bar.

AND The instruction cannot be connected directly to the left bus bar.

OR The instruction can be connected directly to the left bus bar.

Symbol Option (data format) Option (data length)

= (Equal)

< > (Not equal)
< (Less than)
<= (Less than or equal)

> (Greater than)
>= (Greater than or equal)

None: Unsigned data

S: Signed data

None: One-word data

L: Double-length data

<

<

<

LD connection

AND connection

OR connection

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.
213

Comparison Instructions Section 3-6
Summary of Input Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 72 input comparison instructions. (For one-word comparisons
C1=S1 and C2=S2; for double comparisons C1=S1+1, S1 and C2=S2+1, S2.)

Code Mnemonic Name Function

300 LD= LOAD EQUAL True if
C1 = C2AND= AND EQUAL

OR= OR EQUAL

301 LD=L LOAD DOUBLE EQUAL

AND=L AND DOUBLE EQUAL

OR=L OR DOUBLE EQUAL

302 LD=S LOAD SIGNED EQUAL

AND=S AND SIGNED EQUAL

OR=S OR SIGNED EQUAL

303 LD=SL LOAD DOUBLE SIGNED EQUAL

AND=SL AND DOUBLE SIGNED EQUAL

OR=SL OR DOUBLE SIGNED EQUAL

305 LD<> LOAD NOT EQUAL True if
C1 ≠ C2AND<> AND NOT EQUAL

OR<> OR NOT EQUAL

306 LD<>L LOAD DOUBLE NOT EQUAL

AND<>L AND DOUBLE NOT EQUAL

OR<>L OR DOUBLE NOT EQUAL

307 LD<>S LOAD SIGNED NOT EQUAL

AND<>S AND SIGNED NOT EQUAL

OR<>S OR SIGNED NOT EQUAL

308 LD<>SL LOAD DOUBLE SIGNED NOT EQUAL

AND<>SL AND DOUBLE SIGNED NOT EQUAL

OR<>SL OR DOUBLE SIGNED NOT EQUAL

310 LD< LOAD LESS THAN True if
C1 < C2AND< AND LESS THAN

OR< OR LESS THAN

311 LD<L LOAD DOUBLE LESS THAN

AND<L AND DOUBLE LESS THAN

OR<L OR DOUBLE LESS THAN

312 LD<S LOAD SIGNED LESS THAN

AND<S AND SIGNED LESS THAN

OR<S OR SIGNED LESS THAN

313 LD<SL LOAD DOUBLE SIGNED LESS THAN

AND<SL AND DOUBLE SIGNED LESS THAN

OR<SL OR DOUBLE SIGNED LESS THAN
214

Comparison Instructions Section 3-6
Flags

315 LD<= LOAD LESS THAN OR EQUAL True if
C1 ≤ C2AND<= AND LESS THAN OR EQUAL

OR<= OR LESS THAN OR EQUAL

316 LD<=L LOAD DOUBLE LESS THAN OR EQUAL

AND<=L AND DOUBLE LESS THAN OR EQUAL

OR<=L OR DOUBLE LESS THAN OR EQUAL

317 LD<=S LOAD SIGNED LESS THAN OR EQUAL

AND<=S AND SIGNED LESS THAN OR EQUAL

OR<=S OR SIGNED LESS THAN OR EQUAL

318 LD<=SL LOAD DOUBLE SIGNED LESS THAN OR EQUAL True if
C1 ≤ C2AND<=SL AND DOUBLE SIGNED LESS THAN OR EQUAL

OR<=SL OR DOUBLE SIGNED LESS THAN OR EQUAL

320 LD> LOAD GREATER THAN True if
C1 > C2AND> AND GREATER THAN

OR> OR GREATER THAN

321 LD>L LOAD DOUBLE GREATER THAN

AND>L AND DOUBLE GREATER THAN

OR>L OR DOUBLE GREATER THAN

322 LD>S LOAD SIGNED GREATER THAN

AND>S AND SIGNED GREATER THAN

OR>S OR SIGNED GREATER THAN

323 LD>SL LOAD DOUBLE SIGNED GREATER THAN

AND>SL AND DOUBLE SIGNED GREATER THAN

OR>SL OR DOUBLE SIGNED GREATER THAN

325 LD>= LOAD GREATER THAN OR EQUAL True if
C1 ≥ C2AND>= AND GREATER THAN OR EQUAL

OR>= OR GREATER THAN OR EQUAL

326 LD>=L LOAD DOUBLE GREATER THAN OR EQUAL

AND>=L AND DOUBLE GREATER THAN OR EQUAL

OR>=L OR DOUBLE GREATER THAN OR EQUAL

327 LD>=S LOAD SIGNED GREATER THAN OR EQUAL

AND>=S AND SIGNED GREATER THAN OR EQUAL

OR>=S OR SIGNED GREATER THAN OR EQUAL

328 LD>=SL LOAD DBL SIGNED GREATER THAN OR EQUAL

AND>=SL AND DBL SIGNED GREATER THAN OR EQUAL

OR>=SL OR DBL SIGNED GREATER THAN OR EQUAL

Code Mnemonic Name Function

Name Label Operation

Greater Than
Flag

> ON if S1 > S2 with one-word data.

ON if S1+1, S1 > S2+1, S2 with double-length data.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if S1 ≥ S2 with one-word data.

ON if S1+1, S1 ≥ S2+1, S2 with double-length data.

OFF in all other cases.

Equal Flag = ON if S1 = S2 with one-word data.

ON if S1+1, S1 = S2+1, S2 with double-length data.

OFF in all other cases.
215

Comparison Instructions Section 3-6
Precautions Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Examples AND LESS THAN: AND<(310)

When CIO 0.00 is ON in the following example, the contents of D100 and
D200 are compared in as unsigned binary data. If the content of D100 is less
than that of D200, CIO 100.00 is turned ON and execution proceeds to the
next line. If the content of D100 is not less than that of D200, the remainder of
the instruction line is skipped and execution moves to the next instruction line.

AND SIGNED LESS THAN: AND<S(312)

When CIO 0.01 is ON in the following example, the contents of D110 and
D210 are compared as signed binary data. If the content of D110 is less than
that of D210, CIO 100.01 is turned ON and execution proceeds to the next
line. If the content of D110 is not less than that of D210, the remainder of the
instruction line is skipped and execution moves to the next instruction line.

Not Equal Flag = ON if S1 ≠ S2 with one-word data.

ON if S1+1, S1 ≠ S2+1, S2 with double-length data.

OFF in all other cases.

Less Than Flag < ON if S1 < S2 with one-word data.

ON if S1+1, S1 < S2+1, S2 with double-length data.

OFF in all other cases.

Less Than or
Equal Flag

< = ON if S1 ≤ S2 with one-word data.

ON if S1+1, S1 ≤ S2+1, S2 with double-length data.

OFF in all other cases.

Name Label Operation

100.00

100.01

0.00

0.01

<

<S 34,580 > 14,876

S2: D200S1: D100

8714 3A1C

D100

D200

D110

D210

Unsigned
LESS THAN
Comparison

Decimal: 34,580 Decimal: 14,876

(Will not proceed to next line.)

8714

S1: D110

 −30,956

3A1C

S2: D210

 14,876

−30,956 < 14,876

0.00

0.01

D100

D200

D110

D210

100.00

100.01 Decimal: Decimal:

Signed
LESS THAN
Comparison

(Will proceed to next line.)
216

Comparison Instructions Section 3-6
3-6-2 Time Comparison Instructions (341 to 346)
Purpose Time comparison instructions compare two BCD time values and create an

ON execution condition when the comparison condition is true.

The time comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Bits 00 to 05 of C specify whether or not the time data will be masked for the
comparison. Bits 00 to 05 mask the seconds, minutes, hours, day, month, and
year, respectively. If all 6 values are masked, the instruction will not be exe-
cuted, the execution condition will be OFF, and the Error Flag will be turned
ON.

S1

C

S2

LD

S1

C

S2

S1

C

S2

AND

OR

Symbol

Symbol

Symbol

C: Control word

S1: First word of present time

S2: First word of comparison time

C: Control word

S1: First word of present time

S2: First word of comparison time

C: Control word

S1: First word of present time

S2: First word of comparison time

Variations Creates ON Each Cycle Comparison is True Time compari-
son instruction

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

01234567815
0000000000C

Masks seconds data when ON.
Masks minutes data when ON.
Masks hours data when ON.
Masks day data when ON.
Masks month data when ON.
Masks year data when ON.
217

Comparison Instructions Section 3-6
S1 through S1+2: Present Time Data
S1 through S1+2 contain the present time data. S1 through S1+2 must be in
the same data area.

Note When using the CPU Unit’s internal clock data for the comparison, set S1 to
A351 to specify the CPU Unit’s internal clock data (A351 to A353).

S2 through S2+2: Comparison Time Data
S2 through S2+2 contain the comparison time data. S2 through S2+2 must be
in the same data area.

15 8 07

S1

15 8 07

S1+1

15 8 07

S1+2

Seconds: 00 to 59 (BCD)

 Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Day: 01 to 31 (BCD)

 Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

15 8 07

S2

15 8 07

S2+1

15 8 07

S2+2

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Day: 01 to 31 (BCD)

Hour: 00 to 23 (BCD)

Minutes: 00 to 59 (BCD)

Seconds: 00 to 59 (BCD)
218

Comparison Instructions Section 3-6
Operand Specifications

Description The time comparison instruction compares the unmasked values (corre-
sponding bit of C set to 0) of the present time data in S1 to S1+2 with the com-
parison time data in S2 to S2+2 and creates an ON execution condition when
the comparison condition is true. At the same time, the result of a time com-
parison instruction is reflected in the arithmetic flags (=, <>, <, <=, >, >=).

There are 18 possible combinations of time comparison instructions.

Any time values that are masked in the control word (C) are not included in
the comparison.

The following table shows the ON/OFF status of each flag for each compari-
son result.

Masking Time Values

Time values can be masked individually and excluded from the comparison
operation. To mask a time value, set the corresponding bit in the control word
(C) to 1. Bits 00 to 05 of C mask the seconds, minutes, hours, day, month, and
year, respectively.

Area C S1 S2

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6141 CIO 0 to CIO 6142

Work Area W0 to W511 W0 to W509 W0 to W510

Holding Bit Area H0 to H511 H0 to H509 H0 to H510

Auxiliary Bit Area A448 to A959 A0 to A957 A0 to A958

Timer Area T0000 to T4095 T0000 to T4093 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4093 C0000 to C4094

DM Area D0 to D32767 D0 to D32765 D0 to D32766

Indirect DM
addresses in binary

--- @ D0 to @ D32767

Indirect DM
addresses in BCD

--- *D0 to *D32767

Constants See previous page. See previous page. ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Result Flag status

= <> < <= > >=

S1 = S2 ON OFF OFF ON OFF ON

S1 > S2 OFF ON OFF OFF ON ON

S1 < S2 OFF ON ON ON OFF OFF

S1 S2

(=, <>, <, <=, >, >=)

Comparison

Result
Conditions Flags
219

Comparison Instructions Section 3-6
Example:
When C = 39 hex, the rightmost 6 bits are 111001 (year=1, month=1, day=1,
hours=0, minutes=0, and seconds=1) so only the hours and minutes are com-
pared. This mask setting can be used to perform a particular operation at a
given time (hour and minute) each day.

Previous data comparison instructions compared data in 16-bit units. The
time comparison instructions are limited to comparing 8-bit time values.

The following table shows the structure of the CPU Unit’s internal Calendar/
Clock Area.

The Calendar/Clock Area can be set with the CX-Programmer, DATE(735)
instruction, or “CLOCK WRITE” FINS command (0702 hex).

Summary of Time Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 18 time comparison instructions.

Addresses Contents

A351.00 to A351.07 Second (00 to 59, BCD)

A351.08 to A351.15 Minute (00 to 59, BCD)

A352.00 to A352.07 Hour (00 to 23, BCD)

A352.08 to A352.15 Day of month (01 to 31, BCD)

A353.00 to A353.07 Month (01 to 12, BCD)

A353.08 to A353.15 Year (00 to 99, BCD)

Code Mnemonic Name Function

341 LD= DT LOAD EQUAL True if
S1 = S2AND=DT AND EQUAL

OR=DT OR EQUAL

342 LD<>DT LOAD NOT EQUAL True if
S1 ≠ S2AND<>DT AND NOT EQUAL

OR<>DT OR NOT EQUAL

343 LD<DT LOAD LESS THAN True if
S1 < S2AND<DT AND LESS THAN

OR<DT OR LESS THAN

344 LD<=DT LOAD LESS THAN OR EQUAL True if
S1 ≤ S2AND<=DT AND LESS THAN OR EQUAL

OR<=DT OR LESS THAN OR EQUAL

345 LD>DT LOAD GREATER THAN True if
S1 > S2AND>DT AND GREATER THAN

OR>DT OR GREATER THAN

00070815

S1

S1+1

S1+2

00070815

S2

S2+1

S2+2

Present time data Comparison time data

Compares only hours and
minutes data.

Year, month, day, and seconds
data is masked.

Second (00 to
59, BCD)

Second (00 to
59, BCD)

Minute (00 to
59, BCD)

Minute (00 to
59, BCD)

Hour (00 to
23, BCD)

Hour (00 to
23, BCD)

Day of month
(01 to 31, BCD)

Day of month
(01 to 31, BCD)

Month (01 to
12, BCD)

Month (01 to
12, BCD)

Year (00 to
99, BCD)

Year (00 to
99, BCD)
220

Comparison Instructions Section 3-6
Flags

Precautions Time comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Example When CIO 0.00 is ON and the time is 13:00:00, CIO 100.00 is turned ON. The
contents of A351 to A353 (the CPU Unit’s internal calendar/clock data) are
used as the present time data and the contents of D100 to D102 are used as
the comparison time data. The year, month, and day values are masked, so
only the hour, minute, and second data are compared.

346 LD>=DT LOAD GREATER THAN OR EQUAL True if
S1 ≥ S2AND>=DT AND GREATER THAN OR EQUAL

OR>=DT OR GREATER THAN OR EQUAL

Code Mnemonic Name Function

Name Label Operation

Error Flag ER ON if all 6 of the mask bits (C bits 00 to 05) are ON.

OFF in all other cases.

Greater Than
Flag

> ON if S1 > S2.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if S1 ≥ S2.

OFF in all other cases.

Equal Flag = ON if S1 = S2.

OFF in all other cases.

Not Equal Flag = ON if S1 ≠ S2.

OFF in all other cases.

Less Than Flag < ON if S1 < S2.

OFF in all other cases.

Less Than or
Equal Flag

< = ON if S1 ≤ S2.

OFF in all other cases.

01234567

- 1 1 1 0 0 0-D0

0.00

C

S1

S2

100.00

=DT

D0

A352

D100

A351

A352

A353

07815

S2: D100

S2+1: D101

S2+2: D102

00 00

13

07815

-

- -

D0 set to 0038 hex

Shaded data is compared.

Minute Second

Day of month Hour

Year Month

Conditions Flags set as soon as
execution condition is turned ON.

Seconds compared.
Minutes compared.
Hours compared.
Day masked.
Month masked.
Year masked.
221

Comparison Instructions Section 3-6
3-6-3 COMPARE: CMP(020)
Purpose Compares two unsigned binary values (constants and/or the contents of

specified words) and outputs the result to the Arithmetic Flags in the Auxiliary
Area.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description CMP(020) compares the unsigned binary data in S1 and S2 and outputs the
result to Arithmetic Flags (the Greater Than, Greater Than or Equal, Equal,
Less Than or Equal, Less Than, and Not Equal Flags) in the Auxiliary Area.

CMP(020)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CMP(020)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification !CMP(020)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

(>, >=, =, <=, <, <>)

Unsigned binary
comparison

Arithmetic Flags
222

Comparison Instructions Section 3-6
Condition Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CMP(020). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CMP(020) Results in the Program

When CMP(020) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CMP(020), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when S1 =
S2.

Using CMP(020) Results in the Program

Do not program another instruction between CMP(020) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CMP(020).

The immediate-refreshing variation (!CMP(020)) can be used with words allo-
cated to external inputs specified in S1 and/or S2. When !CMP(020) is exe-
cuted, input refreshing will be performed for the external input word specified
in S1 and/or S2 and that refreshed value will be compared.

CMP(020)
Result

Flag status

> > = = < = < < >

S1 > S2 ON ON OFF OFF OFF ON

S1 = S2 OFF ON ON ON OFF OFF

S1 < S2 OFF OFF OFF ON ON ON

CMP

S1

S2

A

Arithmetic Flag
(Example: Equal Flag)

Correct Use of CMP(020)

CMP

S1

S2

A

Incorrect Use of CMP(020)

Instruction
 B

Arithmetic Flag
(Example: Equal Flag)
223

Comparison Instructions Section 3-6
Flags

Precautions Do not program another instruction between CMP(020) and an input condition
that accesses the result of CMP(020) because the other instruction might
change the status of the Arithmetic Flags.

3-6-4 DOUBLE COMPARE: CMPL(060)
Purpose Compares two double unsigned binary values (constants and/or the contents

of specified words) and outputs the result to the Arithmetic Flags in the Auxil-
iary Area.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name CX-Programmer
label

Operation

Greater Than Flag P_GT ON if S1 > S2.

OFF in all other cases.

Greater Than or Equal Flag P_GE ON if S1 ≥ S2.

OFF in all other cases.

Equal Flag P_EQ ON if S1 = S2.

OFF in all other cases.

Not Equal Flag P_NE ON if S1 ≠ S2.

OFF in all other cases.

Less Than Flag P_LT ON if S1 < S2.

OFF in all other cases.

Less Than or Equal Flag P_LE ON if S1 ≤ S2.

OFF in all other cases.

CMPL(060)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CMPL(060)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766
224

Comparison Instructions Section 3-6
Description CMPL(060) compares the unsigned binary data in S1 +1, S1 and S2+1, S2
and outputs the result to Arithmetic Flags (the Greater Than, Greater Than or
Equal, Equal, Less Than or Equal, Less Than, and Not Equal Flags) in the
Auxiliary Area.

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CMPL(060). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CMPL(060) Results in the Program

When CMPL(060) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CMPL(060), as shown in the following dia-
gram. Here, the Equals Flag and output A will be turned ON when S1 +1, S1 =
S2+1, S2.

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)

&0 to &4294967295 (unsigned decimal)

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S1 S2

CMPL(060)Result Flag status

> > = = < = < < >

S1 +1, S1 > S2+1, S2 ON ON OFF OFF OFF ON

S1+1, S1 = S2+1, S2 OFF ON ON ON OFF OFF

S1+1, S1 < S2+1, S2 OFF OFF OFF ON ON ON

(>, >=, =, <=, <, <>)

S2+1

Unsigned binary
comparison

Arithmetic Flags

CMPL

S1

S2

A

Correct Use of CMPL(060)

Arithmetic Flag
(Example: Equal Flag)
225

Comparison Instructions Section 3-6
Using CMPL(060) Results in the Program

Do not program another instruction between CMPL(060) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CMPL(060).

Flags

Precautions Do not program another instruction between CMPL(060) and an input condi-
tion that accesses the result of CMPL(060) because the other instruction
might change the status of the Arithmetic Flags.

CMPL

S1

S2

A

Incorrect Use of CMPL(060)

Instruction
B

Arithmetic Flag
(Example: Equals Flag)

Name CX-Programmer
label

Operation

Greater Than Flag P_GT ON if S1 +1, S1 > S2+1, S2.

OFF in all other cases.

Greater Than or Equal Flag P_GE ON if S1 +1, S1 ≥ S2+1, S2.

OFF in all other cases.

Equal Flag P_EQ ON if S1 +1, S1 = S2+1, S2.

OFF in all other cases.

Not Equal Flag P_NE ON if S1 +1, S1 ≠ S2+1, S2.

OFF in all other cases.

Less Than Flag P_LT ON if S1 +1, S1 < S2+1, S2.

OFF in all other cases.

Less Than or Equal Flag P_LE ON if S1 +1, S1 ≤ S2+1, S2.

OFF in all other cases.
226

Comparison Instructions Section 3-6
Example When CIO 0.00 is ON in the following example, the eight-digit unsigned binary
data in CIO 1001 and CIO 1000 is compared to the eight-digit unsigned
binary data in CIO 1501 and CIO 1500 and the result is output to the Arith-
metic Flags. The results recorded in the Greater Than, Equals, and Less Than
Flags are immediately saved to CIO 100.00 (Greater Than), CIO 100.01
(Equals), and CIO 100.02 (Less Than).

3-6-5 SIGNED BINARY COMPARE: CPS(114)
Purpose Compares two signed binary values (constants and/or the contents of speci-

fied words) and outputs the result to the Arithmetic Flags in the Auxiliary Area.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

(0)

(0)

(1)

>

=

<

0.00

1000

1500

100.00

100.01

100.02

S1+1 = CIO 1001 S1 = CIO 1000

S2+1 = CIO 1501 S2 = CIO 1500

Flag status

Result
Comparison

CPS(114)

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Variations Executed Each Cycle for ON Condition CPS(114)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification !CPS(114)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767
227

Comparison Instructions Section 3-6
Description CPS(114) compares the signed binary data in S1 and S2 and outputs the
result to Arithmetic Flags (the Greater Than, Greater Than or Equal, Equal,
Less Than or Equal, Less Than, and Not Equal Flags) in the Auxiliary Area.

Note CPS(114) treats the data in S1 and S2 as signed binary data which ranges
from 8000 to 7FFF (–32,768 to 32,767 decimal).

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CPS(114). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CPS(114) Results in the Program

When CPS(114) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CPS(114), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when S1 =
S2.

Constants #0000 to #FFFF (binary)
−32768 to 0 to 32767 (signed decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2

(>, >=, =, <=, <, <>)
Arithmetic Flags

Signed binary
comparison

CPS(114)
Result

Flag status

> > = = < = < < >

S1 > S2 ON ON OFF OFF OFF ON

S1 = S2 OFF ON ON ON OFF OFF

S1 < S2 OFF OFF OFF ON ON ON

CPS

S1

S2

A

Correct Use of CPS(114)

Arithmetic Flag
(Example: Equal Flag)
228

Comparison Instructions Section 3-6
Using CPS(114) Results in the Program

Do not program another instruction between CPS(114) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CPS(114).

The immediate-refreshing variation (!CPS(114)) can be used with words allo-
cated to external inputs specified in S1 and/or S2. When !CPS(114) is exe-
cuted, input refreshing will be performed for the external input word specified
in S1 and/or S2 and that refreshed value will be compared.

Flags

Precautions Do not program another instruction between CPS(114) and an input condition
that accesses the result of CPS(114) because the other instruction might
change the status of the Arithmetic Flags.

3-6-6 DOUBLE SIGNED BINARY COMPARE: CPSL(115)
Purpose Compares two double signed binary values (constants and/or the contents of

specified words) and outputs the result to the Arithmetic Flags in the Auxiliary
Area.

Ladder Symbol

CPS

S1

S2

A

Incorrect Use of CPS(114)

Instruction
B

Arithmetic Flag
(Example: Equal Flag)

Name Label Operation

Greater Than Flag > ON if S1 > S2.
OFF in all other cases.

Greater Than or Equal Flag > = ON if S1 ≥ S2.
OFF in all other cases.

Equal Flag = ON if S1 = S2.
OFF in all other cases.

Not Equal Flag <> ON if S1 ≠ S2.
OFF in all other cases.

Less Than Flag < ON if S1 < S2.
OFF in all other cases.

Less Than or Equal Flag < = ON if S1 ≤ S2.
OFF in all other cases.

CPSL(115)

S1

S2

S1: Comparison data 1

S2: Comparison data 2
229

Comparison Instructions Section 3-6
Variations

Applicable Program Areas

Operand Specifications

Description CPSL(115) compares the double signed binary data in S1 +1, S1 and S2+1,
S2 and outputs the result to Arithmetic Flags (the Greater Than, Greater Than
or Equal, Equal, Less Than or Equal, Less Than, and Not Equal Flags) in the
Auxiliary Area.

Note CPSL(115) treats the data in S1 and S2 as double signed binary data which
ranges from 8000 0000 to 7FFF FFFF (–2,147,483,648 to 2,147,483,647 dec-
imal).

Variations Executed Each Cycle for ON Condition CPSL(115)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)
−2147483648 to 0 to 2147483647 (signed decimal)

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

(>, >=, =, <=, <, <>)

S2+1

Signed binary
comparison

Arithmetic Flags
230

Comparison Instructions Section 3-6
Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
CPSL(115). (A status of “---” indicates that the Flag may be ON or OFF.)

Using CPSL(115) Results in the Program

When CPSL(115) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls CPSL(115), as shown in the following dia-
gram. Here, the Equals Flag and output A will be turned ON when S1 +1, S1 =
S2+1, S2.

Using CPSL(115) Results in the Program

Do not program another instruction between CPSL(115) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of CPSL(115).

Flags

CPSL(115)Result Flag status

> > = = < = < < >

S1 +1, S1 > S2+1, S2 ON ON OFF OFF OFF ON

S1+1, S1 = S2+1, S2 OFF ON ON ON OFF OFF

S1+1, S1 < S2+1, S2 OFF OFF OFF ON ON ON

CPSL

S1

S2

A

Correct Use of CPSL(115)

Arithmetic Flag
(Example: Equal Flag)

CPSL

S1

S2

A

Incorrect Use of CPSL(115)

Instruction
B

Arithmetic Flag
(Example: Equal Flag)

Name Label Operation

Greater Than Flag > ON if S1 +1, S1 > S2+1, S2.

OFF in all other cases.

Greater Than or Equal Flag > = ON if S1 +1, S1 ≥ S2+1, S2.

OFF in all other cases.
231

Comparison Instructions Section 3-6
Precautions Do not program another instruction between CPSL(115) and an input condi-
tion that accesses the result of CPSL(115) because the other instruction
might change the status of the Arithmetic Flags.

Example When CIO 0.00 is ON in the following example, the eight-digit signed binary
data in D2 and D1 is compared to the eight-digit signed binary data in D6 and
D5 and the result is output to the Arithmetic Flags.

• If the content of D2 and D1 is greater than that of D6 and D5, the Greater
Than Flag will be turned ON, causing CIO 100.00 to be turned ON.

• If the content of D2 and D1 is equal to that of D6 and D5, the Equals Flag
will be turned ON, causing CIO 100.01 to be turned ON.

• If the content of D2 and D1 is less than that of D6 and D5, the Less Than
Flag will be turned ON, causing CIO 100.02 to be turned ON.

3-6-7 MULTIPLE COMPARE: MCMP(019)
Purpose Compares 16 consecutive words with another 16 consecutive words and

turns ON the corresponding bit in the result word where the contents of the
words are not equal.

Ladder Symbol

Equal Flag = ON if S1 +1, S1 = S2+1, S2.

OFF in all other cases.

Not Equal Flag = ON if S1 +1, S1 ≠ S2+1, S2.

OFF in all other cases.

Less Than Flag < ON if S1 +1, S1 < S2+1, S2.

OFF in all other cases.

Less Than or Equal Flag < = ON if S1 +1, S1 ≤ S2+1, S2.

OFF in all other cases.

Name Label Operation

(1)
(0)

(0)

>
=

<

1234 5678

ABCD EF12

D1

D5

0.00

100.00

100.01

100.02

D2 D1

D6 D5

Flag status

Comparison

MCMP(019)

S1

S2

R

S1: First word of set 1

S2: First word of set 2

R: Result word
232

Comparison Instructions Section 3-6
Variations

Applicable Program Areas

Operands S1: First word of set 1

Specifies the beginning of the first 16-word range. S1 and S1+15 must be in
the same data area.

S2: First word of set 2

Specifies the beginning of the second 16-word range. S2 and S2+15 must be
in the same data area.

R: Result word

Each bit of R contains the result of a comparison between two words in the
16-word sets. Bit n of R (n = 00 to 15) contains the result of the comparison
between words S1+n and S2+n.

Operand Specifications

Variations Executed Each Cycle for ON Condition MCMP(019)

Executed Once for Upward Differentiation @MCMP(019)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 014

R
1

Comparison result for S1 and S2

Comparison result for S1+1 and S2+1

Comparison result for S1+14 and S2+14

Comparison result for S1+15 and S2+15

Area S1 S2 R

CIO Area CIO 0 to CIO 6128 CIO 0 to
CIO 6143

Work Area W0 to W496 W0 to W511

Holding Bit Area H0 to H496 H0 to H511

Auxiliary Bit Area A0 to A944 A448 to A959

Timer Area T0000 to T4080 T0000 to T4095

Counter Area C0000 to C4080 C0000 to C4095

DM Area D0 to D32752 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
233

Comparison Instructions Section 3-6
Description MCMP(019) compares the contents of the 16 words S1 through S1+15 to the
contents of the 16 words S2 through S2+15, and turns ON the corresponding
bit in word R when the contents are not equal.

The content of S1 is compared to the content of S2, the content of S1+1 to the
content of S2+1, ..., and the content of S1+15 to the content of S2+15. Bit n of
R is turned OFF if the content of S1+n is equal to the content of S2+n; bit n of
R is turned ON if the contents are not equal. If the contents of all 16 pairs of
words are the same, the Equals Flag will turn ON after the instruction has
been executed.

Flags

Example When CIO 0.00 is ON in the following example, MCMP(019) compares words
D100 through D115 in order to words D200 through D215 and turns ON the
corresponding bits in D300 when the words are not equal.

R
0: Words are equal.
1: Words aren't equal.

Comparison

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result word is 0000.
(The two 16-word sets contain the same data.)
OFF in all other cases.

R: D300

0.00

D100

D200

D300 S1: D100

D101

D102

D103

D104

D105

D106

D107

D108

D109

D110

D111

D112

D113

D114

D115

S2: D200

D201

D202

D203

D204

D205

D206

D207

D208

D209

D210

D211

D212

D213

D214

D215
234

Comparison Instructions Section 3-6
3-6-8 TABLE COMPARE: TCMP(085)
Purpose Compares the source data to the contents of 16 consecutive words and turns

ON the corresponding bit in the result word when the contents of the words
are equal.

Ladder Symbol

Variations

Applicable Program Areas

Operands T: First word of table

Specifies the beginning of the 16-word table. T and T+15 must be in the same
data area.

R: Result word

Each bit of R contains the result of a comparison between S and a word in the
16-word table. Bit n of R (n = 00 to 15) contains the result of the comparison
between S and T+n.

Operand Specifications

TCMP(085)

S

T

R

S: Source data

T: First word of table

R: Result word

Variations Executed Each Cycle for ON Condition TCMP(085)

Executed Once for Upward Differentiation @TCMP(085)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 014

R
1

to to

Comparison result for S and T

Comparison result for S and T+1

Comparison result for S and T+14

Comparison result for S and T+15

Comparison data 0

Comparison data 1

Comparison data 15

Area S T R

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6128

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W496 W0 to W511

Holding Bit Area H0 to H511 H0 to H496 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A944 A448 to A959

Timer Area T0000 to T4095 T0000 to T4080 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4080 C0000 to C4095

DM Area D0 to D32767 D0 to D32752 D0 to D32767
235

Comparison Instructions Section 3-6
Description TCMP(085) compares the source data (S) to each of the 16 words T through
T+15 and turns ON the corresponding bit in word R when the data are equal.
Bit n of R is turned ON if the content of T+n is equal to S and it is turned OFF
if they are not equal.

S is compared to the content of T and bit 00 of R is turned ON if they are
equal or OFF if they are not equal, S is compared to the content of T+1 and bit
01 of R is turned ON if they are equal or OFF if they are not equal, ..., and S is
compared to the content of T+15 and bit 15 of R is turned ON if they are equal
or OFF if they are not equal.

Flags

Example When CIO 0.00 is ON in the following example, TCMP(085) compares the
content of D100 with the contents of words D200 through D215 and turns ON
the corresponding bits in D300 when the contents are equal or OFF when the
contents are not equal.

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)
&0 to &65535
(unsigned deci-
mal)
−32768 to 0 to
32767 (signed
decimal)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S T R

R
1: Data are equal.
0: Data aren't equal.

Comparison

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result word is 0000.
(None of the 16 words in the table equals S.)

OFF in all other cases.
236

Comparison Instructions Section 3-6
3-6-9 BLOCK COMPARE: BCMP(068)
Purpose Compares the source data to 16 ranges (defined by 16 lower limits and 16

upper limits) and turns ON the corresponding bit in the result word when the
source data is within a range.

Ladder Symbol

Variations

Applicable Program Areas

Operands B: First word of block

Specifies the beginning of a 32-word block (16 lower/upper limit pairs). B and
B+31 must be in the same data area.

S: D100

R: D300
0.00

D100

D200

D300

T: D200

D201

D202

D203

D204

D205

D206

D207

D208

D209

D210

D211

D212

D213

D214

D215

BCMP(068)

S

B

R

S: Source data

B: First word of block

R: Result word

Variations Executed Each Cycle for ON Condition BCMP(068)

Executed Once for Upward Differentiation @BCMP(068)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
237

Comparison Instructions Section 3-6
R: Result word

Each bit of R contains the result of a comparison between S and one of the 16
ranges defined the 32-word block. Bit n of R (n = 00 to 15) contains the result

of the comparison between S and the nth pair of words.

Operand Specifications

Description BCMP(068) compares the source data (S) to the 16 ranges defined by pairs
of lower and upper limit values in B through B+31. The first word in each pair
(B+2n) provides the lower limit and the second word (B+2n+1) provides the
upper limit of range n (n = 0 to 15). If S is within any of these ranges (inclusive
of the upper and lower limits), the corresponding bit in R is turned ON. The
rest of the bits in R will be turned OFF.

B ≤ S ≤ B+1 Bit 00 of R
B+2 ≤ S ≤ B+3 Bit 01 of R
B+4 ≤ S ≤ B+5 Bit 02 of R
B+6 ≤ S ≤ B+7 Bit 03 of R
B+8 ≤ S ≤ B+9 Bit 04 of R
B+10 ≤ S ≤ B+11 Bit 05 of R

15 014
R

1

Comparison result for S
and range B ↔ B+1

Comparison result for S
and range B+2 ↔ B+3Comparison result for S

and range B+28 ↔ B+29
Comparison result for S
and range B+30 ↔ B+31

Area S B R

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6112

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W480 W0 to W511

Holding Bit Area H0 to H511 H0 to H480 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A928 A448 to A959

Timer Area T0000 to T4095 T0000 to T4064 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4064 C0000 to C4095

DM Area D0 to D32767 D0 to D32736 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)
&0 to &65535
(unsigned deci-
mal)
−32768 to 0 to
32767 (signed
decimal)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
238

Comparison Instructions Section 3-6
B+12 ≤ S ≤ B+13 Bit 06 of R
B+14 ≤ S ≤ B+15 Bit 07 of R
B+16 ≤ S ≤ B+17 Bit 08 of R
B+18 ≤ S ≤ B+19 Bit 09 of R
B+20 ≤ S ≤ B+21 Bit 10 of R
B+22 ≤ S ≤ B+23 Bit 11 of R
B+24 ≤ S ≤ B+25 Bit 12 of R
B+26 ≤ S ≤ B+27 Bit 13 of R
B+28 ≤ S ≤ B+29 Bit 14 of R
B+30 ≤ S ≤ B+31 Bit 15 of R

For example, bit 00 of R is turned ON if S is within the first range (B ≤ S ≤
B+1), bit 01 of R is turned ON if S is within the second range (B+2 ≤ S ≤ B+3),
..., and bit 15 of R is turned ON if S is within the fifteenth range (B+30 ≤ S ≤
B+31). All other bits in R are turned OFF.

Flags

Precautions An error will not occur if the lower limit is greater than the upper limit, but 0
(not within the range) will be output to the corresponding bit of R.

Example When CIO 0.00 is ON in the following example, BCMP(068) compares the
content of D100 with the 16 ranges defined in D200 through D231 and turns
ON the corresponding bits in D300 when S is within the range or OFF when S
is not within the range.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result word is 0000.
(S is not within any of the 16 ranges.)

OFF in all other cases.

R: D300

S: D100

0.00

D100

D200

D300

D200

D202

D204

D206

D208

D210

D212

D214

D216

D218

D220

D222

D224

D226

D228

D230

D201

D203

D205

D207

D209

D211

D213

D215

D217

D219

D221

D223

D225

D227

D229

D231

to

to

to

to

to

to

to

to
to

to

to

to

to

to

to

to
239

Comparison Instructions Section 3-6
3-6-10 EXPANDED BLOCK COMPARE: BCMP2(502)
Purpose Compares the source data to up to 256 ranges (defined by 256 lower limits

and 256 upper limits) and turns ON the corresponding bit in the result word
when the source data is within a range.

Ladder Symbol

Variations

Applicable Program Areas

Operands B: First word of block

Specifies the beginning of a comparison block containing up to 513 words
including up to 256 lower/upper limit pairs). All words must be in the same
data area.

BCMP2(502)

S

B

R

S: Source data

B: First word of block

R: First result word

Variations Executed Each Cycle for ON Condition BCMP2(502)

Executed Once for Upward Differentiation @BCMP2(502)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

B+31

B+32

B+33

B+34

B+35

B+36

B+37

B+38

B+2N+1

B+2(N+1)

B

B+1

B+2

B+3

B+4

B+5

B+6

07815

Range 15 value A

Range 15 value B

Range 16 value A

Range 16 value B

Range 17 value A

Range 17 value B

Range 18 value A

Range 18 value B

Range N value A

Range N value B

Range 0 value A

Range 0 value B

Range 1 value A

Range 1 value B

Range 2 value A

Range 2 value B

Comparison block
Word

N: 00 to FF hex
(0 to 255)00 hex Last range "N"

Range 0

Range 1

Range 2

Range 15

Range 16

Range 17

Range 18

Range
data

Range N
240

Comparison Instructions Section 3-6
R: First result word

Each bit of each R word contains the result of a comparison between S and
one of the ranges defined the comparison block. The maximum number of
result words is 16, i.e., m equals 0 to 15.

Operand Specifications

15 014

Comparison result for
S and range 15m + 14

Comparison result for
S and range 15m + n

Comparison result for
S and range 15m

Comparison result for
S and range 15m + 15

R+m
n

Area S B R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)
&0 to &65535
(unsigned deci-
mal)
−32768 to 0
32767 (signed
decimal)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
241

Comparison Instructions Section 3-6
Description BCMP2(502) compares the source data (S) to the ranges defined by pairs of
lower and upper limit values in the comparison block. If S is within any of
these ranges (inclusive of the upper and lower limits), the corresponding bits
in the result words (R to R+15 max.) are turned ON. The rest of the bits in R
will be turned OFF.

The number of ranges is determined by the value N set in the lower byte of B.
N can be between 0 and 255. The upper byte of B must be 00 hex.

Number of Ranges

The number of ranges in the comparison block is set in the first word of the
block. Up to 256 ranges can be set.

Setting Ranges

The values A and B for each range will determine how the comparison oper-
ates depending on which value is larger, as shown below.

Example

When B+1 ≤ B+2
If B+1 ≤ S ≤ B+2, then bit 0 of R will turn ON,
If B+3 ≤ S ≤ B+4, then bit 1 of R will turn ON,
If S < B+5 and B+6 < S, then bit 2 of R will turn OFF, and
If S < B+7 and B+8 < S, then bit 3 of R will turn OFF.

B+1

B+3

B+5

B+31

B+33

B+35

B+37

B+2N+1

B

0

1

2

15

0

1

2

R

R+1

07815

S
: :

::

B+2

B+4

B+6

B+32

B+34

B+36

B+38

B+2N+2

Bit

Bit

Result words
Comparison ranges

Comparison block

Source data

Range 0 value A

Range 1 value A

Range 2 value A

Range 15 value A

00 hex Last range
"N" N: 00 to FF hex (0 to 255)

Range 0 value B

Range 1 value B

Range 2 value B

Range 15 value B

In range: ON
Not in range: OFF

Ranges

Range 16 value A

Range 17 value A

Range 18 value A

Range N value A

Range 16 value B

Range 17 value B

Range 18 value B

Range N value B

Value A Value B

Comparison range

Value B

Comparison
range

· If Value A ≤ Value B
Then, Value A ≤ Comparison range ≤ Value B

· If Value A > Value B
Then, Comparison range ≤ Value B and Value A ≤ Comparison range

Comparison
range

Value A
242

Comparison Instructions Section 3-6
When B+1 > B+2
If S ≤ B+2 and B+1 ≤ S, then bit 0 of R will turn ON,
If S ≤ B+4 and B+3 ≤ S, then bit 1 of R will turn ON,
If B+6 < S < B+5, then bit 2 of R will turn OFF, and
If B+8 < S < B+7, then bit 3 of R will turn OFF.
Results Storage Location

The results are output to corresponding bits in word R. If there are more than
16 comparison ranges, consecutive words following R will be used.The maxi-
mum number of result words is 16, i.e., m equals 0 to 15.

Flags

Example When CIO 0.00 is ON in the following example, BCMP2(502) compares the
content of CIO 1000 with the 24 ranges defined in D200 through D247 (N = 17
hex = 23 decimal, i.e., 24 ranges) and turns ON the corresponding bits in
CIO 2000 and CIO 2001 when S is within the range and OFF when S is not
within the range. For example, if the source data in CIO 1000 is in the range
defined by D201 and D202, then bit 00 of CIO 2000 is turned ON and if it in
not in the range, then bit 00 of CIO 2000 is turned OFF. Likewise, the source
data in CIO 1000 is compared to the ranges defined by D203 and D204, D247
and D248, and the other words in the comparison block, and bit 1 in
CIO 2000, bit 7 in CIO 2001, and the other bits in the result words are manip-
ulated according to the results of comparison.

15 014

Comparison result for
S and range 15m + 14

Comparison result for
S and range 15m + n

Comparison result for
S and range 15m

Comparison result for
S and range 15m + 15

R+m
n

Name Label Operation

Error Flag ER OFF

BCMP2

1000

D200

2000

0.00

D202

D204

D206

D232

D234

D236

D238

D248

0 1 0 0

0 1 8 0

0 2 6 0

1 8 0 0

0 5 0 0

0 1 0 0

0 2 0 0

2 0 0 0

S: CIO 1000 0 1 7 5

0 0 1 7

D201

D203

D205

D231

D233

D235

D237

D247

0 0 0 0

0 0 8 0

0 1 6 0

1 2 0 0

1 5 0 0

1 9 0 0

1 8 0 0

0 1 0 0

R: CIO 2000

R: CIO 2001

T: D200

Bit
243

Comparison Instructions Section 3-6
3-6-11 AREA RANGE COMPARE: ZCP(088)
Purpose Compares a 16-bit unsigned binary value (CD) with the range defined by

lower limit LL and upper limit UL. The results are output to the Arithmetic
Flags.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ZCP(088) compares the 16-bit signed binary data in CD with the range
defined by LL and UL and outputs the result to the Greater Than, Equals, and
Less Than Flags in the Auxiliary Area. (The Less Than or Equal, Greater
Than or Equal, and Not Equal Flags are left unchanged.)

ZCP(088)

CD

LL

UL

CD: Comparison Data
LL: Lower limit of range
UL: Upper limit of range

Variations Executed Each Cycle for ON Condition ZCP(088)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area CD LL UL

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)
−32768 to 0 to 32767 (signed decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
244

Comparison Instructions Section 3-6
Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
ZCP(088).

Using ZCP(088) Results in the Program

When ZCP(088) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls ZCP(088), as shown in the following dia-
gram. In this case, the Equals Flag and output A will be turned ON when
LL ≤ CD ≤ UL.

Do not program another instruction between ZCP(088) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag. In this case, the results of instruction B might
change the results of ZCP(088).

Flags

ZCP(088)Result Flag status

> = <

CD > UL ON OFF OFF

CD = UL OFF ON

LL < CD < UL

CD = LL

CD < LL OFF ON

A

ZCP

CD

LL

UL

Correct Use of ZCP(088)

Arithmetic Flag
(Example: Equal Flag)

A

ZCPL

CD

LL

UL

Incorrect Use of ZCP(088)

Arithmetic Flag
(Example: Equal Flag)

Instruction
 B

Name Label Operation

Error Flag ER ON if LL > UL.

Greater Than Flag > ON if CD > UL.
OFF in all other cases.

Greater Than or Equal Flag > = Left unchanged.
245

Comparison Instructions Section 3-6
Precautions Do not program another instruction between ZCP(088) and an input condition
that accesses the result of ZCP(088) because the other instruction might
change the status of the Arithmetic Flags.

Example When CIO 0.00 is ON in the following example, the 16-bit unsigned binary
data in D0 is compared to the range 0005 to 001F hex (5 to 31 decimal) and
the result is output to the Arithmetic Flags.
CIO 100.00 is turned ON if 0005 hex ≤ content of D0 ≤ 001F hex.
CIO 100.01 is turned ON if the content of D0 > 001F hex.
CIO 100.02 is turned ON if the content of D0 < 0005 hex.

3-6-12 DOUBLE AREA RANGE COMPARE: ZCPL(116)
Purpose Compares a 32-bit unsigned binary value (CD+1, CD) with the range defined

by lower limit (LL+1, LL) and upper limit (UL+1, UL). The results are output to
the Arithmetic Flags.

Ladder Symbol

Variations

Equal Flag = ON if LL ≤ CD ≤ UL.
OFF in all other cases.

Not Equal Flag <> Left unchanged.

Less Than Flag < ON if CD < LL.

OFF in all other cases.

Less Than or Equal Flag < = Left unchanged.

Negative Flag N Left unchanged.

Name Label Operation

D0

LL CD UL

= ON

D0
> ON

D0
< ON

≤

>

≤

>

0005 hex 001F hex

001F hex

0005 hex

Arithmetic
Flags

100.00

0.00

>

100.01

=

100.02

<

ZCP

D0

#5

#1F

CD

LL

UL

ZCPL(116)

CD

LL

UL

CD: First word of Comparison Data
LL: First word of Lower Limit
UL: First word of Upper Limit

Variations Executed Each Cycle for ON Condition ZCPL(116)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
246

Comparison Instructions Section 3-6
Applicable Program Areas

Operand Specifications

Description ZCPL(116) compares the 32-bit signed binary data in CD+1, CD with the
range defined by LL+1, LL and UL+1, UL and outputs the result to the Greater
Than, Equals, and Less Than Flags in the Auxiliary Area. (The Less Than or
Equal, Greater Than or Equal, and Not Equal Flags are left unchanged.)

Arithmetic Flag Status

The following table shows the status of the Arithmetic Flags after execution of
ZCPL(116).

Using ZCPL(116) Results in the Program

When ZCPL(116) is executed, the result is reflected in the Arithmetic Flags.
Control the desired output or right-hand instruction with a branch from the
same input condition that controls ZCPL(116).

Do not program another instruction between ZCPL(116) and the instruction
controlled by the Arithmetic Flag because the other instruction might change
the status of the Arithmetic Flag.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area CD LL UL

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants #0000 0000 to #FFFF FFFF (binary)
&0 to &4294967295 (unsigned decimal)

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

ZCPL(116)Result Flag status

> = <

CD+1, CD > UL+1, UL ON OFF OFF

CD+1, CD = UL+1, UL OFF ON

LL+1, LL < CD+1, CD < UL+1, UL

CD+1, CD = LL+1, LL

CD+1, CD < LL+1, LL OFF ON
247

Comparison Instructions Section 3-6
The operation of ZCPL(116) is almost identical to that of ZCP(088) except that
ZCPL(116) compares 32-bit values instead of 16-bit values. Refer to 3-6-11
AREA RANGE COMPARE: ZCP(088) for diagrams showing how to use
results in the program and an example program section.

Flags

Precautions Do not program another instruction between ZCPL(116) and an input condi-
tion that accesses the result of ZCPL(116) because the other instruction
might change the status of the Arithmetic Flags.

Name Label Operation

Error Flag ER ON if LL+1, LL > UL+1, UL.

Greater Than Flag > ON if CD > UL+1, UL.
OFF in all other cases.

Greater Than or Equal Flag > = Left unchanged.

Equal Flag = ON if LL+1, LL ≤ CD+1, CD ≤ UL+1, UL.

OFF in all other cases.

Not Equal Flag <> Left unchanged.

Less Than Flag < ON if CD+1, CD < LL+1, LL.
OFF in all other cases.

Less Than or Equal Flag < = Left unchanged.

Negative Flag N Left unchanged.
248

Data Movement Instructions Section 3-7
3-7 Data Movement Instructions
This section describes instructions used to move data in various ways.

3-7-1 MOVE: MOV(021)
Purpose Transfers a word of data to the specified word.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Mnemonic Function
code

Page

MOVE MOV 021 249

MOVE NOT MVN 022 250

DOUBLE MOVE MOVL 498 252

DOUBLE MOVE NOT MVNL 499 253

MOVE BIT MOVB 082 255

MOVE DIGIT MOVD 083 257

MULTIPLE BIT TRANSFER XFRB 062 259

BLOCK TRANSFER XFER 070 262

BLOCK SET BSET 071 264

DATA EXCHANGE XCHG 073 266

DOUBLE DATA EXCHANGE XCGL 562 267

SINGLE WORD DISTRIBUTE DIST 080 269

DATA COLLECT COLL 081 271

MOVE TO REGISTER MOVR 560 272

MOVE TIMER/COUNTER PV
TO REGISTER

MOVRW 561 274

S

D

MOV(021)

S: Source

D: Destination

Variations Executed Each Cycle for ON Condition MOV(021)

Executed Once for Upward Differentiation @MOV(021)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification !MOV(021)

Combined
Variations

Executed Once and Destination Refreshed
Immediately for Upward Differentiation

!@MOV(021)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767
249

Data Movement Instructions Section 3-7
Description Transfers S to D. If S is a constant, the value can be used for a data setting.

MOV(021) has an immediate refreshing variation (!MOV(021)). External input
bits can be specified for S and external output bits can be specified for D.
Input bits used for S will refreshed just before, and output bits used for D will
be refreshed just after execution.

Flags

Example When CIO 0.00 is ON in the following example, the content of CIO 1000 is
copied to D100.

3-7-2 MOVE NOT: MVN(022)
Purpose Transfers the complement of a word of data to the specified word.

Ladder Symbol

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, –(– –) IR15

Area S D

Destination wordBit status not
changed.

Source word

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the data being transferred is 0000.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the data being transferred is 1.

OFF in all other cases.

0.00

1000

D100

CIO 1000 D100

MVN(022)

S

D

S: Source

D: Destination
250

Data Movement Instructions Section 3-7
Variations

Applicable Program Areas

Operand Specifications

Description MVN(022) inverts the bits in S and transfers the result to D. The content of S
is left unchanged.

Flags

Variations Executed Each Cycle for ON Condition MVN(022)

Executed Once for Upward Differentiation @MVN(022)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Destination word

Bit status
inverted.

Source word

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the content of D is 0000 after execution.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of D is 1 after execution.
OFF in all other cases.
251

Data Movement Instructions Section 3-7
Example When CIO 0.00 is ON in the following example, the status of the bits in
CIO 200 is inverted and the result is copied to D100.

3-7-3 DOUBLE MOVE: MOVL(498)
Purpose Transfers two words of data to the specified words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.00

200

D100

CIO 200

D100

S

D

MOVL(498)

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition MOVL(498)

Executed Once for Upward Differentiation @MOVL(498)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---
252

Data Movement Instructions Section 3-7
Description MOVL(498) transfers S+1 and S to D+1 and D. If S+1 and S are constants,
the value can be used for a data setting.

Flags

Example When CIO 0.01 is ON in the following example, the content of D1001 and
D1000 are copied to D2001 and D2000.

3-7-4 DOUBLE MOVE NOT: MVNL(499)
Purpose Transfers the complement of two words of data to the specified words.

Ladder Symbol

Variations

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, 1–(– –) IR5

Area S D

S DS+1 D+1

Bit status
not changed.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the contents of D+1 and D are 0000 0000 after exe-
cution.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of D+1 is 1 after execution.
OFF in all other cases.

0.01

D1000

D2000

D1001

D1000

D2001

D2000

MVNL(499)

S

D

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition MVNL(499)

Executed Once for Upward Differentiation @MVNL(499)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
253

Data Movement Instructions Section 3-7
Applicable Program Areas

Operand Specifications

Description MVNL(499) inverts the bits in S+1 and S and transfers the result to D+1 and
D. The contents of S+1 and S are left unchanged.

Flags

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, –(– –) IR15

S DS+1 D+1

Bit status
inverted.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the contents of D+1 and D are 0000 0000 after exe-
cution.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of D+1 is 1 after execution.
OFF in all other cases.
254

Data Movement Instructions Section 3-7
Examples When CIO 0.01 is ON in the following example, the status of the bits in D1001
and D1000 are inverted and the result is copied to D2001 and D2000. (The
original contents of D1001 and D1000 are left unchanged.)

3-7-5 MOVE BIT: MOVB(082)
Purpose Transfers the specified bit.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

The rightmost two digits of C indicate which bit of S is the source bit and the
leftmost two digits of C indicate which bit of D is the destination bit.

Operand Specifications

0.01

D1000

D2000

D1001

D1000

D2001

D2000

S

C

D

MOVB(082)

S: Source word or data

C: Control word

D: Destination word

Variations Executed Each Cycle for ON Condition MOVB(082)

Executed Once for Upward Differentiation @MOVB(082)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

C

Source bit: 00 to 0F
(0 to 15 decimal)

Destination bit: 00 to 0F
(0 to 15 decimal)

m n

Area S C D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511
255

Data Movement Instructions Section 3-7
Description MOVB(082) copies the specified bit (n) from S to the specified bit (m) in D.
The other bits in the destination word are left unchanged.

Note The same word can be specified for both S and D to copy a bit within a word.

Flags

Examples When CIO 0.00 is ON in the following example, the 5th bit of the source word

(D0) is copied to the 12th bit of the destination word (D1000) in accordance
with the control word’s value of 0C05.

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

Specified values
only

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area S C D

Name Label Operation

Error Flag ER ON if the rightmost and leftmost two digits of C are not
within the specified range of 00 to 0F.
OFF in all other cases.

0 C 0 5C: D200

S: D0

D: D1000

0.00

D0

D200

D1000
256

Data Movement Instructions Section 3-7
3-7-6 MOVE DIGIT: MOVD(083)
Purpose Transfers the specified digit or digits. (Each digit is made up of 4 bits.)

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

The source digits are read from right to left, wrapping back to the rightmost
digit (digit 0) if necessary.

C: Control Word

The first three digits of C indicate the first source digit (m), the number of dig-
its to transfer (n), and the first destination digit (l), as shown in the following
diagram.

D: Destination Word

The destination digits are written from right to left, wrapping back to the right-
most digit (digit 0) if necessary.

Operand Specifications

S

C

D

MOVD(083)

S: Source word or data

C: Control word

D: Destination word

Variations Executed Each Cycle for ON Condition MOVD(083)

Executed Once for Upward Differentiation @MOVD(083)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 011 37 412

S Digit 3 Digit 2 Digit 1 Digit 0

15 8 011 37 412

C 0 l

First digit in S (m): 0 to 3

Number of digits (n): 0 to 3
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First digit in D (ll): 0 to 3

Always 0.

n m

15 8 011 37 412

D Digit 3 Digit 2 Digit 1 Digit 0

Area S C D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511
257

Data Movement Instructions Section 3-7
Description MOVD(083) copies the content of n digits from S (beginning at digit m) to D
(beginning at digit l). Only the specified digits are changed; the rest are left
unchanged.

If the number of digits being read or written exceeds the leftmost digit of S or
D, MOVD(083) will wrap to the rightmost digit of the same word.

Note The same word can be specified for both S and D to copy a bit within a word.

Flags

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

Specified values
only

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area S C D

l

Name Label Operation

Error Flag ER ON if one of the first three digits of C is not within the
specified range of 0 to 3.
OFF in all other cases.
258

Data Movement Instructions Section 3-7
Examples Four-digit Transfer

When CIO 0.00 is ON in the following example, four digits of data are copied
from CIO 200 to CIO 300. The transfer begins with the digit 1 of CIO 200 and
digit 0 or CIO 300, in accordance with the control word’s value of 0031.

Note After reading the leftmost digit of S (digit 3), MOVD(083) wraps to the right-
most digit (digit 0).

Examples of C

The following diagram shows examples of data transfers for various values of
C.

3-7-7 MULTIPLE BIT TRANSFER: XFRB(062)
Purpose Transfers the specified number of consecutive bits.

Ladder Symbol

Variations

Applicable Program Areas

C: D300

S: 200

D: 300

Digit no.

Digit no.

First digit in D: Digit 0

Number of digits: 3 (4 digits)

First digit in S: Digit 1

0.00

D300

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

Digit 0

Digit 1

Digit 2

Digit 3

C

S

D

XFRB(062)

C: Control word

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition XFRB(062)

Executed Once for Upward Differentiation @XFRB(062)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
259

Data Movement Instructions Section 3-7
Operands C: Control Word

The first three digits of C indicate the first source digit (m), the number of dig-
its to transfer (n), and the first destination digit (l), as shown in the following
diagram.

S: First Source Word

Specifies the first source word. Bits are read from right to left, continuing with
consecutive words (up to S+16) when necessary.

D: First Destination Word

Specifies the first destination word. Bits are written from right to left, continu-
ing with consecutive words (up to D+16) when necessary.

Operand Specifications

15 8 037 4

C ln m

First bit in S (ll): 0 to F

First bit in D (m): 0 to 3
Number of digits (n):
00 to FF (0 to 255)

15 0

S

to to

S+16 max.

15 0

D

D+16 max.

to to

Area C S D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants Specified values
only

--- ---

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to 5+(++)

,–(– –) IR0 to, –(– –) IR15
260

Data Movement Instructions Section 3-7
Description XFRB(062) transfers up to 255 consecutive bits from the source words (begin-
ning with bit l of S) to the destination words (beginning with bit m of D). Bits in
the destination words that are not overwritten by the source bits are left
unchanged.

The beginning bits and number of bits are specified in C, as shown in the fol-
lowing diagram.

It is possible for the source words and destination words to overlap. By trans-
ferring data overlapping several words, the data can be packed more effi-
ciently in the data area. (This is particularly useful when handling position
data for position control.)

Since the source words and destination words can overlap, XFRB(062) can
be combined with ANDW(034) to shift m bits by n spaces.

Flags

Precautions Up to 255 bits of data can be transferred per execution of XFRB(062).

Be sure that the source words and destination words do not exceed the end of
the data area.

Examples When CIO 0.00 is ON in the following example, the 20 bits beginning with
CIO 200.06 are copied to the 20 bits beginning with CIO 300.00.

Name Label Operation

Error Flag ER OFF

0.00

D100

C: D100

20 bits
261

Data Movement Instructions Section 3-7
3-7-8 BLOCK TRANSFER: XFER(070)
Purpose Transfers the specified number of consecutive words.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of Words

Specifies the number of words to be transferred. The possible range for N is
0000 to FFFF (0 to 65,535 decimal).

S: First Source Word

Specifies the first source word.

D: First Destination Word

Specifies the first destination word.

Operand Specifications

XFER(070)

N

S

D

N: Number of words

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition XFER(070)

Executed Once for Upward Differentiation @XFER(070)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

S+(N−1)

to to

15 0

D

D+(N−1)

to to

Area N S D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767
262

Data Movement Instructions Section 3-7
Description XFER(070) copies N words beginning with S (S to S+(N–1)) to the N words
beginning with D (D to D+(N–1)).

It is possible for the source words and destination words to overlap, so
XFER(070) can perform word-shift operations.

Flags

Precautions Be sure that the source words (S to S+N–1) and destination words (D to
D+N–1) do not exceed the end of the data area.

Some time will be required to complete XFER(070) when a large number of
words is being transferred. In this case, the XFER(070) transfer might not be
completed if a power interruption occurs during execution of the instruction.

Example When CIO 0.00 is ON in the following example, the 10 words D100 through
D109 are copied to D200 through D209.

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary) or &0 to
&65535

--- ---

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area N S D

D+S+(N−1)
(N−1)

to to
N words

&10

D100

D102

D100

D109

D102

D111

Name Label Operation

Error Flag ER OFF

&10

0.00

D100

D200

D109

D100

D101

D102

D209

D200

D201

D20210
words
263

Data Movement Instructions Section 3-7
3-7-9 BLOCK SET: BSET(071)
Purpose Copies the same word to a range of consecutive words.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

Specifies the source data or the word containing the source data.

St: Starting Word

Specifies the first word in the destination range.

E: End Word

Specifies the last word in the destination range.

Note St and E must be in the same data area.

Operand Specifications

BSET(071)

S

E

S: Source word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition BSET(071)

Executed Once for Upward Differentiation @BSET(071)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

E

E

Source data

to

Destination range

St

St

Area S St E

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095
264

Data Movement Instructions Section 3-7
Description BSET(071) copies the same source word (S) to all of the destination words in
the range St to E.

Flags

Precautions Be sure that the starting word (St) and end word (E) are in the same data area
and that St ≤ E.

Some time will be required to complete BSET(071) when the source data is
being transferred to a large number of words. In this case, the BSET(071)
transfer might not be completed if a power interruption occurs during execu-
tion of the instruction.

Example When CIO 0.00 is ON in the following example, the source data in D100 is
copied to D200 through D209.

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, 15–(– –) IR

Area S St E

E

Destination wordsSource word

St

Name Label Operation

Error Flag ER ON if St is greater than E.

OFF in all other cases.

S

E

0.00

D100

D200

D209
S: D100

St
St: D200

D201

D202

D203

D204

D205

D206

D207

D208

E: D209
265

Data Movement Instructions Section 3-7
3-7-10 DATA EXCHANGE: XCHG(073)
Purpose Exchanges the contents of the two specified words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description XCHG(073) exchanges the contents of E1 and E2.

Flags There are no flags affected by this instruction.

XCHG(073)

E1

E2

E1: First exchange word

E2: Second exchange word

Variations Executed Each Cycle for ON Condition XCHG(073)

Executed Once for Upward Differentiation @XCHG(073)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area E1 E2

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

E2E1
266

Data Movement Instructions Section 3-7
Example When CIO 0.00 is ON in the following example, the content of D100 is
exchanged with the content of D200.

3-7-11 DOUBLE DATA EXCHANGE: XCGL(562)
Purpose Exchanges the contents of a pair of consecutive words with another pair of

consecutive words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.00

D100

D200

D100

D100

D200

D200

XCGL(562)

E1

E2

E1: First exchange word

E2: Second exchange word

Variations Executed Each Cycle for ON Condition XCGL(562)

Executed Once for Upward Differentiation @XCGL(562)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area E1 E2

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- ---

Data Registers ---
267

Data Movement Instructions Section 3-7
Description XCHG(073) exchanges the contents of E1+1 and E1 with the contents of
E2+1 and E2.

To exchange 3 or more words, use XFER(070) to transfer the words to a third
set of words (a buffer) as shown in the following diagram.

Flags There are no flags affected by this instruction.

Example When CIO 0.01 is ON in the following example, the contents of D100 and
D101 are exchanged with the contents of D200 and D201.

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area E1 E2

E2E1 E1+1 E2+1

E2

E1

Buffer

1st XFER(070)
operation

2nd XFER(070)
operation

3rd XFER(070)
operation

0.01

D100

D200

D100
D101

D100
D101

D200
D201

D200
D201
268

Data Movement Instructions Section 3-7
3-7-12 SINGLE WORD DISTRIBUTE: DIST(080)
Purpose Transfers the source word to a destination word calculated by adding an offset

value to the base address.

Ladder Symbol

Variations

Applicable Program Areas

Operands Bs: Destination Base Address

Specifies the destination base address. The offset is added to this address to
calculate the destination word.

Of: Offset

This value is added to the base address to calculate the destination word. The
offset can be any value from 0000 to FFFF (0 to 65,535 decimal), but Bs and
Bs+Of must be in the same data area.

Operand Specifications

DIST(080)

S S: Source word

Bs: Destination base address

Of: Offset

Bs

Of

Variations Executed Each Cycle for ON Condition DIST(080)

Executed Once for Upward Differentiation @DIST(080)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

to
to

Bs

Bs+Of

Area S Bs Of

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

--- #0000 to #FFFF
(binary) or &0 to
&65535

Data Registers DR0 to DR15 --- DR0 to DR15
269

Data Movement Instructions Section 3-7
Description DIST(080) copies S to the destination word calculated by adding Of to Bs.
The same DIST(080) instruction can be used to distribute the source word to
various words in the data area by changing the value of Of.

Flags

Precautions Be sure that the offset does not exceed the end of the data area, i.e., Bs and
Bs+Of are in the same data area.

Example When CIO 0.00 is ON in the following example, the contents of D100 will be
copied to D210 (D200 + 10) if the contents of D300 is 10 (0A hexadecimal).
The contents of D100 can be copied to other words by changing the offset in
D300.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area S Bs Of

S

Bs+n

OfBs

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the source data is 0000.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the source data is 1.

OFF in all other cases.

S: D100

S

0 0 0 A

0.00

D100

D200

D300

D210

Copied by DIST(080).

Offset +10 words

4-digit hexadecimal

Of: D300Bs: D200

D201

Bs

Of
270

Data Movement Instructions Section 3-7
3-7-13 DATA COLLECT: COLL(081)
Purpose Transfers the source word (calculated by adding an offset value to the base

address) to the destination word.

Ladder Symbol

Variations

Applicable Program Areas

Operands Bs: Source Base Address

Specifies the source base address. The offset is added to this address to cal-
culate the source word.

Of: Offset

This value is added to the base address to calculate the source word. The off-
set can be any value from 0000 to FFFF (0 to 65,535 decimal), but Bs and
Bs+Of must be in the same data area.

Operand Specifications

COLL(081)

D

Bs: Source base address

Of: Offset

D: Destination word

Bs

Of

Variations Executed Each Cycle for ON Condition COLL(081)

Executed Once for Upward Differentiation @COLL(081)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

to to

Bs

Of

Area Bs Of D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to #FFFF
(binary) or &0 to
&65535

Data Registers --- DR0 to DR15
271

Data Movement Instructions Section 3-7
Description COLL(081) copies the source word (calculated by adding Of to Bs) to the des-
tination word. The same COLL(081) instruction can be used to collect data
from various source words in the data area by changing the value of Of.

Flags

Precautions Be sure that the offset does not exceed the end of the data area, i.e., Bs and
Bs+Of are in the same data area.

Example When CIO 0.00 is ON in the following example, the contents of D110 (D100 +
10) will be copied to D300 if the content of D200 is 10 (0A hexadecimal). The
contents of other words can be copied to D300 by changing the offset in
D200.

3-7-14 MOVE TO REGISTER: MOVR(560)
Purpose Sets the PLC memory address of the specified word, bit, or timer/counter

Completion Flag in the specified Index Register. (Use MOVRW(561) to set the
PLC memory address of a timer/counter PV in an Index Register.)

Ladder Symbol

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area Bs Of D

Bs

Bs+n

Of

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the source data is 0000.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the source data is 1.

OFF in all other cases.

D110

 D100
0

D

0 0 AD200

D101

0.00

D100

D200

D300

D300

4-digit hexadecimal

Offset +10 words

Copied by COLL(081).

Bs:
Bs

Of

MOVR(560)

S

D

S: Source (desired word or bit)

D: Destination (Index Register)
272

Data Movement Instructions Section 3-7
Variations

Applicable Program Areas

Operands D: Destination

The destination must be an Index Register (IR0 to IR15).

Operand Specifications

Description MOVR(560) finds the PLC memory address (absolute address) of S and
writes that address in D (an Index Register).

If a timer or counter is specified in S, MOVR(560) will write the PLC memory
address of the timer/counter Completion Flag in D. Use MOVRW(561) to write
the PLC memory address of the timer/counter PV in D.

Variations Executed Each Cycle for ON Condition MOVR(560)

Executed Once for Upward Differentiation @MOVR(560)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6143
CIO 0.00 to CIO 6143.15

Work Area W0 to W511
W0.00 to W511.15

Holding Bit Area H0 to H511
H0.00 to H511.15

Auxiliary Bit Area A0 to A447
A448 to A959
A0.00 to A447.15

A448.00 to A959.15

Timer Area T0000 to T4095
 (Completion Flag)

Counter Area C0000 to C4095
(Completion Flag)

Task Flag TK00 to TK31 ---

DM Area D0 to D32767 ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers --- IR0 to IR15

Indirect addressing
using Index Registers

Internal I/O memory address of S

Index Register
273

Data Movement Instructions Section 3-7
Flags

Precautions MOVR(560) cannot set the PLC memory addresses of timer/counter PVs.
Use MOVRW(561) to set the PLC memory addresses of timer/counter PVs.

The contents of an index register in an interrupt task is not predictable until it
is set. Be sure to set a register using MOVR(560) in an interrupt task before
using the register.

Any changes to the contents of an IR or DR made in an interrupt task will not
affect the contents of the register in a cyclic task.

Example When CIO 0.00 is ON in the following example, MOVR(560) writes the PLC
memory address of CIO 200 to IR0.

3-7-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561)
Purpose Sets the PLC memory address of the specified timer or counter’s PV in the

specified Index Register. (Use MOVR(560) to set the PLC memory address of
a word, bit, or timer/counter Completion Flag in an Index Register.)

Ladder Symbol

Variations

Applicable Program Areas

Operands D: Destination

The destination must be an Index Register (IR0 to IR15).

Operand Specifications

Name Label Operation

Error Flag ER OFF or unchanged

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

S: 200

D: IR0

1 4

1 4

0.00

200

Internal I/O memory address

Internal I/O memory
address of CIO 200

S

D

MOVRW(561)

S: Source (desired TC number)

D: Destination (Index Register)

Variations Executed Each Cycle for ON Condition MOVR(561)

Executed Once for Upward Differentiation @MOVR(561)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area ---

Work Area ---

Holding Bit Area ---
274

Data Movement Instructions Section 3-7
Description MOVRW(561) finds the PLC memory address for the PV of the timer or
counter specified in S and writes that address in D (an Index Register).

MOVRW(561) will set the PLC memory address of the timer or counter’s PV in
D. Use MOVR(560) to set the PLC memory address of the timer or counter
Completion Flag.

Flags

Precautions MOVRW(561) cannot set the PLC memory addresses of data area words,
bits, or timer/counter Completion Flags. Use MOVR(560) to set these PLC
memory addresses.

Example When CIO 0.01 is ON in the following example, MOVRW(561) writes the PLC
memory address for the PV of timer T0 to IR1.

Auxiliary Bit Area ---

Timer Area T0000 to T4095
(present value)

Counter Area C0000 to C4095
(present value)

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers --- IR0 to IR15

Indirect addressing
using Index Registers

Area S D

Internal I/O memory address of S

Timer/counter PV only

Index Register

Name Label Operation

Error Flag ER OFF or unchanged

Equals Flag = OFF or unchanged

Negative Flag N OFF or unchanged

S:

0.01

T0
T0

Internal I/O memory address
275

Data Shift Instructions Section 3-8
3-8 Data Shift Instructions
This section describes instructions used to shift data within or between words,
but in differing amounts and directions.

3-8-1 SHIFT REGISTER: SFT(010)
Purpose Operates a shift register.

Ladder Symbol

Variations

Instruction Mnemonic Function code Page

SHIFT REGISTER SFT 010 276

REVERSIBLE SHIFT REGIS-
TER

SFTR 084 278

ASYNCHRONOUS SHIFT
REGISTER

ASFT 017 281

WORD SHIFT WSFT 016 283

ARITHMETIC SHIFT LEFT ASL 025 285

DOUBLE SHIFT LEFT ASLL 570 286

ARITHMETIC SHIFT RIGHT ASR 026 288

DOUBLE SHIFT RIGHT ASRL 571 289

ROTATE LEFT ROL 027 291

DOUBLE ROTATE LEFT ROLL 572 292

ROTATE LEFT WITHOUT
CARRY

RLNC 574 297

DOUBLE ROTATE LEFT WITH-
OUT CARRY

RLNL 576 299

ROTATE RIGHT ROR 028 294

DOUBLE ROTATE RIGHT RORL 573 296

ROTATE RIGHT WITHOUT
CARRY

RRNC 575 301

DOUBLE ROTATE RIGHT
WITHOUT CARRY

RRNL 577 302

ONE DIGIT SHIFT LEFT SLD 074 304

ONE DIGIT SHIFT RIGHT SRD 075 305

SHIFT N-BIT DATA LEFT NSFL 578 307

SHIFT N-BIT DATA RIGHT NSFR 579 309

SHIFT N-BITS LEFT NASL 580 311

DOUBLE SHIFT N-BITS LEFT NSLL 582 313

SHIFT N-BITS RIGHT NASR 581 316

DOUBLE SHIFT N-BITS
RIGHT

NSRL 583 319

SFT(010)

E

Data input

Shift input

Reset input

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition SFT(010)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
276

Data Shift Instructions Section 3-8
Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

Description When the execution condition on the shift input changes from OFF to ON, all
the data from St to E is shifted to the left by one bit (from the rightmost bit to
the leftmost bit), and the ON/OFF status of the data input is placed in the
rightmost bit.

Flags

Precautions The bit data shifted out of the shift register is discarded.

When the reset input turns ON, all bits in the shift register from the rightmost
designated word (St) to the leftmost designated word (E) will be reset (i.e., set
to 0). The reset input takes priority over other inputs.

St must be less than or equal to E, but even when St is set to greater than E
an error will not occur and one word of data in St will be shifted.

When St and E are designated indirectly using index registers and the actual
addresses in I/O memory are not within memory areas for data, an error will
occur and the Error Flag will turn ON.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

Area St E

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

E

Status of data input
for each shift input

Lost

St+1, St+2, ... St

Name Label Operation

Error Flag ER ON if the indirect IR address for St and E is not in the CIO,
AR, HR, or WR data areas.

OFF in all other cases.
277

Data Shift Instructions Section 3-8
Examples Shift Register Exceeding 16 Bits

The following example shows a 48-bit shift register using words CIO 1000 to
CIO 1002. A 1-s clock pulse is used so that the execution condition produced
by CIO 0.05 is shifted into a 3-word register between CIO 1000.00 and
CIO 1002.15 every second.

3-8-2 REVERSIBLE SHIFT REGISTER: SFTR(084)
Purpose Creates a shift register that shifts data to either the right or the left.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Note St and E must be in the same data area.

Operand Specifications

E: CIO 1002 CIO 1001 CIO 1000

0.05

P_1s

0.06

1000
1002

(1-s clock)
Reset

Shift input

Data input

Lost

Contents of
CIO 0.05

St+1: St:

SFTR(084)

C

E

C: Control word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition SFTR(084)

Executed Once for Upward Differentiation @SFTR(084)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 14 13 12

Data input

Reset

Shift input

Shift direction
1 (ON): Left
0 (OFF): Right

Area C St E

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511
278

Data Shift Instructions Section 3-8
Description When the execution condition of the shift input bit (bit 14 of C) changes to ON,
all the data from St to E is moved in the designated shift direction (designated
by bit 12 of C) by 1 bit, and the ON/OFF status of the data input is placed in
the rightmost or leftmost bit. The bit data shifted out of the shift register is
placed in the Carry Flag (CY).

Flags

Precautions The above shift operations are applicable when the reset bit (bit 15 of C) is set
to OFF.

When reset (bit 15 of C) turns ON all bits in the shift register, from St to E will
be reset (i.e., set to 0).

When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C St E

StE

E St Shift direction

Data input

Data input

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into it.
OFF when 0 is shifted into it.
OFF when reset is set to 1.
279

Data Shift Instructions Section 3-8
Examples Shifting Data

If shift input H0.14 goes ON when CIO 0.00 is ON and the reset bit H0.15 is
OFF, words D100 through D102 will shift one bit in the direction designated by
H0.12 (e.g., 1: right) and the contents of input bit H0.13 will be shifted into the
rightmost bit of D100. The contents of bit 15 of D102 will be shifted to the
Carry Flag (CY).

Resetting Data

If H0.14 is ON when CIO 0.00 is ON, and the reset bit, H0.15, is ON, words
D100 through D102 and the Carry Flag will be reset to OFF.

Controlling Data

Resetting Data

All bits from St to E and the Carry Flag are set to 0 and no other data can be
received when the reset input bit (bit 15 of C) is ON.

Shifting Data Left (from Rightmost to Leftmost Bit)

When the shift input bit (bit 14 of C) is ON, the contents of the input bit (bit 13
of C) is shifted to bit 00 of the starting word, and each bit thereafter is shifted
one bit to the left. The status of bit 15 of the end word is shifted to the Carry
Flag.

Shifting Data Right (from Leftmost to Rightmost Bit

When the shift input bit (bit 14 of C) is ON, the contents of the input bit (bit 13
of C) (I/O) is shifted to bit 15 on the end word, and each bit thereafter is
shifted one bit to the right. The status of bit 00 of the starting word is shifted to
the Carry Flag.

C: H0

C

E

0.00

H0

D100

D200

D102 D101 D100

St

Data input:
H0.13

Reset input: 0

Shift input: 1

Shift direction

Data
input

Data
input
280

Data Shift Instructions Section 3-8
3-8-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017)
Purpose Shifts all non-zero word data within the specified word range either towards St

or toward E, replacing 0000 hex word data.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Note St and E must be in the same data area.

Operand Specifications

ASFT(017)

C

E

C: Control word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition ASFT(017)

Executed Once for Upward Differentiation @ASFT(017)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 14 13 12

Shift direction
0: Non-zero data shifted toward E
1: Non-zero data shifted toward St

Shift Enable Bit
0: Shift disabled
1: Shift enabled

Clear Bit
0: Data not reset
1: All data from St to E is reset

Area C St E

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15 ---
281

Data Shift Instructions Section 3-8
Description When the Shift Enable Bit (bit 14 of C) is ON, all of the words with non-zero
content within the range of words between St and E will be shifted one word in
the direction determined by the Shift Direction Bit (bit 13 of C) whenever the
word in the shift direction contains all zeros. If ASFT(017) is repeated suffi-
cient times, all all-zero words will be replaced by non-zero words. This will
result in all the data between St and E being divided into zero and non-zero
data.

Flags

Precautions When the Clear Flag (bit 15 of C) goes ON, all bits in the shift register, from St
to E, will be reset (i.e., set to 0). The Clear Flag has priority over the Shift
Enable Bit (bit 14 of C).

When St is greater than E an error will be generated and the Error Flag will
turn ON.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C St E

. . .

E

E

. . .

Shift direction

Shift enabled

Clear
Convert

Convert

Non-zero data

Zero data

St

St

Name Label Operation

Error Flag ER ON when St is greater than E.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.
282

Data Shift Instructions Section 3-8
Examples Shifting Data:

If the Shift Enable Bit, H0.14, goes ON when CIO 0.00 is ON, all words with
non-zero data content from D100 through D109 will be shifted in the direction
designated by the Shift Direction Bit, H0.13 (e.g., 1: Toward St) if the word to
the left of the non-zero data is all zeros.

3-8-4 WORD SHIFT: WSFT(016)
Purpose Shifts data between St and E in word units.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

C: H0

E:

C

E

0.00

H0

D100

D109

D100

D101

D102

D103

D104

D105

D106

D107

D108

D109

1 2 3 4

5 6 7 8

9 A B C

1 2 3 4

5 6 7 8

9 A B C

1 2 3 4

5 6 7 8

9 A B C

Non-zero data is
shifted toward St

Shift direction
1: Non-zero data shifted toward E
Shift Enable Bit: 1

Clear

Before ASFT(017) is executed After one execution After two executions

St

St:

WSFT(016)

S

E

S: Source word

St: Starting word

E: End word

St

Variations Executed Each Cycle for ON Condition WSFT(016)

Executed Once for Upward Differentiation @WSFT(016)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S St E

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511
283

Data Shift Instructions Section 3-8
Description WSFT(016) shifts data from St to E in word units and the data from the source
word S is places into St. The contents of E is lost.

Flags

Precautions When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Be sure that the power is not cut while WSFT(016) is being executed,
causing the shift operation to stop halfway through.

Examples When CIO 0.00 is ON, data from D100 through D102 will be shifted one word
toward E. The contents of H0 will be stored in D100 and the contents of D102
will be lost.

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S St E

E

Lost

St

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.

St
E

E: D102 St: D101 St: D100

S: H0

0.00

H0

D100

D102

Lost
284

Data Shift Instructions Section 3-8
3-8-5 ARITHMETIC SHIFT LEFT: ASL(025)
Purpose Shifts the contents of Wd one bit to the left.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ASL(025) shifts the contents of Wd one bit to the left (from rightmost bit to left-
most bit). “0” is placed in the rightmost bit and the data from the leftmost bit is
shifted into the Carry Flag (CY).

ASL(025)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ASL(025)

Executed Once for Upward Differentiation @ASL(025)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

15 0
285

Data Shift Instructions Section 3-8
Flags

Precautions When ASL(025) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 0.00 is ON, D100 will be shifted one bit to the left. “0” will be placed
in bit 00 of D100 and the contents of bit 15 of D100 will be shifted to the Carry
Flag (CY).

3-8-6 DOUBLE SHIFT LEFT: ASLL(570)
Purpose Shifts the contents of Wd and Wd +1 one bit to the left.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.

0.00

D100

Wd: D100

Wd

ASLL(570)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ASLL(570)

Executed Once for Upward Differentiation @ASLL(570)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510
286

Data Shift Instructions Section 3-8
Description ASLL(570) shifts the contents of Wd and Wd +1 one bit to the left (from right-
most bit to leftmost bit). “0” is placed in the rightmost bit of Wd and the con-
tents of the leftmost bit of Wd and Wd +1 are shifted into the Carry Flag (CY).

Flags

Precautions When ASLL(570) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd +1 is 1, the Neg-
ative Flag will turn ON.

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Wd

WdWd+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.
287

Data Shift Instructions Section 3-8
Examples When CIO 0.01 is ON, word CIO 1000 and CIO 1001 will shift one bit to the
left. “0” is placed into CIO 1000.00 and the contents of CIO 1001.15 will be
shifted to the Carry Flag (CY).

3-8-7 ARITHMETIC SHIFT RIGHT: ASR(026)
Purpose Shifts the contents of Wd one bit to the right.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.01

1000

Wd+1: CIO 1001 Wd: CIO 1000

Wd

ASR(026)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ASR(026)

Executed Once for Upward Differentiation @ASR(026)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
288

Data Shift Instructions Section 3-8
Description ASR(026) shifts the contents of Wd one bit to the right (from leftmost bit to
rightmost bit). “0” will be placed in the leftmost bit and the contents of the
rightmost bit will be shifted into the Carry Flag (CY).

Flags

Precautions When ASR(026) is executed, the Error Flag and the Negative Flag will turn
OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

Examples When CIO 0.00 is ON, word CIO 1000 will shift one bit to the right. “0” will be
placed in CIO 100.15 and the contents of CIO 1000.00 will be shifted to the
Carry Flag (CY).

3-8-8 DOUBLE SHIFT RIGHT: ASRL(571)
Purpose Shifts the contents of Wd and Wd +1 one bit to the right.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N OFF

0.00

1000

Wd: CIO 1000

Wd

ASRL(571)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ASRL(571)

Executed Once for Upward Differentiation @ASRL(571)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
289

Data Shift Instructions Section 3-8
Operand Specifications

Description ASRL(571) shifts the contents of Wd and Wd +1 one bit to the right (from left-
most bit to rightmost bit). “0” will be placed in the leftmost bit of Wd +1 and the
contents of the rightmost bit of Wd will be shifted into the Carry Flag (CY).

Flags

Precautions When ASRL (571) is executed, the Error Flag and the Negative Flag will turn
OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

WdWd+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N OFF
290

Data Shift Instructions Section 3-8
Examples When CIO 0.01 is ON, word CIO 2000 and CIO 2001 will shift one bit to the
right. “0” will be placed into CIO 2001.15 and the contents of CIO 2000.00 will
be shifted to the Carry Flag (CY).

3-8-9 ROTATE LEFT: ROL(027)
Purpose Shifts all Wd bits one bit to the left including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.01

2000

Wd+1: CIO 2001 Wd: CIO 2000

Wd

ROL(027)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ROL(027)

Executed Once for Upward Differentiation @ROL(027)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
291

Data Shift Instructions Section 3-8
Description ROL(027) shifts all bits of Wd including the Carry Flag (CY) to the left (from
rightmost bit to leftmost bit).

Flags

Precautions When ROL(027) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 0.00 is ON, word CIO 1000 and the Carry Flag (CY) will shift one
bit to the left. The contents of CIO 1000.15 will be shifted to the Carry Flag
(CY) and the Carry Flag contents will be shifted to CIO 1000.00.

3-8-10 DOUBLE ROTATE LEFT: ROLL(572)
Purpose Shifts all Wd and Wd +1 bits one bit to the left including the Carry Flag (CY).

Ladder Symbol

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

 CIO 1000

0.00

1000

Instruction executed once

Wd:

Wd

ROLL(572)

Wd: WordWd
292

Data Shift Instructions Section 3-8
Variations

Applicable Program Areas

Operand Specifications

Description ROLL(572) shifts all bits of Wd and Wd +1 including the Carry Flag (CY) to
the left (from rightmost bit to leftmost bit).

Flags

Precautions When ROLL(572) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

Variations Executed Each Cycle for ON Condition ROLL(572)

Executed Once for Upward Differentiation @ROLL(572)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.
293

Data Shift Instructions Section 3-8
If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 0.01 is ON, word CIO 2000, CIO 2001 and the Carry Flag (CY) will
shift one bit to the left. The contents of CIO 2001.15 will be shifted to the
Carry Flag (CY) and the Carry Flag contents will be shifted to CIO 2000.00.

3-8-11 ROTATE RIGHT: ROR(028)
Purpose Shifts all Wd bits one bit to the right including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.01

2000

Instruction executed once

Wd+1: CIO 2001 Wd: CIO 2000

Wd

ROR(028)

Wd: WordWd

Variations Executed Each Cycle for ON Condition ROR(028)

Executed Once for Upward Differentiation @ROR(028)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---
294

Data Shift Instructions Section 3-8
Description ROR(028) shifts all bits of Wd including the Carry Flag (CY) to the right (from
leftmost bit to rightmost bit).

Flags

Precautions When ROR(028) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 0.00 is ON, word CIO 1000 and the Carry Flag (CY) will shift one
bit to the right. The contents of CIO 1000.00 will be shifted to the Carry Flag
(CY) and the Carry Flag contents will be shifted to CIO 1000.15.

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

0.00

1000

Instruction executed once

Wd

Wd: CIO 1000
295

Data Shift Instructions Section 3-8
3-8-12 DOUBLE ROTATE RIGHT: RORL(573)
Purpose Shifts all Wd and Wd +1 bits one bit to the right including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description RORL(573) shifts all bits of Wd and Wd +1 including the Carry Flag (CY) to
the right (from leftmost bit to rightmost bit).

Flags

RORL(573)

Wd: WordWd

Variations Executed Each Cycle for ON Condition RORL(573)

Executed Once for Upward Differentiation @RORL(573)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

WdWd+1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.

OFF in all other cases.
296

Data Shift Instructions Section 3-8
Precautions When RORL(573) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Examples When CIO 0.01 is ON, word CIO 2000, CIO 2001 and the Carry Flag (CY) will
shift one bit to the right. The contents of CIO 2000.00 will be shifted to the
Carry Flag (CY) and the Carry Flag contents will be shifted to CIO 2001.15.

3-8-13 ROTATE LEFT WITHOUT CARRY: RLNC(574)
Purpose Shifts all Wd bits one bit to the left not including the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

Name Label Operation

0.01

2000Wd

Instruction executed once

Wd: CIO 2000Wd+1: CIO 2001

RLNC(574)

Wd: WordWd

Variations Executed Each Cycle for ON Condition RLNC(574)

Executed Once for Upward Differentiation @RLNC(574)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511
297

Data Shift Instructions Section 3-8
Description RLNC(574) shifts all bits of Wd to the left (from rightmost bit to leftmost bit).
The contents of the leftmost bit of Wd shifts to the rightmost bit and to the
Carry Flag (CY).

Flags

Precautions When RLNC(574) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
298

Data Shift Instructions Section 3-8
Examples When CIO 0.00 is ON, word CIO 1000 will shift one bit to the left (excluding
the Carry Flag (CY)). The contents of CIO 1000.15 will be shifted to
CIO 1000.00.

3-8-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576)
Purpose Shifts all Wd and Wd +1 bits one bit to the left not including the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

1

0.00

1000Wd

Instruction executed once

Wd: CIO 1000

RLNL(576)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RLNL(576)

Executed Once for Upward Differentiation @RLNL(576)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---
299

Data Shift Instructions Section 3-8
Description RLNL(576) shifts all bits of Wd and Wd +1 to the left (from rightmost bit to left-
most bit). The contents of the leftmost bit of Wd +1 is shifted to the rightmost
bit of Wd, and to the Carry Flag (CY).

Flags

Precautions When RLNL(576) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

Examples When CIO 0.01 is ON, word CIO 1100 and CIO 1101 will shift one bit to the
left (excluding the Carry Flag (CY)). The contents of CIO 1101.15 will be
shifted to CIO 1100.00.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.

0.01

1100

1

Wd

Instruction executed once

Wd: CIO 1100Wd+1: CIO 1101
300

Data Shift Instructions Section 3-8
3-8-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575)
Purpose Shifts all Wd bits one bit to the right not including the Carry Flag (CY). The

contents of the rightmost bit of Wd shifts to the leftmost bit and to the Carry
Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description RRNC(575) shifts all bits of Wd to the right (from leftmost bit to rightmost bit)
not including the Carry Flag (CY).

RRNC(575)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RRNC(575)

Executed Once for Upward Differentiation @RRNC(575)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Wd
301

Data Shift Instructions Section 3-8
Flags

Precautions When RRNC(575) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd is zero, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of Wd is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 0.00 is ON, word CIO 1000 will shift one bit to the right (excluding
the Carry Flag (CY)). The contents of CIO 1000.00 will be shifted to
CIO 1000.15.

3-8-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577)
Purpose Shifts all Wd and Wd +1 bits one bit to the right not including the Carry Flag

(CY). The contents of the rightmost bit of Wd +1 is shifted to the leftmost bit of
Wd, and to the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).

OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.

OFF in all other cases.

CY

0.00

1000Wd

Instruction executed once

Wd: CIO 1000

RRNL(577)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition RRNL(577)

Executed Once for Upward Differentiation @RRNL(577)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
302

Data Shift Instructions Section 3-8
Operand Specifications

Description RRNL(577) shifts all bits of Wd and Wd +1 to the right (from leftmost bit to
rightmost bit) not including the Carry Flag (CY).

Flags

Precautions When RRNL(577) is executed, the Error Flag will turn OFF.

If as a result of the shift the contents of Wd and Wd +1 are zero, the Equals
Flag will turn ON.

If as a result of the shift the contents of the leftmost bit of Wd + 1 is 1, the Neg-
ative Flag will turn ON.

Note It is possible to set the Carry Flag contents to 1 or 0 immediately before exe-
cuting this instruction, by using the Set Carry (STC(040)) or Clear Carry
(CLC(041)) instructions.

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
303

Data Shift Instructions Section 3-8
Examples When CIO 0.01 is ON, words CIO 2000 and CIO 2001 will shift one bit to the
right, (excluding the Carry Flag (CY)). The contents of CIO 2001.00 will be
shifted to CIO 2000.15.

3-8-17 ONE DIGIT SHIFT LEFT: SLD(074)
Purpose Shifts data by one digit (4 bits) to the left.

Ladder Symbol

Variations

Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

0.01

2000Wd

Instruction executed once

Wd: CIO 2000Wd+1: CIO 2001

SLD(074)

E

St St: Starting word

E: End word

Variations Executed Each Cycle for ON Condition SLD(074)

Executed Once for Upward Differentiation @SLD(074)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area St E

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---
304

Data Shift Instructions Section 3-8
Description SLD(074) shifts data between St and E by one digit (4 bits) to the left. “0” is
placed in the rightmost digit (bits 3 to 0 of St), and the content of the leftmost
digit (bits 15 to 12 of E) is lost.

Flags

Precautions When St is greater than E, an error will be generated and the Error Flag will
turn ON.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Be sure that the power is not cut while SLD(074) is being executed,
causing the shift operation to stop halfway through.

Examples When CIO 0.00 is ON, words CIO 1000 through CIO 1002 will shift by one
digit (4 bits) to the left. A zero will be placed in bits 0 to 3 of word CIO 1000
and the contents of bits 12 to 15 of CIO 1002 will be lost.

3-8-18 ONE DIGIT SHIFT RIGHT: SRD(075)
Purpose Shifts data by one digit (4 bits) to the right.

Ladder Symbol

Variations

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area St E

E S t
0 Hex

Lost

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.

E

0.00

1000

1002

St

Lost

E: CIO 1002 St+1: CIO 1001 St: CIO 1000

SRD(075)

E

St St: Starting word

E: End word

Variations Executed Each Cycle for ON Condition SRD(075)

Executed Once for Upward Differentiation @SRD(075)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
305

Data Shift Instructions Section 3-8
Applicable Program Areas

Note St and E must be in the same data area.

Operand Specifications

Description SRD(075) shifts data between St and E by one digit (4 bits) to the right. “0” is
placed in the leftmost digit (bits 15 to 12 of E), and the content of the rightmost
digit (bits 3 to 0 of St) is lost.

Flags

Precautions When St is greater than E, an error will be generated and the Error Flag will
turn ON.

When SRD(075) is executed, the Equals Flag and Negative Flag will turn
OFF.

Note When large amounts of data are shifted, the instruction execution time is quite
long. Always take care that the power is not cut while SRD(075) is being exe-
cuted, causing the shift operation to stop halfway through.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area St E

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

E S

Lost

t

Name Label Operation

Error Flag ER ON when St is greater than E.
OFF in all other cases.
306

Data Shift Instructions Section 3-8
Examples When CIO 0.00 is ON, words CIO 1000 through CIO 1002 will shift by one
digit (4 bits) to the right. A zero will be placed in bits 12 to 15 of CIO 1002 and
the contents of bits 0 to 3 of word CIO 1000 will be lost.

3-8-19 SHIFT N-BIT DATA LEFT: NSFL(578)
Purpose Shifts the specified number of bits to the left.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: 0000 to 000F hex (0 to 15)
N: 0000 to FFFF hex (0 to 65535)

Note All words in the shift register must be in the same area.

Operand Specifications

E

0.00

1000

1002

Lost

St

St: CIO 1000St+1: CIO 1001E: CIO 1002

NSFL(578)

D

C

N

D: Beginning word for shift

C: Beginning bit

N: Shift data length

Variations Executed Each Cycle for ON Condition NSFL(578)

Executed Once for Upward Differentiation @NSFL(578)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area D C N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to #000F
(binary) or &0 to
&15

#0000 to #FFFF
(binary) or &0 to
&65535

Data Registers --- DR0 to DR15
307

Data Shift Instructions Section 3-8
Description NSFL(578) shifts the specified number of bits by the shift data length (N) from
the beginning bit (C) in the rightmost word, as designated by D one bit to the
left (towards the leftmost word and the leftmost bit). “0” is place into the begin-
ning bit and the contents of the leftmost bit in the shift area are shifted to the
Carry Flag (CY).

Flags

Precautions When the shift data length (N) is 0, the contents of the beginning bit will be
copied to the Carry Flag (CY), and its contents will not be changed.

Only the bits shifted into rightmost word in the shift area (i.e. leftmost word
data) will be changed.

Examples When CIO 0.00 is ON, all bits from the beginning bit 3 to the shift data length
(B hex) will be shifted one bit to the left (from the rightmost bit to the leftmost
bit). “0” will be placed into bit 3 of CIO 100. The contents of the leftmost bit in
the shift area (bit 13 of CIO 100) are copied into the Carry Flag (CY).

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area D C N

Shifts one bit to the left
N−1 bit

N−1 bit

Name Label Operation

Error Flag ER ON when C data is not between 0000 and 000F hex.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

0

D: CIO 100

D: CIO 100

&3

&11

D

C

N

0.00

C: Starting from bit 3
N: 11 bits
308

Data Shift Instructions Section 3-8
3-8-20 SHIFT N-BIT DATA RIGHT: NSFR(579)
Purpose Shifts the specified number of bits to the right.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: 0000 to 000F hex (0 to 15)
N: 0000 to FFFF hex (0 to 65535)

Note All words in the shift register must be in the same area.

Operand Specifications

NSFR(579)

D

C

N

D: Beginning word for shift

C: Beginning bit

N: Shift data length

Variations Executed Each Cycle for ON Condition NSFR(579)

Executed Once for Upward Differentiation @NSFR(579)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area D C N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to #000F
(binary) or &0 to
&15

#0000 to #FFFF
(binary) or &0 to
&65535

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
309

Data Shift Instructions Section 3-8
Description NSFR(579) shifts the specified number of bits by the shift data length (N) from
the beginning bit (C) in the rightmost word as designated by D one bit to the
right (towards the rightmost word and the rightmost bit). “0” will be placed into
the beginning bit and the contents of the rightmost bit in the shift area will be
shifted to the Carry Flag (CY).

Flags

Precautions When the shift data length (N) is 0, the contents of the beginning bit will be
copied to the Carry Flag (CY), and its contents will not be changed.

Only the bits shifted into rightmost word in the shift area (i.e. leftmost word
data) will be changed.

Examples When CIO 0.00 is ON, all bits from the beginning bit 2 to end of the shift data
length 11 bits (B hex), will be shifted one bit to the right , (from the leftmost bit
to the rightmost bit). “0” is shifted into bit 12 of CIO 1000. The contents of the
rightmost bit in the shift area (bit 2 of CIO 1000) are copied into the Carry Flag
(CY).

Shifts one bit to the right
N-1 bit

N-1 bit

Name Label Operation

Error Flag ER ON when C data is not between 0000 and 000F hex.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

0

&2

&11

0.00

1000

D: CIO 1000

D: CIO 1000

C: Starting from bit 2
N: 11 bits
310

Data Shift Instructions Section 3-8
3-8-21 SHIFT N-BITS LEFT: NASL(580)
Purpose Shifts the specified 16 bits of word data to the left by the specified number of

bits.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Operand Specifications

NASL(580)

D

C

D: Shift word

C: Control word

Variations Executed Each Cycle for ON Condition NASL(580)

Executed Once for Upward Differentiation @NASL(580)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 011 712
C

0

No. of bits to shift: 00 to 10 Hex

Always 0.
Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values only

Data Registers DR0 to DR15
311

Data Shift Instructions Section 3-8
Description NASL(580) shifts D (the shift word) by the specified number of binary bits
(specified in C) to the left (from the rightmost bit to the leftmost bit). Either
zeros or the value of the rightmost bit will be placed into the specified number
of bits of the shift word starting from the rightmost bit.

Flags

Precautions For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is lost.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON and OFF, however, according to
data in the specified word.

When the contents of the control word C is out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D is 0000 hex, the Equals Flag will
turn ON.

If as a result of the shift the contents of the leftmost bit of D is 1, the Negative
Flag will turn ON.

Examples When CIO 0.00 is ON, The contents of CIO 1000 is shifted 10 bits to the left
(from the rightmost bit to the leftmost bit). The number of bits to shift is speci-
fied in bits 0 to 7 of word CIO 2000 (control data). The contents of bit 0 of
CIO 1001 is copied into bits from which data was shifted and the contents of
the rightmost bit which was shifted out of range is shifted into the Carry Flag
(CY). All other data is lost.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area D C

Shift n-bits

Contents of "a" or "0" shifted in

N bits

Lost

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift) is
not within range.
OFF in all other cases.

Equals Flag = ON when the shift result is 0.
OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
312

Data Shift Instructions Section 3-8
3-8-22 DOUBLE SHIFT N-BITS LEFT: NSLL(582)
Purpose Shifts the specified 32 bits of word data to the left by the specified number of

bits.

Ladder Symbol

Variations

Applicable Program Areas

15 8 011 37 412

C: CIO 2000 08 A0

0.00

1000

2000

No. of bits to shift: 10 bits (0A Hex)

Always 0.

Data shifted into register
8 Hex: Contents of rightmost bit shifted in

CIO 1000

CIO 1001

Rightmost bit
Lost

No. of bits to shift: 10 bits
(Contents of the rightmost
bit is inserted.)

NSLL(582)

D

C

D: Shift word

C: Control word

Variations Executed Each Cycle for ON Condition NSLL(582)

Executed Once for Upward Differentiation @NSLL(582)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
313

Data Shift Instructions Section 3-8
Operands C: Control Word

Operand Specifications

Description NSLL(582) shifts D and D+1 (the shift words) by the specified number of
binary bits (specified in C) to the left (from the rightmost bit to the leftmost bit).
Either zeros or the value of the rightmost bit will be placed into the specified
number of bits of the shift word starting from the rightmost bit.

15 8 011 712
C

0

No. of bits to shift: 00 to 20 Hex

Always 0.
Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C

CIO Area CIO 0 to CIO 6142 CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W511

Holding Bit Area H0 to H510 H0 to H511

Auxiliary Bit Area A448 to A958 A0 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values only

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Shift n-bits

Contents of "a" or "0" shifted in

N bits

Lost
314

Data Shift Instructions Section 3-8
Flags

Precautions For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is lost.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON and OFF, however, according to
data in the specified word.

When the contents of the control word C are out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D is 0000, the Equals Flag will turn
ON.

If as a result of the shift the contents of the leftmost bit of D, D +1 is 1, the
Negative Flag will turn ON.

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift) is
not within range.

OFF in all other cases.

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
315

Data Shift Instructions Section 3-8
Examples When CIO 0.00 is ON, CIO 1000 and CIO 1001 will be shifted to the left (from
the rightmost bit to the leftmost bit) by 10 bits. The number of bits to shift is
specified in bits 0 to 7 of word D300 (control data). The contents of bit 0 of
CIO 1000 is copied into bits from which data was shifted and the contents of
the rightmost bit which was shifted out of range is shifted into the Carry Flag
(CY). All other data is lost.

3-8-23 SHIFT N-BITS RIGHT: NASR(581)
Purpose Shifts the specified 16 bits of word data to the right by the specified number of

bits.

Ladder Symbol

Variations

15 8 011 37 412

C: D300 08 0 A

0.00

1000

D300

No. of bits to shift: 10 bits (0A Hex)

Always 0.
Data shifted into register
8 Hex: Contents of right-
most bit shifted in

CIO
1000

CIO
1000

CIO
1001

CIO
1001

Rightmost bit a
Lost

No. of bits to shift: 10 bits
(Contents of the rightmost
bit is shifted in)

NASR(581)

D

C

D: Shift word

C: Control word

Variations Executed Each Cycle for ON Condition NASR(581)

Executed Once for Upward Differentiation @NASR(581)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
316

Data Shift Instructions Section 3-8
Applicable Program Areas

Operands C: Control Word

Operand Specifications

Description NASR(581) shifts D (the shift word) by the specified number of binary bits
(specified in C) to the right (from the rightmost bit to the leftmost bit). Either
zeros or the value of the rightmost bit will be placed into the specified number
of bits of the shift word starting from the rightmost bit.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 011 712
C 0

No. of bits to shift: 00 to 10 Hex

Always 0.
Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A447
A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values only

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Lost

N bits

Contents of "a" or
"0" shifted in
317

Data Shift Instructions Section 3-8
Flags

Precautions For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is discarded.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON and OFF, however, according to
data in the specified word.

When the contents of the control word C are out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D is 0000 hex, the Equals Flag will
turn ON.

If as a result of the shift the contents of the leftmost bit of D is 1, the Negative
Flag will turn ON.

Examples When CIO 0.00 is ON, CIO 1000 will be shifted 10 bits to the right (from the
leftmost bit to the rightmost bit). The number of bits to shift is specified in bits
0 to 7 of word D300. The contents of bit 15 of CIO 1000 is copied into the bits
from which data was shifted and the contents of the leftmost bit of data which
was shifted out of range, is shifted into the Carry Flag (CY). All other data is
lost.

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift) is
not within range.

OFF in all other cases.

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.

15 8 011 37 412

C: D300 08 0 A

0.00

1000

D300

No. of bits to shift: 10 bits (0A Hex)

Always 0.
Data shifted into register
8 Hex: Contents of leftmost bit shifted in
318

Data Shift Instructions Section 3-8
3-8-24 DOUBLE SHIFT N-BITS RIGHT: NSRL(583)
Purpose Shifts the specified 32 bits of word data to the right by the specified number of

bits.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Operand Specifications

CIO 1000

CIO 1001

No. of bits to shift: 10 bits
(Contents of the leftmost bit is inserted.)

Lost
Leftmost bit

NSRL(583)

D

C

D: Shift word

C: Control word

Variations Executed Each Cycle for ON Condition NSRL(583)

Executed Once for Upward Differentiation @NSRL(583)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 011 712

C 0

No. of bits to shift: 00 to 20 Hex

Always 0.

Data shifted into register
0 Hex: 0 shifted in
8 Hex: Contents of rightmost bit shifted in

Area D C

CIO Area CIO 0 to CIO 6142 CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W511

Holding Bit Area H0 to H510 H0 to H511

Auxiliary Bit Area A448 to A958 A0 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D0 to D32766 D0 to D32767
319

Data Shift Instructions Section 3-8
Description NSRL(583) shifts D and D+1 (the shift words) by the specified number of
binary bits (specified in C) to the right (from the leftmost bit to the rightmost
bit). Either zeros or the value of the rightmost bit will be placed into the speci-
fied number of bits of the shift word starting from the rightmost bit.

Flags

Precautions For any bits which are shifted outside the specified word, the contents of the
last bit is shifted to the Carry Flag (CY), and all other data is lost.

When the number of bits to shift (specified in C) is “0,” the data will not be
shifted. The appropriate flags will turn ON or OFF, however, according to data
in the specified word.

When the contents of the control word C are out of range, an error will be gen-
erated and the Error Flag will turn ON.

If as a result of the shift the contents of D +1 is 00000000 hex, the Equals Flag
will turn ON.

If as a result of the shift the contents of the leftmost bit of D +1 is 1, the Nega-
tive Flag will turn ON.

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values only

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

-2048 to +2047 ,IR0 to -2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area D C

Shift n-bits

Lost

Contents of "a" or
"0" shifted in

Name Label Operation

Error Flag ER ON when the control word C (the number of bits to shift)
is not within range.

OFF in all other cases.

Equals Flag = ON when the shift result is 0.

OFF in all other cases.

Carry Flag CY ON when 1 is shifted into the Carry Flag (CY).
OFF in all other cases.

Negative Flag N ON when the leftmost bit is 1 as a result of the shift.
OFF in all other cases.
320

Data Shift Instructions Section 3-8
Examples When CIO 0.00 is ON, CIO 1000 and CIO 1001 will be shifted 10 bits to the
right (from the leftmost bit to the rightmost bit). The number of bits to shift is
specified in bits 0 to 7 of word D300 (control data). The contents of bit 15 of
CIO 1001 will be copied into the bits from which data was shifted and the con-
tents of the leftmost bit of data which was shifted out of range will be shifted
into the Carry Flag (CY). All other data is lost.

15 8 011 37 412

C: D300 08 0 A

0.00

1000

D300

No. of bits to shift: 10 bits (0A hex)

Always 0.
Data shifted into register
8 Hex: Contents of leftmost bit shifted in

CY
1

CIO 1001

CIO 1001

CIO 1000

CIO 1000

Leftmost bit Lost

No. of bits to shift: 10 bits
(Contents of the leftmost bit is inserted.)
321

Data Shift Instructions Section 3-8
322

Increment/Decrement Instructions Section 3-9
3-9 Increment/Decrement Instructions
This section describes instructions used to increment data.

3-9-1 INCREMENT BINARY: ++(590)
Purpose Increments the 4-digit hexadecimal content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Mnemonic Function
code

Page

INCREMENT BINARY ++ 590 323

DOUBLE INCREMENT BINARY ++L 591 325

DECREMENT BINARY – – 592 327

DOUBLE DECREMENT BINARY – –L 593 329

INCREMENT BCD ++B 594 331

DOUBLE INCREMENT BCD ++BL 595 333

DECREMENT BCD – –B 596 335

DOUBLE DECREMENT BCD – –BL 597 337

++(590)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ++(590)

Executed Once for Upward Differentiation @++(590)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15
323

Increment/Decrement Instructions Section 3-9
Description The ++(590) instruction adds 1 to the binary content of Wd. The specified
word will be incremented by 1 every cycle as long as the execution condition
of ++(590) is ON. When the up-differentiated variation of this instruction
(@++(590)) is used, the specified word is incremented only when the execu-
tion condition has gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000, the Carry Flag will be
turned ON when a digit changes from F to 0, and the Negative Flag will be
turned ON when bit 15 of Wd is ON in the result.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd changes from FFFF to 0000.

Flags

Examples Operation of ++(590)

In the following example, the content of D100 will be incremented by 1 every
cycle as long as CIO 0.00 is ON.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the content of Wd is 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from F to 0 during execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of Wd is ON after execution.
OFF in all other cases.

Wd: D100 Wd: D100
0 0 1 9

0.00

CIO 0.00

D100

Increment Increment Increment Increment

0 0 1 A

: Execution of ++(590)

Incremented every cycle
while CIO 0.00 is ON.
324

Increment/Decrement Instructions Section 3-9
Operation of @++(590)

The up-differentiated variation is used in the following example, so the content
of D100 will be incremented by 1 only when CIO 0.00 has gone from OFF to
ON.

3-9-2 DOUBLE INCREMENT BINARY: ++L(591)
Purpose Increments the 8-digit hexadecimal content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

@++

0 0 1 9 0 0 1 A

0.00

CIO 0.00

Increment Increment

Wd: D100 Wd: D100

Incremented only for
up-differentiation.

: Execution of @++(590)

D100

++L(591)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition ++L(591)

Executed Once for Upward Differentiation @++L(591)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---
325

Increment/Decrement Instructions Section 3-9
Description The ++L(591) instruction adds 1 to the 8-digit hexadecimal content of Wd+1
and Wd. The content of the specified words will be incremented by 1 every
cycle as long as the execution condition of ++L(591) is ON. When the up-dif-
ferentiated variation of this instruction (@++L(591)) is used, the content of the
specified words is incremented only when the execution condition has gone
from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000, the Carry Flag
will be turned ON when a digit changes from F to 0, and the Negative Flag will
be turned ON if bit 15 of Wd+1 is ON in the result.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of changes from FFFF FFFF to 0000 0000.

Flags

Examples Operation of ++L(591)

In the following example, the 8-digit hexadecimal content of D101 and D100
will be incremented by 1 every cycle as long as CIO 0.00 is ON.

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from F to 0 during
execution.

OFF in all other cases.

Negative Flag N ON if bit 15 of Wd+1 is ON after execution.

OFF in all other cases.

 D101 D100 D101 D100

0.00

CIO 0.00

D100 Wd+1: Wd: Wd+1: Wd:

Increment Increment Increment Increment

: Execution of ++L(591)

Incremented every cycle
while CIO 0.00 is ON.
326

Increment/Decrement Instructions Section 3-9
Operation of @++L(591)

The up-differentiated variation is used in the following example, so the content
of D101 and D100 will be incremented by 1 only when CIO 0.00 has gone
from OFF to ON.

3-9-3 DECREMENT BINARY: – –(592)
Purpose Decrements the 4-digit hexadecimal content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

 D101 D100 D101 D100

@++L
0.00

CIO 0.00

Wd+1: Wd: Wd+1: Wd:

Increment Increment

Incremented only for
up-differentiation.

: Execution of @++L(591)

D100

− −(592)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition – – (592)

Executed Once for Upward Differentiation @– – (592)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15
327

Increment/Decrement Instructions Section 3-9
Description The – –(592) instruction subtracts 1 from the binary content of Wd. The spec-
ified word will be decremented by 1 every cycle as long as the execution con-
dition of – –(592) is ON. When the up-differentiated variation of this instruction
(@– –(592)) is used, the specified word is decremented only when the execu-
tion condition has gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000, the Carry Flag will be
turned ON when a digit changes from 0 to F, and the Negative Flag will be
turned ON if bit 15 of Wd is ON in the result.

Both the Carry Flag and the Negative Flag will be turned ON when the content
of Wd changes from 0000 to FFFF.

Flags

Examples Operation of – –(592)

In the following example, the content of D100 will be decremented by 1 every
cycle as long as CIO 0.00 is ON.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the content of Wd is 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from 0 to F during execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of Wd is ON after execution.
OFF in all other cases.

 D100 D100
−1

0.00

CIO 0.00

D100

Decrement Decrement Decrement Decrement

Wd: Wd:

Decremented every cycle
while CIO 0.00 is ON.

: Execution of − −(592)
328

Increment/Decrement Instructions Section 3-9
Operation of @– –(592)

The up-differentiated variation is used in the following example, so the content
of D100 will be decremented by 1 only when CIO 0.00 has gone from OFF to
ON.

3-9-4 DOUBLE DECREMENT BINARY: – –L(593)
Purpose Decrements the 8-digit hexadecimal content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

@− −

 D100 D100

0.00

CIO 0.00

D100

Decrement Decrement

−1
Wd: Wd:

Decremented only
for up-differentiation.

: Execution of @− −(592)

− −L(593)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition – –L(593)

Executed Once for Upward Differentiation @– –L(593)

Executed Once for Downward
Differentiation

Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---
329

Increment/Decrement Instructions Section 3-9
Description The – –L(593) instruction subtracts 1 from the 8-digit hexadecimal content of
Wd+1 and Wd. The content of the specified words will be decremented by 1
every cycle as long as the execution condition of – –L(593) is ON. When the
up-differentiated variation of this instruction (@– –L(593)) is used, the content
of the specified words is decremented only when the execution condition has
gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000, the Carry Flag
will be turned ON when a digit changes from 0 to F, and the Negative Flag will
be turned ON if bit 15 of Wd+1 is ON in the result.

Both the Carry Flag and the Negative Flag will be turned ON when the content
changes from 0000 0000 to FFFF FFFF.

Flags

Examples Operation of – –L(593)

In the following example, the 8-digit hexadecimal content of D201 and D200
will be decremented by 1 every cycle as long as CIO 0.01 is ON.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from 0 to F during exe-
cution.

OFF in all other cases.

Negative Flag N ON if bit 15 of Wd+1 is ON after execution.

OFF in all other cases.

 D201 D200 D201 D200

−1

0.01

0.01

D200

Decrement Decrement DecrementDecrement

Wd+1: Wd: Wd+1: Wd:

Decremented every cycle
while CIO 0.01 is ON.

: Execution of − −L(593)
330

Increment/Decrement Instructions Section 3-9
Operation of @– –L(593)

The up-differentiated variation is used in the following example, so the content
of D201 and D200 will be decremented by 1 only when CIO 0.01 has gone
from OFF to ON.

3-9-5 INCREMENT BCD: ++B(594)
Purpose Increments the 4-digit BCD content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

@− −L

−1

 D201 D200 D201 D200

0.01

0.01

D200

Decrement Decrement

Wd+1: Wd: Wd+1: Wd:

: Execution of @ − −L(593)

Decremented only
for up-differentiation.

++B(594)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition ++B(594)

Executed Once for Upward Differentiation @++B(594)

Executed Once for Downward
Differentiation

Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in BCD

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15
331

Increment/Decrement Instructions Section 3-9
Description The ++B(594) instruction adds 1 to the BCD content of Wd. The specified
word will be incremented by 1 every cycle as long as the execution condition
of ++B(594) is ON. When the up-differentiated variation of this instruction
(@++B(594)) is used, the specified word is incremented only when the execu-
tion condition has gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 and the Carry Flag will
be turned ON when a digit changes from 9 to 0.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of Wd changes from 9999 to 0000.

Flags

Precautions The content of Wd must be BCD. If it is not BCD, an error will occur and the
Error Flag will be turned ON.

Examples Operation of ++B(594)

In the following example, the BCD content of D100 will be incremented by 1
every cycle as long as CIO 0.00 is ON.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd Wd

Name Label Operation

Error Flag ER ON if the content of Wd is not BCD.
OFF in all other cases.

Equals Flag = ON if the content of Wd is 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from 9 to 0 during execution.

OFF in all other cases.

 D100 D100

0.00

CIO 0.00

D100

Increment Increment Increment Increment

Wd: Wd:

: Execution of ++B(594)

Incremented every cycle
while CIO 0.00 is ON.
332

Increment/Decrement Instructions Section 3-9
Operation of @++B(594)

The up-differentiated variation is used in the following example, so the content
of D100 will be incremented by 1 only when CIO 0.00 has gone from OFF to
ON.

3-9-6 DOUBLE INCREMENT BCD: ++BL(595)
Purpose Increments the 8-digit BCD content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

@++B

 D100 D100

0.00

D100

CIO 0.00

Increment Increment

Wd: Wd:

: Execution of @++B(594)

Incremented only for
up-differentiation.

++BL(595)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition ++BL(595)

Executed Once for Upward Differentiation @++BL(595)

Executed Once for Downward
Differentiation

Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in BCD

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---
333

Increment/Decrement Instructions Section 3-9
Description The ++BL(595) instruction adds 1 to the 8-digit BCD content of Wd+1 and
Wd. The content of the specified words will be incremented by 1 every cycle
as long as the execution condition of ++BL(595) is ON. When the up-differen-
tiated variation of this instruction (@++BL(595)) is used, the content of the
specified words is incremented only when the execution condition has gone
from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000 and the Carry
Flag will be turned ON when a digit changes from 9 to 0.

Both the Equals Flag and the Carry Flag will be turned ON when the content
of changes from 9999 9999 to 0000 0000.

Flags

Precautions The content of Wd+1 and Wd must be BCD. If it is not BCD, an error will occur
and the Error Flag will be turned ON.

Examples Operation of ++BL(595)

In the following example, the 8-digit BCD content of D201 and D200 will be
incremented by 1 every cycle as long as CIO 0.01 is ON.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER ON if the content of Wd+1 and Wd is not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from 9 to 0 during exe-
cution.
OFF in all other cases.

 D201 D200 D201 D200

0.01

CIO 0.01

D200

Increment Increment Increment Increment

Wd+1: Wd: Wd+1: Wd:

: Execution of ++BL(595)

Incremented every cycle
while CIO 0.01 is ON.
334

Increment/Decrement Instructions Section 3-9
Operation of @++BL(595)

The up-differentiated variation is used in the following example, so the BCD
content of D201 and D200 will be incremented by 1 only when CIO 0.01 has
gone from OFF to ON.

3-9-7 DECREMENT BCD: – –B(596)
Purpose Decrements the 4-digit BCD content of the specified word by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

@++BL
 D201 D200 D201 D200

0.01

CIO 0.01

D200

Increment Increment

Wd+1: Wd: Wd+1: Wd:

: Execution of @++BL(595)

Incremented only for
up-differentiation.

− −B(596)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition – –B(596)

Executed Once for Upward Differentiation @– –B(596)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in BCD

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15
335

Increment/Decrement Instructions Section 3-9
Description The – –B(596) instruction subtracts 1 from the BCD content of Wd. The spec-
ified word will be decremented by 1 every cycle as long as the execution con-
dition of – –B(596) is ON. When the up-differentiated variation of this
instruction (@– –B(596)) is used, the specified word is decremented only
when the execution condition has gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 and the Carry Flag will
be turned ON when a digit changes from 0 to 9.

Flags

Precautions The content of Wd must be BCD. If it is not BCD, an error will occur and the
Error Flag will be turned ON.

Examples Operation of – –B(596)

In the following example, the BCD content of D1000 will be decremented by 1
every cycle as long as CIO 0.00 is ON.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

−1Wd Wd

Name Label Operation

Error Flag ER ON if the content of Wd is not BCD.

OFF in all other cases.

Equals Flag = ON if the content of Wd is 0000 after execution.

OFF in all other cases.

Carry Flag CY ON if a digit in Wd went from 0 to 9 during execution.
OFF in all other cases.

 D1000 D1000

−1

0.00

D1000

CIO 0.00

Decrement Decrement Decrement Decrement

Wd: Wd:

Decremented every cycle
while CIO 0.00 is ON.

: Execution of − − B(596)
336

Increment/Decrement Instructions Section 3-9
Operation of @– –B(596)

The up-differentiated variation is used in the following example, so the BCD
content of D1000 will be decremented by 1 only when CIO 0.00 has gone
from OFF to ON.

3-9-8 DOUBLE DECREMENT BCD: – –BL(597)
Purpose Decrements the 8-digit BCD content of the specified words by 1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

@− −B

 D1000 D1000

−1

0.00

D1000

CIO 0.00

Decrement Decrement

Wd: Wd:

Decremented only
for up-differentiation.

: Execution of @− −B(596)

− −BL(597)

Wd Wd: First word

Variations Executed Each Cycle for ON Condition – –BL(597)

Executed Once for Upward Differentiation @– –BL(597)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in BCD

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---
337

Increment/Decrement Instructions Section 3-9
Description The – –BL(597) instruction subtracts 1 from the 8-digit BCD content of Wd+1
and Wd. The content of the specified words will be decremented by 1 every
cycle as long as the execution condition of – –BL(597) is ON. When the up-
differentiated variation of this instruction (@– –BL(597)) is used, the content
of the specified words is decremented only when the execution condition has
gone from OFF to ON.

The Equals Flag will be turned ON if the result is 0000 0000 and the Carry
Flag will be turned ON when a digit changes from 0 to 9.

Flags

Precautions The content of Wd+1 and Wd must be BCD. If it is not BCD, an error will occur
and the Error Flag will be turned ON.

Examples Operation of – –BL(597)

In the following example, the 8-digit BCD content of D2001 and D2000 will be
decremented by 1 every cycle as long as CIO 0.01 is ON.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Wd

Wd+1 Wd Wd+1 Wd

Name Label Operation

Error Flag ER ON if the content of Wd+1 and Wd is not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000 0000 after execution.
OFF in all other cases.

Carry Flag CY ON if a digit in Wd+1 or Wd went from 0 to 9 during exe-
cution.
OFF in all other cases.

 D2000 D2001 D2000 D2001

0.01

D2000

CIO 0.01

Decrement Decrement Decrement Decrement

Wd:Wd+1: Wd:Wd+1:
−1

Decremented every cycle
while CIO 0.01 is ON.

: Execution of − −BL(597)
338

Symbol Math Instructions Section 3-10
Operation of @– –BL(597)

The up-differentiated variation is used in the following example, so the BCD
content of D2001 and D2000 will be decremented by 1 only when CIO 0.01
has gone from OFF to ON.

3-10 Symbol Math Instructions
This section describes the Symbol Math Instructions, which perform arith-
metic operations on BCD or binary data.

@− −BL

−1

 D2000 D2001 D2000 D2001

0.01

CIO 0.01

D2000

Decrement Decrement

Wd:Wd+1: Wd:Wd+1:

: Execution of @− −BL(597)

Decremented only
for up-differentiation.

Instruction Mnemonic Function code Page

SIGNED BINARY ADD WITH-
OUT CARRY

+ 400 340

DOUBLE SIGNED BINARY
ADD WITHOUT CARRY

+L 401 342

SIGNED BINARY ADD WITH
CARRY

+C 402 344

DOUBLE SIGNED BINARY
ADD WITH CARRY

+CL 403 346

BCD ADD WITHOUT CARRY +B 404 348

DOUBLE BCD ADD WITHOUT
CARRY

+BL 405 349

BCD ADD WITH CARRY +BC 406 351

DOUBLE BCD ADD WITH
CARRY

+BCL 407 352

SIGNED BINARY SUBTRACT
WITHOUT CARRY

– 410 354

DOUBLE SIGNED BINARY
SUBTRACT WITHOUT CARRY

–L 411 356

SIGNED BINARY SUBTRACT
WITH CARRY

–C 412 360

DOUBLE SIGNED BINARY
SUBTRACT WITH CARRY

–CL 413 362

BCD SUBTRACT WITHOUT
CARRY

–B 414 364

DOUBLE BCD SUBTRACT
WITHOUT CARRY

–BL 415 366

BCD SUBTRACT WITH
CARRY

–BC 416 369

DOUBLE BCD SUBTRACT
WITH CARRY

–BCL 417 370

SIGNED BINARY MULTIPLY * 420 372
339

Symbol Math Instructions Section 3-10
3-10-1 SIGNED BINARY ADD WITHOUT CARRY: +(400)
Purpose Adds 4-digit (single-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

DOUBLE SIGNED BINARY
MULTIPLY

*L 421 374

UNSIGNED BINARY MULTI-
PLY

*U 422 375

DOUBLE UNSIGNED BINARY
MULTIPLY

*UL 423 377

BCD MULTIPLY *B 424 378

DOUBLE BCD MULTIPLY *BL 425 380

SIGNED BINARY DIVIDE / 430 381

DOUBLE SIGNED BINARY
DIVIDE

/L 431 383

UNSIGNED BINARY DIVIDE /U 432 385

DOUBLE UNSIGNED BINARY
DIVIDE

/UL 433 387

BCD DIVIDE /B 434 388

DOUBLE BCD DIVIDE /BL 435 390

Instruction Mnemonic Function code Page

+(400)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +(400)

Executed Once for Upward Differentiation @+(400)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767
340

Symbol Math Instructions Section 3-10
Description +(400) adds the binary values in Au and Ad and outputs the result to R.

Flags

Precautions When +(400) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers is negative (in the range 8000 to
FFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers is positive (in the range 0000 to
7FFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)

−32768 to 0 to 32767 (signed decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Au Ad R

RCY

+

Au

Ad

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers is in
the range 8000 to FFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers is in
the range 0000 to 7FFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
341

Symbol Math Instructions Section 3-10
Examples When CIO 0.00 is ON in the following example, D100 and D110 will be added
as 4-digit signed binary values and the result will be output to D120.

3-10-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)
Purpose Adds 8-digit (double-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.00

D100

D110

D120

+L(401)

R

Au

Ad

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +L(401)

Executed Once for Upward Differentiation @+L(401)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)

&0 to &4294967295 (unsigned deci-
mal)
−2147483648 to 2147483647 (signed
decimal)

Data Registers ---
342

Symbol Math Instructions Section 3-10
Description +L(401) adds the binary values in Au and Au+1 and Ad and Ad+1 and outputs
the result to R.

Flags

Precautions When +L(401) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers is negative (in the range
80000000 to FFFFFFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers is positive (in the range
00000000 to 7FFFFFFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Examples When CIO 0.01 is ON, D200 and D201 and D211 and D210 will be added as
8-digit signed binary values and the result will be output to D221 and D220.

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Au Ad R

R+1CY

+

R

Au+1

Ad+1

Au

Ad

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers is in
the range 80000000 to FFFFFFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers is in
the range 00000000 to 7FFFFFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

0.01

D200

D210

D220
343

Symbol Math Instructions Section 3-10
3-10-3 SIGNED BINARY ADD WITH CARRY: +C(402)
Purpose Adds 4-digit (single-word) hexadecimal data and/or constants with the Carry

Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+C(402)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +C(402)

Executed Once for Upward Differentiation @+C(402)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)

−32768 to 0 to 32767 (signed decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
344

Symbol Math Instructions Section 3-10
Description +C(402) adds the binary values in Au, Ad, and CY and outputs the result to R.

Flags

Precautions When +C(402) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers and CY is negative (in the range
8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers and CY is positive (in the range
0000 to 7FFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0.00 is ON, D200, D210, and CY will be added as 4-digit signed
binary values and the result will be output to D220.

CY+

RCY

Au

Ad

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the addition result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the addition result of adding two positive num-
bers and CY is in the range 8000 to FFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the addition result of adding two negative num-
bers and CY is in the range 0000 to 7FFF hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

0.00

D200

D210

D220
345

Symbol Math Instructions Section 3-10
3-10-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403)
Purpose Adds 8-digit (double-word) hexadecimal data and/or constants with the Carry

Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+CL(403)

Au

Ad

R

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +CL(403)

Executed Once for Upward Differentiation @+CL(403)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned deci-
mal)
−2147483648 to 2147483647 (signed
decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
346

Symbol Math Instructions Section 3-10
Description +CL(403) adds the binary values in Au and Au+1, Ad and Ad+1, and CY and
outputs the result to R.

Flags

Precautions When +CL(403) is executed, the Error Flag will turn OFF.

If as a result of the addition, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the addition results in a carry, the Carry Flag will turn ON.

If the result of adding two positive numbers and CY is negative (in the range
80000000 to FFFFFFFF hex), the Overflow Flag will turn ON.

If the result of adding two negative numbers and CY is positive (in the range
00000000 to 7FFFFFFF hex), the Underflow Flag will turn ON.

If as a result of the addition, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0.01 is ON, D1001, D1000, D1011, D1010, and CY will be added
as 8-digit signed binary values, and the result will be output to D2001 and
D2000.

CY+

RCY

Au+1

Ad+1

R+1

Au

Ad (Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the results in a carry.
OFF in all other cases.

Overflow Flag OF ON when the result of adding two positive numbers and
CY is in the range 80000000 to FFFFFFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the result of adding two negative numbers and
CY is in the range 00000000 to 7FFFFFFF hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

0.01

D1000

D1010

D2000
347

Symbol Math Instructions Section 3-10
3-10-5 BCD ADD WITHOUT CARRY: +B(404)
Purpose Adds 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description +B(404) adds the BCD values in Au and Ad and outputs the result to R.

+B(404)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +B(404)

Executed Once for Upward Differentiation @+B(404)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants 0000 to 9999 (BCD) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

RCY

+

(BCD)

(BCD)

(BCD)

Au

Ad

CY will turn
ON when there
is a carry.
348

Symbol Math Instructions Section 3-10
Flags

Precautions If Au or Ad is not BCD, an error is generated and the Error Flag will turn ON.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, D100 and D110 will be added
as 4-digit BCD values, and the result will be output to D120.

3-10-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405)
Purpose Adds 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON when Au is not BCD.
ON when Ad is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

0.00

D100

D110

D120

+BL(405)

R

Au

Ad

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +BL(405)

Executed Once for Upward Differentiation @+BL(405)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094
349

Symbol Math Instructions Section 3-10
Description +BL(405) adds the BCD values in Au and Au+1 and Ad and Ad+1 and outputs
the result to R, R+1.

Flags

Precautions If Au, Au +1 or Ad, Ad +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the addition, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Examples When CIO 0.01 is ON in the following example, D1001 and D1000 and D1101
and D1100 will be added as 8-digit BCD values, and the result will be output
to D1201 and D1200.

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #99999999 (BCD) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Au Ad R

CY

+

R

(BCD)

(BCD)

(BCD)R+1

Au+1

Ad+1

Au

Ad

CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER ON when Au, Au +1 is not BCD.

ON when Ad, Ad +1 is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.

OFF in all other cases.

0.01

D1000

D1100

D1200
350

Symbol Math Instructions Section 3-10
3-10-7 BCD ADD WITH CARRY: +BC(406)
Purpose Adds 4-digit (single-word) BCD data and/or constants with the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description +BC(406) adds BCD values in Au, Ad, and CY and outputs the result to R.

+BC(406)

R

Au

Ad

Au: Augend word

Ad: Addend word

R: Result word

Variations Executed Each Cycle for ON Condition +BC(406)

Executed Once for Upward Differentiation @+BC(406)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to 9999 (BCD) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

CY+

RCY

(BCD)

(BCD)

(BCD)

Au

Ad

CY will turn
ON when there
is a carry.
351

Symbol Math Instructions Section 3-10
Flags

Precautions If Au or Ad is not BCD, an error is generated and the Error Flag will turn ON.

If as a result of the addition, the content of R is 0000 hex, the Equals Flag will
turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Note To clear the Carry Flay (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0.00 is ON in the following example, D100, D200, and CY will be
added as 4-digit BCD values, and the result will be output to D300.

3-10-8 DOUBLE BCD ADD WITH CARRY: +BCL(407)
Purpose Adds 8-digit (double-word) BCD data and/or constants with the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON when Au is not BCD.
ON when Ad is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

0.00

D100

D200

D300

+BCL(407)

R

Au

Ad

Au: 1st augend word

Ad: 1st addend word

R: 1st result word

Variations Executed Each Cycle for ON Condition +BCL(407)

Executed Once for Upward Differentiation @+BCL(407)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958
352

Symbol Math Instructions Section 3-10
Description +BCL(407) adds the BCD values in Au and Au+1, Ad and Ad+1, and CY and
outputs the result to R, R+1.

Flags

Precautions If Au, Au +1 or Ad, Ad +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the addition, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an addition results in a carry, the Carry Flag will turn ON.

Note To clear the Carry Flay (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0.01 is ON in the following example, D1001, D1000, D1101,
D1100, and CY will be added as 8-digit BCD values, and the result will be out-
put to D1201 and D1200.

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #99999999 (BCD) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Au Ad R

R+1

CY+

RCY

(BCD)

(BCD)

(BCD)

Au+1

Ad+1

Au

Ad

CY will turn
ON when there
is a carry.

Name Label Operation

Error Flag ER ON when Au, Au +1 is not BCD.
ON when Ad, Ad +1 is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the addition results in a carry.
OFF in all other cases.

0.01

D1000

D1100

D1200
353

Symbol Math Instructions Section 3-10
3-10-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: –(410)
Purpose Subtracts 4-digit (single-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

−(410)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –(410)

Executed Once for Upward Differentiation @–(410)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D4095

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)

−32768 to 32767 (signed decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
354

Symbol Math Instructions Section 3-10
Description –(400) subtracts the binary values in Su from Mi and outputs the result to R.
When the result is negative, it is output to R as a 2’s complement. (Refer to 3-
10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411)
for an example of handling 2’s complements.)

Flags

Precautions When –(410) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number from a positive number is nega-
tive (in the range 8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of subtracting a positive number from a negative number is posi-
tive (in the range 0000 to 7FFF hex), the Underflow Flag will turn ON.

If as a result of the subtraction, the content of the leftmost bit of R is 1, the
Negative Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, D200 will be subtracted from
D100 as 4-digit signed binary values and the result will be output to D300.

RCY

−

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)CY will turn ON
when there is a
borrow.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.

OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number from
a positive number is in the range 8000 to FFFF hex.

OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a negative number from
a positive number is in the range 0000 to 7FFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

−
0.00

D100

D200

D300
355

Symbol Math Instructions Section 3-10
3-10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411)
Purpose Subtracts 8-digit (double-word) hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

−L(411)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –L(411)

Executed Once for Upward Differentiation @–L(411)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned deci-
mal)
−2147483648 to 2147483647 (signed
decimal)

Data Registers ---

Index Registers IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
356

Symbol Math Instructions Section 3-10
Description –L(411) subtracts the binary values in Su and Su+1 from Mi and Mi+1 and
outputs the result to R, R+1. When the result is negative, it is output to R and
R+1 as a 2’s complement.

Flags

Precautions When –L(411) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number from a positive number is nega-
tive (in the range 80000000 to FFFFFFFF hex), the Overflow Flag will turn
ON.

If the result of subtracting a positive number from a negative number is posi-
tive (in the range 00000000 to 7FFFFFFF hex), the Underflow Flag will turn
ON.

If as a result of the subtraction, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Examples When CIO 0.01 is ON in the following example, D1201 and D1200 will be sub-
tracted from D1001 and D1000 as 8-digit signed binary values and the result
will be output to D1501 and D1500.

Su+1

CY R

Mi+1

R+1

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.

−

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number
from a positive number is in the range 80000000 to
FFFFFFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a positive number from
a negative number is in the range 00000000 to
7FFFFFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

−L

0.01

D1000

D1200

D1500
357

Symbol Math Instructions Section 3-10
Examples If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as the 2’s complement and the Carry Flag
(CY) will turn ON to indicate that the result of the subtraction is negative. To
convert the 2’s complement to the true number, an instruction which subtracts
the result from 0 is necessary using the Carry Flag (CY) as an execution con-
dition.

Note 2’s Complement
A 2’s complement is the value obtained by subtracting each binary digit from 1
and adding one to the result. For example, the 2’s complement for 1101 is cal-
culated as follows: 1111 (F hexadecimal) – 1101 (D hexadecimal) + 1 (1 hexa-
decimal) = 0011 (3 hexadecimal). The 2’s complement for 3039 (hexadecimal)
is calculated as follows: FFFF (hexadecimal) – 3039 (hexadecimal) + 0001
(hexadecimal) – CFC7 (hexadecimal). Therefore, in case of 4-digit hexadeci-
mal value, the 2’s complement can be calculated as follows: FFFF (hexadeci-
mal) – a (hexadecimal) + 0001 (hexadecimal) = b (hexadecimal). To obtain the
true number from the 2’s complement b (hexadecimal): a (hexadecimal) =
10000 (hexadecimal) – b (hexadecimal). For example, to obtain the true num-
ber from the 2’s complement CFC7 (hexadecimal): 10000 (hexadecimal) –
CFC7 = 3039.

Program Example 20F55A10 – B8A360E3 = –97AE06D3.
In this example, the eight-digit binary value in CIO 211 and CIO 210 is sub-
tracted from the value in CIO 201 and CIO 200, and the result is output in
eight-digit binary to CIO 301 and CIO 300. If the result is negative, the instruc-
tion at (2) will be executed, and the actual result will then be output to CIO 301
and CIO 300.

−1
+1−)

65535
1−)

−)
−3
−1−)

65533
65535−)

−) Note 1.

2.

3.

4.

Example 1 Signed data Unsigned data

Example 2 Signed data Unsigned data

FFFF Hex
0001 Hex

FFFE Hex −2 Note 1 65534 Note 2

FFFD Hex
FFFF Hex

FFFE Hex −2 Note 3 65534 Note 4

Carry Flag OFF

Negative Flag ON

Carry Flag OFF

Negative Flag ON

Since the Negative Flag is ON, the result (FFFE hex) is a
negative value (2's complement) and is thus −2.

Since the Carry Flag is OFF, the result (FFFE hex) is an
unsigned positive value of 65534.

Since the Negative Flag is ON, the result (FFFE hex) is a
negative value (2's complement) and is thus −2.

Since the Carry Flag is ON, the result (FFFE hex) is a
negative value (2's complement) and becomes −2 when
converted to a true value.
358

Symbol Math Instructions Section 3-10
The Carry Flag (CY) is ON, so the result is subtracted from 0000 0000 to
obtain the actual number.

The Carry Flag (CY) is turned ON, so the actual number is –97AE06D3.
Because the content of CIO 301 and CIO 300 is negative, CY is used to turn
ON CIO 302.00 to indicate this.

−L

200

210

300

0.00

(1)

CY

CY
(2)

RSET

302.00

SET

302.00

−L

#00000000

300

300

"−"display

1

R+1: D101

 CIO 121 CIO 120

2 0 F 5 5 A 0

3E063A8B

6 5 1 F 9 2 D1

CY R+1: D100

8

 CIO 201 CIO 200

−

Mi+1: Mi:

Subtraction at 1

Su+1: Su:

0 0000 0 0

6 5 1 F 9 2 D8

R+1: CIO 201

3D60EA791

CY R+1: CIO 200

−

0

Su+1: CIO 201 Su: CIO 200

Subtraction at 2

R+1: CIO 301

 CIO 211 CIO210

3D60EA79

6 5 1 F 9 2 D

1

CY R+1: CIO 300

1

 CIO 201 CIO 200

2 0 F 5 5 A 0

8−
Su+1: Su:

Final Subtraction Result

Mi+1: Mi:
359

Symbol Math Instructions Section 3-10
3-10-11 SIGNED BINARY SUBTRACT WITH CARRY: –C(412)
Purpose Subtracts 4-digit (single-word) hexadecimal data and/or constants with the

Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

−C(412)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –C(412)

Executed Once for Upward Differentiation @–C(412)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)

−32768 to 0 to 32767 (signed decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
360

Symbol Math Instructions Section 3-10
Description –C(412) subtracts the binary values in Su and CY from Mi, and outputs the
result to R. When the result is negative, it is output to R as a 2’s complement.

Flags

Precautions When –C(412) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number and CY from a positive number
is negative (in the range 8000 to FFFF hex), the Overflow Flag will turn ON.

If the result of subtracting a positive number and CY from a negative number
is positive (in the range 0000 to 7FFF hex), the Underflow Flag will turn ON.

If as a result of the subtraction, the content of the leftmost bit of R is 1, the
Negative Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0.00 is ON in the following example, D110 and CY will be sub-
tracted from D100 as 4-digit signed binary values and the result will be output
to D120.

CY–

RCY

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the subtraction result is 0.

OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.

OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number and
CY from a positive number is in the range 8000 to FFFF
hex.
OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a positive number and
CY from a negative number is in the range 0000 to 7FFF
hex.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.

0.00

D100

D110

D120
361

Symbol Math Instructions Section 3-10
3-10-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: –CL(413)
Purpose Subtracts 8-digit (double-word) hexadecimal data and/or constants with the

Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

–CL(413)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –CL(413)

Executed Once for Upward Differentiation @–CL(413)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned deci-
mal)
−2147483648 to 2147483647 (signed
decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
362

Symbol Math Instructions Section 3-10
Description –CL(413) subtracts the binary values in Su and Su+1 and CY from Mi and
Mi+1, and outputs the result to R, R+1. When the result is negative, it is output
to R, R+1 as a 2’s complement.

Flags

Precautions When –CL(413) is executed, the Error Flag will turn OFF.

If as a result of the subtraction, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If the subtraction results in a borrow, the Carry Flag will turn ON.

If the result of subtracting a negative number and CY from a positive number
is negative (in the range 80000000 to FFFFFFFF hex), the Overflow Flag will
turn ON.

If the result of subtracting a positive number and CY from a negative number
is positive (in the range 00000000 to 7FFFFFFF hex), the Underflow Flag will
turn ON.

If as a result of the subtraction, the content of the leftmost bit of R+1 is 1, the
Negative Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0.01 is ON in the following example, D1101, D1100 and CY will be
subtracted from D1001 and D1000 as 8-digit signed binary values, and the
result will be output to D1201 and D1200.

R+1

CY–

RCY

Mi+1

Su+1

Mi

Su

(Signed binary)

(Signed binary)

(Signed binary)
CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the results in a borrow.
OFF in all other cases.

Overflow Flag OF ON when the result of subtracting a negative number and
CY from a positive number is in the range 80000000 to
FFFFFFFF hex.
OFF in all other cases.

Underflow Flag UF ON when the result of subtracting a positive number and
CY from a negative number is in the range 00000000 to
7FFFFFFF hex.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

0.01

D1000

D1100

D1200
363

Symbol Math Instructions Section 3-10
If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as a 2’s complement. The Carry Flag (CY) will
turn ON. To convert the 2’s complement to the true number, a program which
subtracts the result from 0 is necessary, as an input condition of the Carry
Flag (CY). The Carry Flag turning ON thus indicates that the result of the sub-
traction is negative.

Note 2’s Complement
A 2’s complement is the value obtained by subtracting each binary digit from 1
and adding one to the result.
Example: The 2’s complement for the binary number 1101 is as follows:

1111 (F hex) – 1101 (D hex) + 1 (1 hex) = 0011 (3 hex).
Example: The 2’s complement for the 4-digit hexadecimal number 3039 is as
follows:

FFFF hex – 3039 hex + 0001 hex = CFC7 hex.
Accordingly, the 2’s complement for the 4-digit hexadecimal value “a” is as fol-
lows:

FFFF hex – a hex + 0001 hex = b hex.
And to obtain the true number “a” hex from the 2’s complement “b” hex:

a hex + 10000 hex – b hex.
Example: To obtain the true number from the 2’s complement CFC& hex:

10000 hex – CFC7 hex = 3039 hex.

3-10-13 BCD SUBTRACT WITHOUT CARRY: –B(414)
Purpose Subtracts 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

–B(414)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –B(414)

Executed Once for Upward Differentiation @–B(414)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767
364

Symbol Math Instructions Section 3-10
Description –B(414) subtracts the BCD values in Su from Mi and outputs the result to R. If
the result of the subtraction is negative, the result is output as a 10’s comple-
ment.

Flags

Precautions If Mi and/or Su are not BCD, an error is generated and the Error Flag will turn
ON.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If an addition results in a borrow, the Carry Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, D110 will be subtracted from
D100 as 4-digit BCD values, and the result will be output to D120.

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants 0000 to 9999 (BCD) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Mi Su R

RCY

–

(BCD)

(BCD)

(BCD)

Mi

Su

CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER ON when Mi is not BCD.
ON when Su is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

0.00

D100

D110

D120
365

Symbol Math Instructions Section 3-10
3-10-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –BL(415)
Purpose Subtracts 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description –BL(415) subtracts the BCD values in Su and Su+1 from Mi and Mi+1 and
outputs the result to R, R+1. If the result is negative, it is output to R, R+1 as a
10’s complement.

–BL(415)

R

Mi

Su

Mi: 1st minuend word

Su: 1st subtrahend word

R: 1st result word

Variations Executed Each Cycle for ON Condition –BL(415)

Executed Once for Upward Differentiation @–BL(415)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #99999999 (BCD) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1CY

–

R

(BCD)

(BCD)

(BCD)

Mi +1

Su+1

Mi

Su

CY will turn
ON when there
is a borrow.
366

Symbol Math Instructions Section 3-10
Flags

Precautions If Mi, Mi +1 and/or Su, Su +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the subtraction, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an addition results in a borrow, the Carry Flag will turn ON.

Examples When CIO 0.01 is ON in the following example, D1001 and D1000 will be sub-
tracted from D1101 and D1100 as 8-digit BCD values, and the result will be
output to D1201 and D1200.

If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as a 10’s complement. The Carry Flag (CY)
will turn ON. To convert the 10’s complement to the true number, a program
which subtracts the result from 0 is necessary, as an input condition of the
Carry Flag (CY). The Carry Flag turning ON thus indicates that the result of
the subtraction is negative.

Note 10’s Complement
A 10’s complement is the value obtained by subtracting each digit from 9 and
adding one to the result. For example, the 10’s complement for 7556 is calcu-
lated as follows: 9999 – 7556 + 1 = 2444. For a four digit number, the 10’s
complement of A is 9999 – A + 1 = B. To obtain the true number from the 10’s
complement B: A = 10000 – B. For example, to obtain the true number from
the 10’s complement 2444: 10000 – 2444 = 7556.

Program Example 9,583,960 – 17,072,641 = –7,488,681.
In this example, the eight-digit BCD content of CIO 211 and CIO 210 is sub-
tracted from the content of CIO 201 and CIO 200, and the result is output in
eight-digit BCD to CIO 301 and CIO 300. The result is negative, so the
instruction at (2) will be executed, and the true value will then be output to
CIO 301 and CIO 300.

Name Label Operation

Error Flag ER ON when Mi and/or Mi +1 are not BCD.
ON when Su and/or Su +1 are not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.
OFF in all other cases.

0.01

D1000

D1100

D1200
367

Symbol Math Instructions Section 3-10
The Carry Flag (CY) is ON, so the result is subtracted from 0000 0000.

The Carry Flag (CY) will be turned ON, so the actual number is –7,488,681.
Because the content of CIO 301 and CIO 300 is negative, CY is used to turn
ON CIO 302.00 to indicate this.

−BL

200

210

300

0.00

(1)

CY

CY
(2)

RSET

302.00

SET

302.00

−BL

#00000000

300

300

"−" display

6

 CIO 201 CIO 200

R+1: CIO 301

 CIO 211 CIO 210

–

0 9 5 8 3 9 0

14627071

9 2 5 1 1 3 1 91

CY R+1: CIO 300

09583960 + (100000000 – 17072641)

Subtraction at 1

Mi+1: Mi:

Su+1: Su:

 CIO 301 CIO 300

–

0

9 2 5 1 1 3 1 9

0000 0 0

R+1: CIO 301

0 4 8 8 6 8 11

CY R+1: CIO 300

00000000 + (100000000 – 92511319)

7

0

Subtraction at 2

Su+1: Su:

R+1: CIO 301

 CIO 211 CIO 210

–

18688470

6 5 1 F 9 2 D

1

CY R+1: CIO 300

1

 CIO 201 CIO 200

2 0 F 5 5 A 0

8

Su+1: Su:

Final Subtraction Result

Mi+1: Mi:
368

Symbol Math Instructions Section 3-10
3-10-15 BCD SUBTRACT WITH CARRY: –BC(416)
Purpose Subtracts 4-digit (single-word) BCD data and/or constants with the Carry Flag

(CY).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

–BC(416)

R

Mi

Su

Mi: Minuend word

Su: Subtrahend word

R: Result word

Variations Executed Each Cycle for ON Condition –BC(416)

Executed Once for Upward Differentiation @–BC(416)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #9999 (BCD) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
369

Symbol Math Instructions Section 3-10
Description –BC(416) subtracts BCD values in Su and CY from Mi and outputs the result
to R. If the result is negative, it is output to R as a 2’s complement.

Flags

Precautions If Mi and/or Su are not BCD, an error is generated and the Error Flag will turn
ON.

If as a result of the subtraction, the content of R is 0000 hex, the Equals Flag
will turn ON.

If an addition results in a borrow, the Carry Flag will turn ON.

Note To clear the Carry Flay (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0.00 is ON in the following example, D110 and CY will be sub-
tracted from D100 as 4-digit BCD values, and the result will be output to
D120.

3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417)
Purpose Subtracts 8-digit (double-word) BCD data and/or constants with the Carry

Flag (CY).

Ladder Symbol

CY

RCY

(BCD)

(BCD)

(BCD)

–

Mi

Su

CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER ON when Mi is not BCD.

ON when Su is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.

OFF in all other cases.

0.00

D100

D110

D120

–BCL(417)

R

Mi

Su

Mi: 1st minuend word

Su: 1st subtrahend word

R: 1st result word
370

Symbol Math Instructions Section 3-10
Variations

Applicable Program Areas

Operand Specifications

Description –BCL(417)subtracts the BCD values in Su, Su+1, and CY from Mi and Mi+1
and outputs the result to R, R+1. If the result is negative, it is output to R, R+1
as a 10’s complement.

Flags

Variations Executed Each Cycle for ON Condition –BCL(417)

Executed Once for Upward Differentiation @–BCL(417)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #99999999 (BCD) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1

CY

RCY

(BCD)

(BCD)

(BCD)

–

Mi +1

Su+1

Mi

Su

CY will turn
ON when there
is a borrow.

Name Label Operation

Error Flag ER ON when Mi and/or Mi +1 are not BCD.

ON when Su and/or Su +1 are not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.

Carry Flag CY ON when the subtraction results in a borrow.

OFF in all other cases.
371

Symbol Math Instructions Section 3-10
Precautions If Mi, Mi +1 and/or Su, Su +1 are not BCD, an error is generated and the Error
Flag will turn ON.

If as a result of the subtraction, the content of R, R +1 is 00000000 hex, the
Equals Flag will turn ON.

If an subtraction results in a borrow, the Carry Flag will turn ON.

Note To clear the Carry Flag (CY), execute the Clear Carry (CLC(041)) instruction.

Examples When CIO 0.01 is ON in the following example, D1101, D1100, and CY will be
subtracted from D1001 and D1000 as 8-digit BCD values, and the result will
be output to D1201 and D1200.

If the result of the subtraction is a negative number (Mi<Su or Mi+1, Mi
<Su+1, Su), the result is output as a 10’s complement. The Carry Flag (CY)
will turn ON. To convert the 10’s complement to the true number, a program
which subtracts the result from 0 is necessary, as an input condition of the
Carry Flag (CY). The Carry Flag turning ON thus indicates that the result of
the subtraction is negative.

Note 10’s Complement
A 10’s complement is the value obtained by subtracting each digit from 9 and
adding one to the result. For example, the 10’s complement for 7556 is calcu-
lated as follows: 9999 – 7556 + 1 = 2444. For a four digit number, the 10’s
complement of A is 9999 – A + 1 = B. To obtain the true number from the 10’s
complement B: A = 10000 – B. For example, to obtain the true number from
the 10’s complement 2444: 10000 – 2444 = 7556.

3-10-17 SIGNED BINARY MULTIPLY: *(420)
Purpose Multiplies 4-digit signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

0.01

D1000

D1100

D1200

*(420)

R

Md

Mr

Md: Multiplicand word

Mr: Multiplier word

R: Result word

Variations Executed Each Cycle for ON Condition *(420)

Executed Once for Upward Differentiation @*(420)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
372

Symbol Math Instructions Section 3-10
Operand Specifications

Description *(420) multiplies the signed binary values in Md and Mr and outputs the result
to R, R+1.

Flags

Precautions When *(420) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R is 0000 hex, the Equals
Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 and R
is 1, the Negative Flag will turn ON.

Area Md Mr R

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary)
&0 to &65535 (unsigned decimal)
−32768 to 32767 (signed decimal)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R + 1 R

×

Md

Mr

(Signed binary)

(Signed binary)

(Signed binary)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.
OFF in all other cases.
373

Symbol Math Instructions Section 3-10
Examples When CIO 0.00 is ON in the following example, D100 and D110 will be multi-
plied as 4-digit signed hexadecimal values and the result will be output to
D121 and D120.

3-10-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421)
Purpose Multiplies 8-digit signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.00

D100

D110

D120

*L(421)

R

Md

Mr

Md: 1st multiplicand word

Mr: 1st multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *L(421)

Executed Once for Upward Differentiation @*L(421)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0 to CIO 6142 CIO 0 to
CIO 6140

Work Area W0 to W510 W0 to W508

Holding Bit Area H0 to H510 H0 to H508

Auxiliary Bit Area A0 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D0 to D32766 D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)

&0 to &4294967295 (unsigned deci-
mal)
−2147483648 to 0 to 2147483647
(signed decimal)

Data Registers ---
374

Symbol Math Instructions Section 3-10
Description *L(421) multiplies the signed binary values in Md and Md+1 and Mr and Mr+1
and outputs the result to R, R+1, R+2, and R+3.

Flags

Precautions When *L(421) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is 0000
hex, the Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 is 1,
the Negative Flag will turn ON.

Examples When CIO 0.01 is ON in the following example, D201, D200 and D211, D210
will be multiplied as 8-digit signed hexadecimal values and the result will be
output to D220 to D223.

3-10-19 UNSIGNED BINARY MULTIPLY: *U(422)
Purpose Multiplies 4-digit unsigned hexadecimal data and/or constants.

Ladder Symbol

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Md Mr R

R + 1 RR + 3 R + 2

×

Md + 1 Md

Mr + 1 Mr

(Signed binary)

(Signed binary)

(Signed binary)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

0.01

D200

D210

D220

*U(422)

R

Md

Mr

Md: Multiplicand word

Mr: Multiplier word

R: Result word
375

Symbol Math Instructions Section 3-10
Variations

Applicable Program Areas

Operand Specifications

Description *U(420) multiplies the binary values in Md and Mr and outputs the result to R,
R+1.

Flags

Precautions When *U(422) is executed, the Error Flag will turn OFF.

Variations Executed Each Cycle for ON Condition *U(422)

Executed Once for Upward Differentiation @*U(422)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary)

&0 to &65535 (unsigned decimal)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

R + 1 R

Md

Mr

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

×

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.
376

Symbol Math Instructions Section 3-10
If as a result of the multiplication, the content of R, R+1 is 0000 hex, the
Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R+1 is 1,
the Negative Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, D100 and D110 will be multi-
plied as 4-digit unsigned binary values and the result will be output to D121
and D120.

3-10-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423)
Purpose Multiplies 8-digit unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.00

D100

D110

D120

*UL(423)

R

Md

Mr

Md: 1st multiplicand word

Mr: 1st multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *UL(423)

Executed Once for Upward Differentiation @*UL(423)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0 to CIO 6142 CIO 0 to
CIO 6140

Work Area W0 to W510 W0 to W508

Holding Bit Area H0 to H510 H0 to H508

Auxiliary Bit Area A0 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D0 to D32766 D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)
&0 to &4294967295 (unsigned deci-
mal)

Data Registers ---
377

Symbol Math Instructions Section 3-10
Description *UL(423) multiplies the unsigned binary values in Md and Md+1 and Mr and
Mr+1 and outputs the result to R to R+3.

Flags

Precautions When *UL(423) is executed, the Error Flag will turn OFF.

If as a result of the multiplication, the content of R to R+3 is 0000 hex, the
Equals Flag will turn ON.

If as a result of the multiplication, the content of the leftmost bit of R to R+3 is
1, the Negative Flag will turn ON.

Examples When CIO 0.01 is ON in the following example, D201, 200, D211, and D210
will be multiplied as 8-digit unsigned binary values and the result will be output
to D220 to D223.

3-10-21 BCD MULTIPLY: *B(424)
Purpose Multiplies 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Md Mr R

R + 1 RR + 3 R + 2

Md + 1 Md

Mr + 1 Mr

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

×

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the result is 1.

OFF in all other cases.

0.01

D200

D210

D220

*B(424)

R

Md

Mr

Md: Multiplicand word

Mr: Multiplier word

R: Result word
378

Symbol Math Instructions Section 3-10
Variations

Applicable Program Areas

Operand Specifications

Description *B(424) multiplies the BCD content of Md and Mr and outputs the result to R,
R+1.

Flags

Precautions If Md and/or Mr are not BCD, an error will be generated and the Error Flag will
turn ON.

Variations Executed Each Cycle for ON Condition *B(424)

Executed Once for Upward Differentiation @*B(424)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #9999 (BCD) ---

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R + 1 R

(BCD)

(BCD)

(BCD)

×

Md

Mr

Name Label Operation

Error Flag ER ON when Md is not BCD.
ON when Mr is not BCD.
OFF in all other cases.

Equals Flag = ON when the result is 0.
OFF in all other cases.
379

Symbol Math Instructions Section 3-10
If as a result of the multiplication, the content of R, R+1 is 0000 hex, the
Equals Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, D100 and D110 will be multi-
plied as 4-digit BCD values and the result will be output to D121 and D120.

3-10-22 DOUBLE BCD MULTIPLY: *BL(425)
Purpose Multiplies 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.00

D100

D110

D120

*BL(425)

R

Md

Mr

Md: 1st multiplicand word

Mr: 1st multiplier word

R: 1st result word

Variations Executed Each Cycle for ON Condition *BL(425)

Executed Once for Upward Differentiation @*BL(425)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0 to CIO 6142 CIO 0 to
CIO 6140

Work Area W0 to W510 W0 to W508

Holding Bit Area H0 to H510 H0 to H508

Auxiliary Bit Area A0 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D0 to D32766 D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #99999999 (BCD) ---

Data Registers ---
380

Symbol Math Instructions Section 3-10
Description *BL(425) multiplies BCD values in Md and Md+1 and Mr and Mr+1 and out-
puts the result to R to R+3.

Flags

Precautions If Md, Md+1 and/or Mr, Mr+1 are not BCD, an error will be generated and the
Error Flag will turn ON.

If as a result of the multiplication, the content of R, R+1, R+2, R+3 is
00000000 hex, the Equals Flag will turn ON.

Examples When CIO 0.01 is ON in the following example, D201, D200, D211, and D210
will be multiplied as 8-digit unsigned BCD values and the result will be output
to D220 to D223.

3-10-23 SIGNED BINARY DIVIDE: /(430)
Purpose Divides 4-digit (single-word) signed hexadecimal data and/or constants.

Ladder Symbol

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Md Mr R

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

×

Md + 1 Md

Mr + 1 Mr

Name Label Operation

Error Flag ER ON when Md and/or Md+1 are not BCD.
ON when Mr and/or Mr +1 are not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

0.01

D200

D210

D220

/(430)

R

Dd

Dr

Dd: Dividend word

Dr: Divisor word

R: Result word
381

Symbol Math Instructions Section 3-10
Variations

Applicable Program Areas

Operand Specifications

Description /(430) divides the signed binary (16 bit) values in Dd by those in Dr and out-
puts the result to R, R+1. The quotient is placed in R and the remainder in
R+1.

Variations Executed Each Cycle for ON Condition /(430)

Executed Once for Upward Differentiation @/(430)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)
&0 to &65535
(unsigned deci-
mal)
−32768 to 0 to
32767 (signed
decimal)

#0001 to #FFFF
(binary)
&1 to &65535
(unsigned deci-
mal)
−32768 to −1, 1 to
32767 (signed
decimal)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

R + 1 R

÷

Dd

Dr

Remainder Quotient

(Signed binary)

(Signed binary)

(Signed binary)
382

Symbol Math Instructions Section 3-10
Flags

Precautions When the content of Dr is 0, an error will be generated and the Error Flag will
turn ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, D100 will be divided by D110
as 4-digit signed binary values, the quotient will be output to D120, and the
remainder to D121.

3-10-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)
Purpose Divides 8-digit (double-word) signed hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON when the result is 0.
OFF in all other cases.

Equals Flag = ON when as a result of the division, R is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R is 1.
OFF in all other cases.

0.00

D100

D110

D120

/L(431)

R

Dd

Dr

Dd: 1st dividend word

Dr: 1st divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /L(431)

Executed Once for Upward Differentiation @/L(431)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0 to CIO 6142 CIO 0 to
CIO 6140

Work Area W0 to W510 W0 to W508

Holding Bit Area H0 to H510 H0 to H508
383

Symbol Math Instructions Section 3-10
Description /L(431) divides the signed binary values in Dd and Dd+1 by those in Dr and
Dr+1 and outputs the result to R, R+1, R+2, and R+3. The quotient is output
to R and R+1 and the remainder is output to R+2 and R+3.

Flags

Precautions When the remainder of the result, R+3, R+2 is 0,the Error Flag will turn ON.

If as a result of the division, the content of R+1, R is 00000000 hex, the
Equals Flag will turn ON.

If as a result of the division, the content of the leftmost bit of R+1, R is 1, the
Negative Flag will turn ON.

Auxiliary Bit Area A0 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D0 to D32766 D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to
#FFFFFFFF
(binary)

&0 to
&4294967295
(unsigned deci-
mal)
−2147483647 to
2147483647
(signed decimal)

#00000001 to
#FFFFFFFF
(binary)

&1 to
&4294967295
(unsigned deci-
mal)
−2147483648 to
−1, 1 to
2147483647
(signed decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Dd Dr R

R + 1 RR + 3 R + 2

÷

Dd + 1 Dd

Dr + 1 Dr

Remainder

(Signed binary)

(Signed binary)

(Signed binary)

Quotient

Name Label Operation

Error Flag ER ON when the result is 0.

OFF in all other cases.

Equals Flag = ON when as a result of the division, R+1, R is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R+1, R is 1.
OFF in all other cases.
384

Symbol Math Instructions Section 3-10
Examples When CIO 0.01 is ON in the following example, D201 and D200 will be
divided by D211 and D210 as 8-digit signed hexadecimal values, the quotient
will be output to D221 and D220, and the remainder will be output to D223
and D222.

3-10-25 UNSIGNED BINARY DIVIDE: /U(432)
Purpose Divides 4-digit (single-word) unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.01

D200

D210

D220

/U(432)

R

Dd

Dr

Dd: Dividend word

Dr: Divisor word

R: Result word

Variations Executed Each Cycle for ON Condition /U(432)

Executed Once for Upward Differentiation @/U(432)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

&0 to &65535
(unsigned deci-
mal)

#0001 to #FFFF
(binary)

&1 to &65535
(unsigned deci-
mal)

Data Registers DR0 to 15 ---
385

Symbol Math Instructions Section 3-10
Description /U(432) divides the unsigned binary values in Dd by those in Dr and outputs
the quotient to R and the remainder to R+1.

Flags

Precautions If as a result of the division, the content of R+1 is 0, the Error Flag will turn
ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the content of the leftmost bit of R is 1, the Nega-
tive Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, D100 will be divided by D110
as 4-digit unsigned binary values, the quotient will be output to D120, and the
remainder will be output to D121.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Dd Dr R

R + 1 R

÷

Dd

Dr

Remainder

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Quotient

Name Label Operation

Error Flag ER ON when the result is 0.

OFF in all other cases.

Equals Flag = ON when as a result of the division, R is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R is 1.
OFF in all other cases.

0.00

D100

D110

D120
386

Symbol Math Instructions Section 3-10
3-10-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)
Purpose Divides 8-digit (double-word) unsigned hexadecimal data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/UL(433)

R

Dd

Dr

Dd: 1st dividend word

Dr: 1st divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /UL(433)

Executed Once for Upward Differentiation @/UL(433)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0 to CIO 6142 CIO 0 to
CIO 6140

Work Area W0 to W510 W0 to W508

Holding Bit Area H0 to H510 H0 to H508

Auxiliary Bit Area A0 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D0 to D32766 D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to
#FFFFFFFF
(binary)
&0 to
&4294967295
(unsigned deci-
mal)

#00000001 to
#FFFFFFFF
(binary)
&1 to
&4294967295
(unsigned deci-
mal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
387

Symbol Math Instructions Section 3-10
Description /UL(433) divides the unsigned binary values in Dd and Dd+1 by those in Dr
and Dr+1 and outputs the quotient to R, R+1 and the remainder to R+2, and
R+3.

Flags

Precautions When the content of Dr, Dr+1 is 0, the Error Flag will turn ON.

If as a result of the division, the content of R, R+1, is 0000 hex, the Equals
Flag will turn ON.

If as a result of the division, the content of the leftmost bit of R+1 is 1, the Neg-
ative Flag will turn ON.

Examples When CIO 0.01 is ON in the following example, D201 and D200 will be
divided by D211 and D210 as 8-digit unsigned hexadecimal values, the quo-
tient will be output to D221 and D220, and the remainder will be output to
D223 and D222.

3-10-27 BCD DIVIDE: /B(434)
Purpose Divides 4-digit (single-word) BCD data and/or constants.

Ladder Symbol

Variations

R + 1 RR + 3 R + 2

÷

Dd + 1 Dd

Dr + 1 Dr

Remainder Quotient

(Unsigned binary)

(Unsigned binary)

(Unsigned binary)

Name Label Operation

Error Flag ER ON when the result is 0.

OFF in all other cases.

Equals Flag = ON when as a result of the division R+1, R is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of the R+1, R is 1.
OFF in all other cases.

0.01

D200

D210

D220

/B(434)

R

Dd

Dr

Dd: Dividend word

Dr: Divisor word

R: Result word

Variations Executed Each Cycle for ON Condition /B(434)

Executed Once for Upward Differentiation @/B(434)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
388

Symbol Math Instructions Section 3-10
Applicable Program Areas

Operand Specifications

Description /B(434) divides the BCD content of Dd by those of Dr and outputs the quotient
to R and the remainder to R+1.

Flags

Precautions If Dd or Dr are not BCD or if the remainder (R+1) is 0, an error will be gener-
ated and the Error Flag will turn ON.

If as a result of the division, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the division, the leftmost bit of R is 1, the Negative Flag will
turn ON.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #9999
(BCD)

#0001 to #9999
(BCD)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R + 1 R

(BCD)

(BCD)

(BCD)

÷

Dd

Dr

Remainder Quotient

Name Label Operation

Error Flag ER ON when Dd is not BCD.

ON when Dr is not BCD.
ON when the remainder is 0.
OFF in all other cases.

Equals Flag = ON when R is 0.
OFF in all other cases.
389

Symbol Math Instructions Section 3-10
Examples When CIO 0.00 is ON in the following example, D100 will be divided by D110
as 4-digit BCD values and the quotient will be output to D120 and the remain-
der to D121.

3-10-28 DOUBLE BCD DIVIDE: /BL(435)
Purpose Divides 8-digit (double-word) BCD data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.00

D100

D110

D120

/BL(435)

R

Dd

Dr

Dd: 1st dividend word

Dr: 1st divisor word

R: 1st result word

Variations Executed Each Cycle for ON Condition /BL(435)

Executed Once for Upward Differentiation @/BL(435)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0 to CIO 6142 CIO 0 to
CIO 6140

Work Area W0 to W510 W0 to W508

Holding Bit Area H0 to H510 H0 to H508

Auxiliary Bit Area A0 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D0 to D32766 D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to
#99999999 (BCD)

#00000001 to
#99999999 (BCD)

Data Registers ---
390

Symbol Math Instructions Section 3-10
Description /BL(435) divides BCD values in Dd and Dd+1 by those in Dr and Dr+1 and
outputs the quotient to R, R+1 and the remainder to R+2, R+3.

Flags

Precautions If Dd, Dd+1 and/or Dr, Dr+1 are not BCD or the content of Dr, Dr+1 is 0, an
error will be generated and the Error Flag will turn ON.

If as a result of the division, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

Examples When CIO 0.01 is ON in the following example, D201 and D200 will be
divided by D211 and D210 as 8-digit BCD values, the quotient will be output
to D221 and D220, and the remainder will be output to D223 and D222.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Dd Dr R

Dd + 1

Dr + 1

R + 1 RR + 3 R + 2

(BCD)

(BCD)

(BCD)

÷

Dd

Dr

Remainder Quotient

Name Label Operation

Error Flag ER ON when Dd, Dd+1 is not BCD.
ON when Dr, Dr +1 is not BCD.

OFF in all other cases.

Equals Flag = ON when the result is 0.

OFF in all other cases.

0.01

D200

D210

D220
391

Conversion Instructions Section 3-11
3-11 Conversion Instructions
This section describes instructions used for data conversion.

3-11-1 BCD-TO-BINARY: BIN(023)
Purpose Converts BCD data to binary data.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Mnemonic Function code Page

BCD-TO-BINARY BIN 023 392

DOUBLE BCD-TO-DOUBLE
BINARY

BINL 058 393

BINARY-TO-BCD BCD 024 395

DOUBLE BINARY-TO-DOU-
BLE BCD

BCDL 059 396

2’S COMPLEMENT NEG 160 398

DOUBLE 2’S COMPLEMENT NEGL 161 400

16-BIT TO 32-BIT SIGNED
BINARY

SIGN 600 401

DATA DECODER MLPX 076 403

DATA ENCODER DMPX 077 407

ASCII CONVERT ASC 086 411

ASCII TO HEX HEX 162 414

COLUMN TO LINE LINE 063 418

LINE TO COLUMN COLM 064 420

SIGNED BCD-TO-BINARY BINS 470 422

DOUBLE SIGNED BCD-TO-
BINARY

BISL 472 425

SIGNED BINARY-TO-BCD BCDS 471 428

DOUBLE SIGNED BINARY-TO-
BCD

BDSL 473 430

GRAY CODE CONVERSION GRY 474 433

BIN(023)

S

R

S: Source word

R: Result word

Variations Executed Each Cycle for ON Condition BIN(023)

Executed Once for Upward Differentiation @BIN(023)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511
392

Conversion Instructions Section 3-11
Description BIN(023) converts the BCD data in S to binary data and writes the result to R.

Flags

Example The following diagram shows an example BCD-to-binary conversion.

3-11-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058)
Purpose Converts 8-digit BCD data to 8-digit hexadecimal (32-bit binary) data.

Ladder Symbol

Variations

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S R

(BCD) (BIN)R

Name Label Operation

Error Flag ER ON if the content of S is not BCD.

OFF in all other cases.

Equals Flag = ON if the result is 0000.

OFF in all other cases.

Negative Flag N OFF

×103 ×102 ×101 ×100 ×163 ×162 ×161 ×160

R

BINL(058)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition BINL(058)

Executed Once for Upward Differentiation @BINL(058)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
393

Conversion Instructions Section 3-11
Applicable Program Areas

Operand Specifications

Description BINL(058) converts the 8-digit BCD data in S and S+1 to 8-digit hexadecimal
(32-bit binary) data and writes the result to R and R+1.

Flags

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

RR+1

(BCD) (BCD)

S+1 S

(BIN) (BIN)

Name Label Operation

Error Flag ER ON if the contents of S+1, S are not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0.

OFF in all other cases.

Negative Flag N OFF
394

Conversion Instructions Section 3-11
Examples The following diagram shows an example of 8-digit BCD-to-binary conversion.

When CIO 0.00 is ON in the following example, the 8-digit BCD value in
CIO 201 and CIO 200 is converted to hexadecimal and stored in D1001 and
D1000.

3-11-3 BINARY-TO-BCD: BCD(024)
Purpose Converts a word of binary data to a word of BCD data.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

S must be between 0000 and 270F hexadecimal (0000 and 9999 decimal).

Operand Specifications

×103×102×101×100 ×163 ×162×161×160×107×106×105×104 ×167×166×165×164

R+1 R

0 0 2 0 0 0 5 0

x103
 x102 x101 x100x107

 x106
 x105

 x104

0 0 0 3 0 D 7 2

 x163
 x162 x161 x160x167

 x166
 x165

 x164

S+1: CIO 201 S: CIO 200

R+1: D1001 R: D1000

200050=3X164+13X162+7X161+2X160

0.00

2000

D1000

BCD(024)

S

R

S: Source word

R: Result word

Variations Executed Each Cycle for ON Condition BCD(024)

Executed Once for Upward Differentiation @BCD(024)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959
395

Conversion Instructions Section 3-11
Description BCD(024) converts the binary data in S to BCD data and writes the result to
R.

Flags

Precautions The content of S must not exceed 270F (9999 decimal).

Example The following diagram shows an example BCD-to-binary conversion.

3-11-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(059)
Purpose Converts 8-digit hexadecimal (32-bit binary) data to 8-digit BCD data.

Ladder Symbol

Variations

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

(BCD)(BIN) R

Name Label Operation

Error Flag ER ON if the content of S exceeds 270F (9999 decimal).
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

R
×163 ×162 ×161 ×160 ×103 ×102 ×101 ×100

BCDL(059)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition BCDL(059)

Executed Once for Upward Differentiation @BCDL(059)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
396

Conversion Instructions Section 3-11
Applicable Program Areas

Operands S: First Source Word

The content of S+1 and S must be between 0000 0000 and 05F5 E0FF hexa-
decimal (0000 0000 and 9999 9999 decimal).

Operand Specifications

Description BCDL(059) converts the 8-digit hexadecimal (32-bit binary) data in S and S+1
to 8-digit BCD data and writes the result to R and R+1.

Flags

Precautions The content of S+1 and S must not exceed 05F5 E0FF (9999 9999 decimal).

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

RR+1

(BCD) (BCD)

S+1 S

(BIN) (BIN)

Name Label Operation

Error Flag ER ON if the contents of S and S+1 exceed 05F5 E0FF
(9999 9999 decimal).

OFF in all other cases.

Equals Flag = ON if the result is 0.

OFF in all other cases.
397

Conversion Instructions Section 3-11
Examples The following diagram shows an example of 8-digit BCD-to-binary conversion.

When CIO 0.00 is ON in the following example, the hexadecimal value in
CIO 201 and CIO 200 is converted to a BCD value and stored in D1001 and
D1000.

3-11-5 2’S COMPLEMENT: NEG(160)
Purpose Calculates the 2’s complement of a word of hexadecimal data.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

R+1 R

×163×162×161×160×167×166×165×164 ×103 ×102×101×100×107×106×105×104

3 2 0 A0 0 2 D

x167 x166 x165 x164

S+1: CIO 201 S: CIO 200

1 9 3 00 2 9 6

x107 x106 x105 x104

x163 x162 x161 x160

x103 x102 x101
 x100

2X165
 +13X164+3X163+2X162+10=2961930

R+1: D1001 R: D1000

MBS

MBS LSB

LSB

0.00

200

D1000

NEG(160)

S

R

S: Source word

R: Result word

Variations Executed Each Cycle for ON Condition NEG(160)

Executed Once for Upward Differentiation @NEG(160)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767
398

Conversion Instructions Section 3-11
Description NEG(160) calculates the 2’s complement of S and writes the result to R. The
2’s complement calculation basically reverses the status of the bits in S and
adds 1.

Note This operation (reversing the status of the bits and adding 1) is equivalent to
subtracting the content of S from 0000.

Flags

Note The result for 8000 hex will be 8000 hex.

Example When CIO 0.00 is ON in the following example, NEG(160) calculates the 2’s
complement of the content of D100 and writes the result to D200.

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S R

(S) (R)

2's complement
(Complement + 1)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of the result is ON.
OFF in all other cases.

−)

0.00

D100

D200

D100

D200

Add 1

Actual
calculation

Equivalent
subtraction

Reverse bit status
399

Conversion Instructions Section 3-11
3-11-6 DOUBLE 2’S COMPLEMENT: NEGL(161)
Purpose Calculates the 2’s complement of two words of hexadecimal data.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description NEGL(161) calculates the 2’s complement of S+1 and S and writes the result
to R+1 and R. The 2’s complement calculation basically reverses the status of
the bits in S+1 and S and adds 1.

Note This operation (reversing the status of the bits and adding 1) is equivalent to
subtracting the content of S+1 and S from 0000 0000.

NEGL(161)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition NEGL(161)

Executed Once for Upward Differentiation @NEGL(161)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

(S+1, S) (R+1, R)

2's complement
(Complement + 1)
400

Conversion Instructions Section 3-11
Flags

Note The result for 8000 hex will be 8000 hex.

Example When CIO 0.01 is ON in the following example, NEGL(161) calculates the 2’s
complement of the content of D1001 and D1000 and writes the result to
D2001 and D2000.

3-11-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600)
Purpose Expands a 16-bit signed binary value to its 32-bit equivalent.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of R+1 is ON.

OFF in all other cases.

−)

0.01

D1000

D2000

D1000

D2000

D1001

D2001

Add 1

Actual
calculation

Equivalent
subtraction

Reverse bit status

SIGN(600)

S

R

S: Source word

R: First result word

Variations Executed Each Cycle for ON Condition SIGN(600)

Executed Once for Upward Differentiation @SIGN(600)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094
401

Conversion Instructions Section 3-11
Note R and R+1 must be in the same data area.

Description SIGN(600) converts the 16-bit signed binary number in S to its 32-bit signed
binary equivalent and writes the result in R+1 and R.

The conversion is accomplished by copying the content of S to R and writing
FFFF to R+1 if bit 15 of S is 1 or writing 0000 to R+1 if bit 15 of S is 0.

Flags

Example When CIO 0.00 is ON in the following example, SIGN(600) converts the 16-bit
signed binary content of D100 (#8000 = –32,768 decimal) to its 32-bit equiva-
lent (#FFFF 8000 = –32,768 decimal) and writes that result to D201 and
D200.

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S R

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 The content of S is
transferred "as is" to R.

Source word (S)

1st result word (R)2nd result word (R+1)

If bit 15 of S is 1, FFFF is transferred to R+1.
If bit 15 of S is 0, 0000 is transferred to R+1.

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if the result is 0000 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of R+1 is ON.
OFF in all other cases.

0.00

D100

D200

R+1: D201 R: D200

S: D100
Example: 8000 Hex
402

Conversion Instructions Section 3-11
3-11-8 DATA DECODER: MLPX(076)
Purpose Reads the numerical value in the specified digit (or byte) in the source word,

turns ON the corresponding bit in the result word (or 16-word range), and
turns OFF all other bits in the result word (or 16-word range).

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

The data in the source word indicates the location of the bit(s) that will be
turned ON.

C: Control Word

The control word specifies whether MLPX(076) will perform a 4-to-16 bit con-
version or an 8-to-256 bit conversion, the number of digits or bytes to be con-
verted, and the starting digit or byte.

R: First result word

There can be anywhere from 1 to 32 result words, depending upon the type of
conversion process and number of digits/bytes being converted. The result
words must be in the same data area.

Operand Specifications

MLPX(076)

S

C

R

S: Source word

C: Control word

R: First result word

Variations Executed Each Cycle for ON Condition MLPX(076)

Executed Once for Upward Differentiation @MLPX(076)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

 3 2 1 0
0

Specifies the first digit/byte to be converted
4-to-16: 0 to 3 (digit 0 to 3)
8-to-256: 0 or 1 (byte 0 or 1)

Number of digits/bytes to be converted
4-to-16: 0 to 3 (1 to 4 digits)
8-to-256: 0 or 1 (1 or 2 bytes)

Conversion process
0: 4-to-16 bits (digit to word)
1: 8-to-256 bits (byte to 16-word range)

Digit number:

Area S C R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959
403

Conversion Instructions Section 3-11
Description MLPX(076) can perform 4-to-16 bit or 8-to-256 bit conversions. Set the left-
most digit of C to 0 to specify 4-to-16 bit conversion and set it to 1 to specify 8-
to-256 bit conversion.

4-to-16 bit Conversion

When the leftmost digit of C is 0, MLPX(076) takes the value of the specified
digit in S (0 to F) and turns ON the corresponding bit in the result word. All
other bits in the result word will be turned OFF. Up to four digits can be con-
verted.

When two or more digits are being converted, MLPX(076) will read the digits
in S from right to left and will wrap around to the rightmost digit after the left-
most digit, if necessary.

The following diagram shows some example values for C and the 4-to-16 bit
conversions that they produce.

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values
only

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S C R

R
R+1

C

4-to-16 bit decoding
(Bit m of R is turned ON.)

n=2 (Start with third digit.)

l =1 (Convert 2 digits.)

C: #0010 C: #0030 C: #0031

R

R+1

R

R+1
R+2

R+3

R

R+1
R+2

R+3
404

Conversion Instructions Section 3-11
8-to-256 bit Conversion

When the leftmost digit of C is 1, MLPX(076) takes the value of the specified
byte in S (00 to FF) and turns ON the corresponding bit in the range of 16
result words. All other bits in the result words will be turned OFF. Up to two
bytes can be converted.

When two bytes are being converted, MLPX(076) will read the bytes in S from
right to left and will wrap around to the rightmost byte if the leftmost byte
(byte 1) has been specified as the starting byte.

The following diagram shows some example values for C and the 8-to-256 bit
conversions that they produce.

Flags

R+1

R+14
R+15
R+16
R+17

R+30
R+31

C

16

l=1 (Convert 2 bytes.)

n=1 (Start with second byte.)

8-to-256 bit decoding
(Bit m of R to R+15 is turned ON.)

C: #1011C: #1010

Digit 1 Digit 0 Digit 1 Digit 0

Name Label Operation

Error Flag ER ON if C is not within the specified ranges.

OFF in all other cases.
405

Conversion Instructions Section 3-11
Examples 4-to-16 bit Conversion

When CIO 0.00 is ON in the following example, MLPX(076) will convert 3 dig-
its in CIO 200 beginning the second digit, as indicated by C (#0021). The cor-
responding bits in D100 to D102 will be turned ON.

8-to-256 bit Conversion

When CIO 0.01 is ON in the following example, MLPX(076) will convert the 2
bytes in S beginning with byte 1 (the leftmost byte), as indicated by C (#1011).
The corresponding bits in D1000 to D1015 and D1016 to D1031 will be turned
ON.

C: #

S: 200

S

C

R

0.00

200

D100

R: D100

D101

D102

Digits

Bits 0 to 3: Starting digit (Digit 1)

Bits 4 to 7: Number of digits (3 digits)

Digit 1 contains 6, so bit 6 is turned ON.

Digit 2 contains A, so bit 10 is turned ON.

Digit 3 contains F, so bit 15 is turned ON.

C: #

S: 1000

S

C

R

0.01

1000

D1000

R: D1000

D1001

D1002

D1003

D1015

D1016

D1017

D1018

D1031

Byte 1 Byte 0

Bits 0 to 3: Starting byte (Byte 1)

Bits 4 to 7: Number of bytes (2 bytes)

Byte 1 contains 2D, so bit 13 (D)
of R+2 is turned ON.

Byte 0 contains 1A, so bit 10 (A)
of R+1 is turned ON.
406

Conversion Instructions Section 3-11
3-11-9 DATA ENCODER: DMPX(077)
Purpose FInds the location of the first or last ON bit within the source word (or 16-word

range), and writes that value to the specified digit (or byte) in the result word.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word

There can be anywhere from 1 to 32 source words, depending upon the type
of conversion process and number of digits/bytes being converted. The
source words must be in the same data area.

R: Result Word

The locations of the bits that were ON in the source word(s) are written to the
digits/bytes in R starting with the specified first digit/byte.

C: Control Word

The control word specifies whether DMPX(077) will perform a 16-to-4 bit con-
version or an 256-to-8 bit conversion, whether the leftmost or rightmost ON bit
will be encoded, the number of digits or bytes that will be converted, and the
starting digit or byte where the results will be written.

DMPX(077)

S

R

C

S: First source word

R: Result word

C: Control word

Variations Executed Each Cycle for ON Condition DMPX(077)

Executed Once for Upward Differentiation @DMPX(077)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

 3 2 1 0

Conversion process
0: 16-to-4 bits (word to digit)
1: 256-to-8 bits (16-word range to byte)

Bit to encode
0: Leftmost bit (highest bit address)
1: Rightmost bit (lowest bit address)

Number of digits/bytes to be converted
16-to-4: 0 to 3 (1 to 4 digits)
256-to-8: 0 or 1 (1 or 2 bytes)

Specifies the first digit/byte to receive converted data.
16-to-4: 0 to 3 (digit 0 to 3)
256-to-8: 0 or 1 (byte 0 or 1)

Digit number:
407

Conversion Instructions Section 3-11
Operand Specifications

Description DMPX(077) can perform 16-to-4 bit or 256-to-8 bit conversions. Set the left-
most digit of C to 0 to specify 16-to-4 bit conversion and set it to 1 to specify
256-to-8 bit conversion.

16-to-4 bit Conversion

When the fourth (leftmost) digit of C is 0, DMPX(077) finds the locations of the
leftmost or rightmost ON bits in up to 4 source words and writes these loca-
tions to R beginning with the specified digit. (Set the third digit of C to 0 to find
the leftmost ON bits or 1 to find the rightmost ON bits.)

When two or more digits are being converted, DMPX(077) will write the values
to the digits in R from right to left and will wrap around to the rightmost digit
after the leftmost digit, if necessary.

The following diagram shows some example values for C and the 16-to-4 bit
conversions that they produce.

Area S R C

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- --- Specified values
only

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R

m

C

Leftmost bit

n=2 (Start with digit 2.)

l=1 (Convert
2 words.)

FInds leftmost bit
(Highest bit address)

16-to-4 bit decoding
(Location of leftmost bit (m)
is written to R.)
408

Conversion Instructions Section 3-11
256-to-8 bit Conversion

When the fourth (leftmost) digit of C is 1, DMPX(077) finds the locations of the
leftmost (highest bit address) or rightmost (lowest bit address) ON bits in one
or two 16-word ranges of source words. The locations of these bits are written
to R beginning with the specified byte. (Set the third digit of C to 0 to find the
leftmost ON bits or 1 to find the rightmost ON bits.)

When two bytes are being converted, DMPX(077) will write the values to the
bytes in R from right to left and will wrap around to the rightmost byte if the
leftmost byte (byte 1) has been specified as the starting byte.

C: #0032

C: #0011 C: #0030 C: #0013

R

R

R

RDigit 1Digit 3 Digit 1Digit 3

Digit 1Digit 3

Digit 1Digit 3

Digit 2 Digit 0

Digit 2 Digit 0

Digit 2 Digit 0

Digit 2 Digit 0

R

C

Leftmost
bit

Rightmost
bit

l =0 (Convert one 16-word range.)

Finds leftmost bit
(Highest bit address)

256-to-8 bit decoding
(The location of the leftmost bit in the
16-word range (m) is written to R.)

n=1 (Start with byte 1.)
409

Conversion Instructions Section 3-11
The following diagram shows some example values for C and the 256-to-8 bit
conversions that they produce.

Flags

Precautions If the conversion data contains 0000 hex, but other data is to be encoded,
separate the conversion by using more than one DMPX(077) instructions.

DMPX(077) D0 D100 #0300

DMPX(077) D0 D100 #0000
DMPX(077) D1 D100 #0001
DMPX(077) D2 D100 #0002
DMPX(077) D3 D100 #0003

Examples When CIO 0.00 is ON in the following example, DMPX(077) will find the left-
most ON bits in CIO 200 to C202 and write those locations to 3 digits in R
beginning with the second digit, as indicated by C (#0021).

C: #1010 C: #1011

Digit 1 Digit 0 Digit 1 Digit 0

Name Label Operation

Error Flag ER ON if any of the source words contains 0000 hex (i.e., no
bit to encode).
ON if C is not within the specified ranges.

OFF in all other cases.

C: #

R: D10000

S

R
C

0.00

200

D1000

S: CIO 200

CIO 201

CIO 202

Digits

DMPX(077) finds the
leftmost ON bits.

Starting digit
(Digit 1)
410

Conversion Instructions Section 3-11
3-11-10 ASCII CONVERT: ASC(086)
Purpose Converts 4-bit hexadecimal digits in the source word into their 8-bit ASCII

equivalents.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Source Word

Up to four digits in the source word can be converted. The digits are num-
bered 0 to 3, right to left.

Di: Digit Designator

The digit designator specifies various parameters for the conversion, as
shown in the following diagram.

D: First destination word

The converted ASCII data is written to the destination word(s) beginning with
the specified byte in D. Three destination words (D to D+3) will be required if 4
digits are being converted and the leftmost byte is selected as the first byte in
D. The destination words must be in the same data area.

Any bytes in the destination word(s) that are not overwritten with ASCII data
will be left unchanged.

ASC(086)

S

D

Di

S: Source word

Di: Digit designator

D: First destination word

Variations Executed Each Cycle for ON Condition ASC(086)

Executed Once for Upward Differentiation @ASC(086)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

 3 2 1 0

Specifies the first digit in S to be converted (0 to 3).

Number of digits to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

First byte of D to be used.
0: Rightmost byte
1: Leftmost byte

Parity 0: None
1: Even
2: Odd

Digit number:
411

Conversion Instructions Section 3-11
Operand Specifications

Description ASC(086) treats the contents of S as 4 hexadecimal digits, converts the des-
ignated digit(s) of S into their 8-bit ASCII equivalents, and writes this data into
the destination word(s) beginning with the specified byte in D.

Parity

It is possible to specify the parity of the ASCII data for use in error control dur-
ing data transmissions. The leftmost bit of each ASCII character will be auto-
matically adjusted for even, odd, or no parity.

When no parity (0) is designated, the leftmost bit will always be zero. When
even parity (1) is designated, the leftmost bit will be adjusted so that the total
number of ON bits is even. When odd parity (2) is designated, the leftmost bit
of each ASCII character will be adjusted so that there is an odd number of ON
bits. The status of the parity bit does not affect the meaning of the ASCII code.

Examples of even parity:
When adjusted for even parity, ASCII “31” (00110001) will be “B1” (10110001:
parity bit turned ON to create an even number of ON bits); ASCII “36”
(00110110) will be “36” (00110110: parity bit remains OFF because the num-
ber of ON bits is already even).

Area S Di D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values
only

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Right (0)Left (1)

Di

Number of
digits (n+1)

First digit to convert
412

Conversion Instructions Section 3-11
Examples of odd parity:
When adjusted for odd parity, ASCII “36” (00110110) will be “B6” (10110110:
parity bit turned ON to create an odd number of ON bits); ASCII “46”
(01000110) will be “46” (01000110: parity bit remains OFF because the num-
ber of ON bits is already odd).

Examples of Di

When two or more digits are being converted, ASC(086) will read the bytes in
S from right to left and will wrap around to the rightmost byte if necessary. The
following diagram shows some example values for Di and the conversions that
they produce.

Flags

Example When CIO 0.00 is ON in the following example, ASC(086) converts three
hexadecimal digits in D100 (beginning with digit 1) into their ASCII equivalents
and writes this data to D200 and D201 beginning with the leftmost byte in
D200. In this case, a digit designator of #0121 specifies no parity, the starting
byte (when writing) is the leftmost byte, the number of digits to read is 3, and
the starting digit (when reading) is digit 1.

Di: #0011 Di: #0112 Di: #0030

Di: #0130

Digit 3 Digit 2 Digit 1 Digit 0

Leftmost Rightmost

Digit 3 Digit 2 Digit 1 Digit 0 Digit 3 Digit 2 Digit 1 Digit 0

Leftmost

Rightmost

Leftmost Rightmost

Leftmost Rightmost

Digit 3 Digit 2 Digit 1 Digit 0

Leftmost

Rightmost

Rightmost

Leftmost

Name Label Operation

Error Flag ER ON if the content of Di is not within the specified ranges.
OFF in all other cases.
413

Conversion Instructions Section 3-11
3-11-11 ASCII TO HEX: HEX(162)
Purpose Converts up to 4 bytes of ASCII data in the source word to their hexadecimal

equivalents and writes these digits in the specified destination word.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word

The contents of the source words are treated as ASCII data. Up to three
source words can be used. (Three source words will be required if 4 bytes are
being converted and the leftmost byte is selected as the first byte in S.) The
source words must be in the same data area.

S

D

S: D100

0.00

D100

D200

D: D200
D201

Di: #

Number of digits

Digits

Di

Starting digit

Starting byte
(leftmost byte)

HEX(162)

S

D

Di

S: First source word

Di: Digit designator

D: Destination word

Variations Executed Each Cycle for ON Condition HEX(162)

Executed Once for Upward Differentiation @HEX(162)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
414

Conversion Instructions Section 3-11
Di: Digit Designator

The digit designator specifies various parameters for the conversion, as
shown in the following diagram.

D: Destination word

The converted hexadecimal digits are written into D from right to left, begin-
ning with the specified first digit. Any digits in the destination word that are not
overwritten with the converted data will be left unchanged.

Operand Specifications

Description HEX(162) treats the contents of the source word(s) as ASCII data represent-
ing hexadecimal digits (0 to 9 and A to F), converts the specified number of
bytes to hexadecimal, and writes the hexadecimal data to the destination
word beginning at the specified digit.

An error will occur if the source words contain data which is not an ASCII
equivalent of hexadecimal digits. The following table shows hexadecimal dig-
its and their ASCII equivalents (excluding parity bits).

 3 2 1 0Digit number:

Specifies the first digit in D to receive converted data (0 to 3).

Number of bytes to be converted (0 to 3)
0: 1 digit
1: 2 digits
2: 3 digits
3: 4 digits

0: Rightmost byte
1: Leftmost byte

Parity 0: None
1: Even
2: Odd

First byte of S to be converted.

Area S Di D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values
only

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
415

Conversion Instructions Section 3-11
Flags

The following diagram shows the basic operation of HEX(162) with Di=0021.

Parity

It is possible to specify the parity of the ASCII data for use in error control dur-
ing data transmissions. The leftmost bit in each byte is the parity bit. With no
parity the parity bit should always be zero, with even parity the status of the
parity bit should result in an even number of ON bits, and with odd parity the
status of the parity bit should result in an odd number of ON bits.

The following table shows the operation of HEX(162) for each parity setting.

Examples of Di

When two or more bytes are being converted, HEX(162) will write the con-
verted digits to the destination word from right to left and will wrap around to
the rightmost digit if necessary. The following diagram shows some example
values for Di and the conversions that they produce.

Hexadecimal digits (4 bits) ASCII equivalent (2 hexadecimal digits)

0 to 9 30 to 39

A to F 41 to 46

Parity setting
(leftmost digit of Di)

Operation of HEX(162)

No parity (0) HEX(162) will be executed only when the parity bit in each
byte is 0. An error will occur if a parity bit is non-zero.

Even parity (1) HEX(162) will be executed only when there is an even num-
ber of ON bits in each byte. An error will occur if a byte has
an odd number of ON bits.

Odd parity (2) HEX(162) will be executed only when there is an odd num-
ber of ON bits in each byte. An error will occur if a byte has
an even number of ON bits.

C: 0021

Number of digits (n+1)

Right (0)Left (1)

Di

First digit to write

First byte to convert

Di: #0112 Di: #0030 Di: #0131

Digit 3 Digit 2 Digit 1 Digit 0

Leftmost

Rightmost

Digit 3 Digit 2 Digit 1 Digit 0
Digit 3 Digit 2 Digit 1 Digit 0

Leftmost Rightmost

Leftmost Rightmost

Leftmost

Rightmost

Leftmost Rightmost
416

Conversion Instructions Section 3-11
Flags

Precautions An error will occur and the Error Flag will be turned ON if there is a parity error
in the ASCII data, the ASCII data in the source words is not equivalent to
hexadecimal digits, or the content of Di is not within the specified ranges.

Examples When CIO 0.00 is ON in the following example, HEX(162) converts the ASCII
data in D100 and D101 according to the settings of the digit designator.
(Di=#0121 specifies no parity, the starting byte (when reading) is the leftmost
byte, the number of bytes to read is 3, and the starting digit (when writing) is
digit 1.)

HEX(162) converts three bytes of ASCII data (3 characters) beginning with
the leftmost byte of D100 into their hexadecimal equivalents and writes this
data to D200 beginning with digit 1.

When CIO 0.00 is ON in the following example, HEX(162) converts the ASCII
data in D100 beginning with the rightmost byte and writes the hexadecimal
equivalents in D200 beginning with digit 1.

The digit designator setting of #1011 specifies even parity, the starting byte
(when reading) is the rightmost byte, the number of bytes to read is 2, and the
starting digit (when writing) is digit 1.)

Name Label Operation

Error Flag ER ON if there is a parity error in the ASCII data.
ON if the ASCII data in the source words is not equivalent
to hexadecimal digits
ON if the content of Di is not within the specified ranges.
OFF in all other cases.

D: D200

S

D

0.00

D100

D200

S: D100

D101

Di: #

Number of digits

3 digits

Di

Starting digit (digit 1)

Starting byte
(leftmost byte)
417

Conversion Instructions Section 3-11
3-11-12 COLUMN TO LINE: LINE(063)
Purpose Converts a column of bits from a 16-word range (the same bit number in 16

consecutive words) to the 16 bits of the destination word.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word

Specifies the first source word. S and S+15 must be in the same data area.

N: Bit Number

Specifies the bit number (0000 to 000F or &0 to &15) to be copied from the
source words.

S: D100

D: D200

0.00

D100

D200

Number of bytes (2 bytes)

Starting digit (digit 1)

Parity bits: Result in even parity

Not changed

Not changed

Conversion

Parity: Even

Starting byte: rightmost

Starting digit in D: Digit 1
Number of bytes: 2
Starting byte in S: Rightmost

LINE(063)

S

N

D

S: First source word

N: Bit number

D: Destination word

Variations Executed Each Cycle for ON Condition LINE(063)

Executed Once for Upward Differentiation @LINE(063)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
418

Conversion Instructions Section 3-11
Operand Specifications

Description LINE(063) copies the 16 bits with bit number N from the 16-word range S to
S+15 to the destination word D. Bit N of S+m is copied to bit m of D, i.e., bit N
of S is copied to bit 00 of D and bit N of S+15 is copied to bit 15 of D.

Flags

Area S N D

CIO Area CIO 0 to
CIO 6128

CIO 0 to CIO 6143

Work Area W0 to W496 W0 to W511

Holding Bit Area H0 to H496 H0 to H511

Auxiliary Bit Area A0 to A944 A0 to A959 A448 to A959

Timer Area T0000 to T4080 T0000 to T4095

Counter Area C0000 to C4080 C0000 to C4095

DM Area D0 to D32752 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to 000F
(binary) or &0 to
&15

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

0

0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1

15 00

S

N

1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1S+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1S+2

.

.

.

.

.

.

. . .

.

.

.
0 1 1 0 0 0 0 1 1 0 0 0 1 0 1 0S+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1S+3

0 1 1D 1

15 00

.

.

.

Bit Bit

Bit Bit

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0000 to 000F.

OFF in all other cases.

Equals Flag = ON if D is 0000 after execution.

OFF in all other cases.
419

Conversion Instructions Section 3-11
Example When CIO 0.00 is ON in the following example, LINE(063) copies bit 5 from
D100 to D115 to the 16 bits in D200.

3-11-13 LINE TO COLUMN: COLM(064)
Purpose Converts the 16 bits of the source word to a column of bits in a 16-word range

of destination words (the same bit number in 16 consecutive words).

Ladder Symbol

Variations

Applicable Program Areas

Operands D: First Destination Word

Specifies the first destination word. D and D+15 must be in the same data
area.

N: Bit Number

Specifies the bit number (0000 to 000F or &0 to &15) to be overwritten by the
source word.

Operand Specifications

N: #0005

D: D200

to

&5

0.00

D100

D200
S: D100

D101

D102
to

D115

COLM(064)

S

D

N

S: Source word

D: First destination word

N: Bit number

Variations Executed Each Cycle for ON Condition COLM(064)

Executed Once for Upward Differentiation @COLM(064)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D N

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6128

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W496 W0 to W511
420

Conversion Instructions Section 3-11
Description COLM(064) copies the 16 bits from S to the 16 bits with bit number N in the
16-word range D to D+15. Bit m of S is copied to bit N of D+m, i.e., bit 00 of S
is copied to bit N of D and bit 15 of S is copied to bit N of D+15.

Flags

Holding Bit Area H0 to H511 H0 to H496 H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A944 A0 to A959

Timer Area T0000 to T4095 T0000 to T4080 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4080 C0000 to C4095

DM Area D0 to D32767 D0 to D32752 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

--- #0000 to #000F
(binary) or &0 to
&15

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D N

0

0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1

15 00

D
1 1 0 1 0 0 1 0 0 1 1 1 0 0 0 1D+1
0 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1D+2

 .
 .
 .

 .
 .
 .

 .

 .
 .
 .

0 1 1 1 0 0 0 1 1 0 0 0 1 0 1 0D+15

1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1D+3

0 1 1S 1

15 00

 .
 .
 .

Bit Bit Bi

Bit Bit

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0000 to 000F.
OFF in all other cases.

Equals Flag = ON if bit N is 0 in all 16 words D to D+15 after execution.
OFF in all other cases.
421

Conversion Instructions Section 3-11
Example When CIO 0.00 is ON in the following example, COLM(064) copies the 16 bits
in D200 (bits 00 through 15) to bit 5 in D100 through D115.

3-11-14 SIGNED BCD-TO-BINARY: BINS(470)
Purpose Converts one word of signed BCD data to one word of signed binary data.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Specifies the signed BCD format. C must be 0000 to 0003.

Operand Specifications

S: D200

to

D: D100

D101

D102

to

0.00

D200

D100

D115

BINS(470)

C

S

D

C: Control word

S: Source word

D: Destination word

Variations Executed Each Cycle for ON Condition BINS(470)

Executed Once for Upward Differentiation @BINS(470)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area C S D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767
422

Conversion Instructions Section 3-11
Description BINS(470) converts signed BCD data to signed binary data. First the signed
BCD data format and range in word S are checked against the setting in the
control word (C). If the source data is correct, the signed BCD data in S is
converted to signed binary and output to D. If the source data is incorrect, the
Error Flag will be turned ON and the instruction will not be executed.

When the converted data is negative, it will be output as the 2’s complement
and the Negative Flag be will turned ON. NEG(160) can be used to determine
the absolute value of a negative signed binary number. Refer to 3-11-52’S
COMPLEMENT: NEG(160)398 for details.

A value of –0 in the source data will be treated as 0 and will not cause an
error. Also, the status of bits 13 to 15 of S is not checked when C=0000.

Note Some Special I/O Units output signed BCD data. Calculations using this data
will normally be easier if it is first converted to signed binary data with
BINS(470).

The control word specifies the signed BCD format as shown below.

C = 0000 (Input Data Range: –999 to 999 BCD)

C = 0001 (Input Data Range: –7999 to 7999 BCD)

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #0003
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S D

Signed BCD Signed binary

Signed BCD format
specified in C

3 digits BCD, 12 bits

Sign bit (0: Positive; 1: Negative)

Status of 3 bits: 0

Sign bit (0: Positive; 1: Negative)

3 bits of digit 4 (0 to 7)

3 digits BCD, 12 bits
423

Conversion Instructions Section 3-11
C = 0002 (Input Data Range: –999 to 9999 BCD)

C = 0003 (Input Data Range: –1999 to 9999 BCD)

The following table shows the possible BCD values for each signed BCD for-
mat and the corresponding signed binary values.

Flags

Examples BCD Format 0 (C=#0000)

When CIO 0.00 is ON in the following example, the signed BCD data format
and range in D100 are checked against the format specified in the control
word (0000). The source data is correct, so the signed BCD data in D100 is
converted to signed binary and output to D200.

Setting Signed BCD values Signed binary values

C=0000 –999 to –1 and 0 to 999 FC19 to FFFF and 0000 to 03E7

C=0001 –7999 to –1 and 0 to 7999 E0C1 to FFFF and 0000 to 1F3F

C=0002 –999 to –1 and 0 to 9999 FC19 to FFFF and 0000 to 270F

C=0003 –1999 to –1 and 0 to 9999 F831 to FFFF and 0000 to 270F

3 digits BCD, 12 bits

0 to 9: Fourth digit BCD
F: Negative (−)
A to E: Error

3 digits BCD, 12 bits
0 to 9: Fourth digit BCD
A: Negative (−1)
F: Negative (−)
B to E: Error

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 0003.
ON if C=0002 and the leftmost digit of S is A to E.

ON if C=0003 and the leftmost digit of S is B to E.
ON if the content of S is not BCD.
OFF in all other cases.

Equals Flag = ON if D is 0000 after execution.
OFF in all other cases.

Negative Flag N ON if bit 15 of D is ON after execution.
OFF in all other cases.

S: D100

1 1 2 3

D: D200

F F 8 5

0.00

D100

D200

Signed binary data

Signed BCD data (–123)
424

Conversion Instructions Section 3-11
BCD Format 0 (C=#0003)

When CIO 0.01 is ON in the following example, the signed BCD data format
and range in D300 are checked against the format specified in the control
word (0003). The source data is correct, so the signed BCD data in D300 is
converted to signed binary and output to D400.

3-11-15 DOUBLE SIGNED BCD-TO-BINARY: BISL(472)
Purpose Converts double signed BCD data to double signed binary data.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

Specifies the signed BCD format. C must be 0000 to 0003.

Operand Specifications

S: D300

A 3 6 9

D: D400

F A A 7

0.01

D300

D400

Signed BCD data
(–1,369)

Signed binary data

BISL(472)

C

S

D

C: Control word

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition BISL(472)

Executed Once for Upward Differentiation @BISL(472)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area C S D

CIO Area CIO 0 to
CIO 6143

CIO 0 to CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A0 to A958 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #0003
(binary)

425

Conversion Instructions Section 3-11
Description BISL(472) converts the double signed BCD data in S+1 and S to double
signed binary data and writes the result in D+1 and D. First the signed BCD
data format and range in words S+1 and S are checked against the setting in
the control word (C). If the source data is correct, the signed BCD data S+1
and S is converted to signed binary and output to D+1 and D. If the source
data is incorrect, the Error Flag will be turned ON and the instruction will not
be executed.

When the converted data is negative, it will be output as the 2’s complement
and the Negative Flag be will turned ON. NEGL(161) can be used to deter-
mine the absolute value of a negative double signed binary number. Refer to
3-11-6 DOUBLE 2’S COMPLEMENT: NEGL(161) for details.

Values of –0 in the source data will be treated as 0 and will not cause an error.
Also, the status of bits 13 to 15 of S+1 is not checked when C=0000.

Note Some Special I/O Units output signed BCD data. Calculations using this data
will normally be easier if it is first converted to signed binary data with
BISL(472).

The control word specifies the signed BCD format as shown below.

C = 0000 (Input Data Range: –999 9999 to 999 9999 BCD)

C = 0001 (Input Data Range: –7999 9999 to 7999 9999 BCD)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S D

Signed BCD
Signed BCD

Signed binary

Signed binary

Signed BCD format
specified in C

S

3 digits BCD, 12 bits

Sign bit (0: Positive; 1: Negative)

Status of 3 bits: 0

S

3 digits BCD, 12 bits

3 bits of digit 4 (0 to 7)

Sign bit (0: Positive; 1: Negative)
426

Conversion Instructions Section 3-11
C = 0002 (Input Data Range: –999 9999 to 9999 9999 BCD)

C = 0003 (Input Data Range: –1999 9999 to 9999 9999 BCD)

The following table shows the possible BCD values for each signed BCD for-
mat and the corresponding signed binary values.

Flags

Example When CIO 0.00 is ON in the following example, the double signed BCD data
format and range in D101 and D100 are checked against the format specified
in the control word (0002). The source data is correct, so the double signed
BCD data in D101 and D100 is converted to double signed binary and output
to D201 and D200.

Setting Signed BCD values Signed binary values

C=0000 –999 9999 to –1 FF67 6981 to FFFF FFFF

0 to 999 9999 0000 0000 to 0098 967F

C=0001 –7999 9999 to –1 FB3B 4C01 to FFFF FFFF

0 to 7999 9999 0000 0000 to 04C4 B3FF

C=0002 –999 9999 to –1 FF67 6981 to FFFF FFFF

0 to 9999 9999 0000 0000 to 05F5 E0FF

C=0003 –1999 9999 to –1 FECE D301 to FFFF FFFF

0 to 9999 9999 0000 0000 to 05F5 E0FF

S

3 digits BCD, 12 bits

0 to 9: Fourth digit BCD
F: Negative (–)
A to E: Error

S

3 digits BCD, 12 bits

0 to 9: Fourth digit BCD
A: Negative (–1)
F: Negative (–)
B to E: Error

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 0003.
ON if C=0002 and the leftmost digit of S+1 is A to E.
ON if C=0003 and the leftmost digit of S+1 is B to E.

ON if the content of S+1 and S is not BCD.
OFF in all other cases.

Equals Flag = ON if D+1 contains 0000 0000 after execution.

OFF in all other cases.

Negative Flag N ON if bit 15 of D+1 is ON after execution.

OFF in all other cases.

F 3 4 5

F F C B

6 7 8 9

4 0 E B

S+1: D101

D+1: D201

S: D100

D: D200

0.00

D100

D200

Double signed BCD data
(–3,456,789)

Double signed binary data
427

Conversion Instructions Section 3-11
3-11-16 SIGNED BINARY-TO-BCD: BCDS(471)
Purpose Converts one word of signed binary data to one word of signed BCD data.

Ladder Symbol

Variations

Applicable Program Areas

Operand C: Control Word

Specifies the signed BCD format. C must be 0000 to 0003.

S: Source Word

Contains the signed binary data to be converted. The content of S must be
within the valid range of the BCD format specified in C.

D: Destination word

Contains the converted signed BCD data. See the description section below
for an explanation of the BCD formats.

Operand Specifications

BCDS(471)

C

S

D

C: Control word

S: Source word

D: Destination word

Variations Executed Each Cycle for ON Condition BCDS(471)

Executed Once for Upward Differentiation @BCDS(471)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Setting Allowed values for S

C=0000 FC19 to FFFF or 0000 to 03E7

C=0001 E0C1 to FFFF or 0000 to 1F3F

C=0002 FC19 to FFFF or 0000 to 270F

C=0003 F831 to FFFF or 0000 to 270F

Area C S D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #0003
(binary)

Data Registers DR0 to DR15
428

Conversion Instructions Section 3-11
Description BCDS(471) converts signed binary data to signed BCD data. First the signed
binary data in word S is checked to verify that it is within the valid range for the
signed BCD format specified in the control word (C). If the source data is cor-
rect, the signed binary data in S is converted to signed BCD and output to D.
If the source data is incorrect, the Error Flag will be turned ON and the
instruction will not be executed.

Note (1) Values of –0 in the source data will be treated as 0 and will not cause an
error.

(2) Some Special I/O Units require signed BCD data inputs. BCDS(471) can
be used to convert signed binary data for output to these Units.

The control word specifies the signed BCD format that will be used for the
result, as shown below.

C = 0000 (Output Data Range: –999 to 999 BCD)

C = 0001 (Output Data Range: –7999 to 7999 BCD)

C = 0002 (Output Data Range: –999 to 9999 BCD)

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to 1–2048 to +2047 ,IR5
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S D

Signed BCDSigned binary

Signed BCD format
specified in C

3 digits BCD, 12 bits

Sign bit (0: Positive; 1: Negative)

Status of 3 bits: 0

3 digits BCD, 12 bits

3 bits of digit 4 (0 to 7)

Sign bit (0: Positive; 1: Negative)

3 digits BCD, 12 bits

0 to 9: Fourth digit BCD
F: Negative (–)
429

Conversion Instructions Section 3-11
C = 0003 (Output Data Range: –1999 to 9999 BCD)

The following table shows the possible signed binary values for each signed
BCD format. An error will occur if the source data is not within the allowed
range for the specified signed BCD format.

Flags

3-11-17 DOUBLE SIGNED BINARY-TO-BCD: BDSL(473)
Purpose Converts double signed binary data to double signed BCD data.

Ladder Symbol

Variations

Setting Signed binary values Signed BCD values

C=0000 FC19 to FFFF and 0000 to 03E7 –999 to –1 and 0 to 999

C=0001 E0C1 to FFFF and 0000 to 1F3F –7999 to –1 and 0 to 7999

C=0002 FC19 to FFFF and 0000 to 270F –999 to –1 and 0 to 9999

C=0003 F831 to FFFF and 0000 to 270F –1999 to –1 and 0 to 9999

0 to 9: Fourth digit BCD
A: Negative (–1)
F: Negative (–)

3 digits BCD, 12 bits

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 0003.

ON if C=0000 and the source data is not within the allowed
ranges (FC19 to FFFF or 0000 to 03E7).
ON if C=0001 and the source data is not within the allowed
ranges (E0C1 to FFFF or 0000 to 1F3F).
ON if C=0002 and the source data is not within the allowed
ranges (FC19 to FFFF or 0000 to 270F).

ON if C=0003 and the source data is not within the allowed
ranges (F831 to FFFF or 0000 to 270F).
OFF in all other cases.

Equals Flag = ON if D is 0000 after execution.
OFF in all other cases.

Negative Flag N ON if C=0000 or 0001 and the result’s sign bit is ON after
execution.
ON if C=0002 and the leftmost digit of the result is F.

ON if C=0003 and the leftmost digit of the result is A or F.
OFF in all other cases.

BDSL(473)

C

S

D

C: Control word

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition BDSL(473)

Executed Once for Upward Differentiation @BDSL(473)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
430

Conversion Instructions Section 3-11
Operands C: Control Word

Specifies the signed BCD format. C must be 0000 to 0003.

S: First Source Word

Source words S+1 and S contain the double signed binary data to be con-
verted. Their content must be within the valid range of the BCD format speci-
fied in C.

D: First destination word

Destination words D+1 and D contain the converted double signed BCD data.
See the description section below for an explanation of the BCD formats.

Operand Specifications

Description BDSL(473) converts double signed binary data to double signed BCD data.
First the double signed binary data in S+1 and S is checked to verify that it is
within the valid range for the signed BCD format specified in the control word
(C). If the source data is correct, the double signed binary data in S+1 and S
is converted to double signed BCD and output to D+1 and D. If the source
data is incorrect, the Error Flag will be turned ON and the instruction will not
be executed.

Setting Allowed values for S+1 and S

C=0000 FF67 6981 to FFFF FFFF or 0000 0000 to 0098 967F

C=0001 FB3B 4C01 to FFFF FFFF or 0000 0000 to 04C4 B3FF

C=0002 FF67 6981 to FFFF FFFF or 0000 0000 to 05F5 E0FF

C=0003 FECE D301 to FFFF FFFF or 0000 0000 to 05F5 E0FF

Area C S D

CIO Area CIO 0 to
CIO 6143

CIO 0 to CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A0 to A958 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #0003
(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Signed BCD
Signed BCD

Signed binary

Signed binary

Signed BCD format
specified in C
431

Conversion Instructions Section 3-11
Note (1) Values of –0 in the source data will be treated as 0 and will not cause an
error.

(2) Some Special I/O Units require signed BCD data inputs. BDSL(473) can
be used to convert double signed binary data for output to these Units.

The control word specifies the signed BCD format that will be used for the
result, as shown below.

C = 0000 (Output Data Range: –999 9999 to 999 9999 BCD)

C = 0001 (Output Data Range: –7999 9999 to 7999 9999 BCD)

C = 0002 (Output Data Range: –999 9999 to 9999 9999 BCD)

C = 0003 (Output Data Range: –1999 9999 to 9999 9999 BCD)

The following table shows the possible double signed binary values for each
signed BCD format. An error will occur if the source data is not within the
allowed range for the specified signed BCD format.

Setting Signed binary values Signed BCD values

C=0000 FF67 6981 to FFFF FFFF –999 9999 to –1

0000 0000 to 0098 967F 0 to 999 9999

C=0001 FB3B 4C01 to FFFF FFFF –7999 9999 to –1

0000 0000 to 04C4 B3FF 0 to 7999 9999

C=0002 FF67 6981 to FFFF FFFF –999 9999 to –1

0000 0000 to 05F5 E0FF 0 to 9999 9999

C=0003 FECE D301 to FFFF FFFF –1999 9999 to –1

0000 0000 to 05F5 E0FF 0 to 9999 9999

S+1 S

7 digits BCD, 28 bits

Sign bit (0: Positive; 1: Negative)

Status of 3 bits: 0

S+1 S

3 bits of digit 8 (0 to 7)

7 digits BCD, 28 bits

Sign bit (0: Positive; 1: Negative)

S+1 S

0 to 9: Eighth digit BCD
F: Negative (–)

7 digits BCD, 28 bits

S+1 S

0 to 9: Eighth digit BCD
A: Negative (–1)
F: Negative (–)

7 digits BCD, 28 bits
432

Conversion Instructions Section 3-11
Flags

Example When CIO 0.00 is ON in the following example, the double signed binary data
in D101 and D100 are checked against the format specified in the control
word (0003). The source data is correct, so the double signed binary data in
D101 and D100 is converted to double signed BCD and output to D201 and
D200.

3-11-18 GRAY CODE CONVERT: GRY(474)
Purpose Converts the gray binary code in a specified word to standard binary data,

BCD data, or an angle at the specified resolution.

Ladder Symbol

Variations

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 0003.
ON if C=0000 and the source data is not within the range:
FF67 6981 to FFFF FFFF or 0000 0000 to 0098 967F.
ON if C=0001 and the source data is not within the range:
FB3B 4C01 to FFFF FFFF or 0000 0000 to 04C4 B3FF.

ON if C=0002 and the source data is not within the range:
FF67 6981 to FFFF FFFF or 0000 0000 to 05F5 E0FF.
ON if C=0003 and the source data is not within the range:
FECE D301 to FFFF FFFF or 0000 0000 to 05F5 E0FF.
OFF in all other cases.

Equals Flag = ON if D is 0000 after execution.
OFF in all other cases.

Negative Flag N ON if C=0000 or 0001 and the result’s sign bit is ON after
execution.
ON if C=0002 and the leftmost digit of the result is F.
ON if C=0003 and the leftmost digit of the result is A or F.

OFF in all other cases.

S+1: D101

F F 8 B

D+1: D201

F 7 6 5

S: D100

3 4 4 F

D: D200

4 3 2 1

Double signed binary data

Double signed BCD data
(–7,654,321)

0.00

D100

D200

GRY(474)

C

S

D

C: First control word

S: Source word

D: First destination word

Variations Executed Each Cycle for ON Condition GRY(474)

Executed Once for Upward Differentiation @GRY(474)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
433

Conversion Instructions Section 3-11
Applicable Program Areas

Operands C: Control Word

Specifies the parameters for the conversion as shown below.

S: Source Word

Contains the gray binary code to be converted. The range must be within the
number of bits determined by the resolution specified in bits 00 to 03 of C. All
bits outside of the number of bits for the specified resolution will be ignored.
For example, if the specified resolution is 08 hex and S contains FFFF hex,
the gray binary code will be taken as 00FF hex.

D: First destination word

Destination words D+1 and D contain the results of converting the gray binary
code at the resolution specified in bits 00 to 03 of the control data word C and
the conversion mode specified in bits 04 to 07 of the control data word C. The
leftmost word is output to D+1 and the rightmost word is output to D. The
ranges of data that are output are as follows:

Binary Mode: 0000 0000 to 0000 7FFF hex
BCD Mode:0000 0000 to 0003 2767
360° Mode:0000 0000 to 0000 3599

(0.0° to 359.9° in 0.1° increments, BCD)

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C

 0 4 3 7 8111215

C+1

C+2

15 1112 0

Do not
use (0).

Operating Mode
0 hex = Gray binary code conversion

Conversion Mode
0 hex = Binary Mode, 1 hex = BCD Mode, 2 hex = 360° Mode

Resolution
0 or 1 to F hex (1 to 15 decimal) bits
0 hex = User specified in bits 12 to 15 of C+2.

Zero Point Compensation (0000 to 7FFF Hex (Binary Data))
Note: Zero point compensation that exceeds the resolution set in the word C of the control

data cannot be specified.

User-specified Resolution
0 hex = 256, 1 hex = 360, 2 hex = 720, 3 hex = 1,024, 4 to F hex = Do not use.

Encoder Remainder Compensation (Binary Data)
Note: The range that can be set depends on the user-specified resolution.

Note: The above setting is valid when the resolution is set to 0 hex in bits 00 to 03 of C.

S

434

Conversion Instructions Section 3-11
Operand Specifications

Description GRY(474) converts the gray binary code in the word specified in S at the res-
olution specified in C using one of the following conversion modes (binary,
BCD, or 360°), also specified in C, and places the results in D and D+1.

Note (1) GRY(474) is normally used when inputting, through a DC Input Unit, a

parallel signal (2n) from an absolute encoder that outputs a gray binary
code.

(2) If the word specified for S is allocated to an Input Unit, the input data con-
verted by GRY(474) will be for the gray binary code from the previous
CPU Unit cycle, i.e., it will be one cycle time old.

D

D+1

Rightmost word

Leftmost word

Area C S D

CIO Area CIO 0 to
CIO 6142

CIO 0 to
CIO 6143

CIO 0 to
CIO 6142

Work Area W0 to W510 W0 to W511 W0 to W510

Holding Bit Area H0 to H510 H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A958 A0 to A959 A448 to A958

Timer Area T0000 to T4094 T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4094 C0000 to C4095 C0000 to C4094

DM Area D0 to D32766 D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to #FFFF
(binary)

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Conversion mode Function

Binary Mode Gray binary code is converted to binary data between
0000 0000 and 0000 7FFF hex. Zero point offset and remainder
compensation is applied and then the result is output to D and
D+1.

BCD Mode Gray binary code is converted to BCD data. Zero point offset
and remainder compensation is applied, the data is converted
to BCD between 0000 0000 and 0003 2767, and then the result
is output to D and D+1.

360° Mode Gray binary code is converted to BCD data. Zero point offset
and remainder compensation is applied, the data is converted
to an angle between 0000 0000 and 0000 3599 (0.0° to 359.9°
in 0.1° increments), and then the result is output to D and D+1.
435

Conversion Instructions Section 3-11
Flags

Examples When CIO 0.00 is ON in the following example, the gray binary code in
CIO 1000 is converted according to the settings in the control data in D0 to D2
and the result is output to D200.

■ Example 1: Converting to Binary Data with an 8-bit Resolution and Zero
Point Offset of 001A Hex

Name Label Operation

Error Flag ER ON if bits 12 to 15 of C are not 0 hex (operating mode =
gray binary code conversion).

ON if the zero point offset in C+1 is not within the specified
resolution (including user-specified resolutions).
ON if bits 04 to 07 of C are not 0 hex (= Binary Mode),
1 hex (= BCD Mode), or 2 hex (= 360° Mode).
ON if the specified encoder remainder compensation
exceeds the set user-specified resolution when bits 00 to
03 of C are 0 hex (= user-specified resolution).
ON if the converted binary value is less than the encoder
remainder compensation when bits 00 to 03 of C are 0 hex
(= user-specified resolution).
ON if the converted binary value is less than the resolution
when bits 00 to 03 of C are 0 hex (= user-specified resolu-
tion).
OFF in all other cases.

Equals Flag = OFF in all cases.

Negative Flag N OFF in all cases.

GRY

1000

D0

D200

0.00

C

S

D

0 0C: D0

 0

80

 4 3 7 8111215

001AC+1: D1

S: 1000 1001010000000000

0017D: D200

0000D+1: D201

000C+2: D2 0

Operating mode: Gray binary code conversion

Conversion mode: Binary Mode

Resolution: 8-bit

Zero point offset: 001A hex

User-specified resolution: Not used.

Gray binary code

Converted and offset.

Result of binary conversion and offsetting stored.
436

Conversion Instructions Section 3-11
■ Example 2: Converting to Angle Data with a 10-bit Resolution and Zero
Point Offset of 0151 Hex

■ Example 3: Converting to BCD Data with for an OMRON E6C2-AG5C
Absolute Encoder (Resolution: 360/rotation, Encoder Remainder
Compensation: 76) and Zero Point Offset of 0000 Hex

0 2C: D0

 0

A0

 4 3 7 8111215

0151C+1: D1

S: 1000 1001010110000000

3488D: D200

0000D+1: D201

000C+2: D2 0

Operating mode: Gray binary code conversion

Conversion mode: 360° Mode

Resolution: 10-bit

Zero point offset: 0151 hex

User-specified resolution: Not used.

Gray binary code

Converted and offset.

Angle data stored.

0 1C: D0

 0

00

 4 3 7 8111215

0000C+1: D1

S: 1000 0001011100000000

0100D: D200

0000D+1: D201

04CC+2: D2 1

Operating mode: Gray binary code conversion

Conversion mode: BCD Mode

Resolution: User-specified

Zero point offset: 0000 hex

User-specified resolution: 360, Encoder remainder compensation: 04C hex (76 decimal)

Gray binary code

Converted and offset.

Result of BCD conversion and offsetting stored.
437

Conversion Instructions Section 3-11
■ Example 4: Converting to BCD Data with for an OMRON E6C2-AG5C
Absolute Encoder (Resolution: 360/rotation, Encoder Remainder
Compensation: 76) and Zero Point Offset of 000A Hex

0 1C: D0

 0

00

 4 3 7 8111215

000AC+1: D1

S: 1000 1110011100000000

0100D: D200

0000D+1: D201

04CC+2: D2 1

Operating mode: Gray binary code conversion

Conversion mode: BCD Mode

Resolution: User-specified

Zero point offset: 000A hex

User-specified resolution: 360, Encoder remainder compensation: 04C hex (76 decimal)

Gray binary code

Converted and offset.

Result of BCD conversion and offsetting stored.
438

Logic Instructions Section 3-12
3-12 Logic Instructions
This section describes instructions which perform logic operations on word
data.

3-12-1 LOGICAL AND: ANDW(034)
Purpose Takes the logical AND of corresponding bits in single words of word data and/

or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Instruction Mnemonic Function code Page

LOGICAL AND ANDW 034 439

DOUBLE LOGICAL AND ANDL 610 440

LOGICAL OR ORW 035 442

DOUBLE LOGICAL OR ORWL 611 443

EXCLUSIVE OR XORW 036 445

DOUBLE EXCLUSIVE OR XORL 612 447

EXCLUSIVE NOR XNRW 037 448

DOUBLE EXCLUSIVE NOR XNRL 613 450

COMPLEMENT COM 029 452

DOUBLE COMPLEMENT COML 614 453

ANDW(034)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition ANDW(034)

Executed Once for Upward Differentiation @ANDW(034)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---
439

Logic Instructions Section 3-12
Description ANDW(034) takes the logical AND of data specified in I1 and I2 and outputs
the result to R.

• The logical AND is taken of corresponding bits in I1 and I2 in succession.

• When the content of corresponding bits in both I1 and I2 are 1 or when
either is 0, a 0 will be output to the corresponding bit in R.

I1, I2 → R

Flags

Precautions When ANDW(034) is executed, the Error Flag will turn OFF.

If as a result of the AND, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the AND, the leftmost bit of R is 1, the Negative Flag will turn
ON.

3-12-2 DOUBLE LOGICAL AND: ANDL(610)
Purpose Takes the logical AND of corresponding bits in double words of word data and/

or constants.

Ladder Symbol

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area I1 I2 R

I1 I2 R

1 1 1

1 0 0

0 1 0

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

ANDL(610)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word
440

Logic Instructions Section 3-12
Variations

Applicable Program Areas

Operand Specifications

Description ANDL(610) takes the logical AND of data specified in I1, I1+1 and I2, I2+1 and
outputs the result to R, R+1.

(I1, I1+1), (I2, I2+1) → (R, R+1)

Flags

Precautions When ANDL(610) is executed, the Error Flag will turn OFF.

If as a result of the AND, the content of R, R+1 is 00000000 hex, the Equals
Flag will turn ON.

Variations Executed Each Cycle for ON Condition ANDL(610)

Executed Once for Upward Differentiation @ANDL(610)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 0

0 1 0

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
441

Logic Instructions Section 3-12
If as a result of the AND, the leftmost bit of R+1 is 1, the Negative Flag will
turn ON.

Examples When the execution condition CIO 0.00 is ON, the logical AND will be taken of
corresponding bits in CIO 1001, CIO 1000 and CIO 2001, CIO 2000 and the
results will be output to corresponding bits in D201 and D200.

3-12-3 LOGICAL OR: ORW(035)
Purpose Takes the logical OR of corresponding bits in single words of word data and/or

constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

S1: CIO 1000
S1+1: CIO 1001

S2: CIO 2000
S2+1: CIO 2001

D: D200
D+1: D201

0.00

1000

2000

D200

1000.00

1000.01

1000.02

1000.03

1000.04

1001.13
1001.14

1001.15

2000.00

2000.01

2000.02

2000.03

2000.04

2001.13
2001.14

2001.15

Note: The vertical arrow indicates logical AND.

ORW(035)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition ORW(035)

Executed Once for Upward Differentiation @ORW(035)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767
442

Logic Instructions Section 3-12
Description ORW(035) takes the logical OR of data specified in I1 and I2 and outputs the
result to R.

• The logical OR is taken of corresponding bits in I1 and I2 in succession.

• When either one of the corresponding bits in I1 and I2 are 1 or when both
of them are 0, a 0 will be output to the corresponding bit in R.

I1 + I2 → R

Flags

Precautions When ORW(035) is executed, the Error Flag will turn OFF.

If as a result of the OR, the content of R is 0000 hex, the Equals Flag will turn
ON.

If as a result of the OR, the leftmost bit of R is 1, the Negative Flag will turn
ON.

3-12-4 DOUBLE LOGICAL OR: ORWL(611)
Purpose Takes the logical OR of corresponding bits in double words of word data and/

or constants.

Ladder Symbol

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to+2047 ,IR0 to –2048 to+2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area I1 I2 R

I1 I2 R

1 1 1

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.

OFF in all other cases.

ORWL(611)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word
443

Logic Instructions Section 3-12
Variations

Applicable Program Areas

Operand Specifications

Description ORWL(611) takes the logical OR of data specified in I1 and I2 as double-word
data and outputs the result to R, R+1.

• When any of the corresponding bits in I1, I1+1, I2, and I2 +1are 1, a 1 will
be output to the corresponding bit it R+1. When any of them are 0, a 0 will
be output to the corresponding bit in R+1.

(I1, I1+1) + (I2, I2+1) → (R, R+1)

Flags

Variations Executed Each Cycle for ON Condition ORWL(611)

Executed Once for Upward Differentiation @ORWL(611)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
444

Logic Instructions Section 3-12
Precautions When ORWL(611) is executed, the Error Flag will turn OFF.

If as a result of the OR, the content of R, R+1 is 00000000 hex, the Equals
Flag will turn ON.

If as a result of the OR, the leftmost bit of R+1 is 1, the Negative Flag will turn
ON.

Examples When the execution condition CIO 0.00 is ON, the logical OR will be taken of
corresponding bits in CIO 1001, CIO 1000 and CIO 2001, CIO 2000 and the
results will be output to corresponding bits in D501 and D500.

3-12-5 EXCLUSIVE OR: XORW(036)
Purpose Takes the logical exclusive OR of corresponding bits in single words of word

data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

S1: CIO 1000
S1+1: CIO 1001

S2: CIO 2000
S2+1: CIO 2001

D: D500
D+1: D501

0.00

1000

2000

D500

1000.00

1000.01

1000.02

1000.03

1001.15

1001.00

1001.15

2000.00

2000.01

2000.02

2000.03

2001.15

2001.00

2001.15

D500

D501

Note: The vertical arrow indicates logical OR.

XORW(036)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XORW(036)

Executed Once for Upward Differentiation @XORW(036)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095
445

Logic Instructions Section 3-12
Description XORW(036) takes the logical exclusive OR of data specified in I1 and I2 and
outputs the result to R.

• The logical exclusive OR is taken of corresponding bits in I1 and I2 in suc-
cession.

• When the content of corresponding bits of I1 and I2 are different, a 1 will
be output to the corresponding bit of R and when there are different, 0 will
be output to the corresponding bit in R.

I1, I2 + I1, I2 → R

Flags

Precautions When XORW(036) is executed, the Error Flag will turn OFF.

If as a result of the OR, the content of R is 0000 hex, the Equals Flag will turn
ON.

If as a result of the OR, the leftmost bit of R is 1, the Negative Flag will turn
ON.

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area I1 I2 R

I1 I2 R

1 1 0

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
446

Logic Instructions Section 3-12
3-12-6 DOUBLE EXCLUSIVE OR: XORL(612)
Purpose Takes the logical exclusive OR of corresponding bits in double words of word

data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description XORL(612) takes the logical exclusive OR of data specified in I1 and I2 as
double-word data and outputs the result to R, R+1.

• When the content of any of the corresponding bits in I1, I1+1, I2, and I2
+1are different, a 1 will be output to the corresponding bit it R, R+1. When
any of them are the same, a 0 will be output to the corresponding bit in R,
R+1.

XORL(612)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XORL(612)

Executed Once for Upward Differentiation @XORL(612)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
447

Logic Instructions Section 3-12

(I1, I1+1), (I2, I2+1) + (I1, I1+1), (I2, I2+1)→ (R, R+1)

Flags

Precautions When XORL(612) is executed, the Error Flag will turn OFF.

If as a result of the exclusive OR, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If as a result of the exclusive OR, the leftmost bit of R+1 is 1, the Negative
Flag will turn ON.

Examples When the execution condition CIO 0.00 is ON, the logical exclusive OR will be
taken of corresponding bits in CIO 1001, CIO 1000 and D1001, D1000 and
the results will be output to corresponding bits in D1201 and D1200.

3-12-7 EXCLUSIVE NOR: XNRW(037)
Purpose Takes the logical exclusive NOR of corresponding single words of word data

and/or constants.

Ladder Symbol

I1, I1+1 I2, I2+1 R, R+1

1 1 0

1 0 1

0 1 1

0 0 0

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

S: CIO 1000
S1+1: CIO 1001

S: D1000
S2+1: D1001

D: D1200
D+1: D1201

D1200

D1201

D1000

D1001

0.00

1000

D1000

D1200

1000.00

1000.01

1000.02

1000.03

1000.15

1001.00

1001.15

Note: The symbol indicates exclusive logical OR.

XNRW(037)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word
448

Logic Instructions Section 3-12
Variations

Applicable Program Areas

Operand Specifications

Description XNRW(037) takes the logical exclusive NOR of data specified in I1 and I2 and
outputs the result to R.

• The logical exclusive NOR is taken of corresponding bits in I1 and I2 in
succession.

• When the content of corresponding bits of I1 and I2 are different, a 0 will
be output to the corresponding bit of R and when they are different, 1 will
be output to the corresponding bit in R.

I1, I2 + I1, I2 → R

Variations Executed Each Cycle for ON Condition XNRW(037)

Executed Once for Upward Differentiation @XNRW(037)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

I1 I2 R

1 1 1

1 0 0

0 1 0

0 0 1
449

Logic Instructions Section 3-12
Flags

Precautions When XNRW(037) is executed, the Error Flag will turn OFF.

If as a result of the NOR, the content of R is 0000 hex, the Equals Flag will
turn ON.

If as a result of the NOR, the leftmost bit of R is 1, the Negative Flag will turn
ON.

3-12-8 DOUBLE EXCLUSIVE NOR: XNRL(613)
Purpose Takes the logical exclusive NOR of corresponding bits in double words of

word data and/or constants.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.

OFF in all other cases.

XNRL(613)

I1

I2

R

I1: Input 1

I2: Input 2

R: Result word

Variations Executed Each Cycle for ON Condition XNRL(613)

Executed Once for Upward Differentiation @XNRL(613)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area I1 I2 R

CIO Area CIO 0 to CIO 6142

Work Area W0 toW 510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary) ---

Data Registers ---
450

Logic Instructions Section 3-12
Description XNRL(613) takes the logical exclusive NOR of data specified in I1 and I2 and
outputs the result to R, R+1.

• When the content of any of the corresponding bits in I1, I1+1, I2, and I2
+1are different, a 0 will be output to the corresponding bit in R, R+1.
When any of them are the same, a 1 will be output to the corresponding
bit in R, R+1.

(I1, I1+1), (I2, I2+1) + (I1, I1+1), (I2, I2+1) → (R, R+1)

Flags

Precautions When XNRL(613) is executed, the Error Flag will turn OFF.

If as a result of the exclusive NOR, the content of R, R+1 is 00000000 hex, the
Equals Flag will turn ON.

If as a result of the exclusive NOR, the leftmost bit of R+1 is 1, the Negative
Flag will turn ON.

Examples When CIO 0.00 is ON, the logical exclusive NOR will be taken of correspond-
ing bits in CIO 1001, CIO 1000, and CIO 2001, CIO 2000 and the results will
be output to corresponding bits in D501 and D500.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area I1 I2 R

I1, I1+1 I2, I2+1 R, R+1

1 1 1

1 0 0

0 1 0

0 0 1

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.

OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

S1: CIO 1000
S1+1: CIO 1001

S2: CIO 2000
S2+1: CIO 2001

D: D500
D+1: D501

0.00

1000

2000

D500

1000.00
1000.01

1000.02

1000.03

1000.15

1001.00

1001.15

2000.00
2000.01

2000.02

2000.03

2000.15

2001.00

2001.15

D500

D501

Note: The symbol indicates exclusive logical NOR.
451

Logic Instructions Section 3-12
3-12-9 COMPLEMENT: COM(029)
Purpose Turns OFF all ON bits and turns ON all OFF bits in Wd.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description COM(029) reverses the status of every specified bit in Wd.
Wd→Wd: 1 → 0 and 0 → 1

Note When using the COM instruction, be aware that the status of each bit will
change each cycle in which the execution condition is ON.

Flags

COM(029)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition COM(029)

Executed Once for Upward Differentiation @COM(029)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.
452

Logic Instructions Section 3-12
Precautions When COM(029) is executed, the Error Flag will turn OFF.

If as a result of COM, the content of R is 0000 hex, the Equals Flag will turn
ON.

If as a result of COM, the leftmost bit of R is 1, the Negative Flag will turn ON.

Examples When CIO 0.00 is ON in the following example, the status of each bit will be
D100 is reversed.

3-12-10 DOUBLE COMPLEMENT: COML(614)
Purpose Turns OFF all ON bits and turns ON all OFF bits in Wd and Wd+1.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.00

D100

D100

D100

COML(614)

Wd Wd: Word

Variations Executed Each Cycle for ON Condition COML(614)

Executed Once for Upward Differentiation @COML(614)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Wd

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
453

Special Math Instructions Section 3-13
Description COML(614) reverses the status of every specified bit in Wd and Wd+1.
(Wd+1, Wd)→(Wd+1, Wd)

Note When using the COM instruction, be aware that the status of each bit will
change each cycle in which the execution condition is ON.

Flags

Precautions When COML(614) is executed, the Error Flag will turn OFF.

If as a result of COML, the content of R, R+1 is 00000000 hex, the Equals
Flag will turn ON.

If as a result of COML, the leftmost bit of R+1 is 1, the Negative Flag will turn
ON.

Examples When CIO 0.01 is ON in the following example, the status of each bit in D201
and D200 will be reversed.

3-13 Special Math Instructions
This section describes instructions used for special math calculations.

3-13-1 BINARY ROOT: ROTB(620)
Purpose Computes the square root of the 32-bit signed binary contents (positive value)

of the specified words and outputs the integer portion of the result to the spec-
ified result word.

Ladder Symbol

Name Label Operation

Error Flag ER OFF

Equals Flag = ON when the result is 0.
OFF in all other cases.

Negative Flag N ON when the leftmost bit of R is 1.
OFF in all other cases.

0.01

D200

D200

D200

D201

D201

Instruction Mnemonic Function code Page

BINARY ROOT ROTB 620 454

BCD SQUARE ROOT ROOT 072 456

ARITHMETIC PROCESS APR 069 459

FLOATING POINT DIVIDE FDIV 079 470

BIT COUNTER BCNT 067 473

ROTB(620)

S

R

S: First source word

R: Result word
454

Special Math Instructions Section 3-13
Variations

Applicable Program Areas

Operand Specifications

Description ROTB(620) computes the square root of the 32-bit binary number in S+1 and
S and outputs the integer portion of the result to R. The non-integer remainder
is eliminated.

The range of data that can be specified for words S+1 and S is 0000 0000 to
3FFF FFFF. If a number from 4000 0000 to 7FFF FFFF is specified, it will be
treated as 3FFF FFFF for the square root computation. An error will occur if
the content of the source words is greater than 7FFF FFFF, i.e., if bit 15 of
S+1 is 1.

Flags

Variations Executed Each Cycle for ON Condition ROTB(620)

Executed Once for Upward Differentiation @ROTB(620)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142 CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W511

Holding Bit Area H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A958 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

RS+1 S

Binary data (32 bits) Binary data (16 bits)

Name Label Operation

Error Flag ER ON if bit 15 of S+1 is 1 (ON).
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.
455

Special Math Instructions Section 3-13
Precautions The content of S+1 and S must be less than 8000 0000.
The operands of this instruction (S+1, S, and R) are all treated as binary val-
ues. If the input data is BCD, use the ROOT(072) instruction.

Example When CIO 0.00 is ON in the following example, ROTB(620) calculates the
square root of the data in CIO 1001 and CIO 1000, and writes the integer por-
tion of the result in D100.

3-13-2 BCD SQUARE ROOT: ROOT(072)
Purpose Computes the square root of an 8-digit BCD number and outputs the integer

portion of the result to the specified result word.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Overflow Flag OF ON if the content of S+1 and S is 4000 0000 to
7FFF FFFF.

OFF in all other cases.

Underflow Flag UF OFF

Negative Flag N OFF

Name Label Operation

014B 5A91

1234

D100

CIO 1001 CIO 1000
0.00

1000

D100
Square root computation
(remainder eliminated)

ROOT(072)

S

R

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition ROOT(072)

Executed Once for Upward Differentiation @ROOT(072)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142 CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W511

Holding Bit Area H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A958 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767
456

Special Math Instructions Section 3-13
Description ROOT(072) computes the square root of the 8-digit BCD number in S+1 and
S and outputs the integer portion of the result to R. The non-integer remainder
is eliminated.

Flags

Precautions The operands of this instruction (S+1, S, and R) are all treated as BCD val-
ues. If the input data is binary, use the ROTB(620) instruction.

Examples Square Root of 8-digit Number
When CIO 0.00 is ON in the following example, ROOT(072) calculates the
square root of the data in D101 and D100, and writes the integer portion of
the result in D200.

Note Figures after the decimal point are truncated for 8-digit numbers.

Square Root of a 4-digit Number
The following example shows how to take the square root of a 4-digit number
and round off the result. This program example calculates the square root of
the 4-digit number in CIO 1000, rounds off the result, and writes it to

CIO 2000. (Basically, the 4-digit number is multiplied by 10,000 (1002) and the
result is divided by 100, increasing the precision of the calculation by a factor
of 100.)

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #99999999
(BCD)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

RS+1 S

BCD data (8 digits) BCD data (4 digits)

Name Label Operation

Error Flag ER ON if the data in S+1 and S is not BCD.

OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

0.00

D100

D200

S+1: D101 S: D100 R: D200

Truncated
457

Special Math Instructions Section 3-13
Note Figures after the decimal point are rounded for 4-digit numbers.

1,2,3... 1. The source words (D101 and D100) to be are cleared to 0000 0000.

2. The 4-digit number is moved from CIO 1000 to D101.

3. ROOT(072) calculates the square root of D101 and D100 and writes the
result to D102.

1

2

3

4

5

@BSET

@MOV

@ROOT

@MOV

@MOV

@MOVD

@MOVD

@INC

0.00

D100

D101

1000

D101

D100

D102

2000

D103

D102

2000

D102

D103

2000D103

The values after the decimal point
should be rounded.

CIO 1000
6 0 1 7

D101
6 0 1 7 0 0 0 0

D100
458

Special Math Instructions Section 3-13
4. D103 and the result word, CIO 2000, are cleared to 0000 0000.

5. The result of the square root calculation is divided by 100, with the integer
portion written to CIO 2000 and the remainder going to D103.

6. If the content of D103 is greater than 4900, CIO 2000 is incremented by 1.
In this case, the result is 78.

3-13-3 ARITHMETIC PROCESS: APR(069)
Purpose Calculates the sine, cosine, or a linear extrapolation of the source data.

The linear extrapolation function allows any relationship between X and Y to
be approximated with line segments.

Ladder Symbol

Variations

Applicable Program Areas

Operands Sine Function (C = 0000 Hex)

6017 0000

7756

D102

D101 D100

Square root computation
(Remainder eliminated)

60 170 000, , 7 756.932…,=

D102
7 7 5 6

CIO 2000
0 0 7 7 5 6 0 0

D103

5600 > 4900?
CIO 2000

0 0 7 8

APR(069)

C

S

R

C: Control word

S: Source data

R: Result word

Variations Executed Each Cycle for ON Condition APR(069)

Executed Once for Upward Differentiation @APR(069)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Operand Value Data range

C 0000 hex ---

S 0000 to 0900 (BCD) 0° to 90°
D 0000 to 9999 (BCD) 0.0000 to 0.9999

9999 (BCD) 1.0000
459

Special Math Instructions Section 3-13
Cosine Function (C = 0001 Hex)

Linear Extrapolation Function (C = Data area address)

Note If C is a word address, APR(069) extrapolates the Y value for the X value in S
based on coordinates (forming line segments) entered in advance in a table
beginning at C. Refer to the Description section below for details.

Operand Specifications

Operand Value Data range

C 0001 hex ---

S 0000 to 0900 (BCD) 0° to 90°
D 0000 to 9999 (BCD) 0.0000 to 0.9999

9999 (BCD) 1.0000

Operand Value Data range

C Data area address ---

S 16-bit unsigned BCD data 0000 to 9999

16-bit unsigned binary data 0 to 65,535

16-bit signed binary data1 −32,768 to 32,767

32-bit signed binary data1 −2,147,483,648 to 2,147,483,647

Floating-point data1 −∞,
−3.402823 × 1038 to −1.175494 × 10−38,
1.175494 × 10−38 to 3.402823 × 1038,
+∞

D 16-bit unsigned BCD data 0000 to 9999

16-bit unsigned binary data 0 to 65,535

16-bit signed binary data1 −32,768 to 32,767

32-bit signed binary data1 −2,147,483,648 to 2,147,483,647

Floating-point data1 −∞,
−3.402823 × 1038 to −1.175494 × 10−38,
1.175494 × 10−38 to 3.402823 × 1038,
+∞

Area C S R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants Specified values only ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
460

Special Math Instructions Section 3-13
Description The operation of APR(069) depends on the control word C. If C is 0000 or
0001, APR(069) computes the sine or cosine of S with S in units of tenths of
degrees.

If C is a word address, APR(069) extrapolates the Y value for the X value in S
based on coordinates (forming line segments) entered in advance in a table
beginning at C.

Sine Function (C=0000)

When C is 0000, APR(069) calculates the SIN(S) and writes the result to R.
The range for S is 0000 to 0900 BCD (0.0° to 90.0°) and the range for R is
0000 to 9999 BCD (0.0000 to 0.9999). The remainder of the result beyond the
fourth decimal place is eliminated.

Cosine Function (C=0001)

When C is 0001, APR(069) calculates the COS(S) and writes the result to R.
The range for S is 0000 to 0900 BCD (0.0° to 90.0°) and the range for R is
0000 to 9999 BCD (0.0000 to 0.9999). The remainder of the result beyond the
fourth decimal place is eliminated.

Linear Extrapolation

APR(069) linear extrapolation is specified when C is a word address.

The content of word C specifies the number of coordinates in a data table
starting at C+2, the form of the source data, and whether data is BCD or
binary.

Unsigned Integer Data (Binary or BCD)

C 0

314 13 12 11 910 8 7 6 5 4 2 115

0

0

000

Number of coordinates minus one (m-1),
00 to FF hex (1 ≤ m ≤ 256)

Floating-point specification for S and D
0: Integer data

Signed data specification for S and D
0: Unsigned binary data

Source data form
0: f(x) = f(S)
1: f(x) = f(Xm − S)

Output (D) data format
0: Binary
1: BCD

Input (S) data format
0: Binary
1: BCD
461

Special Math Instructions Section 3-13
Signed Integer Data (Binary)

Single-precision Floating-point Data

If 16-bit binary or BCD data is being used, the line-segment data is contained
in words C+1 through C+2m+2. If 32-bit binary or floating point data is being
used, the line-segment data is contained in words C+1 through C+4m+4.

Bits 00 to 07 contain the number (binary) of line coordinates less 1, m–1. Bits
08 to 12 are not used. Bit 13 specifies either f(x)=f(S) or f(x)=f(Xm–S): OFF
specifies f(x)=f(S) and ON specifies f(x)=f(Xm–S). Bit 14 determines whether
the output is BCD or binary: OFF specifies binary and ON specifies BCD. Bit
15 determines whether the input is BCD or binary: OFF specifies binary and
ON specifies BCD.

C 0

314 13 12 11 910 8 7 6 5 4 2 115

0

0

00 10 0

Number of coordinates minus one (m-1),
00 to FF hex (1 ≤ m ≤ 256)

Floating-point specification for S and D
0: Integer data

Data length specification for S and D (note 1)
0: 16-bit signed binary data
1: 32-bit signed binary data

Signed data specification for S and D
1: Signed binary data

C 0

314 13 12 11 910 8 7 6 5 4 2 115

0

0

10 0 0 0 0

Number of coordinates minus one (m-1),
00 to FF hex (1 ≤ m ≤ 256)

Floating-point specification for S and D
1: Single-precision floating-point data

C+1

C+2

C+3

C+4

C+5

C+6

C+ (2m+1)

C+ (2m+2)

X0 (*1)

Y0

X1

Y1

X2

Y2

Xn

Yn

Xm

Ym

C+1

C+2

C+3

C+4

C+5

C+6

C+7

C+8

C+ (4n+1)

C+ (4n+2)

C+ (4n+3)

C+ (4n+4)

C+ (4m+1)

C+ (4m+2)

C+ (4m+3)

C+ (4m+4)

C+1

C+2

C+3

C+4

C+5

C+6

C+7

C+8

C+ (4n+1)

C+ (4n+2)

C+ (4n+3)

C+ (4n+4)

C+ (4m+1)

C+ (4m+2)

C+ (4m+3)

C+ (4m+4)

Note: Write Xm (max. X
value in the table) in word
C+1 when the I/O data in
S and D contain signed
data (bit 11 of C = 0).

16-bit BCD16-bit binary (signed
or unsigned) or 16-bit BCD data

32-bit signed binary data Floating-point data

X0 (rightmost 16 bits)

X0 (leftmost 16 bits)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (rightmost 16 bits)

X1 (leftmost 16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xn (rightmost 16 bits)

Xn (leftmost 16 bits)

Yn (rightmost 16 bits)

Yn (leftmost 16 bits)

to

Xm (rightmost 16 bits)

Xm (leftmost 16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

X0 (rightmost 16 bits)

X0 (leftmost 16 bits)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (rightmost 16 bits)

X1 (leftmost 16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xn (rightmost 16 bits)

Xn (leftmost 16 bits)

Yn (rightmost 16 bits)

Yn (leftmost 16 bits)

to

Xm (rightmost 16 bits)

Xm (leftmost 16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

to

to

to

to
462

Special Math Instructions Section 3-13
Note The X coordinates must be in ascending order: X1 < X2 < ... < Xm. Input all
values of (Xn, Yn) as binary data, regardless of the data format specified in
control word C.

Operation of the Linear Extrapolation Function

APR(069) processes the input data specified in S with the following equation
and the line-segment data (Xn, Yn) specified in the table beginning at C+1.
The result is output to the destination word(s) specified with D.

1. For S < X0
Converted value = Y0

2. For X0 ≤ S ≤ Xmax, if Xn < S < Xn+1
Converted value = Yn +[{Yn + 1 − Yn}/{Xn + 1 − Xn}] × [Input data S − Xn}

3. Xmax < S
Converted value = Ymax

Up to 256 endpoints can be stored in the line-segment data table beginning at
C+1. The following 5 kinds of I/O data can be used:

• 16-bit unsigned BCD data

• 16-bit unsigned binary data

• 16-bit signed binary data

• 32-bit signed binary data

• Single-precision floating-point data

Y0

X0

A B C

Y (Binary data)

Ymax

Xmax X (Binary data)

Yn

Yn+1

Xn Xn+1S

S−Xn

Xn+1−Xn

Yn+1−Yn

f(Y)=
Yn+1−Yn

Xn+1−Xn

D

Yn+ (S−Xn)

Y (binary data)
Equation:

Calculation
result

X (binary data)

Input data
463

Special Math Instructions Section 3-13
Setting the Data Format in Control Word C

• 16-bit Unsigned BCD Data
The input data and/or the output data can be 16-bit unsigned BCD data.
Also, the linear extrapolation function can be set to operate on the value
specified in S directly or on Xm–S. (Xm is the maximum value of X in the
line-segment data.)

• 16-bit Unsigned Binary Data
The input data and/or the output data can be 16-bit unsigned binary data.
Also, the linear extrapolation function can be set to operate on the value
specified in S directly or on Xm–S. (Xm is the maximum value of X in the
line-segment data.)

• 16-bit Signed Binary Data

• 32-bit Signed Binary Data

Setting name Bit in C Setting

Input data (S) format 15 0: Binary
1: BCD

Output data (D) format 14 0: Binary
1: BCD

Source data form 13 0: Operate on S
1: Operate on Xm–S

Signed data specification for S and D 11 0: Unsigned data

Data length specification for S and D 10 Invalid (fixed at 16 bits)

Floating-point specification 09 0: Integer data

Setting name Bit in C Setting

Input data (S) format 15 0: Binary
1: BCD

Output data (D) format 14 0: Binary
1: BCD

Source data form 13 0: Operate on S
1: Operate on Xm–S

Signed data specification for S and D 11 0: Unsigned data

Data length specification for S and D 10 Invalid (fixed at 16 bits)

Floating-point specification 09 0: Integer data

Setting name Bit in C Setting

Input data (S) format 15 0: Binary

Output data (D) format 14 0: Binary

Source data form 13 0

Signed data specification for S and D 11 1: Signed data

Data length specification for S and D 10 0: 16-bit signed binary data

Floating-point specification 09 0: Integer data

Setting name Bit in C Setting

Input data (S) format 15 0: Binary

Output data (D) format 14 0: Binary

Source data form 13 0

Signed data specification for S and D 11 1: Signed data

Data length specification for S and D 10 1: 32-bit signed binary data

Floating-point specification 09 0: Integer data
464

Special Math Instructions Section 3-13
Note If the “Data length specification for S and D” in bit 10 of C is set to
1 and a 16-bit constant is input for S, the input data will be convert-
ed to 32-bit signed binary before the linear extrapolation calcula-
tion.

• Floating-point Data

Note If the “Floating-point specification” in bit 09 of C is set to 1, a con-
stant cannot be input for S.

Flags

Precautions The actual result for SIN(90°) and COS(0°) is 1, but 9999 (0.9999) will be out-
put to R.

An error will occur if C is a constant greater than 0001.

An error will occur if linear extrapolation is specified but the X coordinates are
not in ascending order (X1 < X2 < ... < Xm).

An error will occur if linear extrapolation is specified and BCD input is speci-
fied (bit 15 of C ON) but S is not BCD.

An error will occur if a trigonometric function is specified (C=0000 or 0001) but
S is not BCD between 0000 and 0900.

Examples Sine Function (C: #0000)

The following example shows APR(069) used to calculate the sine of 30°.

Setting name Bit in C Setting

Input data (S) format 15 0: Binary

Output data (D) format 14 0: Binary

Source data form 13 0

Signed data specification for S and D 11 0

Data length specification for S and D 10 0

Floating-point specification 09 1: Floating-point data

Name Label Operation

Error Flag ER ON if C is a constant greater than 0001.
ON if C is a word address but the X coordinates are not in
ascending order (X1 ≤ X2 ≤ ... ≤ Xm).

ON if C is a word address and bits 9, 11, and 15 of C indi-
cate BCD input, but S is not BCD.
ON if C is a word address and bit 9 of C indicates floating-
point data, but S is a one-word constant.
ON if C is 0000 or 0001 but S is not BCD between 0000
and 0900.

OFF in all other cases.

Equals Flag = ON if the result is 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 of R is ON.
OFF in all other cases.

S: D0 R: D100

0 101 100 10–1 10–1 10–2 10–3 10–4

0 3 0 0 5 0 0 0

Source data Result

Set the source data in 10–1 degrees.
(0000 to 0900, BCD)

Result data has four significant digits,
fifth and higher digits are ignored.
(0000 to 9999, BCD)

0.00

D0

D100
465

Special Math Instructions Section 3-13
Cosine Function (C: #0001)

The following example shows APR(069) used to calculate the cosine of 30°.
(SIN(30) = 0.8660)

Linear Extrapolation (C: Word Address)
Using 16-bit Unsigned BCD or Binary Data

APR(069) processes the input data specified in S based on the control data in
C and the line-segment data specified in the table beginning at C+1. The
result is output to D.

• Yn = f(Xn), Y0 = f(X0)

• Be sure that Xn–1 < Xn in all cases.

• Input all values of (Xn, Yn) as binary data.

This example shows how to construct a linear extrapolation with 12 coordi-
nates. The block of data is continuous, as it must be, from D1000 to D1026 (C
to C + (2 × 12 + 2)). The input data is taken from CIO 1000, and the result is
output to CIO 1001.

S: D10 R: D200

0 101 100 10–1 10–1 10–2 10–3 10–4

0 3 0 0 8 6 6 0

0.00

D10

D200

Source data Result

Set the source data in 10–1 degrees.
(0000 to 0900, BCD)

Result data has four significant digits,
fifth and higher digits are ignored.
(0000 to 9999, BCD)

Word Coordinate

C+1 Xm (max. X value)

C+2 Y0

C+3 X1

C+4 Y1

C+5 X2

C+6 Y2

 ↓ ↓
C+(2m+1) Xm (max. X value)

C+(2m+2) Ym

Y0

Y2

Y1

Y3

Y4

Ym

X0 X1 X2 X3 X4 Xm

X

Y

0.00

1000

1001

D1000

D1000 000B Hex
D1001 05F0 Hex
D1002 0000 Hex
D1003 0005 Hex
D1004 0F00 Hex
D1005 001A Hex
D1006 0402 Hex

D1025 05F0 Hex
D1026 1F20 Hex

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

15 00

x=S
X12

Y0

X1

Y1

Y2

X2

X12
Y12

Bit Bit Content Coordinate

Output and input
both binary

(m–1 = 11: 12
coordinates)

↓ ↓ ↓
466

Special Math Instructions Section 3-13
In this case, the source word, CIO 1000, contains 0014, and f(0014) = 0726 is
output to R, CIO 1001.

The linear-extrapolation calculation is shown below.

X

Y

$1F20

$0F00

$0726

$0402

(0,0)
$0005 $0014 $001A $05F0

(x,y)

Values are all hexadecimal (hex).

Y 0F00
0402 0F00–
001A 0005–
--------------------------------- 0014 0015–()×+=

0726=

0F00 0086 000F)×(–=
467

Special Math Instructions Section 3-13
Linear Extrapolation (C: Word Address)
Using 32-bit Signed Binary Data

In this example, APR(069) is used to convert the fluid height in a tank to fluid
volume based on the shape of the holding tank.

C+1

C+2

C+3

C+4

C+5

C+6

C+7

C+8

C+ (4n+1)

C+ (4n+2)

C+ (4n+3)

C+ (4n+4)

C+ (4m+1)

C+ (4m+2)

C+ (4m+3)

C+ (4m+4)

APR

C

S

R

X0
Y0

Ym

Xm

R
R+1

S
S+1

0

000000

Variation from
standard = X

Fluid volume= Y

Fluid height to volume
conversion table
(32-bit signed binary data)

Y data range:
−2,147,483,648 to
2,147,483,647

Y: Fluid volume

X: Variation from standard

Linear extrapolation of table

The linear extrapolation can use
signed source data if 32-bit signed
binary data is used.

High-resolution 32-bit
signed binary data X data range: −2,147,483,648 to 2,147,483,647

X0 (rightmost 16 bits)

X0 (leftmost 16 bits)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (rightmost 16 bits)

X1 (leftmost 16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xn (rightmost 16 bits)

Xn (leftmost 16 bits)

Yn (rightmost 16 bits)

Yn (leftmost 16 bits)

to

Xm (rightmost 16 bits)

Xm (leftmost 16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

to

to
468

Special Math Instructions Section 3-13
Linear Extrapolation (C: Word Address)
Using Floating-point Data

In this example, APR(069) is used to convert the fluid height in a tank to fluid
volume based on the shape of the holding tank.

C+1

C+2

C+3

C+4

C+5

C+6

C+7

C+8

C+ (4n+1)

C+ (4n+2)

C+ (4n+3)

C+ (4n+4)

C+ (4m+1)

C+ (4m+2)

C+ (4m+3)

C+ (4m+4)

X0

Y0

Ym

Xm

R
R+1

S
S+1

0

APR

C

S

R

000000

Fluid height = XFluid volume
= Y

Fluid height to volume
conversion table
(Floating-point data)

Y data range:
−∞, −3.402823 × 1038 to
−1.175494 × 10−38,
1.175494 × 10−38 to
3.402823 × 1038, or +∞

Y: Fluid volume

X: Fluid height

Linear extrapolation of table

The linear extrapolation can
provide a smooth, high-resolution
curve floating-point data is used.

High-resolution
floating point data

X data range:
−∞, −3.402823 × 1038 to −1.175494 × 10−38,
1.175494 × 10−38 to 3.402823 × 1038, or +∞

X0 (rightmost 16 bits)

X0 (leftmost 16 bits)

Y0 (rightmost 16 bits)

Y0 (leftmost 16 bits)

X1 (rightmost 16 bits)

X1 (leftmost 16 bits)

Y1 (rightmost 16 bits)

Y1 (leftmost 16 bits)

to

Xn (rightmost 16 bits)

Xn (leftmost 16 bits)

Yn (rightmost 16 bits)

Yn (leftmost 16 bits)

to

Xm (rightmost 16 bits)

Xm (leftmost 16 bits)

Ym (rightmost 16 bits)

Ym (leftmost 16 bits)

to

to
469

Special Math Instructions Section 3-13
3-13-4 FLOATING POINT DIVIDE: FDIV(079)
Purpose Divides one 7-digit floating-point number by another. The floating-point num-

bers are expressed in scientific notation (7-digit mantissa and 1-digit expo-
nent).

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description FDIV(079) divides the floating-point value in Dd and Dd+1 by that in Dr and
Dr+1 and places the result in R and R+1.

FDIV(079)

R

Dd

Dr

Dd: First dividend word

Dr: First divisor word

R: First result word

Variations Executed Each Cycle for ON Condition FDIV(079)

Executed Once for Upward Differentiation @FDIV(079)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

Quotient

Dr+1 Dr Dd+1 Dd
470

Special Math Instructions Section 3-13
To represent the floating-point values, the rightmost seven digits are used for
the mantissa and the leftmost digit is used for the exponent, as shown in the
diagram below. The leftmost digit can range from 0 to F; positive exponents
range from 0 to 7 and negative exponents range from 8 to F (0 to –7). The
rightmost 7 digits must be BCD.

Two more examples of floating-point values are:

6123 4567: 0.1234567 × 106 (6 = 0110 binary)

B123 4567: 0.1234567 × 10–3 (B = 1011 binary)

The following table shows the maximum and minimum values allowed.

Flags

Precautions The result is expressed as a floating-point value, so it has 7 significant digits.
The eighth and higher digits are eliminated.

The result must be between 0.1000000 × 10–7 and 0.9999999 × 107.

Examples Basic Floating-point Division

When CIO 0.00 is ON in the following example, FDIV(079) divides the float-
ing-point number in D101 and D100 by the floating-point number in CIO 201
and CIO 200 and writes the result to D301 and D300.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0: +
1: –

1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1

= 0.1111113 x 10–2

mantissa (leftmost 3 digits)

First word Second word

mantissa (rightmost 4 digits)

sign of exponent

exponent (0 to 7)

Limit 8-digit hexadecimal Floating-point

Maximum value 7999 9999 0.9999999 × 107

Minimum value
(Divisor and dividend)

F000 0001 0.0000001 × 10–7

Minimum value
(Result)

F100 0000 0.1000000 × 10–7

Name Label Operation

Error Flag ER ON if the mantissa (leftmost 7 digits) in Dd+1 and Dd is
not BCD.
ON if the mantissa (leftmost 7 digits) in Dr+1 and Dr is not
BCD.

ON if the divisor (Dr+1 and Dr) is 0.

ON if the result is not between 0.1000000 × 10–7 and
0.9999999 × 107.

OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

D101 D100
A 5 6 7 0 0 0 0 0.5670000 10–2

 CIO 201
B 1 2 3 4 5 6 7 0.1234567 10–3

D301 D300
2 4 5 9 2 7 0 3 0.4592703 102

÷

×

×

×

0.00

D100

200

D300

CIO 200
471

Special Math Instructions Section 3-13
Floating-point Division of Two BCD Numbers

In this example, the 4-digit BCD number in D0 is divided by the 4-digit BCD
number in D1 and the floating-point result is written to D2 and D3.

To perform the floating point division, the BCD value in D0 is converted to
floating-point format in D101 and D100 and the BCD value in D1 is converted
to floating-point format in D103 and D102.

1

2

3

4

@MOV

@MOV

@MOV

@MOV

@MOVD

@MOVD

@MOVD

@MOVD

@FDIV

0.00

#0

D1000

#0

D1002

D1001

D1003

#21
D2000

#300

D2000

D1001

#21

D2003

#300

D2002

D2000

D2002

D2002

D0

D1

D100
472

Special Math Instructions Section 3-13
1,2,3... 1. D100 and D1002 are set to 0000 and D1001 and D1003 are set to 4000.

2. MOVD(083) is used to move the digits of the original source words to the
proper digits in the 2-word floating-point formats.

3. FDIV(079) divides the floating-point number in D101 and D100 by the float-
ing-point number in D103 and D102.

3-13-5 BIT COUNTER: BCNT(067)
Purpose Counts the total number of ON bits in the specified word(s).

Ladder Symbol

Variations

Applicable Program Areas

DivisorDividend
D1000 D1001

D2001 D2000 D2003 D2002

#4000 transferred.

(3452 = 0.3452 x 104

0079 = 0.0079 x 104)

#0000 transferred.
(D100 and D102 cleared.)

D1000
3 4 5 2

D2001 D2000
4 3 4 5 2 0 0 0

D1001
0 0 7 9

D2003 D2002
4 0 0 7 9 0 0 0

D2001 D2000
4 3 4 5 2 0 0 0 0.3452000 104

D2003 D2002
4 0 0 7 9 0 0 0 0.0079000 104

D1003 D1002
2 4 3 6 9 6 2 0 0.4369620 102

÷

×

×

×

BCNT(067)

N

S

R

N: Number of words

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition BCNT(067)

Executed Once for Upward Differentiation @BCNT(067)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
473

Special Math Instructions Section 3-13
Operands N: Number of words

The number of words must be 0001 to FFFF (1 to 65,535 words).

S: First source word

S and S+(N–1) must be in the same data area.

Operand Specifications

Description BCNT(067) counts the total number of bits that are ON in all words between S
and S+(N–1) and places the result in R.

Flags

Precautions An error will occur if N=0000 or the result exceeds FFFF.

Area N S R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0001 to #FFFF
(binary) or &1 to
&65,535

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

S+(N–1)

R

to

N words

Binary result

Counts the number
of ON bits.

Name Label Operation

Error Flag ER ON if N is 0000.
ON if result exceeds FFFF.
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.
474

Floating-point Math Instructions Section 3-14
Example When CIO 0.00 is ON in the following example, BCNT(067) counts the total
number of ON bits in the 10 words from CIO 200 and CIO 209 and writes the
result to D1000.

3-14 Floating-point Math Instructions
The Floating-point Math Instructions convert data and perform floating-point
arithmetic operations.

Refer to 3-15-21 Double-precision Floating-point Input Instructions for details
on double-precision floating-point instructions.

R:D1000

0.00

&10

200

D1000

N
S
R

BCNT
200
201

209

10 words

to to

Counts the number
of ON bits (35).

23 hexadecimal
(35 decimal)

Instruction Mnemonic Function code Page

FLOATING TO 16-BIT FIX 450 481

FLOATING TO 32-BIT FIXL 451 483

16-BIT TO FLOATING FLT 452 484

32-BIT TO FLOATING FLTL 453 486

FLOATING-POINT ADD +F 454 487

FLOATING-POINT SUB-
TRACT

–F 455 489

FLOATING-POINT MULTI-
PLY

*F 456 491

FLOATING-POINT DIVIDE /F 457 493

DEGREES TO RADIANS RAD 458 495

RADIANS-TO-DEGREES DEG 459 496

SINE SIN 460 498

COSINE COS 461 499

TANGENT TAN 462 501

ARC SINE ASIN 463 503

ARC COSINE ACOS 464 505

ARC TANGENT ATAN 465 506

SQUARE ROOT SQRT 466 508

EXPONENT EXP 467 510

LOGARITHM LOG 468 512

EXPONENTIAL POWER PWR 840 514

Instruction Mnemonic Function code Page

Single-precision Floating-
point Symbol Comparison
Instructions

LD, AND, OR
+
=F, <>F, <F, <=F, >F,
or >=F

329 to 334 515

FLOATING-POINT TO
ASCII

FSTR 448 519

ASCII TO FLOATING-
POINT

FVAL 449 524
475

Floating-point Math Instructions Section 3-14
Data Format Floating-point data expresses real numbers using a sign, exponent, and man-
tissa. When data is expressed in floating-point format, the following formula
applies.

Real number = (–1)s 2e–127 (1.f)

s: Sign
e: Exponent
f: Mantissa

The floating-point data format conforms to the IEEE754 standards. Data is
expressed in 32 bits, as follows:

Number of Digits The number of effective digits for floating-point data is 24 bits for binary
(approximately seven digits decimal).

Floating-point Data The following data can be expressed by floating-point data:

• –∞

• –3.402823 x 1038 ≤ value ≤ –1.402398 x 10–45

• 0

• 1.402398 x 10–45 ≤ value ≤ 3.402823 x 1038

• +∞
• Not a number (NaN)

Special Numbers The formats for NaN, ±∞, and 0 are as follows:

NaN*: e = 255, f ≠ 0
+∞: e = 255, f = 0, s= 0
–∞: e = 255, f = 0, s= 1
0: e = 0

*NaN (not a number) is not a valid floating-point number. Executing floating-
point calculation instructions will not result in NaN.

Data No. of bits Contents

s: sign 1 0: positive; 1: negative

e: exponent 8 The exponent (e) value ranges from 0 to 255.
The actual exponent is the value remaining after
127 is subtracted from e, resulting in a range of –
127 to 128. “e=0” and “e=255” express special
numbers.

f: mantissa 23 The mantissa portion of binary floating-point
data fits the formal 2.0 > 1.f ≥1.0.

s e f

31 30 23 22 0

Sign Exponent Mantissa

−1.402398 x 10
–45

1.402398 x 10
–45

–∞ +–3.402823 x 1038 3.402823 x 1038–1 0 1 ∞
476

Floating-point Math Instructions Section 3-14
Writing Floating-point
Data

When floating-point is specified for the data format in the I/O memory edit dis-
play in the CX-Programmer, standard decimal numbers input in the display
are automatically converted to the floating-point format shown above
(IEEE754-format) and written to I/O Memory. Data written in the IEEE754-for-
mat is automatically converted to standard decimal format when monitored on
the display.

It is not necessary for the user to be aware of the IEEE754 data format when
reading and writing floating-point data. It is only necessary to remember that
floating point values occupy two words each.

Numbers Expressed
as Floating-point
Values

The following types of floating-point numbers can be used.

Note A non-normalized number is one whose absolute value is too small to be
expressed as a normalized number. Non-normalized numbers have fewer sig-
nificant digits. If the result of calculations is a non-normalized number (includ-
ing intermediate results), the number of significant digits will be reduced.

Normalized Numbers Normalized numbers express real numbers. The sign bit will be 0 for a positive
number and 1 for a negative number.

The exponent (e) will be expressed from 1 to 254, and the real exponent will
be 127 less, i.e., –126 to 127.

The mantissa (f) will be expressed from 0 to 233 – 1, and it is assume that, in

the real mantissa, bit 233 is 1 and the binary point follows immediately after it.

Normalized numbers are expressed as follows:

(–1)(sign s) x 2(exponent e)–127 x (1 + mantissa x 2–23)

Example

Sign: –
Exponent: 128 – 127 = 1

Mantissa: 1 + (222 + 221) x 2–23 = 1 + (2–1 + 2–2) = 1 + 0.75 = 1.75

Value: –1.75 x 21 = –3.5

Non-normalized Numbers Non-normalized numbers express real numbers with very small absolute val-
ues. The sign bit will be 0 for a positive number and 1 for a negative number.

The exponent (e) will be 0, and the real exponent will be –126.

The mantissa (f) will be expressed from 1 to 233 – 1, and it is assume that, in

the real mantissa, bit 233 is 0 and the binary point follows immediately after it.

Non-normalized numbers are expressed as follows:

(–1)(sign s) x 2–126 x (mantissa x 2–23)

15

n+1

n
7

f

s e

6 0

Mantissa (f) Exponent (e)

0 Not 0 and
not all 1’s

All 1’s (255)

0 0 Normalized number Infinity

Not 0 Non-normalized
number

NaN

1 1 0 0 0 0 0 0 0 0 1 1 0

31 30 23 22 0
477

Floating-point Math Instructions Section 3-14
Example

Sign: –
Exponent: –126

Mantissa: 0 + (222 + 221) x 2–23 = 0 + (2–1 + 2–2) = 0 + 0.75 = 0.75

Value: –0.75 x 2–126

Zero Values of +0.0 and –0.0 can be expressed by setting the sign to 0 for positive
or 1 for negative. The exponent and mantissa will both be 0. Both +0.0 and
–0.0 are equivalent to 0.0. Refer to Floating-point Arithmetic Results, below,
for differences produced by the sign of 0.0.

Infinity Values of +∞ and –∞ can be expressed by setting the sign to 0 for positive or 1

for negative. The exponent will be 255 (28 – 1) and the mantissa will be 0.

NaN NaN (not a number) is produced when the result of calculations, such as 0.0/
0.0, ∞/∞, or ∞–∞, does not correspond to a number or infinity. The exponent

will be 255 (28 – 1) and the mantissa will be not 0.

Note There are no specifications for the sign of NaN or the value of the mantissa
field (other than to be not 0).

Floating-point Arithmetic Results

Rounding Results The following methods will be used to round results when the number of digits
in the accurate result of floating-point arithmetic exceeds the significant digits
of internal processing expressions.

If the result is close to one of two internal floating-point expressions, the
closer expression will be used. If the result is midway between two internal
floating-point expressions, the result will be rounded so that the last digit of
the mantissa is 0.

Overflows, Underflows,
and Illegal Calculations

Overflows will be output as either positive or negative infinity, depending on
the sign of the result. Underflows will be output as either positive or negative
zero, depending on the sign of the result.

Illegal calculations will result in NaN. Illegal calculations include adding infinity
to a number with the opposite sign, subtracting infinity from a number with the
opposite sign, multiplying zero and infinity, dividing zero by zero, or dividing
infinity by infinity.

The value of the result may not be correct if an overflow occurs when convert-
ing a floating-point number to an integer.

Precautions in Handling
Special Values

The following precautions apply to handling zero, infinity, and NaN.

• The sum of positive zero and negative zero is positive zero.

• The difference between zeros of the same sign is positive zero.

• If any operand is a NaN, the results will be a NaN.

• Positive zero and negative zero are treated as equivalent in comparisons.

• Comparison or equivalency tests on one or more NaN will always be true
for != and always be false for all other instructions.

Floating-point
Calculation Results

When the absolute value of the result is greater than the maximum value that
can be expressed for floating-point data, the Overflow Flag will turn ON and
the result will be output as ±∞. If the result is positive, it will be output as +∞; if
negative, then –∞.

0 0 0 0 0 0 0 0 0 0 1 1 0

31 30 23 22 0
478

Floating-point Math Instructions Section 3-14
The Equals Flag will only turn ON when both the exponent (e) and the man-
tissa (f) are zero after a calculation. A calculation result will also be output as
zero when the absolute value of the result is less than the minimum value that
can be expressed for floating-point data. In that case the Underflow Flag will
turn ON.

Example In this program example, the X-axis and Y-axis coordinates (x, y) are provided
by 4-digit BCD content of D0 and D1. The distance (r) from the origin and the
angle (θ, in degrees) are found and output to D100 and D101. In the result,
everything to the right of the decimal point is truncated.

0

y

x

P (100, 100)

r

θ

479

Floating-point Math Instructions Section 3-14
(2)

(3)

(4)

(1)
D0

D200

D1
D201

D201
D204

D202
D202
D206

D204
D204
D208

D206
D208
D210

D210
D212

D204
D202
D214

D214
D216

D216
D218

D212
D220

D218
D221

D220
D100

D221
D101

D200
D202

0.00
480

Floating-point Math Instructions Section 3-14
1. This section of the program converts the data from BCD to floating-point.

a. The data area from D200 onwards is used as a work area.

b. First BIN(023) is used to temporarily convert the BCD data to binary
data, and then FLT(452) is used to convert the binary data to floating-
point data.

c. The value of x that has been converted to floating-point data is output
to D203 and D202.

d. The value of y that has been converted to floating-point data is output
to D205 and D204.

2. In order to find the distance r, Floating-point Math Instructions are used to

calculate the square root of x2+y2. The result is then output to D213 and
D212 as floating-point data.

3. In order to find the angle θ, Floating-point Math Instructions are used to

calculate tan–1 (y/x). ATAN(465) outputs the result in radians, so DEG(459)
is used to convert to degrees. The result is then output to D219 and D218
as floating-point data.

4. The data is converted back from floating-point to BCD.

a. First FIX(450) is used to temporarily convert the floating-point data to
binary data, and then BCD(024) is used to convert the binary data to
BCD data.

b. The distance r is output to D100.

c. The angle θ is output to D101.

3-14-1 FLOATING TO 16-BIT: FIX(450)
Purpose Converts a 32-bit floating-point value to 16-bit signed binary data and places

the result in the specified result word.

Ladder Symbol

Variations

DM Contents

D0 #0100

D1 #0100

x

y

D100 0 1 4 1

D101 0 0 4 5

r

(BCD)

(BCD)

(BCD)

(BCD)

100
100

Calculations

Distance r =

Angle = tan-1 (y
x)

Example

Distance r = = 141.4214

Angle = tan-1 () = 45.0
180

π()×

χ2 y2+ 1002 1002+

FIX(450)

S

R

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition FIX(450)

Executed Once for Upward Differentiation @FIX(450)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
481

Floating-point Math Instructions Section 3-14
Applicable Program Areas

Operand Specifications

Description FIX(450) converts the integer portion of the 32-bit floating-point number in
S+1 and S (IEEE754-format) to 16-bit signed binary data and places the
result in R.

Only the integer portion of the floating-point data is converted, and the fraction
portion is truncated. The integer portion of the floating-point data must be
within the range of –32,768 to 32,767.

Example conversions:
A floating-point value of 3.5 is converted to 3.
A floating-point value of –3.5 is converted to –3.

Flags

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142 CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W511

Holding Bit Area H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A958 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

S+1 S

R

Floating-point data (32 bits)

Signed binary data (16 bits)

Name Label Operation

Error Flag ER ON if the data in S+1 and S is not a number (NaN).
ON if the integer portion of S+1 and S is not within the
range of –32,768 to 32,767.
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of the result is ON.

OFF in all other cases.
482

Floating-point Math Instructions Section 3-14
Precautions The content of S+1 and S must be floating-point data and the integer portion
must be in the range of –32,768 to 32,767.

3-14-2 FLOATING TO 32-BIT: FIXL(451)
Purpose Converts a 32-bit floating-point value to 32-bit signed binary data and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

FIXL(451)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition FIXL(451)

Executed Once for Upward Differentiation @FIXL(451)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –()IR15
483

Floating-point Math Instructions Section 3-14
Description FIXL(451) converts the integer portion of the 32-bit floating-point number in
S+1 and S (IEEE754-format) to 32-bit signed binary data and places the
result in R+1 and R.

Only the integer portion of the floating-point data is converted, and the fraction
portion is truncated. (The integer portion of the floating-point data must be
within the range of –2,147,483,648 to 2,147,483,647.)

Example conversions:
A floating-point value of 2,147,483,640.5 is converted to 2,147,483,640.
A floating-point value of –214,748,340.5 is converted to –214,748,340.

Flags

Precautions The content of S+1 and S must be floating-point data and the integer portion
must be in the range of –2,147,483,648 to 2,147,483,647.

3-14-3 16-BIT TO FLOATING: FLT(452)
Purpose Converts a 16-bit signed binary value to 32-bit floating-point data and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

S+1 S

R+1 R

Floating-point data (32 bits)

Signed binary data (32 bits)

Name Label Operation

Error Flag ER ON if the data in S+1 and S is not a number (NaN).
ON if the integer portion of S+1 and S is not within the
range of –2,147,483,648 to 2,147,483,647.

OFF in all other cases.

Equals Flag = ON if the result is 0000 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of R+1 is ON after execution.
OFF in all other cases.

FLT(452)

S

R

S: Source word

R: First result word

Variations Executed Each Cycle for ON Condition FLT(452)

Executed Once for Upward Differentiation @FLT(452)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6142

Work Area W0 to W511 W0 to W510
484

Floating-point Math Instructions Section 3-14
Description FLT(452) converts the 16-bit signed binary value in S to 32-bit floating-point
data (IEEE754-format) and places the result in R+1 and R. A single 0 is
added after the decimal point in the floating-point result.

Only values within the range of –32,768 to 32,767 can be specified for S. To
convert signed binary data outside of that range, use FLTL(453).

Example conversions:
A signed binary value of 3 is converted to 3.0.
A signed binary value of –3 is converted to –3.0.

Flags

Precautions The content of S must contain signed binary data with a (decimal) value in the
range of –32,768 to 32,767.

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

S

Floating-point data (32 bits)

Signed binary data (16 bits)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Negative Flag N ON if the result is negative.
OFF in all other cases.
485

Floating-point Math Instructions Section 3-14
3-14-4 32-BIT TO FLOATING: FLTL(453)
Purpose Converts a 32-bit signed binary value to 32-bit floating-point data and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description FLTL(453) converts the 32-bit signed binary value in S+1 and S to 32-bit float-
ing-point data (IEEE754-format) and places the result in R+1 and R. A single
0 is added after the decimal point in the floating-point result.

FLTL(453)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition FLTL(453)

Executed Once for Upward Differentiation @FLTL(453)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1

Floating-point data (32 bits)

Signed binary data (32 bits)
486

Floating-point Math Instructions Section 3-14
Signed binary data within the range of –2,147,483,648 to 2,147,483,647 can
be specified for S+1 and S. The floating point value has 24 significant binary
digits (bits). The result will not be exact if a number greater than 16,777,215
(the maximum value that can be expressed in 24-bits) is converted by
FLTL(453).

Example Conversions:

A signed binary value of 16,777,215 is converted to 16,777,215.0.
A signed binary value of –16,777,215 is converted to –15,777,215.0.

Flags

Precautions The result will not be exact if a number with an absolute value greater than
16,777,215 (the maximum value that can be expressed in 24-bits) is con-
verted.

3-14-5 FLOATING-POINT ADD: +F(454)
Purpose Adds two 32-bit floating-point numbers and places the result in the specified

result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Negative Flag N ON if the result is negative.
OFF in all other cases.

+F(454)

R

Au

Ad

Au: First augend word

AD: First addend word

R: First result word

Variations Executed Each Cycle for ON Condition +F(454)

Executed Once for Upward Differentiation @+F(454)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766
487

Floating-point Math Instructions Section 3-14
Description +F(454) adds the 32-bit floating-point number in Ad+1 and Ad to the 32-bit
floating-point number in Au+1 and Au and places the result in R+1 and R.
(The floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of augend and addend data will produce the results
shown in the following table.

Note (1) The results could be zero (including underflows), a numeral, +∞, or –∞.

(2) The Error Flag will be turned ON and the instruction will not be executed.

Flags

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area Au Ad R

Augend

Addend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞
Numeral Numeral See note 1. +∞ –∞

+∞ +∞ +∞ +∞ See note 2.

–∞ –∞ –∞ See note 2. –∞
NaN See note 2.

R+1 R

+

AuAu+1

AdAd+1

Result (floating-point data, 32 bits)

Augend (floating-point data, 32 bits)

Addend (floating-point data, 32 bits)

Name Label Operation

Error Flag ER ON if the augend or addend data is not recognized as
floating-point data.
ON if the augend or addend data is not a number (NaN).
ON if +∞ and –∞ are added.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.
488

Floating-point Math Instructions Section 3-14
Precautions The augend (Au+1 and Au) and Addend (Ad+1 and Ad) data must be in
IEEE754 floating-point data format.

3-14-6 FLOATING-POINT SUBTRACT: –F(455)
Purpose Subtracts one 32-bit floating-point number from another and places the result

in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

Name Label Operation

–F(455)

R

Mi

Su

Mi: First Minuend word

Su: First Subtrahend word

R: First result word

Variations Executed Each Cycle for ON Condition –F(455)

Executed Once for Upward Differentiation @–F(455)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)

Data Registers ---
489

Floating-point Math Instructions Section 3-14
Description –F(455) subtracts the 32-bit floating-point number in Su+1 and Su from the
32-bit floating-point number in Mi+1 and Mi and places the result in R+1 and
R. (The floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of minuend and subtrahend data will produce the
results shown in the following table.

Note (1) The results could be zero (including underflows), a numeral, +∞, or –∞.

(2) The Error Flag will be turned ON and the instruction will not be executed.

Flags

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Mi Su R

Minuend

Subtrahend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞
Numeral Numeral See note 1. +∞ –∞

+∞ –∞ –∞ See note 2. –∞
–∞ +∞ +∞ +∞ See note 2.

NaN See note 2.

R+1 R

–

MiMi+1

SuSu+1

Result (floating-point data, 32 bits)

Subtrahend (floating-point data, 32 bits)

Minuend (floating-point data, 32 bits)

Name Label Operation

Error Flag ER ON if the minuend or subtrahend data is not recognized
as floating-point data.
ON if the minuend or subtrahend is not a number (NaN).

ON if +∞ is subtracted from +∞.
ON if –∞ is subtracted from –∞.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.
490

Floating-point Math Instructions Section 3-14
Precautions The Minuend (Mi+1 and Mi) and Subtrahend (Su+1 and Su) data must be in
IEEE754 floating-point data format.

3-14-7 FLOATING-POINT MULTIPLY: *F(456)
Purpose Multiplies two 32-bit floating-point numbers and places the result in the speci-

fied result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

*F(456)

R

Md

Mr

Md: First Multiplicand word

Mr: First Multiplier word

R: First result word

Variations Executed Each Cycle for ON Condition *F(456)

Executed Once for Upward Differentiation @*F(456)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
491

Floating-point Math Instructions Section 3-14
Description *F(456) multiplies the 32-bit floating-point number in Md+1 and Md by the 32-
bit floating-point number in Mr+1 and Mr and places the result in R+1 and R.
(The floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of multiplicand and multiplier data will produce the
results shown in the following table.

Note (1) The results could be zero (including underflows), a numeral, +∞, or –∞.

(2) The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Multiplicand (Md+1 and Md) and Multiplier (Mr+1 and Mr) data must be in
IEEE754 floating-point data format.

Multiplicand

Multiplier 0 Numeral +∞ –∞ NaN

0 0 0 See note 2. See note 2.

Numeral 0 See note 1. +/–∞ +/–∞
+∞ See note 2. +/–∞ +∞ –∞
–∞ See note 2 +/–∞ –∞ +∞

NaN See note 2.

R+1 R

Md Multiplicand (floating-point data, 32 bits)Md+1

Mr Multiplier (floating-point data, 32 bits)Mr+1

Result (floating-point data, 32 bits)

×

Name Label Operation

Error Flag ER ON if the multiplicand or multiplier data is not recognized
as floating-point data.
ON if the multiplicand or multiplier is not a number (NaN).
ON if +∞ and 0 are multiplied.

ON if –∞ and 0 are multiplied.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.
492

Floating-point Math Instructions Section 3-14
3-14-8 FLOATING-POINT DIVIDE: /F(457)
Purpose Divides one 32-bit floating-point number by another and places the result in

the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/F(457)

R

Dd

Dr

Dd: First Dividend word

Dr: First Divisor word

R: First result word

Variations Executed Each Cycle for ON Condition /F(457)

Executed Once for Upward Differentiation @/F(457)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
493

Floating-point Math Instructions Section 3-14
Description /F(457) divides the 32-bit floating-point number in Dd+1 and Dd by the 32-bit
floating-point number in Dr+1 and Dr and places the result in R+1 and R. (The
floating point data must be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of dividend and divisor data will produce the results
shown in the following table.

Note (1) The results could be zero (including underflows), a numeral, +∞, or –∞.

(2) The results will be zero for underflows.

(3) The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Dividend (Dd+1 and Dd) and Divisor (Dr+1 and Dr) data must be in
IEEE754 floating-point data format.

Dividend

Divisor 0 Numeral +∞ –∞ NaN

0 See note 3. +/–∞ +∞ –∞
Numeral 0 See note 1. +/–∞ +/–∞

+∞ 0 See note 2. See note 3. See note 3.

–∞ 0 See note 2. See note 3. See note 3.

NaN See note 3.

R+1 R

÷

Dd Dividend (floating-point data, 32 bits)Dd+1

Dr Divisor (floating-point data, 32 bits)Dr+1

Result (floating-point data, 32 bits)

Name Label Operation

Error Flag ER ON if the dividend or divisor data is not recognized as
floating-point data.

ON if the dividend or divisor is not a number (NaN).
ON if the dividend and divisor are both 0.
ON if the dividend and divisor are both +∞ or –∞.

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
494

Floating-point Math Instructions Section 3-14
3-14-9 DEGREES TO RADIANS: RAD(458)
Purpose Converts a 32-bit floating-point number from degrees to radians and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description RAD(458) converts the 32-bit floating-point number in S+1 and S from
degrees to radians and places the result in R and R+1. (The floating point
source data must be in IEEE754 format.)

Degrees are converted to radians by means of the following formula:

RAD(458)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition RAD(458)

Executed Once for Upward Differentiation @RAD(458)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1 Source (degrees, 32-bit floating-point data)

Result (radians, 32-bit floating-point data)
495

Floating-point Math Instructions Section 3-14
Degrees × π/180 = radians

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-10 RADIANS TO DEGREES: DEG(459)
Purpose Converts a 32-bit floating-point number from radians to degrees and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.

DEG(459)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition DEG(459)

Executed Once for Upward Differentiation @DEG(459)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094
496

Floating-point Math Instructions Section 3-14
Description DEG(459) converts the 32-bit floating-point number in S+1 and S from radians
to degrees and places the result in R+1 and R. (The floating point source data
must be in IEEE754 format.)

Radians are converted to degrees by means of the following formula:

Radians × 180/π = degrees

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to+2047 ,IR0 to –2048 to+2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1 Source (radians, 32-bit floating-point data)

Result (degrees, 32-bit floating-point data)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
497

Floating-point Math Instructions Section 3-14
3-14-11 SINE: SIN(460)
Purpose Calculates the sine of a 32-bit floating-point number (in radians) and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description SIN(460) calculates the sine of the angle (in radians) expressed as a 32-bit
floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

SIN(460)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition SIN(460)

Executed Once for Upward Differentiation @SIN(460)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1SIN Source (32-bit floating-point data)

Result (32-bit floating-point data)
498

Floating-point Math Instructions Section 3-14
Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting from degrees to
radians, see 3-14-19 LOGARITHM: LOG(468) DEGREES-TO-RADIANS:
RAD(458).

The following diagram shows the relationship between the angle and result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-12 COSINE: COS(461)
Purpose Calculates the cosine of a 32-bit floating-point number (in radians) and places

the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

R S: Angle (radian) data
R: Result (sine)

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).

ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

COS(461)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition COS(461)

Executed Once for Upward Differentiation @COS(461)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
499

Floating-point Math Instructions Section 3-14
Operand Specifications

Description COS(461) calculates the cosine of the angle (in radians) expressed as a 32-
bit floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting from degrees to
radians, see 3-14-9 DEGREES TO RADIANS: RAD(458).

The following diagram shows the relationship between the angle and result.

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1COS Source (32-bit floating-point data)

Result (32-bit floating-point data)

R S: Angle (radian) data
R: Result (cosine)
500

Floating-point Math Instructions Section 3-14
Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-13 TANGENT: TAN(462)
Purpose Calculates the tangent of a 32-bit floating-point number (in radians) and

places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.

OFF in all other cases.

TAN(462)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition TAN(462)

Executed Once for Upward Differentiation @TAN(462)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---
501

Floating-point Math Instructions Section 3-14
Description TAN(462) calculates the tangent of the angle (in radians) expressed as a 32-
bit floating-point value in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in S+1 and S. If the
angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting from degrees to
radians, see 3-14-9 DEGREES TO RADIANS: RAD(458).

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

The following diagram shows the relationship between the angle and result.

Flags

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1TAN Source (32-bit floating-point data)

Result (32-bit floating-point data)

R S: Angle (radian) data

R: Result (tangent)

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).

ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF
502

Floating-point Math Instructions Section 3-14
Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-14 ARC SINE: ASIN(463)
Purpose Calculates the arc sine of a 32-bit floating-point number and places the result

in the specified result words. (The arc sine function is the inverse of the sine
function; it returns the angle that produces a given sine value between –1 and
1.)

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

Name Label Operation

ASIN(463)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition ASIN(463)

Executed Once for Upward Differentiation @ASIN(463)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
503

Floating-point Math Instructions Section 3-14
Description ASIN(463) computes the angle (in radians) for a sine value expressed as a
32-bit floating-point number in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words R+1 and R as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

R+1 R

SS+1SIN
–1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data (sine value)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).

ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.

OFF in all other cases.
504

Floating-point Math Instructions Section 3-14
3-14-15 ARC COSINE: ACOS(464)
Purpose Calculates the arc cosine of a 32-bit floating-point number and places the

result in the specified result words. (The arc cosine function is the inverse of
the cosine function; it returns the angle that produces a given cosine value
between –1 and 1.)

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description ACOS(464) computes the angle (in radians) for a cosine value expressed as a
32-bit floating-point number in S+1 and S and places the result in R+1 and R.
(The floating point source data must be in IEEE754 format.)

ACOS(464)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition ACOS(464)

Executed Once for Upward Differentiation @ACOS(464)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1COS –1 Source (32-bit floating-point data)

Result (32-bit floating-point data)
505

Floating-point Math Instructions Section 3-14
The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words R+1 and R as an angle (in radians) within the
range of 0 to π.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-16 ARC TANGENT: ATAN(465)
Purpose Calculates the arc tangent of a 32-bit floating-point number and places the

result in the specified result words. (The arc tangent function is the inverse of
the tangent function; it returns the angle that produces a given tangent value.)

Ladder Symbol

R
S: Input data (cosine value)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

S

R

ATAN(465)

S: First source word

R: First result word
506

Floating-point Math Instructions Section 3-14
Variations

Applicable Program Areas

Operand Specifications

Description ATAN(465) computes the angle (in radians) for a tangent value expressed as
a 32-bit floating-point number in S+1 and S and places the result in R+1 and
R.
(The floating point source data must be in IEEE754 format.)

The result is output to words R+1 and R as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

Variations Executed Each Cycle for ON Condition ATAN(465)

Executed Once for Upward Differentiation @ATAN(465)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1TAN–1 Source (32-bit floating-point data)

Result (32-bit floating-point data)
507

Floating-point Math Instructions Section 3-14
Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-17 SQUARE ROOT: SQRT(466)
Purpose Calculates the square root of a 32-bit floating-point number and places the

result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

R

S: Input data (tangent)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF OFF

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.
OFF in all other cases.

SQRT(466)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition SQRT(466)

Executed Once for Upward Differentiation @SQRT(466)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
508

Floating-point Math Instructions Section 3-14
Operand Specifications

Description SQRT(466) calculates the square root of the 32-bit floating-point number in
S+1 and S and places the result in R+1 and R. (The floating point source data
must be in IEEE754 format.)

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

The following diagram shows the relationship between the input data and
result.

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R+1 R

SS+1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data
R: Result
509

Floating-point Math Instructions Section 3-14
Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-18 EXPONENT: EXP(467)
Purpose Calculates the natural (base e) exponential of a 32-bit floating-point number

and places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is negative.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF OFF

Negative Flag N OFF

EXP(467)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition EXP(467)

Executed Once for Upward Differentiation @EXP(467)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to 4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---
510

Floating-point Math Instructions Section 3-14
Description EXP(467) calculates the natural (base e) exponential of the 32-bit floating-
point number in S+1 and S and places the result in R+1 and R. In other words,

EXP(467) calculates ex (x = source) and places the result in R+1 and R.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Flags

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S R

R+1 R

SS+1

e
Source (32-bit floating-point data)

Result (32-bit floating-point data)

R

S: Input data
R: Result

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.
511

Floating-point Math Instructions Section 3-14
Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

3-14-19 LOGARITHM: LOG(468)
Purpose Calculates the natural (base e) logarithm of a 32-bit floating-point number and

places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N OFF

Name Label Operation

LOG(468)

S

R

S: First source word

R: First result word

Variations Executed Each Cycle for ON Condition LOG(468)

Executed Once for Upward Differentiation @LOG(468)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
512

Floating-point Math Instructions Section 3-14
Description LOG(468) calculates the natural (base e) logarithm of the 32-bit floating-point
number in S+1 and S and places the result in R+1 and R.

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in S+1 and S must be in IEEE754 floating-point data format.

R+1 R

SS+1 Source (32-bit floating-point data)

Result (32-bit floating-point data)

loge

R

S: Input data
R: Result

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is negative.
ON if the source data is not a number (NaN).

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF OFF

Negative Flag N ON if the result is negative.

OFF in all other cases.
513

Floating-point Math Instructions Section 3-14
3-14-20 EXPONENTIAL POWER: PWR(840)
Purpose Raises a 32-bit floating-point number to the power of another 32-bit floating-

point number.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description PWR(840) raises the 32-bit floating-point number in B+1 and B to the power
of the 32-bit floating-point number in E+1 and E. In other words, PWR(840)

calculates XY (X = B+1 and B; Y = E+1 and E).

PWR(840)

B

E

R

B: First base word

E: First exponent word

R: First result word

Variations Executed Each Cycle for ON Condition PWR(840)

Executed Once for Upward Differentiation @PWR(840)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B E R

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

E+1 E

B+1 B R+1 R

Exponent data

Base data
514

Floating-point Math Instructions Section 3-14
For example, when the base words (B+1 and B) contain 3.1 and the exponent

words (E+1 and E) contain 3, the result is 3.13 or 29.791.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON.

Flags

Precautions The base (B+1 and B) and the exponent (E+1 and E) must be in IEEE754
floating-point data format.

3-14-21 Single-precision Floating-point Comparison Instructions
Purpose These input comparison instructions compare two single-precision floating

point values (32-bit IEEE754 constants and/or the contents of specified
words) and create an ON execution condition when the comparison condition
is true.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON if the base (B+1 and B) or exponent (E+1 and E) is
not recognized as floating-point data.
ON if the base (B+1 and B) or exponent (E+1 and E) is
not a number (NaN).
ON if the base (B+1 and B) is 0 and the exponent (E+1
and E) is less than 0. (Division by 0)

ON if the base (B+1 and B) is negative and the exponent
(E+1 and E) is non-integer. (Root of a negative number)
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a 32-bit floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a 32-bit floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Symbol & options

Variations Creates ON Each Cycle Comparison is True Input compari-
son instruction

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
515

Floating-point Math Instructions Section 3-14
Operand Specifications

Description The input comparison instruction compares the data specified in S1 and S2 as
single-precision floating point values (32-bit IEEE754 data) and creates an
ON execution condition when the comparison condition is true. When the data
is stored in words, S1 and S2 specify the first of two words containing the 32-
bit data. It is also possible to input the floating-point data as an 8-digit hexa-
decimal constant.

Inputting the Instructions

The input comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Area S1 S2

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF (binary)

Data Registers ---

Index Registers IR0 to IR15 (for unsigned data only)

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Input type Operation

LD The instruction can be connected directly to the left bus bar.

AND The instruction cannot be connected directly to the left bus bar.

OR The instruction can be connected directly to the left bus bar.
516

Floating-point Math Instructions Section 3-14
Options

With the three input types and six symbols, there are 18 different possible
combinations.

Summary of Input Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 18 single-precision floating-point input comparison instructions.
(C1=S1+1, S1 and C2=S2+1, S2.)

Symbol Option (data format)

= (Equal)

< > (Not equal)
< (Less than)
<= (Less than or equal)

> (Greater than)
>= (Greater than or equal)

F: Single-precision floating-point data

Code Mnemonic Name Function

329 LD=F LOAD FLOATING EQUAL True if
C1 = C2AND=F AND FLOATING EQUAL

OR=F OR FLOATING EQUAL

330 LD<>F LOAD FLOATING NOT EQUAL True if
C1 ≠ C2AND<>F AND FLOATING NOT EQUAL

OR<>F OR FLOATING NOT EQUAL

331 LD<F LOAD FLOATING LESS THAN True if
C1 < C2AND<F AND FLOATING LESS THAN

OR<F OR FLOATING LESS THAN

332 LD<=F LOAD FLOATING LESS THAN OR EQUAL True if
C1 ≤ C2AND<=F AND FLOATING LESS THAN OR EQUAL

OR<=F OR FLOATING LESS THAN OR EQUAL

<F

<F

<F

LD connection

AND connection

OR connection

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.
517

Floating-point Math Instructions Section 3-14
Flags

Precautions Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Example AND FLOATING LESS THAN: AND<F(331)

When CIO 0.00 is ON in the following example, the floating point data in
D100, D101 is compared to the floating point data in D200, D201. If the con-
tent of D100, D101 is less than that of D200, D201, execution proceeds to the
next line and CIO 100.00 is turned ON. If the content of D100, D101 is not
less than that of D200, D201, execution does not proceed to the next instruc-
tion line.

333 LD>F LOAD FLOATING GREATER THAN True if
C1 > C2AND>F AND FLOATING GREATER THAN

OR>F OR FLOATING GREATER THAN

334 LD>=F LOAD FLOATING GREATER THAN OR EQUAL True if
C1 ≥ C2AND>=F AND FLOATING GREATER THAN OR EQUAL

OR>=F OR FLOATING GREATER THAN OR EQUAL

Code Mnemonic Name Function

Name Label Operation

Error Flag ER ON if S1+1, S1 or S2+1, S2 is not a valid floating-point
number (NaN).

ON if S1+1, S1 or S2+1, S2 is +∞.

ON if S1+1, S1 or S2+1, S2 is –∞.

OFF in all other cases.

Greater Than
Flag

> ON if S1+1, S1 > S2+1, S2.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if (S1+1, S1) ≥ (S2+1, S2).

OFF in all other cases.

Equal Flag = ON if (S1+1, S1) = (S2+1, S2).

OFF in all other cases.

Not Equal Flag = ON if (S1+1, S1) ≠ (S2+1, S2).

OFF in all other cases.

Less Than Flag < ON if (S1+1, S1) < (S2+1, S2).

OFF in all other cases.

Less Than or
Equal Flag

< = ON if (S1+1, S1) ≤ (S2+1, S2).

OFF in all other cases.

Negative Flag N Unchanged

<F

D100

D200

0.00 100.00
518

Floating-point Math Instructions Section 3-14
3-14-22 FLOATING-POINT TO ASCII: FSTR(448)
Purpose Expresses a 32-bit floating-point value (IEEE754-format) in standard decimal

notation or scientific notation and converts that value to ASCII text.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

2.3>−3.5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0

15 0

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1

15 0

S1 :D100
S1+1:D101

S2 :D200
S2+1:D201

4294967296<5566555656

1 1 1 0 0 1 0 1 0 1 1 1 0 0 1 1
0 1 0 0 1 1 1 1 1 0 1 0 0 1 0 1

15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0

15 0

S1 :D100
S1+1:D101

S2 :D200
S2+1:D201

FLOATING LESS THAN Comparison (<F)

Decimal value: 2.3 Decimal value: −3.5

Does not yield an ON condition.

Decimal value: 4,294,967,296 Decimal value: 5,566,555,656

Yields an ON condition.

FSTR(448)

S

C

D

S: First source word
C: First control word
D: First destination word

Variations Executed Each Cycle for ON Condition FSTR(448)

Executed Once for Upward Differentiation @FSTR(448)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S C D

CIO Area CIO 0 to CIO 6142 CIO 0 to CIO 6141 CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W509 W0 to W511

Holding Bit Area H0 to H510 H0 to H509 H0 to H511

Auxiliary Bit Area A0 to A958 A0 to A957 A448 to A959

Timer Area T0000 to T4094 T0000 to T4093 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4093 C0000 to C4095

DM Area D0 to D32766 D0 to D32765 D0 to D32767

Indirect DM
addresses in binary

@ D0 to
@ D32767

@ D0 to
@ D32767

@ D0 to
@ D32767

Indirect DM
addresses in BCD

*D0 to *D32767 *D0 to *D32767 *D0 to *D32767

Constants #00000000 to
#FFFFFFFF
(binary)

Data Registers ---
519

Floating-point Math Instructions Section 3-14
Description FSTR(448) expresses the 32-bit floating-point number in S+1 and S
(IEEE754-format) in decimal notation or scientific notation according to the
control data in words C to C+2, converts the number to ASCII text, and out-
puts the result to the destination words starting at D.

The following diagram shows the contents of the 3 control words.

• The content of C (Data format) specifies whether to express the number
in S+1, S in decimal notation or scientific notation.

• Decimal notation
Expresses a real number as an integer and fractional part.
Example: 124.56

• Scientific notation
Expresses a real number as an integer part, fractional part, and expo-
nent part.

Example: 1.2456E-2 (1.2456×10-2)

• The content of C+1 (Total characters) specifies the number of ASCII char-
acters after conversion including the sign symbol, numbers, decimal point
and spaces.

• The content of C+2 (Fractional digits) specifies the number of digits (char-
acters) below the decimal point.

The ASCII text is stored in D and subsequent words in the following order:
leftmost byte of D, rightmost byte of D, leftmost byte of D+1, rightmost byte of
D+1, etc.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –()IR15
,IR0 to ,IR15

Area S C D

0000 hex: Decimal format
0001 hex: Scientific notation

0002 to 0018 hex (2 to 24 characters, see note)

0000 to 0007 hex (see note)

Note: There are limits on the total number of characters
and the number of fractional digits. See Limits on the
Number of ASCII Characters on page 522 for details.

Data format
Total characters
Fractional digits
520

Floating-point Math Instructions Section 3-14
S
S+1

 2D 20 20 31 2E 32 33 34 35 36
(−) (SP)(SP) (1) (,) (2) (3) (4) (5) (6)

15 87 0

 2D 20 31 2E 32 33 45 2B 30 31
(−) (SP) (1) (,) (2) (3) (E) (+) (0) (0)

15 87 0

D: 20
31
32
34
00

2D
20
2E
33
00

20
2E
33
2B
30
00

2D
31
32
45
30
00

Decimal notation (C=0000 hex)
−1.23456 Conversion to

ASCII text

Rounded off(SP represents a space.)

Stored in destination words beginning with D.
Total characters = 8 (C+1 = 0008 hex)
Fractional digits = 3 (C+2 = 0003 hex)

Example: −1.23456
Floating-point
data

ASCII characters are stored in order.
(Leftmost byte → rightmost byte)

Scientific notation (C= 0001 hex)
− 1.23E+00

Conversion to
ASCII text

(SP represents a space.)

Stored in destination words beginning with D.
Total characters = 10 (C+1 = 000A hex)
Fractional digits = 2 (C+2 = 0002 hex)

ASCII characters are stored in order.
(Leftmost byte → rightmost byte)

.

Decimal notation (C=0000 hex)

Integer part

Positive number: Space (20 hex)
Negative number: Minus sign (2D hex)

Sign

Total number of characters

If there are more fractional digits in the source data than specified in C+1, the extra digits will be rounded
off. If there are fewer fractional digits, zeroes (ASCII: 30 hex) will added to the end of the source data.

A decimal point (ASCII: 2E hex) is added if the number fractional digits is greater than 0.
Spaces (ASCII: 20 hex) are added if the integer part of the floating-point data is shorter than the integer part of the result
(total number of characters - sign digit - decimal point - fractional digits).

Fractional part
Decimal point

Storage of ASCII Text

After the floating-point number is converted to ASCII text, the ASCII characters are stored in the destination
words beginning with D, as shown in the following diagrams. Different storage methods are used for decimal
notation and scientific notation.
521

Floating-point Math Instructions Section 3-14
Note Either one or two bytes of zeroes are added to the end of ASCII text as an end
code.
Total number of characters odd: 00 hex is stored after the ASCII text.
Total number of characters even: 0000 hex is stored after the ASCII text.

Limits on the Number of ASCII Characters

There are limits on the number of ASCII characters in the converted number.
The Error Flag will be turned ON if the number of characters exceeds the
maximum allowed.

1. Limits on the Total Number of ASCII Characters

a. Decimal Notation (C = 0000 hex)

• When there is no fractional part (C+2 = 0000 hex):
2 ≤ Total Characters ≤ 24

• When there is a fractional part (C+2 = 0001 to 0007 hex):
(Fractional digits + 3) ≤ Total Characters ≤ 24

b. Scientific Notation (C = 0001 hex)

• When there is no fractional part (C+2 = 0000 hex):
6 ≤ Total Characters ≤ 24

• When there is a fractional part (C+2 = 0001 to 0007 hex):
(Fractional digits + 7) ≤ Total Characters ≤ 24

2. Limits on the Number of Digits in the Integer Part

a. Decimal Notation (C = 0000 hex)

• When there is no fractional part (C+2 = 0000 hex):
1 ≤ Number of Integer Digits ≤ 24

• When there is a fractional part (C+2 = 0001 to 0007 hex):
1 ≤ Number of Integer Digits ≤ (24 − Fractional digits − 2)

b. Scientific Notation (C = 0001 hex)
1 digit (fixed)

3. Limits on the Number of Digits in the Fractional Part

a. Decimal Notation (C = 0000 hex)

• Fractional Digits ≤ 7

• Also: Fractional Digits ≤ (Total Number of ASCII Characters − 3)

b. Scientific Notation (C = 0001 hex)

• Fractional Digits ≤ 7

• Also: Fractional Digits ≤ (Total Number of ASCII Characters − 3)

. E

Scientific notation (C=0001 hex)

Integer part

Positive: Plus sign (2B hex)
Negative: Minus sign (2D hex)

Sign

Total number of characters

If there are more fractional digits in the source data than specified in C+1, the extra digits will be rounded off.
If there are fewer fractional digits, zeroes (ASCII: 30 hex) will added to the end of the source data.

A decimal point (ASCII: 2E hex) is added if the number fractional digits is greater than 0.
Spaces (ASCII: 20 hex) are added if the integer part of the floating-point data is shorter than the integer part of the result (total
number of characters - sign digit - decimal point - fractional digits - E digit).

Fractional
part

Decimal point

Exponential part

0 to 9 are written as 00 to 09.

Letter E (ASCII: 45 hex) is written here.

Positive number: Space (20 hex)
Negative number: Minus sign (2D hex)

Sign
522

Floating-point Math Instructions Section 3-14
Flags

Examples Converting to ASCII Text in Decimal Notation

When CIO 0.00 is ON in the following example, FSTR(448) converts the float-
ing-point data in D1 and D0 to decimal-notation ASCII text and writes the
ASCII text to the destination words beginning with D100. The contents of the
control words (D10 to D12) specify the details on the data format (decimal
notation, 7 characters total, 3 fractional digits).

Converting to ASCII Text in Scientific Notation

When CIO 0.00 is ON in the following example, FSTR(448) converts the float-
ing-point data in D0 to scientific-notation ASCII text and writes the ASCII text
to the destination words beginning with D100. The contents of the control
words (D10 to D12) specify the details on the data format (scientific notation,
11 characters total, 3 fractional digits).

Name Label Operation

Error Flag ER ON if the data in S+1 and S is not a valid floating-point
number (NaN).

ON if the data in S+1 and S is +∞ or –∞.

ON if the Data Format setting in C is not 0000 or 0001.

ON if the Total Characters setting in C+1 is not within the
allowed range. (See 1. Limits on the Total Number of
ASCII Characters above for details.)

ON if the Fractional Digits setting in C+2 is not within the
allowed range. (See 3. Limits on the Number of Digits in
the Fractional Part above for details.)

OFF in all other cases.

Equals Flag = ON if the conversion result is 0.

OFF in all other cases.

2E (.)
32 (2)
00

1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0
0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1

FSTR
D0

D10
D100

0.00

15 0

D0
D1

0000(Hex)
0007(Hex)
0003(Hex)

D10
D11
D12

0.327457

30 (0)
33 (3)
37 (7)

D100
D101
D102
D103

 0 . 3 2 7 4 5 7

20 (Space)20 (Space)

Decimal notation
Total characters = 7 characters
Fractional digits = 3 digits (characters)

Conversion

Rounded off

Storage
conditions

Spaces

Total number of characters

Fractional part
523

Floating-point Math Instructions Section 3-14
3-14-23 ASCII TO FLOATING-POINT: FVAL(449)
Purpose Converts a number expressed in ASCII text (decimal or scientific notation) to

a 32-bit floating-point value (IEEE754-format) and outputs the floating-point
value to the specified words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

2E (.)
37 (7)
45 (E)
30 (0)
00

1 0 1 0 1 0 0 0 0 1 1 1 0 0 1 0
0 0 1 1 1 1 1 0 1 0 1 0 0 1 1 1

FSTR
D0

D10
D100

0.00

15 0

D0
D1

0001(Hex)
000B(Hex)
0003(Hex)

D10
D11
D12

0.327457

33 (3)
32 (2)
35 (5)
2D (−)
31 (1)

D100
D101
D102
D103
D104
D105

 3 . 2 7 4 5 7 E - 0 1

20 (Space)20 (Space)

Scientific notation
Total characters = 11 characters
Fractional digits = 3 digits (characters)

Conversion

Rounded off

Storage
conditions

Spaces

Total number of characters

Fractional
part

FVAL(449)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition FVAL(449)

Executed Once for Upward Differentiation @FVAL(449)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A448 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM
addresses in binary

@ D0 to @ D32767

Indirect DM
addresses in BCD

*D0 to *D32767

Constants ---
524

Floating-point Math Instructions Section 3-14
Description FVAL(449) converts the specified ASCII text number (starting at word S) to a
32-bit floating-point number (IEEE754-format) and outputs the result to the
destination words starting at D.

FVAL(449) can convert ASCII text in decimal or scientific notation if it meets
the following conditions:

• Decimal notation
Real numbers expressed with an integer and fractional part.
Example: 124.56

• Scientific notation
Real numbers expressed as an integer part, fractional part, and exponent
part.

Example: 1.2456E-2 (1.2456×10-2)

The data format (decimal or scientific notation) is detected automatically.

The ASCII text must be stored in S and subsequent words in the following
order: leftmost byte of S, rightmost byte of S, leftmost byte of S+1, rightmost
byte of S+1, etc.

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –()IR15

,IR0 to ,IR15

Area S D

2D 20
20 31
32 33
2E 34
35 36
37 38
00 00

 − SP SP 1 2 3 . 4 5 6 7 8
(2D)(20)(20)(31)(32)(33)(2E)(34)(35)(36)(37)(38)

15 87 0

−123.456
1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1
1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0

D
D+1

1 1 1 0 1 0 0 1 0 1 1 1 1 0 0 1
1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0

15 0

Decimal notation

Exponent

Spaces are
ignored during
conversion

Sign

32-bit floating-point data

If there are more than 6 digits, the 7th
and higher digits are ignored.
(Digits do not include the sign, decimal
point, and exponent characters.)

Conversion of ASCII text number to
32-bit floating-point data

Stored in D and D+1.

2D 20
20 31
2E 32
33 34
45 2B
30 32
00 00

− SP SP 1 . 2 3 4 E + 0 2
(2D)(20)(20)(31)(2E)(32)(33)(34)(45)(2D)(31)(38)

15 87 0

−1.234×102 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1
1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0

D
D+1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1
1 1 0 0 0 0 1 0 1 1 1 1 0 1 1 0

15 0

Scientific notation

Exponent

Spaces are
ignored during
conversion

Sign

32-bit floating-point data
Conversion of ASCII text number
to 32-bit floating-point data

Stored in D and D+1.
525

Floating-point Math Instructions Section 3-14
Storage of ASCII Text The following diagrams show how the ASCII text number is converted to float-
ing-point data. Different conversion methods are used for numbers stored with
decimal notation and scientific notation.

Flags

00

S

ASCII Character Storage

Up to 00 hex
(25 characters max.)

FVAL(449) converts the ASCII characters
starting with the leftmost byte of S and
continuing until a byte containing 00 hex is
reached. There must be a byte containing
00 hex within the first 25 bytes.

15 078

00SP SP

(20)

(20)

00

Decimal notation

Digit

25 characters max.

The 7th and higher digits are ignored.
(The sign, decimal point, and exponent
characters are not counted as digits.)

Any spaces (20 hex) or zeroes (30 hex)
before the first digit are ignored.

Positive number: Space (20 hex) or Plus sign (2B hex)
Negative number: Minus sign (2D hex)

Integer part
Sign

Fractional part

Decimal
point

Sign

15 078

(20)

00SP E

(20)

. (2E)

E (45)

00

Scientific notation

25 characters max.

The 7th and higher digits are ignored.
(The sign, decimal point, and exponent
characters are not counted as digits.)

Any spaces (20 hex) or zeroes (30 hex)
before the first digit are ignored.

Positive number: Space (20 hex) or Plus sign (2B hex)
Negative number: Minus sign (2D hex)

Positive: + (2B hex)
Negative: - (2D hex)

Exponential part

Sign

Fractional part

Decimal
point

Integer part

Sign

E (45)

Sign
Digit

Digit
Digit

Sign

Digit Digit

Name Label Operation

Error Flag ER ON if the digits (integer and fractional parts) in the source
data starting at S are not 30 to 39 hex (0 to 9).

ON if the first two digits of the exponential part do not con-
tain 45 and 2B hex (E+) or 45 and 2D hex (E-). (integer
and fractional parts) in the source data starting at S are
not 30 to 39 hex (0 to 9).
ON if there are two or more exponential parts in the
source data.

ON if the data is +∞ or –∞ after conversion.

ON is the are 0 characters in the text data.

ON if a byte containing 00 hex is not found within the first
25 characters.
OFF in all other cases.

Equals Flag = ON if the conversion result is 0.
OFF in all other cases.
526

Floating-point Math Instructions Section 3-14
Examples Converting ASCII Text in Decimal Notation to Floating-point Data

When CIO 0.00 is ON in the following example, FVAL(449) converts the spec-
ified decimal-notation ASCII text number in the source words starting at D0 to
floating-point data and writes the result to destination words D100 and D101.

Converting ASCII Text in Scientific Notation

When CIO 0.00 is ON in the following example, FVAL(449) converts the spec-
ified scientific-notation ASCII text number in the source words starting at D0
to floating-point data and writes the result to destination words D100 and
D101.

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0

0.00

15 0

D100
D101

20 (Space)
31 (1)
32 (2)
34 (4)
32 (2)
00

2D (−)
30 (0)
2E (.)
33 (3)
35 (5)
31 (1)

D0
D1
D2
D3
D4
D5

− 0 1 . 2 3 4 5 2 1

0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0
1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 0

15 0

FVAL
D0

D100

Conversion

Storage

Ignored

The 7th and higher digits are ignored.
(The sign, decimal point, and leading
zeroes/spaces are not counted.)

0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1
1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0

0.00

15 0

D100
D101

2E (.)
33 (3)
35 (5)
2D (−)
32 (2)
00

2D (−)
31 (1)
32 (2)
34 (4)
45 (E)
30 (0)
00

D0
D1
D2
D3
D4
D5
D6

−

0 1 0 0 0 0 1 0 1 0 1 0 1 1 1 1
1 0 1 1 1 1 0 0 0 1 0 0 1 0 1 0

15 0

FVAL
D0

D100

1 . 2 3 4 5 E - 0 2

20 (Space) Conversion

Storage

Ignored Ignored
527

Double-precision Floating-point Instructions Section 3-15
3-15 Double-precision Floating-point Instructions
The Double-precision Floating-point Instructions convert data and perform
floating-point arithmetic operations on double-precision floating-point data.

Data Format Floating-point data expresses real numbers using a sign, exponent, and man-
tissa. When data is expressed in floating-point format, the following formula
applies.

Real number = (–1)s 2e–1,023 (1.f)

s: Sign
e: Exponent
f: Mantissa

The floating-point data format conforms to the IEEE754 standards. Data is
expressed in 32 bits, as follows:

Instruction Mnemonic Function code Page

DOUBLE FLOATING TO 16-BIT FIXD 841 533

DOUBLE FLOATING TO 32-BIT FIXLD 842 535

16-BIT TO DOUBLE FLOATING DBL 843 536

32-BIT TO DOUBLE FLOATING DBLL 844 537

DOUBLE FLOATING-POINT ADD +D 845 539

DOUBLE FLOATING-POINT SUBTRACT –D 846 541

DOUBLE FLOATING-POINT MULTIPLY *D 847 543

DOUBLE FLOATING-POINT DIVIDE /D 848 545

DOUBLE DEGREES TO RADIANS RADD 849 547

DOUBLE RADIANS TO DEGREES DEGD 850 548

DOUBLE SINE SIND 851 550

DOUBLE COSINE COSD 852 551

DOUBLE TANGENT TAND 853 553

DOUBLE ARC SINE ASIND 854 554

DOUBLE ARC COSINE ACOSD 855 556

DOUBLE ARC TANGENT ATAND 856 558

DOUBLE SQUARE ROOT SQRTD 857 560

DOUBLE EXPONENT EXPD 858 561

DOUBLE LOGARITHM LOGD 859 563

DOUBLE EXPONENTIAL POWER PWRD 860 565

Double-precision Floating-point Symbol
Comparison Instructions

LD, AND,
OR
+
=D, <>D,
<D, <=D,
>D, or >=D

335 to 340 566

Data No. of bits Contents

s: sign 1 0: positive; 1: negative

63 62 52 51 0

Sign

s e f

Exponent Mantissa
528

Double-precision Floating-point Instructions Section 3-15
Number of Digits The number of effective digits for floating-point data is 53 bits for binary
(approximately 15 digits decimal).

Floating-point Data The following data can be expressed by floating-point data:

• –∞

• –1.79769313486232 x 10308 ≤ value ≤ –2.22507385850720 x 10–308

• 0

• 2.22507385850720 x 10–308 ≤ value ≤ 1.79769313486232 x 1030

• +∞
• Not a number (NaN)

Special Numbers The formats for NaN, ±∞, and 0 are as follows:

NaN*: e = 1,024 and f ≠ 0
+∞: e = 1,024, f = 0, and s= 0
–∞: e = 1,024, f = 0, and s= 1
0: e = 0 and f = 0

*NaN (not a number) is not a valid floating-point number. Executing Double-
precision Floating-point instructions will not result in NaN.

Writing Floating-point
Data

When double-precision floating-point is specified for the data format in the I/O
memory edit display in the CX-Programmer, standard decimal numbers input
in the display are automatically converted to the double-precision floating-
point format shown above (IEEE754-format) and written to I/O Memory. Data
written in the IEEE754-format is automatically converted to standard decimal
format when monitored on the display.

It is not necessary for the user to be aware of the IEEE754 data format when
reading and writing double-precision floating-point data. It is only necessary to
remember that double-precision floating point values occupy four words each.

e: exponent 11 The exponent (e) value ranges from 0 to 2,047.
The actual exponent is the value remaining after
1,023 is subtracted from e, resulting in a range
of –1,023 to 1,024. “e=0” and “e=2,047” express
special numbers.

f: mantissa 52 The mantissa portion of binary floating-point
data fits the format 2.0 > 1.f ≥1.0.

Data No. of bits Contents

−∞

−1 0

+∞

 1

−2.22507385850720×10-308

−1.79769313486232×10308

2.22507385850720×10-308

1.79769313486232×10308

06362 5251 161532314847
f

n

s e

n+3 n+2 n+1
529

Double-precision Floating-point Instructions Section 3-15
Numbers Expressed
as Floating-point
Values

The following types of floating-point numbers can be used.

Note A non-normalized number is one whose absolute value is too small to be
expressed as a normalized number. Non-normalized numbers have fewer sig-
nificant digits. If the result of calculations is a non-normalized number (includ-
ing intermediate results), the number of significant digits will be reduced.

Normalized Numbers Normalized numbers express real numbers. The sign bit will be 0 for a positive
number and 1 for a negative number.

The exponent (e) will be expressed from 1 to 2,046, and the real exponent will
be 1,023 less, i.e., –1,022 to 1,023.

The mantissa (f) will be expressed from 0 to (252 – 1), and it is assumed that,

in the real mantissa, bit 252 is 1 and the decimal point follows immediately
after it.

Normalized numbers are expressed as follows:

(–1)(sign s) x 2(exponent e)–1,023 x (1 + mantissa x 2–52)

Example

Sign: –
Exponent: 1,024 – 1,023 = 1

Mantissa: 1 + (251 + 250) x 2–52 = 1 + (2–1 + 2–2) = 1 + (0.75) = 1.75

Value: –1.75 x 21 = –3.5

Non-normalized numbers Non-normalized numbers express real numbers with very small absolute val-
ues. The sign bit will be 0 for a positive number and 1 for a negative number.

The exponent (e) will be 0, and the real exponent will be –1,022.

The mantissa (f) will be expressed from 1 to (252 – 1), and it is assumed that,

in the real mantissa, bit 252 is 0 and the decimal point follows immediately
after it.

Non-normalized numbers are expressed as follows:

(–1)(sign s) x 2–1,022 x (mantissa x 2–52)

Example

Sign: –
Exponent: –1,022

Mantissa: 0 + (251 + 250) x 2–52 = 0 + (2–1 + 2–2) = 0 + (0.75) = 0.75

Value: –0.75 x 2–1,022 = 1.668805 x 10–308

Mantissa (f) Exponent (e)

0 Not 0 and
not all 1’s (1,024)

All 1’s (1,024)

0 0 Normalized number Infinity

Not 0 Non-normalized
number

NaN

0 0

1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

63 62 52 51 33

32 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6463 5152 33

32 0
530

Double-precision Floating-point Instructions Section 3-15
Zero Values of +0.0 and –0.0 can be expressed by setting the sign to 0 for positive
or 1 for negative. The exponent and mantissa will both be 0. Both +0.0 and –
0.0 are equivalent to 0.0. Refer to Floating-point Arithmetic Results, below, for
differences produced by the sign of 0.0.

Infinity Values of +∞ and –∞ can be expressed by setting the sign to 0 for positive or 1

for negative. The exponent will be 2,047 (211 – 1) and the mantissa will be 0.

NaN NaN (not a number) is produced when the result of calculations, such as 0.0/
0.0, ∞/∞, or ∞–∞, does not correspond to a number or infinity. The exponent

will be 255 (28 – 1) and the mantissa will be not 0.

Note There are no specifications for the sign of NaN or the value of the mantissa
field (other than to be not 0).

Floating-point Arithmetic Results

Rounding Results The following methods will be used to round results when the number of digits
in the accurate result of floating-point arithmetic exceeds the significant digits
of internal processing expressions.

If the result is close to one of two internal floating-point expressions, the
closer expression will be used. If the result is midway between two internal
floating-point expressions, the result will be rounded so that the last digit of
the mantissa is 0.

Overflows, Underflows,
and Illegal Calculations

Overflows will be output as either positive or negative infinity, depending on
the sign of the result. Underflows will be output as either positive or negative
zero, depending on the sign of the result.

Illegal calculations will result in NaN. Illegal calculations include adding infinity
to a number with the opposite sign, subtracting infinity from a number with the
opposite sign, multiplying zero and infinity, dividing zero by zero, or dividing
infinity by infinity.

The value of the result may not be correct if an overflow occurs when convert-
ing a floating-point number to an integer.

Precautions in Handling
Special Values

The following precautions apply to handling zero, infinity, and NaN.

• The sum of positive zero and negative zero is positive zero.

• The difference between zeros of the same sign is positive zero.

• If any operand is a NaN, the results will be a NaN.

• Positive zero and negative zero are treated as equivalent in comparisons.

• Comparison or equivalency tests on one or more NaN will always be true
for != and always be false for all other instructions.

Double-precision
Floating-point
Calculation Results

When the absolute value of the result is greater than the maximum value that
can be expressed for floating-point data, the Overflow Flag will turn ON and
the result will be output as ±∞. If the result is positive, it will be output as +∞; if
negative, then –∞.

The Equals Flag will only turn ON when both the exponent (e) and the man-
tissa (f) are zero after a calculation. A calculation result will also be output as
zero when the absolute value of the result is less than the minimum value that
can be expressed for floating-point data. In that case the Underflow Flag will
turn ON.
531

Double-precision Floating-point Instructions Section 3-15
Comparing Single-
precision and Double-
precision
Calculations

This example shows the differences in between single-precision and double-
precision calculations when the following vector expressed in polar coordi-
nates is converted to rectangular coordinates A (x,y).

In this example, the 4-digit BCD angle (θ, in degrees) is read from D0 and the
4-digit BCD distance (r) is read from D1000.

r = re
j θ

360
π

Y

0

r

θ

X

r
A (x, y) = A (rcos θ,rsin θ)

0.00
BIN

D0
D100

BIN
D1000
D1000

SIN
D200
D400

COS
D200
D300

END

*F
D1200

D300
D10000

*F
D1200

D400
D20000

FLT
D100
D200

FLT
D1000
D1200

RAD
D200
D200

0.00
BIN

D0
D100

BIN
D1000
D1000

SIND
D200
D400

COSD
D200
D300

END

*D
D1200

D300
D10000

*D
D1200

D400
D20000

DBL
D100
D200

DBL
D1000
D1200

RADD
D200
D200

• Ladder Program for the
Single-precision Calculation

• Ladder Program for the
Double-precision Calculation
532

Double-precision Floating-point Instructions Section 3-15
Comparison of the Calculation Results

When the real-number results are compared, it is clear that the double-preci-
sion calculation yields a more accurate result.

3-15-1 DOUBLE FLOATING TO 16-BIT: FIXD(841)
Purpose Converts a double-precision (64-bit) floating-point value to 16-bit signed

binary data and places the result in the specified result word.

Ladder Symbol

Variations

1. This program section converts the BCD data
to single-precision floating-point data (32 bits,
IEEE754-format).

a. The BIN(023) instructions convert the
BCD data to binary and the FLT(452) in-
structions convert the binary data to sin-
gle-precision floating-point data.

b. The floating-point data for the angle θ is
output to D200 and D201.

c. RAD(458) converts the angle data in
D200 and D201 to radians.

d. The floating-point data for the radius r is
output to D1200 and D1201.

2. This program section calculates the sin θ and
the cos θ as single-precision floating-point val-
ues.

a. The value for cos θ is output to D300 and
D301.

b. The value for sin θ is output to D400 and
D401.

3. This program section calculates x (r × cos θ)
and y (r × sin θ).

a. The value for x (r × cos θ) is output to
D10000 and D10001.

b. The value for y (r × sin θ) is output to
D20000 and D20001.

Coordinate Floating-point
number

Real number

x 4116 59CF 3.4202015399933

y 405A E495 9.3969259262085

1. This program section converts the BCD data
to double-precision floating-point data (64
bits, IEEE754-format).

a. The BIN(023) instructions convert the
BCD data to binary and the DBL(843) in-
structions convert the binary data to dou-
ble-precision floating-point data.

b. The floating-point data for the angle θ is
output to words D200 to D203.

c. RADD(849) converts the angle data in
words D200 to D203 to radians.

d. The floating-point data for the radius r is
output to words D1200 to D1203.

2. This program section calculates the sin θ and
the cos θ as double-precision floating-point
values.

a. The value for cos θ is output to words
D300 to D303.

b. The value for sin θ is output to words D400
and D403.

3. This program section calculates x (r × cos θ)
and y (r × sin θ).

a. The value for x (r × cos θ) is output to
words D10000 to D10003.

b. The value for y (r × sin θ) is output to
D20000 and D20003.

Coordinate Floating-point
number

Real number

x 4022 CB39
E973 5C32

3.4202014332567

y 400B 5C92
91AC 8EEB

9.3969262078591

FIXD(841)

S

D

S: First source word
D: Destination word

Variations Executed Each Cycle for ON Condition FIXD(841)

Executed Once for Upward Differentiation @FIXD(841)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
533

Double-precision Floating-point Instructions Section 3-15
Applicable Program Areas

Operand Specifications

Description FIXD(841) converts the integer portion of the double-precision (64-bit) float-
ing-point number in words S to S+3 (IEEE754-format) to 16-bit signed binary
data and places the result in D.

Only the integer portion of the floating-point data is converted, and the fraction
portion is truncated. The integer portion of the floating-point data must be
within the range of –32,768 to 32,767.

Example conversions:
A floating-point value of 3.5 is converted to 3.
A floating-point value of –3.5 is converted to –3.

Flags

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140 CIO 0 to CIO 6143

Work Area W0 to W508 W0 to W511

Holding Bit Area H0 to H508 H0 to H511

Auxiliary Bit Area A0 to A956 A448 to A959

Timer Area T0000 to T4092 T0000 to T4095

Counter Area C0000 to C4092 C0000 to C4095

DM Area D0 to D32764 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

S+3 S

D

S+1S+2
Floating-point data (64 bits)

Signed binary data (16 bits)

Name Label Operation

Error Flag ER ON if the source data (S to S+3) is not a number (NaN).

ON if the integer portion of the source data (S to S+3) is
not within the range of –32,768 to 32,767.
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of the result is ON.
OFF in all other cases.
534

Double-precision Floating-point Instructions Section 3-15
3-15-2 DOUBLE FLOATING TO 32-BIT: FIXLD(842)
Purpose Converts a double-precision (64-bit) floating-point value to 32-bit signed

binary data and places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description FIXLD(842) converts the integer portion of the double-precision (64-bit) float-
ing-point number in words S to S+3 (IEEE754-format) to 32-bit signed binary
data and places the result in D+1 and D.

Only the integer portion of the floating-point data is converted, and the fraction
portion is truncated. (The integer portion of the floating-point data must be
within the range of –2,147,483,648 to 2,147,483,647.)

FIXDL(842)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition FIXLD(842)

Executed Once for Upward Differentiation @FIXLD(842)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140 CIO 0 to CIO 6142

Work Area W0 to W508 W0 to W510

Holding Bit Area H0 to H508 H0 to H510

Auxiliary Bit Area A0 to A956 A448 to A958

Timer Area T0000 to T4092 T0000 to T4094

Counter Area C0000 to C4092 C0000 to C4094

DM Area D0 to D32764 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

S+3

D+1

S

D

S+2 S+1
Floating-point data (64 bits)

Signed binary data (32 bits)
535

Double-precision Floating-point Instructions Section 3-15
Example conversions:
A floating-point value of 2,147,483,640.5 is converted to 2,147,483,640.
A floating-point value of –2,147,483,640.5 is converted to –2,147,483,640.

Flags

Precautions The content of words S to S+3 must be floating-point data and the integer por-
tion must be in the range of –2,147,483,648 to 2,147,483,647.

3-15-3 16-BIT TO DOUBLE FLOATING: DBL(843)
Purpose Converts a 16-bit signed binary value to double-precision (64-bit) floating-

point data and places the result in the specified destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the data in words S to S+3 is not a number (NaN).

ON if the integer portion of words S to S+3 is not within
the range of –2,147,483,648 to 2,147,483,647.
OFF in all other cases.

Equals Flag = ON if the result is 0000 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 of D+1 is ON after execution.
OFF in all other cases.

DBL(843)

S

D

S: Source word
D: First destination word

Variations Executed Each Cycle for ON Condition DBL(843)

Executed Once for Upward Differentiation @DBL(843)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6140

Work Area W0 to W511 W0 to W508

Holding Bit Area H0 to H511 H0 to H508

Auxiliary Bit Area A0 to A959 A448 to A956

Timer Area T0000 to T4095 T0000 to T4092

Counter Area C0000 to C4095 C0000 to C4092

DM Area D0 to D32767 D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) ---

Data Registers DR0 to DR15 ---
536

Double-precision Floating-point Instructions Section 3-15
Description DBL(843) converts the 16-bit signed binary value in S to double-precision (64-
bit) floating-point data (IEEE754-format) and places the result in words D to
D+3. A single 0 is added after the decimal point in the floating-point result.

Only values within the range of –32,768 to 32,767 can be specified for S. To
convert signed binary data outside of that range, use DBLL(844).

Example conversions:
A signed binary value of 3 is converted to 3.0.
A signed binary value of –3 is converted to –3.0.

Flags

Precautions The content of S must contain signed binary data with a (decimal) value in the
range of –32,768 to 32,767.

3-15-4 32-BIT TO DOUBLE FLOATING: DBLL(844)
Purpose Converts a 32-bit signed binary value to double-precision (64-bit) floating-

point data and places the result in the specified destination words.

Ladder Symbol

Variations

Applicable Program Areas

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

D+1

S

DD+2D+3

Signed binary data (16 bits)

Floating-point data (64 bits)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Negative Flag N ON if the result is negative.

OFF in all other cases.

DBLL(844)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition DBLL(844)

Executed Once for Upward Differentiation @DBLL(844)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
537

Double-precision Floating-point Instructions Section 3-15
Operand Specifications

Description DBLL(844) converts the 32-bit signed binary value in S+1 and S to double-
precision (64-bit) floating-point data (IEEE754-format) and places the result in
words D to D+3. A single 0 is added after the decimal point in the floating-
point result.

Signed binary data within the range of –2,147,483,648 to 2,147,483,647 can
be specified for S+1 and S. The floating point value has 24 significant binary
digits (bits). The result will not be exact if a number greater than 16,777,215
(the maximum value that can be expressed in 24-bits) is converted by
DBLL(844).

Example Conversions:

A signed binary value of 16,777,215 is converted to 16,777,215.0.
A signed binary value of –16,777,215 is converted to –15,777,215.0.

Flags

Precautions The result will not be exact if a number with an absolute value greater than
16,777,215 (the maximum value that can be expressed in 24-bits) is con-
verted.

Area S D

CIO Area CIO 0 to CIO 6142 CIO 0 to CIO 6140

Work Area W0 to W510 W0 to W508

Holding Bit Area H0 to H510 H0 to H508

Auxiliary Bit Area A0 to A958 A448 to A956

Timer Area T0000 to T4094 T0000 to T4092

Counter Area C0000 to C4094 C0000 to C4092

DM Area D0 to D32766 D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #00000000 to #FFFFFFFF
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

S+1

D+1

S

DD+2D+3

Signed binary data (32 bits)

Floating-point data (64 bits)

Name Label Operation

Error Flag ER OFF

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Negative Flag N ON if the result is negative.
OFF in all other cases.
538

Double-precision Floating-point Instructions Section 3-15
3-15-5 DOUBLE FLOATING-POINT ADD: +D(845)
Purpose Adds two double-precision (64-bit) floating-point numbers and places the

result in the specified destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

+D(845)

D

Au

Ad

Au: First augend word
Ad: First addend word
D: First destination word

Variations Executed Each Cycle for ON Condition +D(845)

Executed Once for Upward Differentiation @+D(845)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Au Ad D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
539

Double-precision Floating-point Instructions Section 3-15
Description +D(845) adds the double-precision (64-bit) floating-point number in words Ad
to Ad+3 the double-precision (64-bit) floating-point number in words Au to
Au+3 and places the result in words D to D+3. (The floating point data must
be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of augend and addend data will produce the results
shown in the following table.

Note (1) The results could be zero (including underflows), a numeral, +∞, or –∞.

(2) The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The augend (Au to Au+3) and Addend (Ad to Ad+3) data must be in IEEE754
floating-point data format.

Augend

Addend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞
Numeral Numeral See note 1. +∞ –∞

+∞ +∞ +∞ +∞ See note 2.

–∞ –∞ –∞ See note 2. –∞
NaN See note 2.

S1+3

S2+3
+

S1

S2

D+3 D

S1+1

S2+1

D+1

S1+2

S2+2

D+2

Augend (floating-point data, 64-bits)

Addend (floating-point data, 64-bits)

Result (floating-point data, 64-bits)

Name Label Operation

Error Flag ER ON if the augend or addend data is not recognized as
floating-point data.
ON if the augend or addend data is not a number (NaN).

ON if +∞ is to –∞.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.
540

Double-precision Floating-point Instructions Section 3-15
3-15-6 DOUBLE FLOATING-POINT SUBTRACT: –D(846)
Purpose Subtracts one double-precision (64-bit) floating-point number from another

and places the result in the specified destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description –D(846) subtracts the double-precision (64-bit) floating-point number in words
Su to Su+3 from the double-precision (64-bit) floating-point number in Mi to
Mi+3 and places the result in words D to D+3. (The floating point data must be
in IEEE754 format.)

–D(846)

D

Mi

Su

Mi: First Minuend word
Su: First Subtrahend word
D: First destination word

Variations Executed Each Cycle for ON Condition –D(846)

Executed Once for Upward Differentiation @–D(846)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Mi Su D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
541

Double-precision Floating-point Instructions Section 3-15
If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of minuend and subtrahend data will produce the
results shown in the following table.

Note (1) The results could be zero (including underflows), a numeral, +∞, or –∞.

(2) The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Minuend (Mi to Mi+3) and Subtrahend (Su to Su+3) data must be in
IEEE754 floating-point data format.

Minuend

Subtrahend 0 Numeral +∞ –∞ NaN

0 0 Numeral +∞ –∞
Numeral Numeral See note 1. +∞ –∞

+∞ –∞ –∞ See note 2. –∞
–∞ +∞ +∞ +∞ See note 2.

NaN See note 2.

S1+1

S2+1
−

S1

S2

D+1 D

S1+2

S2+2

D+2

S1+3

S2+3

D+3

Minuend (floating-point data, 64-bits)

Subtrahend (floating-point data, 64-bits)

Result (floating-point data, 64-bits)

Name Label Operation

Error Flag ER ON if the minuend or subtrahend data is not recognized
as floating-point data.
ON if the minuend or subtrahend is not a number (NaN).

ON if +∞ is subtracted from +∞.
ON if –∞ is subtracted from –∞.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
542

Double-precision Floating-point Instructions Section 3-15
3-15-7 DOUBLE FLOATING-POINT MULTIPLY: *D(847)
Purpose Multiplies two double-precision (64-bit) floating-point numbers and places the

result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

*D(847)

D

Md

Mr

Md: First Multiplicand word
Mr: First Multiplier word
D: First destination word

Variations Executed Each Cycle for ON Condition *D(847)

Executed Once for Upward Differentiation @*D(847)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Md Mr D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
543

Double-precision Floating-point Instructions Section 3-15
Description *D(847) multiplies the double-precision (64-bit) floating-point number in words
Md to Md+3 by the double-precision (64-bit) floating-point number in words Mr
to Mr+3 and places the result in words D to D+3. (The floating point data must
be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of multiplicand and multiplier data will produce the
results shown in the following table.

Note (1) The results could be zero (including underflows), a numeral, +∞, or –∞.

(2) The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Multiplicand (Md to Md+3) and Multiplier (Mr to Mr+3) data must be in
IEEE754 floating-point data format.

Multiplicand

Multiplier 0 Numeral +∞ –∞ NaN

0 0 0 See note 2. See note 2.

Numeral 0 See note 1. +/–∞ +/–∞
+∞ See note 2. +/–∞ +∞ –∞
–∞ See note 2 +/–∞ –∞ +∞

NaN See note 2.

S1+1

S2+1
×

S1

S2

D+1 D

S1+2

S2+2

D+2

S1+3

S2+3

D+3

Multiplicand (floating-point data, 64-bits)

Multiplier (floating-point data, 64-bits)

Result (floating-point data, 64-bits)

Name Label Operation

Error Flag ER ON if the multiplicand or multiplier data is not recognized
as floating-point data.
ON if the multiplicand or multiplier is not a number (NaN).

ON if +∞ and 0 are multiplied.
ON if –∞ and 0 are multiplied.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
544

Double-precision Floating-point Instructions Section 3-15
3-15-8 DOUBLE FLOATING-POINT DIVIDE: /D(848)
Purpose Divides one double-precision (64-bit) floating-point number by another and

places the result in the specified destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

/D(848)

D

Dd

Dr

Dd: First Dividend word
Dr: First Divisor word
D: First destination word

Variations Executed Each Cycle for ON Condition /D(848)

Executed Once for Upward Differentiation @/D(848)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area Dd Dr D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
545

Double-precision Floating-point Instructions Section 3-15
Description /D(848) divides the double-precision (64-bit) floating-point number in words
Dd to Dd+3 by the double-precision (64-bit) floating-point number in words Dr
to Dr+3 and places the result in words D to D+3. (The floating point data must
be in IEEE754 format.)

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

The various combinations of dividend and divisor data will produce the results
shown in the following table.

Note (1) The results could be zero (including underflows), a numeral, +∞, or –∞.

(2) The results will be zero for underflows.

(3) The Error Flag will be turned ON and the instruction will not be executed.

Flags

Precautions The Dividend (Dd to Dd+3) and Divisor (Dr to Dr+3) data must be in IEEE754
floating-point data format.

Dividend

Divisor 0 Numeral +∞ –∞ NaN

0 See note 3. +/–∞ +∞ –∞
Numeral 0 See note 1. +/–∞ +/–∞

+∞ 0 See note 2. See note 3. See note 3.

–∞ 0 See note 2. See note 3. See note 3.

NaN See note 3.

S1+1

S2+1
÷

S1

S2

D+1 D

S1+2

S2+2

D+2

S1+3

S2+3

D+3

Dividend (floating-point data, 64-bits)

Divisor (floating-point data, 64-bits)

Result (floating-point data, 64-bits)

Name Label Operation

Error Flag ER ON if the dividend or divisor data is not recognized as
floating-point data.
ON if the dividend or divisor is not a number (NaN).
ON if the dividend and divisor are both 0.

ON if the dividend and divisor are both +∞ or –∞.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.
546

Double-precision Floating-point Instructions Section 3-15
3-15-9 DOUBLE DEGREES TO RADIANS: RADD(849)
Purpose Converts a double-precision (64-bit) floating-point number from degrees to

radians and places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description RADD(849) converts the double-precision (64-bit) floating-point number in
words S to S+3 from degrees to radians and places the result in words D to
D+3. (The floating point source data must be in IEEE754 format.)

Degrees are converted to radians by means of the following formula:

Degrees × π/180 = radians

RADD(849)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition RADD(849)

Executed Once for Upward Differentiation @RADD(849)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

S+1

D+1

S

D

S+2

D+2

S+3

D+3

Source (degrees, 64-bit floating-point data)

Result (radians, 64-bit floating-point data)
547

Double-precision Floating-point Instructions Section 3-15
If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-15-10 DOUBLE RADIANS TO DEGREES: DEGD(850)
Purpose Converts a double-precision (64-bit) floating-point number from radians to

degrees and places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.

OFF in all other cases.

DEGD(850)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition DEGD(850)

Executed Once for Upward Differentiation @DEGD(850)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764
548

Double-precision Floating-point Instructions Section 3-15
Description DEGD(850) converts the double-precision (64-bit) floating-point number in
words S to S+3 from radians to degrees and places the result in words D to
D+3. (The floating point source data must be in IEEE754 format.)

Radians are converted to degrees by means of the following formula:

Radians × 180/π = degrees

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D

S+1

D+1

S

D

S+2

D+2

S+3

D+3

Source (radians, 64-bit floating-point data)

Result (degrees, 64-bit floating-point data)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.
549

Double-precision Floating-point Instructions Section 3-15
3-15-11 DOUBLE SINE: SIND(851)
Purpose Calculates the sine of a double-precision (64-bit) floating-point number (in

radians) and places the result in the specified destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description SIND(851) calculates the sine of the angle (in radians) expressed as a dou-
ble-precision (64-bit) floating-point value in words S to S+3 and places the
result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in words S to S+3. If
the angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting between
degrees and radians, see 3-15-9 DOUBLE DEGREES TO RADIANS:
RADD(849) or 3-15-10 DOUBLE RADIANS TO DEGREES: DEGD(850).

The following diagram shows the relationship between the angle and result.

SIND(851)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition SIND(851)

Executed Once for Upward Differentiation @SIND(851)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

S+1 S) →SIN(S+3 S+2 D+1 DD+3 D+2
550

Double-precision Floating-point Instructions Section 3-15
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-15-12 DOUBLE COSINE: COSD(852)
Purpose Calculates the cosine of a double-precision (64-bit) floating-point number (in

radians) and places the result in the specified destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

R S: Angle (radian) data
R: Result (sine)

Name Label Operation
Error Flag ER ON if the source data is not a number (NaN).

ON if the absolute value of the source data exceeds
65,535.

OFF in all other cases.
Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.
Overflow Flag OF Unchanged
Underflow Flag UF Unchanged
Negative Flag N ON if the result is negative.

OFF in all other cases.

COSD(852)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition COSD(852)

Executed Once for Upward Differentiation @COSD(852)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764
551

Double-precision Floating-point Instructions Section 3-15
Description COSD(852) calculates the cosine of the angle (in radians) expressed as a
double-precision (64-bit) floating-point value in words S to S+3 and places the
result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in words S to S+3. If
the angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting between
degrees and radians, see 3-15-9 DOUBLE DEGREES TO RADIANS:
RADD(849) or 3-15-10 DOUBLE RADIANS TO DEGREES: DEGD(850).

The following diagram shows the relationship between the angle and result.

Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S) →COS(S+3 S+2 D+1 DD+3 D+2

R S: Angle (radian) data
R: Result (cosine)

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF Unchanged

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.

OFF in all other cases.
552

Double-precision Floating-point Instructions Section 3-15
3-15-13 DOUBLE TANGENT: TAND(853)
Purpose Calculates the tangent of a double-precision (64-bit) floating-point number (in

radians) and places the result in the specified destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description TAND(853) calculates the tangent of the angle (in radians) expressed as a
double-precision (64-bit) floating-point value in words S to S+3 and places the
result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

Specify the desired angle (–65,535 to 65,535) in radians in words S to S+3. If
the angle is outside of the range –65,535 to 65,535, an error will occur and the
instruction will not be executed. For information on converting between
degrees and radians, see 3-15-9 DOUBLE DEGREES TO RADIANS:
RADD(849) or 3-15-10 DOUBLE RADIANS TO DEGREES: DEGD(850).

TAND(853)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition TAND(853)

Executed Once for Upward Differentiation @TAND(853)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

S+1 S) →TAN(S+3 S+2 D+1 DD+3 D+2
553

Double-precision Floating-point Instructions Section 3-15
If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

The following diagram shows the relationship between the angle and result.

Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-15-14 DOUBLE ARC SINE: ASIND(854)
Purpose Calculates the arc sine of a double-precision (64-bit) floating-point number

and places the result in the specified destination words. (The arc sine function
is the inverse of the sine function; it returns the angle that produces a given
sine value between –1 and 1.)

Ladder Symbol

R S: Angle (radian) data

R: Result (tangent)

Name Label Operation

Error Flag ER ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds
65,535.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision (64-bit) floating-point
value.

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.
OFF in all other cases.

ASIND(854)

S

D

S: First source word
D: First destination word
554

Double-precision Floating-point Instructions Section 3-15
Variations

Applicable Program Areas

Operand Specifications

Description ASIND(854) computes the angle (in radians) for a sine value expressed as a
double-precision (64-bit) floating-point number in words S to S+3 and places
the result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words D to D+3 as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

Variations Executed Each Cycle for ON Condition ASIND(854)

Executed Once for Upward Differentiation @ASIND(854)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

S+1 S) →SIN–1(S+3 S+2 D+1 DD+3 D+2
555

Double-precision Floating-point Instructions Section 3-15
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-15-15 DOUBLE ARC COSINE: ACOSD(855)
Purpose Calculates the arc cosine of a double-precision (64-bit) floating-point number

and places the result in the specified result words. (The arc cosine function is
the inverse of the cosine function; it returns the angle that produces a given
cosine value between –1 and 1.)

Ladder Symbol

Variations

Applicable Program Areas

R

S: Input data (sine value)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).

ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF Unchanged

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.

OFF in all other cases.

ACOSD(855)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition ACOSD(855)

Executed Once for Upward Differentiation @ACOSD(855)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
556

Double-precision Floating-point Instructions Section 3-15
Operand Specifications

Description ACOSD(855) computes the angle (in radians) for a cosine value expressed as
a double-precision (64-bit) floating-point number in words S to S+3 and places
the result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

The source data must be between –1.0 and 1.0. If the absolute value of the
source data exceeds 1.0, an error will occur and the instruction will not be
executed.

The result is output to words D to D+3 as an angle (in radians) within the
range of 0 to π.

The following diagram shows the relationship between the input data and
result.

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

S+1 S) →COS–1(S+3 S+2 D+1 DD+3 D+2

R
S: Input data (cosine value)
R: Result (radians)
557

Double-precision Floating-point Instructions Section 3-15
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-15-16 DOUBLE ARC TANGENT: ATAND(856)
Purpose Calculates the arc tangent of a double-precision (64-bit) floating-point number

and places the result in the specified result words. (The arc tangent function is
the inverse of the tangent function; it returns the angle that produces a given
tangent value.)

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
ON if the absolute value of the source data exceeds 1.0.
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF Unchanged

Underflow Flag UF Unchanged

Negative Flag N Unchanged

ATAND(856)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition ATAND(856)

Executed Once for Upward Differentiation @ATAND(856)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---
558

Double-precision Floating-point Instructions Section 3-15
Description ATAND(856) computes the angle (in radians) for a tangent value expressed as
a double-precision (64-bit) floating-point number in words S to S+3 and places
the result in D to D+3.
(The floating point source data must be in IEEE754 format.)

The result is output to words D to D+3 as an angle (in radians) within the
range of –π/2 to π/2.

The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S) →TAN–1(S+3 S+2 D+1 DD+3 D+2

R

S: Input data (tangent)
R: Result (radians)

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is not a number (NaN).

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF Unchanged

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.
OFF in all other cases.
559

Double-precision Floating-point Instructions Section 3-15
3-15-17 DOUBLE SQUARE ROOT: SQRTD(857)
Purpose Calculates the square root of a double-precision (64-bit) floating-point number

and places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description SQRTD(857) calculates the square root of the double-precision (64-bit) float-
ing-point number in words S to S+3 and places the result in words D to D+3.
(The floating point source data must be in IEEE754 format.)

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

SQRTD(857)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition SQRTD(857)

Executed Once for Upward Differentiation @SQRTD(857)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

S+1 S →S+3 S+2 D+1 DD+3 D+2
560

Double-precision Floating-point Instructions Section 3-15
The following diagram shows the relationship between the input data and
result.

Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-15-18 DOUBLE EXPONENT: EXPD(858)
Purpose Calculates the natural (base e) exponential of a double-precision (64-bit) float-

ing-point number and places the result in the specified result words.

Ladder Symbol

Variations

Applicable Program Areas

R

S: Input data
R: Result

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is negative.
ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision (64-bit) floating-point
value.

Underflow Flag UF Unchanged

Negative Flag N Unchanged

EXPD(858)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition EXPD(858)

Executed Once for Upward Differentiation @EXPD(858)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
561

Double-precision Floating-point Instructions Section 3-15
Operand Specifications

Description EXPD(858) calculates the natural (base e) exponential of the double-precision
(64-bit) floating-point number in words S to S+3 and places the result in words

D to D+3. In other words, EXP(467) calculates ex (x = source) and places the
result in words D to D+3.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON and the
result will be output as 0.

Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

S+1 S
→

S+3 S+2
D+1 DD+3 D+2e

R

S: Input data
R: Result
562

Double-precision Floating-point Instructions Section 3-15
Flags

Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-15-19 DOUBLE LOGARITHM: LOGD(859)
Purpose Calculates the natural (base e) logarithm of a double-precision (64-bit) float-

ing-point number and places the result in the specified destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.

ON if the source data is not a number (NaN).
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision (64-bit) floating-point
value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision (64-bit) floating-point
value.

Negative Flag N Unchanged

LOGD(859)

S

D

S: First source word
D: First destination word

Variations Executed Each Cycle for ON Condition LOGD(859)

Executed Once for Upward Differentiation @LOGD(859)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---
563

Double-precision Floating-point Instructions Section 3-15
Description LOGD(859) calculates the natural (base e) logarithm of the double-precision
(64-bit) floating-point number in words S to S+3 and places the result in words
D to D+3.

The source data must be positive; if it is negative, an error will occur and the
instruction will not be executed.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON and the
result will be output as ±∞.

Note The constant e is 2.718282.

The following diagram shows the relationship between the input data and
result.

Flags

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

S+1 S →S+3 S+2 D+1 DD+3 D+2loge

R

S: Input data
R: Result

Name Label Operation

Error Flag ER ON if the source data is not recognized as floating-point
data.
ON if the source data is negative.
ON if the source data is not a number (NaN).

OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.

OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision (64-bit) floating-point
value.
564

Double-precision Floating-point Instructions Section 3-15
Precautions The source data in words S to S+3 must be in IEEE754 floating-point data for-
mat.

3-15-20 DOUBLE EXPONENTIAL POWER: PWRD(860)
Purpose Raises a double-precision (64-bit) floating-point number to the power of

another double-precision (64-bit) floating-point number.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Underflow Flag UF Unchanged

Negative Flag N ON if the result is negative.
OFF in all other cases.

Name Label Operation

PWRD(860)

B

E

D

B: First base word
E: First exponent word
D: First destination word

Variations Executed Each Cycle for ON Condition PWRD(860)

Executed Once for Upward Differentiation @PWRD(860)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B E D

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956 A448 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
565

Double-precision Floating-point Instructions Section 3-15
Description PWRD(860) raises the double-precision (64-bit) floating-point number in
words B to B+3 to the power of the double-precision (64-bit) floating-point

number in words E to E+3. In other words, PWR(840) calculates XY (X = con-
tent of B to B+3; Y = content of E to E+3).

For example, when the base words (B to B+3) contain 3.1 and the exponent

words (E to E+3) contain 3, the result is 3.13 or 29.791.

If the absolute value of the result is greater than the maximum value that can
be expressed as floating-point data, the Overflow Flag will turn ON.

If the absolute value of the result is less than the minimum value that can be
expressed as floating-point data, the Underflow Flag will turn ON.

Flags

Precautions The base data (B to B+3) and the exponent data (E to E+3) must be in
IEEE754 floating-point data format.

3-15-21 Double-precision Floating-point Input Instructions
Purpose These input comparison instructions compare two double-precision floating

point values (64-bit IEEE754 format) and create an ON execution condition
when the comparison condition is true.

Ladder Symbol

→S1+1 S1S1+3 S1+2 D+1 DD+3 D+2

S2+1 S2S2+3 S2+2

Exponent data

Base data

Name Label Operation

Error Flag ER ON if the base data (B to B+3) or exponent data (E to
E+3) is not recognized as floating-point data.

ON if the base data (B to B+3) or exponent data (E to
E+3) is not a number (NaN).
ON if the base data (B to B+3) is 0 and the exponent data
(E to E+3) is less than 0. (Division by 0)
ON if the base data (B to B+3) is negative and the expo-
nent data (E to E+3) is non-integer. (Root of a negative
number)
OFF in all other cases.

Equals Flag = ON if both the exponent and mantissa of the result are 0.
OFF in all other cases.

Overflow Flag OF ON if the absolute value of the result is too large to be
expressed as a double-precision floating-point value.

Underflow Flag UF ON if the absolute value of the result is too small to be
expressed as a double-precision floating-point value.

Negative Flag N ON if the result is negative.
OFF in all other cases.

S1

S2

S1: Comparison data 1

S2: Comparison data 2

Symbol & options
566

Double-precision Floating-point Instructions Section 3-15
Variations

Applicable Program Areas

Operand Specifications

Description The input comparison instructions compare the data specified in S1 and S2 as
double-precision floating point values (64-bit IEEE754 data) and creates an
ON execution condition when the comparison condition is true. When the data
is stored in words, S1 and S2 specify the first of four words containing the 64-
bit data. The 64-bit floating-point data cannot be input as constants.

Inputting the Instructions

The input comparison instructions are treated just like the LD, AND, and OR
instructions to control the execution of subsequent instructions.

Variations Creates ON Each Cycle Comparison is True Input compari-
son instruction

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S1 S2

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956

Timer Area T0000 to T4092

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Input type Operation

LD The instruction can be connected directly to the left bus bar.

AND The instruction cannot be connected directly to the left bus bar.

OR The instruction can be connected directly to the left bus bar.
567

Double-precision Floating-point Instructions Section 3-15
Options

With the three input types and six symbols, there are 18 different possible
combinations.

Summary of Input Comparison Instructions

The following table shows the function codes, mnemonics, names, and func-
tions of the 18 single-precision floating-point input comparison instructions.
(C1=S1+3, S1+2, S1+1, S1 and C2=S2+3, S2+2, S2+1, S2.)

Symbol Option (data format)

= (Equal)

< > (Not equal)
< (Less than)
<= (Less than or equal)

> (Greater than)
>= (Greater than or equal)

D: Double-precision floating-point data

Code Mnemonic Name Function

335 LD=D LOAD DOUBLE FLOATING EQUAL True if
C1 = C2AND=D AND DOUBLE FLOATING EQUAL

OR=D OR DOUBLE FLOATING EQUAL

336 LD<>D LOAD DOUBLE FLOATING NOT EQUAL True if
C1 ≠ C2AND<>D AND DOUBLE FLOATING NOT EQUAL

OR<>D OR DOUBLE FLOATING NOT EQUAL

337 LD<D LOAD DOUBLE FLOATING LESS THAN True if
C1 < C2AND<D AND DOUBLE FLOATING LESS THAN

OR<D OR DOUBLE FLOATING LESS THAN

338 LD<=D LOAD DOUBLE FLOATING LESS THAN OR
EQUAL

True if
C1 ≤ C2

AND<=D AND DOUBLE FLOATING LESS THAN OR EQUAL

OR<=D OR DOUBLE FLOATING LESS THAN OR EQUAL

<D

<D

<D

LD connection

AND connection

OR connection

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.

ON execution condition when
comparison result is true.
568

Double-precision Floating-point Instructions Section 3-15
Flags In this table, C1 = content of S1 to S1+3 and C2 = content of S2 to S2+3.

Precautions Input comparison instructions cannot be used as right-hand instructions, i.e.,
another instruction must be used between them and the right bus bar.

Example AND DOUBLE FLOATING LESS THAN: AND<D(331)

When CIO 0.00 is ON in the following example, the floating point data in
words D100 to D103 is compared to the floating point data in words D200 to
D203. If the content of D100 to D103 is less than that of D200 to D203, execu-
tion proceeds to the next line and CIO 100.00 is turned ON. If the content of
D100 to D103 is not less than that of D200 to D203, execution does not pro-
ceed to the next instruction line.

339 LD>D LOAD DOUBLE FLOATING GREATER THAN True if
C1 > C2AND>D AND DOUBLE FLOATING GREATER THAN

OR>D OR DOUBLE FLOATING GREATER THAN

340 LD>=D LOAD DOUBLE FLOATING GREATER THAN OR
EQUAL

True if
C1 ≥ C2

AND>=D AND DOUBLE FLOATING GREATER THAN OR
EQUAL

OR>=D OR DOUBLE FLOATING GREATER THAN OR
EQUAL

Code Mnemonic Name Function

Name Label Operation

Error Flag ER ON if C1 or C2 is not a valid floating-point number (NaN).

ON if C1 or C2 is +∞.

ON if C1 or C2 is –∞.

OFF in all other cases.

Greater Than
Flag

> ON if C1 > C2.

OFF in all other cases.

Greater Than or
Equal Flag

> = ON if C1 ≥ C2.

OFF in all other cases.

Equal Flag = ON if C1 = C2.
OFF in all other cases.

Not Equal Flag = ON if C1 ≠ C2.
OFF in all other cases.

Less Than Flag < ON if C1 < C2.
OFF in all other cases.

Less Than or
Equal Flag

< = ON if C1 ≤ C2.
OFF in all other cases.

Negative Flag N Unchanged

<D

D100

D200

0.00 100.00
569

Table Data Processing Instructions Section 3-16
3-16 Table Data Processing Instructions
This section describes instructions used to handle table data, stacks, and
other ranges of data.

3-16-1 SET STACK: SSET(630)
Purpose Defines a stack of the specified length beginning at the specified word.

Ladder Symbol

34580>14876

−3.4580E+48<1.4876E+48

1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 0
1 1 1 0 0 1 1 1 0 1 1 0 1 1 0 0
1 0 1 0 1 0 0 1 1 1 1 1 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1

15 0

S1 :D100
S1+1:D101
S1+2:D102
S1+3:D103

0 1 1 1 1 0 0 1 0 0 1 1 1 1 1 0
1 0 1 0 1 0 0 0 0 1 0 1 1 0 0 0
1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1
0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

15 0

S1 :D100
S2+1:D101
S2+2:D102
S2+3:D103

1 1 0 1 1 1 1 0 1 0 0 1 0 0 0 1
1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 0
1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0

15 0

S1 :D100
S1+1:D101
S1+2:D102
S1+3:D103

0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1
1 0 1 0 1 0 0 0 0 0 1 0 1 0 1 1
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 1 1 1 1 0 0 0 0

15 0

S1 :D100
S2+1:D101
S2+2:D102
S2+3:D103

DOUBLE FLOATING LESS THAN Comparison (<D)

Decimal value: 3.4580 Decimal value: −1.4876

Does not yield an ON condition.

Decimal value: −3.4580E+48 Decimal value: 1.4876E+48

Yields an ON condition.

Instruction Mnemonic Function code Page

SET STACK SSET 630 570

PUSH ONTO STACK PUSH 632 573

FIRST IN FIRST OUT FIFO 633 576

LAST IN FIRST OUT LIFO 634 578

DIMENSION RECORD TABLE DIM 631 581

SET RECORD LOCATION SETR 635 583

GET RECORD NUMBER GETR 636 585

DATA SEARCH SRCH 181 587

SWAP BYTES SWAP 637 589

FIND MAXIMUM MAX 182 591

FIND MINIMUM MIN 183 594

SUM SUM 184 597

FRAME CHECKSUM FCS 180 600

STACK NUMBER OUTPUT SNUM 638 603

STACK DATA READ SREAD 639 606

STACK DATA OVERWRITE SWRIT 640 609

STACK DATA INSERT SINS 641 612

STACK DATA DELETE SDEL 642 615

SSET(630)

TB

N

TB: First stack address

N: Number of words
570

Table Data Processing Instructions Section 3-16
Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words

The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
word to be overwritten by PUSH(632)).

TB+4 through TB+(N–1): Data storage region

The remainder of the stack is used to store data.

Note (1) The initial value of the stack pointer is always the PLC memory address
of TB+4.

(2) TB and TB+(N–1) must be in the same data area.

Operand Specifications

Variations Executed Each Cycle for ON Condition SSET(630)

Executed Once for Upward Differentiation @SSET(630)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

TB

15 0

TB+1

15 0

TB+2

15 0

TB+3

Stack pointer (leftmost 4 digits)

Stack pointer (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

PLC memory address of the last
word in the stack (rightmost 4 digits)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095
571

Table Data Processing Instructions Section 3-16
Description SSET(630) secures a stack with N words beginning at TB and ending at
TB+(N–1). The first two words of the stack (TB+1 and TB) contain the 8-digit
hexadecimal PLC memory address of the last word in the stack. The next two
words (TB+3 and TB+2) contain the stack pointer. The stack pointer is the
PLC memory address of the next word in the stack that will be overwritten by
PUSH(632); its initial value is the address of TB+4.

SSET(630) automatically initializes the data region of the stack (TB+4 through
TB+(N–1)) to zeroes. The following diagram shows the basic structure of a
stack.

SSET(630) just establishes and initializes a stack. Use the following instruc-
tions to store in the stack and read data from the stack.

1,2,3... 1. PUSH(632) stores data in the stack one word at a time.

2. FIFO(633) and LIFO(634) read data from the stack. FIFO(633) reads the
first word that was stored; LIFO(634) reads the last word that was stored.

3. The stack pointer value in the stack control word is automatically updated
when PUSH(632), FIFO(633), or LIFO(634) is executed. Normally, users
need not be concerned about the stack control word. When accessing the
contents of the stack other than by using the above instructions, set the
stack pointer value using the Index Register (IR) for indirect referencing.

Flags

Precautions The minimum value for the number of words in the stack (N) is 5 because N
includes the four words that contain the pointer to the last word in the stack
and the stack pointer. An error will occur if N is not in the range 0005 to FFFF.

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0005 to #FFFF (binary) or
&5 to &65,535

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area TB N

m+(N–1)

m+(N–1)

TB

TB+1

TB+2

TB+3
Last word
in stack

Stack
pointer

N words
in stack

PLC memory
address

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0005 to FFFF.

OFF in all other cases.
572

Table Data Processing Instructions Section 3-16
Examples When CIO 0.00 is ON in the following example, SSET(630) secures a 10-word
stack from D0 to D9. D0 and D1 contain the PLC memory address of the last
word in the stack. D2 and D3 contain the stack pointer. The stack itself begins
in D4.

3-16-2 PUSH ONTO STACK: PUSH(632)
Purpose Writes one word of data to the specified stack.

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words

The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
word to be overwritten by PUSH(632)).

&10

0.00

D0

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

PLC memory address

Last word
in stack

Stack
pointer

PLC memory address
of last word in stack

Stack pointer

10 words

PUSH(632)

TB

S

TB: First stack address

S: Source word

Variations Executed Each Cycle for ON Condition PUSH(632)

Executed Once for Upward Differentiation @PUSH(632)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
573

Table Data Processing Instructions Section 3-16
TB+4 through TB+(N–1): Data storage region

The remainder of the stack is used to store data.

Operand Specifications

Description PUSH(632) writes the content of S to the address indicated by the stack
pointer (TB+3 and TB+2) and increments the stack pointer by one.

15 0

TB

15 0

TB+1

15 0

TB+2

15 0

TB+3

Stack pointer (leftmost 4 digits)

Stack pointer (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

PLC memory address of the last
word in the stack (rightmost 4 digits)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB S

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to #FFFF (binary)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
574

Table Data Processing Instructions Section 3-16
After PUSH(632) has been used to write data into a stack, FIFO(633) and
LIFO(634) can be used to read data from the stack.

Flags

Precautions The stack must be defined in advance with SSET(630).

Examples When CIO 0.00 is ON in the following example, PUSH(632) copies the con-
tent of D200 to the stack beginning at D0. In this case, the stack pointer indi-
cates D7.

m

n

n

m

D
D+1
D+2
D+3

S
m
m+1

n

n

m+1

D
D+1
D+2
D+3

A
A

A

PLC memory
address

PLC memory
address

Write A.

Pointer
Pointer

Increment
pointer by 1.

Name Label Operation

Error Flag ER ON if the address specified by the stack pointer (TB+3
and TB+2) exceeds the last word in the stack.
(This is a stack overflow error.)
OFF in all other cases.

0.00

D0

D200

D200

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

PLC memory address

Write A.Last word
in stack

Stack
pointer

PLC memory address
of last word in stack

Stack pointer

A

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

PLC memory address

After the data is written to
D7, the stack pointer is
incremented by one.

PLC memory address
of last word in stack

Stack pointer

Last word
in stack
575

Table Data Processing Instructions Section 3-16
3-16-3 FIRST IN FIRST OUT: FIFO(633)
Purpose Reads the first word of data written to the specified stack (the oldest data in

the stack).

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words

The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
word to be overwritten by PUSH(632)).

TB+4 through TB+(N–1): Data storage region

The remainder of the stack is used to store data.

FIFO(633)

TB

D

TB: First stack address

D: Destination word

Variations Executed Each Cycle for ON Condition FIFO(633)

Executed Once for Upward Differentiation @FIFO(633)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

TB

15 0

TB+1

15 0

TB+2

15 0

TB+3

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)

Stack pointer (leftmost 4 digits)

15 0

TB+4

TB+(N–1)

Data storage region
576

Table Data Processing Instructions Section 3-16
Operand Specifications

Description FIFO(633) reads the oldest word of data from the stack (TB+4) and outputs
that data to D. Next, the stack pointer (TB+3 and TB+2) is decremented by
one, all of the remaining data in the stack is shifted downward by one word,
and the data read from TB+4 is deleted. The data at the end of the stack (the
address that was indicated by the stack pointer) is left unchanged.

Use FIFO(633) in combination with PUSH(632). After PUSH(632) has been
used to write data into a stack, FIFO(633) can be used to read data from the
stack on a first-in first-out basis.

FIFO(633) reads the beginning data from the stack and deletes this data to
move the next one forward.

Flags

Precautions The stack must be defined in advance with SSET(630).

Area TB D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

m–1

TB

TB+1

TB+2

TB+3

TB

TB+1

TB+2

TB+3

TB+4 TB+4

m–1

PLC memory
address

Oldest
data

Stack
pointer

PLC memory
address

First-in first-out

Stack
pointer

Name Label Operation

Error Flag ER ON if the contents of the stack pointer (TB+3 and TB+2) is
less than or equal to the PLC memory address of first
word in the data region of the stack (TB+4).
(This is a stack underflow error.)

OFF in all other cases.
577

Table Data Processing Instructions Section 3-16
Examples When CIO 0.00 is ON in the following example, FIFO(633) reads the content
of D4 (TB+4 for the stack beginning at D0) and writes that data to D300.

After the data is written to D300, the stack pointer is decremented by one and
the remaining data is shifted down. (The content of D5 is shifted to D4 and the
content of D6 is shifted to D5.)

3-16-4 LAST IN FIRST OUT: LIFO(634)
Purpose Reads the last word of data written to the specified stack (the newest data in

the stack).

Ladder Symbol

Variations

Applicable Program Areas

TB:

D: D300

TB

0.00

D0

D300

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

Read by FIFO(633).

Stack pointer

PLC memory address
of last word in stack

Last word
in stack

Stack
pointer

D: D300–1

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

Last word
in stack

Stack
pointer

PLC memory address
of last word in stack

Stack pointer

LIFO(634)

TB

D

TB: First stack address

D: Destination word

Variations Executed Each Cycle for ON Condition LIFO(634)

Executed Once for Upward Differentiation @LIFO(634)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
578

Table Data Processing Instructions Section 3-16
Operands TB through TB+3: Stack control words

The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
word to be overwritten by PUSH(632)).

TB+4 through TB+(N–1): Data storage region

The remainder of the stack is used to store data.

Operand Specifications

15 0

TB

15 0

TB+1

15 0

TB+2

15 0

TB+3

Stack pointer (leftmost 4 digits)

Stack pointer (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

PLC memory address of the last
word in the stack (rightmost 4 digits)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
579

Table Data Processing Instructions Section 3-16
Description LIFO(634) reads the data from the address indicated by the stack pointer (the
newest word of data in the stack), decrements the stack pointer by one, and
outputs the data to D. The word that was read is left unchanged.

Use LIFO(634) in combination with PUSH(632). After PUSH(632) has been
used to write data into a stack, LIFO(634) can be used to read data from the
stack on a last-in first-out basis. After data is stored by PUSH(632), the stack
pointer indicates the address next to the last data.

Flags

Precautions The stack must be defined in advance with SSET(630).

Examples When CIO 0.00 is ON in the following example, LIFO(634) reads the content
of the word indicated by the stack pointer (D6) and writes that data to D300.

TB

TB+1

TB+2

TB+3

TB
TB+1

TB+2

TB+3

m–1 m–1

m–1

Reading

A is left unchanged.

Stack
pointer

PLC memory
address

PLC memory
address

Newest
data

Stack
pointer

The pointer is
decremented.

Name Label Operation

Error Flag ER ON if the contents of the stack pointer (TB+3 and TB+2) is
less than or equal to the PLC memory address of first
word in the data region of the stack (TB+4).
(This is a stack underflow error.)
OFF in all other cases.

–1

TB:

0.00

D0

D300

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

Last word
in stack

Stack
pointer

Stack pointer

PLC memory address
of last word in stack
580

Table Data Processing Instructions Section 3-16
After the data is written to D300, the stack pointer is decremented by one. The
content of D6 is left unchanged.

3-16-5 DIMENSION RECORD TABLE: DIM(631)
Purpose Defines the specified I/O memory area as a record table by declaring the

length of each record and the number of records. Up to 16 record tables can
be defined.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Table number

Indicates the table number. N must be between 0 and15.

LR: Length of each record

Indicates the number of words in each record. LR must be 0001 to FFFF
hexadecimal (1 to 65,535 words).

NR: Number of records

Indicates the number of records in the table. NR must be 0001 to FFFF hexa-
decimal (1 to 65,535 words).

TB: First table word

Indicates the first word of the table. All of the words in the table must be in the
same data area. In other words TB and TB+LR×NR–1 must be in the same
data area.

D: D300

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

Stack pointer

PLC memory address
of last word in stack

Read by LIFO(634).
Last word
in stack

Stack
pointer

DIM(631)

N

LR

NR

TB

N: Table number

LR: Length of each record

NR: Number of records

TB: First table word

Variations Executed Each Cycle for ON Condition DIM(631)

Executed Once for Upward Differentiation @DIM(631)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
581

Table Data Processing Instructions Section 3-16
Operand Specifications

Description DIM(631) registers the words from TB to TB+LR×NR–1 as table number N.
Table number N has NR records and each record is LR words long. The data
within this region cannot be changed once the region has been declared as
records.

Use DIM(631) in combination with SETR(635) (SET RECORD NUMBER) or
GETR(636) (GET RECORD NUMBER) to simplify the calculation of
addresses in data tables. Use DIM(631) to divide data into records and then
use SETR(635) to store the first address of the desired record in an Index
Register. The Index Register can then be used as a pointer in other instruc-
tions, such as read, write, search, or compare instructions.

As an example, if temperatures, pressures, or other set values are stored as
records and the records for various models are combined into a table, it is
easy to read the set values for each models for any particular conditions.

The two record-table instructions associated with DIM(631) are SETR(635)
and GETR(636). SETR(635) sets the leading PLC memory address of the
specified record number in the specified Index Register. GETR(636) outputs
the record number of the record that includes the specified Index Register
value (PLC memory address).

Area N LR NR TB

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A959 A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants 0 to 15 #0001 to #FFFF (binary) or &1
to &65,535

Data Registers --- DR0 to DR15 ---

Index Registers --- ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15 ,IR0+(++) to
,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Number of records

Table number (N)

Record 0

Record 1

Record NR–1

LR × NR words
582

Table Data Processing Instructions Section 3-16
Flags

Precautions Records in a registered table are identified by their record numbers, which
range from 0 to NR–1.

Depending on the settings for the record length (LR) and number of records
(NR), it is possible that a single table (from TB and TB+LR×NR–1) will overlap
two data areas. Verify that no problems will arise before specifying a table that
overlaps a data area boundary.

Examples When CIO 0.00 is ON in the following example, DIM(631) defines record table
number 2 with three 10-word records. The table begins at D300.

3-16-6 SET RECORD LOCATION: SETR(635)
Purpose Writes the location of the specified record (the PLC memory address of the

beginning of the record) in the specified Index Register.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON if LR or NR is 0000.
OFF in all other cases.

LR: D100

NR: D200

N

LR
NR

TB

0.00

D100
D200

D300

D300
D301

D309
D310

D319
D320

D329

Record 0

Record 1

Record 2

Record length: 10 words

Number of records: 3

10 words

10 words

10 words

Table number 2

SETR(635)

N

R

D

N: Table number

R: Record number

D: Destination Index Register

Variations Executed Each Cycle for ON Condition SETR(635)

Executed Once for Upward Differentiation @SETR(635)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
583

Table Data Processing Instructions Section 3-16
Operands N: Table number

Indicates the table number. N must be between 0 and 15.

R: Record number

Indicates the record number of the desired record. R must be 0000 to FFFE
hexadecimal (0 to 65,534). Record numbers begin with 0, so the valid record
numbers are 0 to NR–1 for a table with NR records.

D: Destination Index Register

Indicates the desired Index Register. D must be IR0 to IR15.

Operand Specifications

Description SETR(635) stores the PLC memory address of the first word of the specified
record in the specified Index Register. The following diagram shows the basic
operation of SETR(635).

Flags

Precautions The record table must be defined in advance with DIM(631).

Area N R D

CIO Area --- CIO 0 to CIO 6143 ---

Work Area --- W0 to W511 ---

Holding Bit Area --- H0 to H511 ---

Auxiliary Bit Area --- A0 to A959 ---

Timer Area --- T0000 to T4095 ---

Counter Area --- C0000 to C4095 ---

DM Area --- D0 to D32767 ---

Indirect DM addresses
in binary

--- @ D0 to @ D32767 ---

Indirect DM addresses
in BCD

--- *D0 to *D32767 ---

Constants 0 to 15 #0000 to #FFFE (binary) or
&0 to 65534

Data Registers --- DR0 to DR15 ---

Index Registers --- IR0 to IR15

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048
to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,– (– –)IR0 to, – (– –)IR15

R

IR@

SETR(635) writes the PLC memory address (m)
of the first word of record R to Index Register D.

PLC memory
address

Table number (N)

Record
number (R)

Name Label Operation

Error Flag ER ON if the specified table number (N) has not been defined
with DIM(631).
ON if the specified record number (R) exceeds the high-
est record number in the table (NR–1).

OFF in all other cases.
584

Table Data Processing Instructions Section 3-16
Valid record numbers range from 0 to NR–1, where NR is the number of
records specified when the table was defined with DIM(631).

Examples When CIO 0.00 is ON in the following example, SETR(635) finds the PLC
memory address of the first word of record 3 of table number 10 and stores
this address in Index Register IR11.

3-16-7 GET RECORD NUMBER: GETR(636)
Purpose Returns the record number of the record at the PLC memory address con-

tained in the specified Index Register.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Table number

Indicates the table number. N must be between 0 and 15.

IR: Index Register

Indicates the desired Index Register. D must be IR0 to IR15.

D: Destination word

Indicates the word where the record number will be written.

Operand Specifications

R

0.00

to

Table number 10

Record number: 0

Record number 3

PLC memory
address

GETR(636)

N

IR

D

N: Table number

IR: Index Register

D: Destination word

Variations Executed Each Cycle for ON Condition GETR(636)

Executed Once for Upward Differentiation @GETR(636)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N IR D

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A448 to A959
585

Table Data Processing Instructions Section 3-16
Description GETR(636) finds which record includes the PLC memory address contained
in the specified Index Register and writes that record number in D. The PLC
memory address contained in the Index Register does not have to be the first
word in the record; it can be any word in the record.

The following diagram shows the basic operation of GETR(636).

Flags

Precautions The record table must be defined in advance with DIM(631) and the PLC
memory address in the specified Index Register must be within the specified
table.

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants 0 to 15 --- ---

Data Registers --- DR0 to DR15

Index Registers --- IR0 to IR15 ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area N IR D

IR

n

GETR(636) writes the record number
of the record that includes PLC
memory address m to D.

PLC memory
addressTable number (N)

Record number
(R)

Name Label Operation

Error Flag ER ON if the PLC memory address in the specified Index
Register is not within the specified table (N).

ON if the specified table number (N) has not been defined
with DIM(631).
OFF in all other cases.
586

Table Data Processing Instructions Section 3-16
Examples When CIO 0.01 is ON in the following example, GETR(636) finds the record
number of the record that contains the PLC memory address in Index Regis-
ter IR11 and writes this record number to D1000.

3-16-8 DATA SEARCH: SRCH(181)
Purpose Searches for a word of data within a range of words.

Ladder Symbol

Variations

Applicable Program Areas

Operands C and C+1: Control words

C specifies the number of words in the range and bit 15 of C+1 indicates
whether or not to output the number of matches to DR0.

IR

0.01

D1000

D1000

to

Table number 10

Record number: 0

Record number 3

PLC memory
address

Record containing
address 10000.

SRCH(181)

C

R1

Cd

C: First control word

R1: First word in range

Cd: Comparison data

Variations Executed Each Cycle for ON Condition SRCH(181)

Executed Once for Upward Differentiation @SRCH(181)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

C

15 014

C+1 000 0000 0000 0000

0
Output selection Output selection

0000 hex: Does not output number of
matches.
8000 hex: Outputs number of matches.

Number of words in range

0: Does not output number of
matches.
1: Outputs number of matches.
587

Table Data Processing Instructions Section 3-16
Note C and C+1 must be in the same data area.

R1: First word in range

R1 specifies the first word in the search range. The words from R1 to R1+(C–
1) are searched for the desired data. (C is the number of words set in C.)

Note R1 and R1+C–1 must be in the same data area.

Operand Specifications

Description SRCH(181) searches the range of memory from R1 to R1+C–1 for words that
contain the comparison data (Cd). If a match is found, SRCH(181) writes the
PLC memory address of the word to IR0 and turns the Equals Flag ON.
(If there are two or more matches, just the address of the first word containing
the comparison data is written to IR0.)

When bit 15 of C+1 has been set to 1, SRCH(181) writes the number of
matches to DR0. When bit 15 of C+1 is 0, DR0 is left unchanged.

R1

R1+(C–1)

15 0

---to

Search range

Area C R1 Cd

CIO Area CIO 0 to
CIO 6142

CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W511

Holding Bit Area H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A958 A0 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants Specified values
only

--- #0000 to #FFFF
(binary)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

R1+(C–1)

C

R1 Search

Match

Cd

PLC memory
address
588

Table Data Processing Instructions Section 3-16
SRCH(181) searches table data that contains one word in each record. For
searching data that contains more than one word per record, use DIM(631),
SETR(635), GETR(636), FOR(512)–NEXT(513), or BREAK(514) together
with an Index Register (IR).

The status of the Equals Flag can be checked immediately after execution to
determine whether or not there was a match.

Flags

Precautions If no match is found, the contents of IR0 and DR0 are left unchanged.

Examples When CIO 0.00 is ON in the following example, SRCH(181) searches the 10-
word range beginning at D100 for words that have the same content as D200.
The PLC memory address of the first word containing a match is written to
IR0 and the total number of matches is written to DR0.

If the table length is specified as &10 (10 decimal) or A hexadecimal, the num-
ber of matches will not be output to the data register DR0.

3-16-9 SWAP BYTES: SWAP(637)
Purpose Switches the leftmost and rightmost bytes in all of the words in the range.

Ladder Symbol

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if one or more of the words in the search range con-
tain the comparison data.

OFF in all other cases.

D200

#8000000A

R1

Cd
10067

00010067

0003

0.00

D100

D200

D100
D101
D102
D103
D104
D105
D106
D107
D108
D109

Search

Number of matches

Number of matches

PLC memory
address

SWAP(637)

N

R1

N: Number of words

R1: First word in range
589

Table Data Processing Instructions Section 3-16
Variations

Applicable Program Areas

Operands N: Number of words

N specifies the number of words in the range and must be 0001 to FFFF
hexadecimal (or &1 to &65,535).

R1: First word in range

R1 specifies the first word in the range.

Operand Specifications

Variations Executed Each Cycle for ON Condition SWAP(637)

Executed Once for Upward Differentiation @SWAP(637)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

R1

R1+(N–1)

15 08 7

to

Leftmost byte Rightmost byte

Area N R1

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0001 to #FFFF (binary) or
&1 to &65,535

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
590

Table Data Processing Instructions Section 3-16
Description SWAP(637) switches the position of the two bytes in all of the words in the
range of memory from R1 to R1+N–1. This instruction can be used to reverse
the order of ASCII-code characters in each word.

Flags

Examples When CIO 0.00 is ON in the following example, SWAP(637) switches the data
in the leftmost bytes with the data in the rightmost bytes in each word in the
10-word range from W0 to W9.

3-16-10 FIND MAXIMUM: MAX(182)
Purpose Finds the maximum value in the range.

Ladder Symbol

Variations

Applicable Program Areas

N

R1

Byte position is swapped.

Name Label Operation

Error Flag ER ON if the N is 0000.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

&10N

R1

0.00

W0 W0

W1

W2

W9

W0

W1

W2

W9

to to to to

MAX(182)

C

R1

D

C: First control word

R1: First word in range

D: Destination word

Variations Executed Each Cycle for ON Condition MAX(182)

Executed Once for Upward Differentiation @MAX(182)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
591

Table Data Processing Instructions Section 3-16
Operands C and C+1: Control words

C specifies the number of words in the range, bit 15 of C+1 indicates whether
the data will be treated as signed binary or unsigned binary, and bit 14 of C+1
indicates whether or not to output the PLC memory address of the word that
contains the maximum value to IR0.

The following table shows the possible values of C.

R1: First word in range

R1 specifies the first word in the search range. The words from R1 to R1+(C–
1) are searched for the maximum value. (C is the number of words specified in
C.)

Operand Specifications

C+1 Data type Index Register output

0000 Unsigned binary No

4000 Unsigned binary Yes

8000 Signed binary No

C000 Signed binary Yes

15 0

C

15 014

0

C+1

13

00 0000 0000 0000

Output selection

Data type

Number of words in range

0: Does not output address to IR00.
1: Outputs address to IR00.

0: Unsigned binary data
1: Signed binary data

R1

R1+(C–1)

15 0

---to

Search range

Area C R1 D

CIO Area CIO 0 to CIO 6142 CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W511

Holding Bit Area H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A958 A0 to A959 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D0 to D32766 D0 to D32767

Indirect DM
addresses in binary

@ D0 to @ D32767

Indirect DM
addresses in BCD

*D0 to *D32767

Constants Specified values only ---
592

Table Data Processing Instructions Section 3-16
Description MAX(182) searches the range of memory from R1 to R1+C–1 for the maxi-
mum value in the range and outputs that maximum value to D.

When bit 14 of C+1 has been set to 1, MAX(182) writes the PLC memory
address of the word containing the maximum value to IR0. (If two or more
words within the range contain the maximum value, the address of the first
word containing the maximum value is written to IR0.)

When bit 15 of C+1 has been set to 1, MAX(182) treats the data within the
range as signed binary data.

Flags

Precautions When bit 15 of C+1 has been set to 1, the data within the range is treated as
signed binary data and hexadecimal values 8000 to FFFF are considered
negative. Thus, the results of the search will differ depending on the data-type
setting.

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C R1 D

R1+(W–1)

C W

Max.

C words

PLC memory
address

value

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if the maximum value is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 is ON in the word containing the maximum
value.
OFF in all other cases.
593

Table Data Processing Instructions Section 3-16
Examples When CIO 0.00 turns ON in the following example, MAX(182) searches the
10-word range (specified in D100) beginning at D200 for the maximum value.
The maximum value is written to D300 and the PLC memory address of the
word containing the maximum value is written to IR0.

3-16-11 FIND MINIMUM: MIN(183)
Purpose Finds the minimum value in the range.

Ladder Symbol

Variations

C: D100

C+1: D101

D: D300

1

R1

–2

–1
–3

000100CA

100CA

0 0 0 A

0.00

D100

D200

D300

R1: D200

D201

D202

D203

D204

D205

D206

D207

D208

D209

10 words

Number of words

Always 0.

1: Outputs address to IR0.

1: Treats data as signed binary.

Decimal
equivalent

Max. value
PLC memory
address

IR0

MIN(183)

C

R1

D

C: First control word

R1: First word in range

D: Destination word

Variations Executed Each Cycle for ON Condition MIN(183)

Executed Once for Upward Differentiation @MIN(183)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
594

Table Data Processing Instructions Section 3-16
Applicable Program Areas

Operands C and C+1: Control words

C specifies the number of words in the range, bit 15 of C+1 indicates whether
the data will be treated as signed binary or unsigned binary, and bit 14 of C+1
indicates whether or not to output the PLC memory address of the word that
contains the minimum value to IR0.

The following table shows the possible values of C.

R1: First word in range

R1 specifies the first word in the search range. The words from R1 to R1+(C–
1) are searched for the minimum value. (C is the number of words specified in
C.)

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C+1 Data type Index Register output

0000 Unsigned binary No

4000 Unsigned binary Yes

8000 Signed binary No

C000 Signed binary Yes

15 0

C

15 014

0

C+1
13

00 0000 0000 0000

Output selection

Data type
0: Unsigned binary data
1: Signed binary data

0: Does not output address to IR00.
1: Outputs address to IR00.

Number of words in range

R1

R1+(C–1)

15 0

---to

Search range

Area C R1 D

CIO Area CIO 0 to
CIO 6142

CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W511

Holding Bit Area H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A958 A0 to A959 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095
595

Table Data Processing Instructions Section 3-16
Description MIN(183) searches the range of memory from R1 to R1+C–1 for the minimum
value in the range and outputs that minimum value to D.

When bit 14 of C+1 has been set to 1, MIN(183) writes the PLC memory
address of the word containing the minimum value to IR0. (If two or more
words within the range contain the minimum value, the address of the first
word containing the minimum value is written to IR0.)

When bit 15 of C+1 has been set to 1, MIN(183) treats the data within the
range as signed binary data.

Flags

Precautions When bit 15 of C+1 has been set to 1, the data within the range is treated as
signed binary data and hexadecimal values 8000 to FFFF are considered
negative. Thus, the results of the search will differ depending on the data-type
setting.

DM Area D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants Specified values
only

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C R1 D

R1+(W–1)

R1
C W

C words

Min. value

PLC memory
address

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

Equals Flag = ON if the minimum value is 0000.

OFF in all other cases.

Negative Flag N ON if bit 15 is ON in the word containing the minimum
value.

OFF in all other cases.
596

Table Data Processing Instructions Section 3-16
Examples When CIO 0.00 turns ON in the following example, MIN(183) searches the 10-
word range (specified in D100) beginning at D200 for the minimum value. The
minimum value is written to D300 and the PLC memory address of the word
containing the minimum value is written to IR0.

3-16-12 SUM: SUM(184)
Purpose Adds the bytes or words in the range and outputs the result to two words.

Ladder Symbol

Variations

C: D100

C+1: D101

D: D300

R1

100CF

–2

–1

–3

1

000100CF

0 0 0 A

0.00

D100

D200

D300

R1: D200

D201

D202

D203

D204

D205

D206

D207

D208

D209

1: Treats data as signed binary.

1: Outputs address to IR00.

Always 0.

PLC memory
address

Decimal
equivalent

Min. value

10 words

Number of words

SUM(184)

C

R1

D

C: First control word

R1: First word in range

D: First destination word

Variations Executed Each Cycle for ON Condition SUM(184)

Executed Once for Upward Differentiation @SUM(184)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
597

Table Data Processing Instructions Section 3-16
Applicable Program Areas

Operands C and C+1: Control words

C specifies the number of units (bytes or words) to be summed. (Bit 13 of C+1
determines whether bytes or words are being summed.)

Bits 12 to 15 of C+1 indicate what type of data is being summed, as shown in
the following diagram.

R1: First word in range

R1 specifies the first word in the range. The length of the range depends on
the number of units as well as the starting byte, if bytes are being added.

D: First destination word

The result of the calculation is output to D+1 and D. The leftmost four digits
are stored in D+1 and the rightmost four digits are stored in D.

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

C

15 014

0

C+1
13 12 11

0000 0000 0000

Data type (Effective if bit 14 is 0.)

Data type

Units

Starting byte (Effective if bit 13 is 1.)

0: Unsigned binary data
1: Signed binary data

0: Binary
1: BCD

0: Words
1: Bytes

0: Leftmost byte
1: Rightmost byte

Number of words/bytes in range

R1

15 0

R1+(C units–1)

to

Calculation range

Area C R1 D

CIO Area CIO 0 to
CIO 6142

CIO 0 to
CIO 6143

CIO 0 to
CIO 6142

Work Area W0 to W510 W0 to W511 W0 to W510

Holding Bit Area H0 to H510 H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A958 A0 to A959 A448 to A958

Timer Area T0000 to T4094 T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4094 C0000 to C4095 C0000 to C4094
598

Table Data Processing Instructions Section 3-16
Description SUM(184) adds C units of data beginning with the data in R1 and outputs the
result to D+1 and D. The settings in C+1 determine whether the units are
words or bytes, whether the data is binary (signed or unsigned) or BCD, and
whether to start with the right or left byte of R1 if bytes are being added.

When bit 14 of C+1 has been set to 0, SUM(184) treats the data as binary. In
this case, bit 15 determines whether the data is signed (bit 15 = 1) or
unsigned (bit 15 = 0).

When bit 13 of C+1 has been set to 1, SUM(184) adds bytes of data. In this
case, bit 12 determines whether the calculation starts with the rightmost byte
of R1 (bit 12 = 1) or the leftmost byte of R1 (bit 12 = 0).

Flags

DM Area D0 to D32766 D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants Specified values
only

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C R1 D

+)

S

D+1 D

Table length
specified in C

The actual table length specified
in C depends upon the units
(words or bytes) set in C+1.

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.
ON if the BCD data has been specified, but the range
contains binary data.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if the result is 0000.
OFF in all other cases.

Negative Flag N ON if bit 15 is ON in the result.
OFF in all other cases.
599

Table Data Processing Instructions Section 3-16
Examples When CIO 0.00 is ON in the following example, SUM(184) adds 10 bytes
(specified in D300) of unsigned binary data beginning with the rightmost byte
of D100 and writes the result to D201 and D200.

3-16-13 FRAME CHECKSUM: FCS(180)
Purpose Calculates the FCS value for the specified range and outputs the result in

ASCII.

Ladder Symbol

Variations

C: D300

C+1: D301

D: D200

D+1: D201

R1

C 3

9 F

2 7

2 A

D C

2 A

2 A

2 0

2 0

5 5

0 3

0 0

7 8

0 0

0.00

D300

D100
D200

R1: D100

D101

D102

D103

D104

D105

Number of words/bytes

Always 0.

Starting byte
1: Rightmost byte

Units
1: Bytes

Data type
0: Binary

Data type
0: Unsigned binary data

10 bytes

Table length

The shaded bytes are added.

FCS(180)

C

R1

D

C: First control word

R1: First word in range

D: First destination word

Variations Executed Each Cycle for ON Condition FCS(180)

Executed Once for Upward Differentiation @FCS(180)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
600

Table Data Processing Instructions Section 3-16
Applicable Program Areas

Operands C and C+1: Control words

C specifies the number of units (bytes or words) to be used in the FCS calcu-
lation. (Bit 13 of C+1 determines whether bytes or words are being used.)

When bit 13 of C+1 has been set to 1, FCS(180) calculates the FCS value for
bytes of data. In this case, bit 12 determines whether the calculation starts
with the rightmost byte of R1 (bit 12 = 1) or the leftmost byte of R1 (bit 12 = 0).

R1: First word in range

R1 specifies the first word in the range. The length of the range depends on
the number of units as well as the starting byte, if bytes are being used in the
calculation.

D: First destination word

The result of the calculation is output to D if bytes have been selected.

The result of the calculation is output to D+1 and D if words have been
selected. In this case, the leftmost four digits are stored in D+1 and the right-
most four digits are stored in D.

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

C

15 014

0

C+1
13 12 11

0000 0000 000000

0

Calculation units

Number of words/bytes in range

Starting byte (Valid only when bit 13 is 1.)
0: Leftmost byte
1: Rightmost byte

0: Words
1: Bytes

R1

15 0

R1+(C units–1)

toto

Calculation range

Area C R1 D

CIO Area CIO 0 to
CIO 6142

CIO 0 to CIO 6143

Work Area W0 to W510 W0 to W511

Holding Bit Area H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A958 A0 to A959 A448 to A959

Timer Area T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4094 C0000 to C4095

DM Area D0 to D32766 D0 to D32767
601

Table Data Processing Instructions Section 3-16
Description FCS(180) calculates the FCS value for C units of data beginning with the data
in R1, converts the value to ASCII code, and outputs the result to D (for bytes)
or D+1 and D (for words). The settings in C+1 determine whether the units are
words or bytes, whether the data is binary (signed or unsigned) or BCD, and
whether to start with the right or left byte of R1 if bytes are being added.

When bit 13 of C+1 has been set to 1, FCS(180) operates on bytes of data. In
this case, bit 12 determines whether the calculation starts with the rightmost
byte of R1 (bit 12 = 1) or the leftmost byte of R1 (bit 12 = 0).

Flags

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants Specified values
only

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C R1 D

R1

Calculation

C (Table length)

ASCII conversion

FCS value

Name Label Operation

Error Flag ER ON if the content of C is not within the specified range of
0001 through FFFF.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.
602

Table Data Processing Instructions Section 3-16
Examples When CIO 0.00 is ON in the following example, FCS(180) calculates the FCS
value for the 10 bytes (specified in D300) of data beginning with the rightmost
byte of D100 and writes the result to D200.

3-16-14 STACK SIZE READ: SNUM(638)
Purpose Counts the amount of stack data (number of words) in the specified stack.

Ladder Symbol

Variations

Applicable Program Areas

0 2

0 4

0 6

0 8

0 0

3 0

0 1

0 3

0 5

0 7

0 0

3 8

R1

0.00

D300

D100

D200

C: D300

C+1: D301

R1: D100

D101

D102

D103

D104

D105

D: D200

Always 0.

Units
1: Bytes

Starting byte (Effective only if bit 13 is 1.)
1: Rightmost byte

Always 0.

The FCS value for the
shaded bytes is calculated
and converted to ASCII.

Table length

10 bytes

SNUM(638)

TB

D

TB: First stack address
D: Destination word

Variations Executed Each Cycle for ON Condition SNUM(638)

Executed Once for Upward Differentiation @SNUM(638)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
603

Table Data Processing Instructions Section 3-16
Operands TB through TB+3: Stack control words

The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

TB+4 through TB+(N–1): Data storage region

The remainder of the stack is used to store data.

Operand Specifications

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region

Area TB D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
604

Table Data Processing Instructions Section 3-16
Description SNUM(638) counts the number of data words in the specified stack from the
beginning of the data region at TB+4 to the address before the one indicated
by the stack pointer (TB+3 and TB+2). SNUM(638) does not change the data
in the stack or the stack pointer.

Flags

Precautions The stack must be defined in advance with SSET(630).

Examples When CIO 0.00 is ON in the following example, SNUM(638) counts the num-
ber of words from the beginning of the data region at D4 to the stack pointer
position - 1 (D6) and outputs the result to D300. (In this case, the stack pointer
indicates D7.) The stack area begins at D0.

A

TB
TB+1
TB+2
TB+3
TB+4

N
m

n

D

n

m

Stack
PLC memory
address

Pointer

Counts the number of words
(N) from the address of the
beginning of the stack (TB+4)
to the pointer position -1.

Last word
in stack

Name Label Operation

Error Flag ER ON if the number of words of data in the stack (the value
output to D) is 0.
OFF in all other cases.

SNUM

D0

D300

0.00

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D:D300 0003Hex

PLC memory
address

Last word
in stack

Stack
pointer

PLC memory address of
last word in the stack

Stack pointer

Counts number of data
words. (3 in this example.)
605

Table Data Processing Instructions Section 3-16
3-16-15 STACK DATA READ: SREAD(639)
Purpose Reads the data from the specified data element in the stack. The offset value

indicates the location of the desired data element (how many data elements
before the current pointer position).

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words

The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

TB+4 through TB+(N–1): Data storage region

The remainder of the stack is used to store data.

SREAD(639)

TB

C

D

TB: First stack address
C: Offset value
D: Destination word

Variations Executed Each Cycle for ON Condition SREAD(639)

Executed Once for Upward Differentiation @SREAD(639)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region
606

Table Data Processing Instructions Section 3-16
Operand Specifications

Description SREAD(639) reads the data from the address specified by the stack pointer
(TB+3 and TB+2) minus the offset value in C. SREAD(639) does not change
the data in the stack or the stack pointer.

SREAD(639) can be used to read the data for an item currently on a conveyor.
The position of the desired item is simply the number of items back (the offset
value) from the most recent item added to the conveyor.

Area TB C D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers --- #0001 to #FFFB
(Hexadecimal)

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047
,IR0 to –2048 to
+2047 ,IR15
DR0 to DR15, IR0
to IR15
,IR0+(++) to
,IR15+(++)

,–(– –)IR0 to,
 –(– –)IR15

DR0 to DR15

A

A
B
C

TB
TB+1
TB+2
TB+3
TB+4

D

m

n

C

n

m

Stack
PLC memory
address

Pointer

Offset value Last word
in stack

The data (A) is
not changed.

Reads the data (A) without
changing the stack pointer.

Reads the data (A) in the specified
word and outputs that data to D.
The address of the desired word is
calculated by subtracting the offset
value from the stack pointer address.
607

Table Data Processing Instructions Section 3-16
Flags

Precautions The stack must be defined in advance with SSET(630).

The address in the stack pointer must be greater than the PLC memory
address of the beginning of the data region (TB+4). An error will occur if the
stack pointer is less than the PLC memory address of TB+4, i.e., if a stack
underflow error occurs.

Examples When CIO 0.00 is ON in the following example, SREAD(639) reads the data
in the specified word in the stack starting at D0 and outputs the data to D100.
In this case, the stack pointer indicates D7 and the offset value is 3, so the
data is read from D4.

Name Label Operation

Error Flag ER ON if the specified read location is not within the stack
area.

ON if the offset value specified in C is 0 or greater than
the maximum data region size (FFFB hex).
OFF in all other cases.

Equals Flag = ON if the output data in D is 0000.
OFF in all other cases.

SREAD

D0

&3

D100

0.00

A

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

A

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D100 A
−3

Last word
in stack

Stack
pointer

PLC memory
address

PLC memory address
of last word in the stack

Stack pointer

Last word
in stack

Stack
pointer

PLC memory address of
last word in the stack

Stack pointer

The stack pointer position remains
unchanged after the data is read.
608

Table Data Processing Instructions Section 3-16
3-16-16 STACK DATA OVERWRITE: SWRIT(640)
Purpose Writes the source data to the specified data element in the stack (overwriting

the existing data). The offset value indicates the location of the desired data
element (how many data elements before the current pointer position).

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words

The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

TB+4 through TB+(N–1): Data storage region

The remainder of the stack is used to store data.

SWRIT(640)

TB

C

S

TB: First stack address
C: Offset value
S: Source word

Variations Executed Each Cycle for ON Condition SWRIT(640)

Executed Once for Upward Differentiation @SWRIT(640)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region
609

Table Data Processing Instructions Section 3-16
Operand Specifications

Description SWRIT(640) overwrites the data in the desired word with the data specified in
S. The location of the desired word is calculated by subtracting the offset
value in C from the stack pointer (TB+3 and TB+2). SWRIT(640) does not
change the stack pointer.

SWRIT(640) can be used to change the data for an item currently on a con-
veyor. The position of the desired item is simply the number of items back (the
offset value) from the most recent item added to the conveyor.

Area TB C S

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0001 to #FFFB
(Hexadecimal)

#0000 to #FFFF
(Hexadecimal)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

AS

B
C
D

TB
TB+1
TB+2
TB+3
TB+4

m

n

A
C
D

TB
TB+1
TB+2
TB+3
TB+4

m

n

C

n

m

n

m

Stack
PLC memory
address Stack

Pointer

Pointer
Last word
in stack

Last word
in stack

Offset value

Writes the data (A) without
changing the stack pointer.

Overwrites the data in the desired
word with the data in S.
The address of the desired word is
calculated by subtracting the offset
value from the stack pointer address.
610

Table Data Processing Instructions Section 3-16
Flags

Precautions The stack must be defined in advance with SSET(630).

The address in the stack pointer must be greater than the PLC memory
address of the beginning of the data region (TB+4). An error will occur if the
stack pointer is less than the PLC memory address of TB+4, i.e., if a stack
underflow error occurs.

Examples When CIO 0.00 is ON in the following example, SWRIT(640) writes the data in
D100 to the specified word in the stack starting at D0. In this case, the stack
pointer indicates D7 and the offset value is 3, so the data in D4 is overwritten.

Name Label Operation

Error Flag ER ON if the specified write location is not within the stack
area.

ON if the offset value specified in C is 0 or greater than
the maximum data region size (FFFB hex).
OFF in all other cases.

SWRIT

D0

&3

D100

0.00

B

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

A

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D100 A

−3
Last word
in stack

Last word
in stack

Stack
pointer

Stack
pointer

PLC memory address of
last word in the stack

PLC memory address of
last word in the stack

PLC memory
address

Stack pointer

Stack pointer

(Overwrite)

The stack pointer position remains
unchanged after the data is written.
611

Table Data Processing Instructions Section 3-16
3-16-17 STACK DATA INSERT: SINS(641)
Purpose Inserts the source data at the specified location in the stack and shifts the rest

of the data in the stack downward. The offset value indicates the location of
the desired data element (how many data elements before the current pointer
position).

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words

The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

TB+4 through TB+(N–1): Data storage region

The remainder of the stack is used to store data.

SINS(641)

TB

C

S

TB: First stack address
C: Offset value
S: Source word

Variations Executed Each Cycle for ON Condition SINS(641)

Executed Once for Upward Differentiation @SINS(641)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region
612

Table Data Processing Instructions Section 3-16
Operand Specifications

Description SINS(641) inserts the source data at the desired address and shifts the exist-
ing data down one word. At the same time, SINS(641) increments the stack
pointer (TB+3 and TB+2) by 1. The location of the desired address is calcu-
lated by subtracting the offset value in C from the stack pointer.

SINS(641) can be used to insert the data for an item that is inserted in the
midst of items already on a conveyor. The position of the insertion point is
simply the number of items back (the offset value) from the most recent item
added to the conveyor.

Area TB C S

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0001 to #FFFB
(Hexadecimal)

#0000 to #FFFF
(Hexadecimal)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

A
B
C
D

n

m

TB
TB+1
TB+2
TB+3
TB+4

m

n

A
B
C
D

n

m+1

TB
TB+1
TB+2
TB+3
TB+4

m
m+1

C

Stack Stack
PLC memory
address

PLC memory
address

Pointer

Pointer

Offset value Last word
in stack

Last word
in stack

Inserts the source data (A)
and increments the stack
pointer.

The address of the desired word is
calculated by subtracting the offset
value from the stack pointer address.

The stack pointer is
incremented by +1.
613

Table Data Processing Instructions Section 3-16
Flags

Precautions The stack must be defined in advance with SSET(630).

SINS(641) inserts one word of data into the stack, so there must be at least
one available word at the end of the stack. If the stack is full, an error will
occur and the source data will not be inserted.

If the address indicated by the stack pointer (TB+3 and TB+2) is already
greater than the address of the last word in the stack (TB+1 and TB) when
SINS(641) is executed, a stack overflow error will occur and the source data
will not be inserted.

Examples When CIO 0.00 is ON in the following example, SINS(641) inserts the source
data in D100 at the specified address in the stack starting at D0. In this case,
the stack pointer indicates D7 and the offset value is 3, so the source data is
inserted in D4. The existing data is shifted down one word and the data in D7
is overwritten. At the same time the stack pointer will be incremented from D7
to D8.

Name Label Operation

Error Flag ER ON if the address indicated by the stack pointer (TB+3
and TB+2) is greater than the PLC memory address of
last word in the data region of the stack.
(This is a stack overflow error.)
ON if the offset value specified is greater than the maxi-
mum data region size - 1 (FFFA hex).
OFF in all other cases.

SINS

D0

#0003

D100

0.00

B
C
D

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

A
B
C
D

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D100 A

−3

+1

Last word
in stack

Last word
in stack

Stack
pointer

Stack
pointer

PLC memory address
of last word in the stack

PLC memory address
of last word in the stack

Stack pointer

Stack pointer

PLC memory
address

(Insert)

The stack pointer is incremented
by +1 after the data is inserted.
614

Table Data Processing Instructions Section 3-16
3-16-18 STACK DATA DELETE: SDEL(642)
Purpose Deletes the data element at the specified location in the stack, outputs that

data to the specified destination word, and shifts the remaining the data in the
stack upward. The offset value indicates the location of the desired data ele-
ment (how many data elements before the current pointer position).

Ladder Symbol

Variations

Applicable Program Areas

Operands TB through TB+3: Stack control words

The first four words of the stack contain the PLC memory address of the last
word in the stack and the stack pointer (the PLC memory address of the next
available word in the stack.)

TB+4 through TB+(N–1): Data storage region

The remainder of the stack is used to store data.

SDEL(642)

TB

C

D

TB: First stack address
C: Offset value
D: Destination word

Variations Executed Each Cycle for ON Condition SDEL(642)

Executed Once for Upward Differentiation @SDEL(642)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

TB

015

TB+1

015

TB+2

015

TB+3

015

PLC memory address of the last
word in the stack (rightmost 4 digits)

PLC memory address of the last
word in the stack (leftmost 4 digits)

Stack pointer (rightmost 4 digits)
(Initial value is the rightmost 4 digits of
the PLC memory address for TB+4.)

Stack pointer (leftmost 4 digits)
(Initial value is the leftmost 4 digits of
the PLC memory address for TB+4.)

15 0

TB+4

TB+(N–1)

Data storage region
615

Table Data Processing Instructions Section 3-16
Operand Specifications

Description SDEL(642) deletes the data at the specified location in the stack, outputs that
data to the specified destination word, and shifts the remaining the data in the
stack upward. At the same time, SDEL(642) decrements the stack pointer
(TB+3 and TB+2) by 1. The location of the desired address is calculated by
subtracting the offset value in C from the stack pointer.

SDEL(642) can be used to delete the data for an item that is rejected from the
items on a conveyor. The position of the deletion point is simply the number of
items back (the offset value) from the most recent item added to the conveyor.

Area TB C D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0001 to #FFFB
(Hexadecimal)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

A

A
B
C

n

m

TB
TB+1
TB+2
TB+3
TB+4

D

m

n

C

B
C

n

m-1

TB
TB+1
TB+2
TB+3
TB+4

m

n

Stack Stack
PLC memory
address

PLC memory
address

Pointer

Pointer
Offset value Last word

in stack Last word
in stack

Deletes the specified
word and decrements
the stack pointer.

The stack pointer is
decremented by 1.

The address of the desired word
is calculated by subtracting the
offset value from the stack
pointer address.
616

Table Data Processing Instructions Section 3-16
Flags

Precautions The stack must be defined in advance with SSET(630).

The address in the stack pointer must be greater than the PLC memory
address of the beginning of the data region (TB+4). An error will occur if the
stack pointer is less than the PLC memory address of TB+4, i.e., if a stack
underflow error occurs.

Examples When CIO 0.00 is ON in the following example, SDEL(642) deletes the word
at the specified address in the stack starting at D0, outputs the deleted data to
D100, shifts the remaining data upward, and decrements the stack pointer.

In this case, the stack pointer indicates D7 and the offset value is 3, so the
data is deleted from D4. The remaining data is shifted up one word and the
stack pointer is decremented from D7 to D6.

Name Label Operation

Error Flag ER ON if the content of the stack pointer (TB+3 and TB+2) is
less than or equal to the PLC memory address of first
word in the data region of the stack (TB+4).
(This is a stack underflow error.)
ON if the offset value specified in C is 0 or greater than
the maximum data region size (FFFB hex).
OFF in all other cases.

Equals Flag = ON if the output data in D is 0000.
OFF in all other cases.

SDEL

D0

&3

D100

0.00

A
B
C

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

B
C
C

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D100 A−3

−1

Last word
in stack

Last word
in stack

Stack
pointer

Stack
pointer

PLC memory address
of last word in the stack

PLC memory address
of last word in the stack

Stack pointer

Stack pointer

PLC memory
address

(Delete/output)

The stack pointer is decremented
by 1 after the data is deleted.
617

Table Data Processing Instructions Section 3-16
618

Data Control Instructions Section 3-17
3-17 Data Control Instructions
This section describes instructions used to control specific operations.

3-17-1 PID CONTROL: PID(190)
Purpose Executes PID control according to the specified parameters.

Ladder Symbol

Variations

Applicable Program Areas

Parameters The following diagrams show the locations of the parameter data. For details
on the parameters, refer to PID Parameter Settings in this section.

Instruction Mnemonic Function code Page

PID CONTROL PID 190 619

PID CONTROL WITH AUTOTUNING PIDAT 191 631

LIMIT CONTROL LMT 680 641

DEAD BAND CONTROL BAND 681 643

DEAD ZONE CONTROL ZONE 682 646

TIME-PROPORTIONAL OUTPUT TPO 685 648

SCALING SCL 194 656

SCALING 2 SCL2 486 660

SCALING 3 SCL3 487 664

AVERAGE AVG 195 668

PID(190)

S

C

D

S: Input word

C: First parameter word

D: Output word

Variations Executed Each Cycle for ON Condition PID(190)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
619

Data Control Instructions Section 3-17
Operand Specifications

Description When the execution condition is ON, PID(190) carries out target value filtered
PID control with two degrees of freedom according to the parameters desig-
nated by C (set value, PID constant, etc.). It takes the specified input range of
binary data from the contents of input word S and carries out the PID action
according to the parameters that are set. The result is then stored as the
manipulated variable in output word D.

The parameters are obtained when the execution condition turns from OFF to
ON, and the Error Flag will turn ON if the settings are outside of the permissi-
ble range.

15 8 07

C+5 0
3 2 14

Set value (SV)

Proportional band (P)
Integral constant (Tik)

Derivative constant (Tdk)

Sampling period (τ)

Forward/reverse designation
PID constant update timing designation

Manipulated variable output setting

2-PID parameter (α)

Output range

Integral and derivative unit

Input range

Manipulated variable output limit control

Area S C D

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6105

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W473 W0 to W511

Holding Bit Area H0 to H511 H0 to H473 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A921 A448 to A959

Timer Area T0000 to T4095 T0000 to T4057 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4057 C0000 to C4095

DM Area D0 to D32767 D0 to D32729 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants DR0 to DR15 --- DR0 to DR15

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
620

Data Control Instructions Section 3-17
If the settings are within the permissible range, PID processing will be exe-
cuted using the initial values. Bumpless operation is not performed at this
time. It will be used for manipulated variables in subsequent PID processing
execution. (Bumpless operation is processing that gradually and continuously
changes the manipulated variable in order to avoid the adverse effects of sud-
den changes.)

When the execution condition turns ON, the PV for the specified sampling
period is entered and processing is performed.

The number of valid input data bits within the 16 bits of the PV input (S) is
designated by the input range setting in C+6, bits 08 to 11. For example, if 12
bits (4 hex) is designated for the input range, the range from 0000 hex to 0FFF
hex will be enabled as the PV. (Values greater than 0FFF hex will be regarded
as 0FFF hex.)

The set value range also depends on the input range.

Measured values (PV) and set values (SV) are in binary without sign, from
0000 hex to the maximum value of the input range.

The number of valid output data bits within the 16 bits of the manipulated vari-
able output is designated by the output range setting in C+6, bits 00 to 03. For
example, if 12 bits (4 hex) is designated for the output range, the range from
0000 hex to 0FFF hex will be output as the manipulated variable.

For proportional operation only, the manipulated variable output when the PV
equals the SV can be designated as follows:

0: Output 0%
1: Output 50%.

The direction of proportional operation can be designated as either forward or
reverse.

The upper and lower limits of the manipulated variable output can be desig-
nated.

The sampling period can be designated in units of 10 ms (0.01 to 99.99 s), but
the actual PID action is determined by a combination of the sampling period
and the time of PID(190) instruction execution (with each cycle).

The timing of enabling changes made to PID constants can be set to either 1)
the beginning of PID instruction execution or 2) the beginning of PID instruc-
tion execution and each sampling period. Only the proportional band (P), inte-
gral constant (Tik), and derivative constant (Tdk) can be changed each
sampling cycle (i.e., during PID instruction execution). The timing is set in bit 1
of C+5.

Of the PID parameters (C to C+38), only the set value (SV) can be changed
when the execution condition is ON. When changing other values, be sure to
change the execution condition from OFF to ON.

Parameters (C to C+8)

Manipulated variable (D)

PV input (S) PID control
621

Data Control Instructions Section 3-17
Flags

Precautions PID(190) is executed as if the execution condition was a STOP-RUN signal.
PID calculations are executed when the execution condition remains ON for
the next cycle after C+9 to C+38 are initialized. Therefore, when using the
Always ON Flag (ON) as an execution condition for PID(190), provide a sepa-
rate process where C+9 to C+38 are initialized when operation is started.

If the C data is out of range, an error will occur and the Error Flag will turn ON.

If the actual sampling period is more than twice the designated sampling
period, an error will occur and the Error Flag will turn ON. PID control will still
be executed, however.

The Carry Flag turns ON while PID control is being executed.

The Greater Than Flag turns ON if the manipulated variable after the PID
action exceeds the upper limit. At this time, the results are output at the upper
limit.

The Less Than Flag turns ON if the manipulated variable after the PID action
is below the lower limit. At this time, the results are output at the lower limit.

Within the PID parameters (C to C+38), the only value that can be changed
while the input condition is ON is the set value for C. If any other value is
changed, be sure to turn the input condition from OFF to ON to enable the
new value.

Example At the rising edge of CIO 0.00 (OFF to ON), the work area in D209 to D238 is
initialized according to the parameters (shown below) set in D200 to D208.
After the work area has been initialized, PID control is executed and the
manipulated variable is output to CIO 2000.

When CIO 0.00 is turned ON, PID control is executed at the sampling period
intervals according to the parameters set in D200 to D208. The manipulated
variable is output to CIO 2000.

The PID constants used in PID calculations will not be changed if the propor-
tional band (P), integral constant (Tik), or derivative constant is changed after
CIO 0.00 turns ON.

Name Label Operation

Error Flag ER ON if the C data is out of range.
ON if the actual sampling period is more than twice the
designated sampling period.
OFF in all other cases.

Greater Than
Flag

> ON if the manipulated variable after the PID action
exceeds the upper limit.
OFF in all other cases.

Less Than Flag < ON if the manipulated variable after the PID action is
below the lower limit.
OFF in all other cases.

Carry Flag CY ON while PID control is being executed.
OFF in all other cases.
622

Data Control Instructions Section 3-17
Input Values and
Manipulated Variable
Ranges

The number of valid input data bits for the measured value is designated by
the input range setting in C+6, bits 08 to 11, and the number of valid output
data bits for the manipulated variable output is designated by the output range
setting in C+6, bits 0 to 3. These ranges are shown in the following table.

If the range of data handled by an Analog Input Unit or Analog Output Unit
cannot be set accurately by setting the number of valid bits, APR(069)
(ARITHMETIC PROCESS) can be used to convert to the proper ranges
before and after PID(190).

The following program section shows an example for a DRT1-AD04 Analog
Input Unit and DRT1-DA02 Analog Output Unit operating as DeviceNet
slaves. The data ranges for these two Units is 0000 to 1770 hex, which cannot
be specified merely by setting the valid number of digits. APR(069) is thus
used to convert the 0000 to 1770 hex range of the Analog Input Unit to 0000
to FFFF hex for input to PID(190) and then the manipulated variable output
from PID(190) is converted back to the range 0000 to 1770 hex, again using
APR(069), for output from the Analog Output Unit.

C: D200
C+1: D201

C+2: D202

C+3: D203

C+4: D204

C+5: D205

C+6: D206

C+7: D207

C+8: D208
C+9: D209

C+38: D238

012C

0064

04B0

0190

0032

0008

0494

0000

00001000

0.00

1000

D200

2000

to

Note

PID control

Reverse operation (bit 00: 0) /PID constant updating
timing=input condition is ON (bit 01: 0)/ set value =
manipulated variable output 50% (bit 03: 1) / 2-PID
parameter = 0.65 (bits 04 to 15: 000 hex)
Manipulated variable output range: 12 bits (bits 00 to 03:
4 hex) Integral/derivative constant: time designation (bits
04 to 07: 9 hex) Input range: 12 bits (bits 08 to 11: 4 hex)
Manipulated variable limit control: No (bits 12: 0 hex)

Set value: 300

Proportional band: 10.0%

Integral time: 120.0 s

Derivative time: 40.0 s

Sampling period: 0.5 s

When CIO 0.00 is OFF, operation can be the same
as manual operation by writing to CIO 2000.

Manipulated variable output:
CIO 2000

PV: word

Parameters

Work Area

C+6, bits 08 to 11 or
C+6, bits 00 to 03

Number of valid bits Range

0 8 0000 to 00FF hex

1 9 0000 to 01FF hex

2 10 0000 to 03FF hex

3 11 0000 to 07FF hex

4 12 0000 to 0FFF hex

5 13 0000 to 1FFF hex

6 14 0000 to 3FFF hex

7 15 0000 to 7FFF hex

8 16 0000 to FFFF hex
623

Data Control Instructions Section 3-17
Performance Specifications

Calculation Method Calculations in PID control are performed by the target value filtered control
with two degrees of freedom.

Block Diagram for Target
Value PID with Two
Degrees of Freedom

When overshooting is prevented with simple PID control, stabilization of dis-
turbances is slowed (1). If stabilization of disturbances is speeded up, on the
other hand, overshooting occurs and response toward the target value is
slowed (2).

When target-value PID control with two degrees of freedom is used, on the
other hand, there is no overshooting, and response toward the target value
and stabilization of disturbances can both be speeded up (3).

Item Specifications

PID control method --- Target value filter-type two-degrees-of-freedom PID method (forward/
reverse)

Number of PID control loops --- Unlimited (1 loop per instruction)

Sampling period τ 0.01 to 99.99 s

PID constant Proportional band P 0.1 to 999.9%

Integral constant Tik 1 to 8191, 9999 (No integral action for sampling period multiple, 9999.)

Derivative constant Tdk 0 to 8191 (No derivative action for sampling period multiple, 0.)

Set value SV 0 to 65535 (Valid up to maximum value of input range.)

Measured value PV 0 to 65535 (Valid up to maximum value of input range.)

Manipulated variable MV 0 to 65535 (Valid up to maximum value of output range.)

APR

PID

APR

D1000

D2000

D2000

D2500

D3000

D3000

D1500
C (D1500):
C+1 (D1501):
C+2 (D1502):
C+3 (D1503):
C+4 (D1504):

C+1 (D1001):
C+2 (D1002):
C+3 (D1003):
C+4 (D1004):

C (D1000):

C+6 (D2506):
@8@8

Control Data
0000 Hex (binary with one table)
1770 Hex (Xm)
0000 Hex (Yo)
1770 Hex (X1)
FFFF Hex (Y1)

Control Data
0000 Hex (binary with one table)
FFFF Hex (Xm)
0000 Hex (Yo)
FFFF Hex (X1)
1770 Hex (Y1)

Control Data

Valid number of bits: 16 (0000 to FFFF Hex)
Valid number of bits: 16 (0000 to FFFF Hex)

From Analog Input Unit
Execution
condition

To Analog Output Unit

Analog input value

Analog output value

1 + (1 – λ) Ti/ τ

1 + Ti/τ

+

–

+

–

Kp + Kp
Ti/ τ

Kp Td/ τ
 1 + λ Td/τ .

.
Measured
value (PV)

Set value
(target value)

Target value filter Proportional + integral elements

Preceding derivative-
type elements

Manipulated variable

Kp: Proportional constant
Ti: Integral time
Td: Derivative time
τ: Sampling period
α: 2-PID parameter
λ: Incomplete derivative coefficient
624

Data Control Instructions Section 3-17
PID Parameter Settings

(1)

(2)

(3)

Disturbance response

Simple PID Control Feed-forward PID Control

As the target response is slowed,
the disturbance response worsens.

As the disturbance response is
slowed, the target response worsens.

Overshoot

Target response

Control
data

Item Contents Setting range Change with
ON input
condition

C Set value (SV) The target value of the process
being controlled.

Binary data (of the same number
of bits as specified for the input
range)

Allowed

C+1 Proportional band The parameter for P action
expressing the proportional con-
trol range/total control range.

0001 to 270F hex (1 to 9999);
(0.1% to 999.9%, in units of
0.1%)

Can be
changed with
input condition
ON if bit 1 of
C+5 is 1.

C+2 Tik
Integral Constant

A constant expressing the
strength of the integral action. As
this value increases, the integral
strength decreases.

0001 to 1FFF hex (1 to 8191);
(9999 = Integral operation not
executed) (See note 1.)

C+3 Tdk
Derivative Constant

A constant expressing the
strength of the derivative action.
As this value increases, the
derivative strength decreases.

0001 to 1FFF hex (1 to 8191);
(0000 = Derivative operation not
executed) (See note 1.)

C+4 Sampling period (τ) Sets the period for executing the
PID action.

0001 to 270F hex (1 to 9999);
(0.01 to 99.99 s, in units of
10 ms)

Not allowed

Bits 04 to 15
of C+5

2-PID parameter (α) The input filter coefficient. Nor-
mally use 0.65 (i.e., a setting of
000). The filter efficiency
decreases as the coefficient
approaches 0.

000 hex: α = 0.65
Setting from 100 to 163 hex
means that the value of the right-
most two digits is set from α=
0.00 to α= 0.99. (See note 2.)

Bit 03 of C+5 Manipulated vari-
able output designa-
tion

Designates the manipulated vari-
able output for when the PV
equals the SV.

0: Output 0%
1: Output 50%

Bit 01 of C+5 PID constant
change enable set-
ting

The timing of enabling changes
made to the proportional band
(P), integral constant (Tik), and
derivative constant (Tdk) for use
in PID calculations.

0: At start of PID instruction exe-
cution
1: At start of PID instruction exe-
cution and each sampling period

Allowed
625

Data Control Instructions Section 3-17
Note (1) When the unit is designated as 1, the range is from 1 to 8,191 times the
period. When the unit is designated as 9, the range is from 0.1 to 819.1 s.
When 9 is designated, set the integral and derivative times to within a
range of 1 to 8,191 times the sampling period.

(2) Setting the 2-PID parameter (α) to 000 yields 0.65, the normal value.

(3) When the manipulated variable output limit control is enabled (i.e., set to
“1”), set the values as follows:

0000 ≤ MV output lower limit ≤ MV output upper limit ≤ Max. value of output
range

Sampling Period and
Cycle Time

The sampling period can be designated in units of 10 ms (0.01 to 99.99 s), but
the actual PID action is determined by a combination of the sampling period
and the time of PID instruction execution (with each cycle). The relationship
between the sampling period and the cycle time is as follows:

• If the sampling period is less than the cycle time, PID control is executed
with each cycle and not with each sampling period.

• If the sampling period is greater than or equal to the cycle time, PID con-
trol is not executed with each cycle, but PID(190) is executed when the
cumulative value of the cycle time (the time between PID instructions) is
greater than or equal to the sampling period. The surplus portion of the
cumulative value (i.e., the cycle time’s cumulative value minus the sam-
pling period) is carried forward to the next cumulative value.

For example, suppose that the sampling period is 100 ms and that the cy-
cle time is consistently 60 ms. For the first cycle after the initial execution,
PID(190) will not be executed because 60 ms is less than 100 ms. For the
second cycle, 60 ms + 60 ms is greater than 100 ms, so PID(190) will be
executed. The surplus of 20 ms (i.e., 120 ms – 100 ms = 20 ms) will be
carried forward.

Bit 00 of C+5 PID forward/reverse
designation

Determines the direction of the
proportional action.

0: Reverse action
1: Forward action

Not allowed

Bit 12 of C+6 Manipulated vari-
able output limit
control

Determines whether or not limit
control will apply to the manipu-
lated variable output.

0: Disabled (no limit control)
1: Enabled (limit control)

Bits 08 to 11
of C+6

Input range The number of input data bits. 0: 8 bits 5: 13 bits
1: 9 bits 6: 14 bits
2: 10 bits7: 15 bits
3: 11 bits8: 16 bits
4: 12 bits

Bits 04 to 07
of C+6

Integral and deriva-
tive unit

Determines the unit for express-
ing the integral and derivative
constants.

1: Sampling period multiple
9: Time (unit: 100 ms)

Bits 00 to 03
of C+6

Output range The number of output data bits.
(The number of output bits is
automatically the same as the
number of input bits.)

0: 8 bits 5: 13 bits
1: 9 bits 6: 14 bits
2: 10 bits7: 15 bits
3: 11 bits8: 16 bits
4: 12 bits

C +7 Manipulated vari-
able output lower
limit

The lower limit for when the
manipulated variable output limit
is enabled.

0000 to FFFF (binary)
(See note 3.)

C +8 Manipulated vari-
able output upper
limit

The upper limit for when the
manipulated variable output limit
is enabled.

0000 to FFFF (binary)
(See note 3.)

Control
data

Item Contents Setting range Change with
ON input
condition
626

Data Control Instructions Section 3-17
For the third cycle, the surplus 20 ms is added to 60 ms. Because the sum
of 80 ms is less than 100 ms, PID(190) will not be executed. For the fourth
cycle, the 80 ms is added to 60 ms. Because the sum of 140 ms is greater
than 100 ms, PID(190) will be executed and the surplus of 40 ms (i.e.,
120 ms – 100 ms = 20 ms) will be carried forward. This procedure is re-
peated for subsequent cycles.

Control Actions Proportional Action (P)

Proportional action is an operation in which a proportional band is established
with respect to the set value (SV), and within that band the manipulated vari-
able (MV) is made proportional to the deviation. An example for reverse oper-
ation is shown in the following illustration.

If the proportional action is used and the present value (PV) becomes smaller
than the proportional band, the manipulated variable (MV) is 100% (i.e., the
maximum value). Within the proportional band, the MV is made proportional
to the deviation (the difference between from SV and PV) and gradually
decreased until the SV and PV match (i.e., until the deviation is 0), at which
time the MV will be at the minimum value of 0% (or 50%, depending on the
setting of the manipulated variable output designation parameter). The MV
will also be 0% when the PV is larger than the SV.

The proportional band is expressed as a percentage of the total input range.
The smaller the proportional band, the larger the proportional constant and
the stronger the corrective action will be. With proportional action an offset
(residual deviation) generally occurs, but the offset can be reduced by making
the proportional band smaller. If it is made too small, however, hunting will
occur.

1 cycle 1 cycle 1 cycle 1 cycle 1 cycle

Processing
Initial processing (60 ms) (60 ms + 60 ms = 120 ms) (20 ms + 60 ms = 80 ms)

(80 ms + 60 ms = 140 ms)

(PID processing
with initial values)

Reading of
measurement
time

Less than 100 ms, so
PID is not executed.

Greater than 100 ms,
so PID is executed
and 20 ms is carried
forward.

Less than 100 ms, so
PID is not executed.

Not executed. Executed Not executed. Executed

Greater than 100 ms,
so PID is executed and
40 ms is carried
forward.

SV

SV

Adjusting the Proportional BandProportional Action (Reverse Action)

Manipulated
variable

Output: 0%

Output: 50%

Proportional band

Proportional band too narrow (hunting occurring)

Offset

Proportional band just right

Proportional band too wide (large offset)
627

Data Control Instructions Section 3-17
Integral Action (I)

Combining integral action with proportional action reduces the offset accord-
ing to the time that has passed, so that the PV will match the SV. The strength
of the integral action is indicated by the integral time, which is the time
required for the manipulated variable of the integral action to reach the same
level as the manipulated variable of the proportional action with respect to the
step deviation, as shown in the following illustration. The shorter the integral
time, the stronger the correction by the integral action will be. If the integral
time is too short, the correction will be too strong and will cause hunting to
occur.

Derivative Action (D)

Proportional action and integral action both make corrections with respect to
the control results, so there is inevitably a response delay. Derivative action
compensates for that drawback. In response to a sudden disturbance it deliv-
ers a large manipulated variable and rapidly restores the original status. A
correction is executed with the manipulated variable made proportional to the
incline (derivative coefficient) caused by the deviation.

The strength of the derivative action is indicated by the derivative time, which
is the time required for the manipulated variable of the derivative action to
reach the same level as the manipulated variable of the proportional action
with respect to the step deviation, as shown in the following illustration. The
longer the derivative time, the stronger the correction by the derivative action
will be.

0

0

PI action

P action

Step response

I action

Integral Action

Step response

Ti: Integral time

Manipulated
variable

Deviation

Manipulated
variable

Deviation

Pi Action and Integral Time
628

Data Control Instructions Section 3-17
PID Action

PID action combines proportional action (P), integral action (I), and derivative
action (D). It produces superior control results even for control objects with
dead time. It employs proportional action to provide smooth control without
hunting, integral action to automatically correct any offset, and derivative
action to speed up the response to disturbances.

0

0

0

0

Ramp response

Step response

PD action
P action
D action

Td: Derivative time

Manipulated
variable

Deviation

Manipulated
variable

Deviation

Derivative Action

PD Action and Derivative Time

0

0

0

0

PID action
I action
P action
D action

Step response

PID action

I action
P action
D action

Ramp response

Manipulated
variable

Manipulated
variable

Step Response of PID Control Action Output

Ramp Response of PID Control Action Output

Deviation

Deviation
629

Data Control Instructions Section 3-17
Direction of Action When using PID control, select either of the following two control directions. In
either direction, the MV increases as the difference between the SV and the
PV increases.

• Forward action: MV is increased when the PV is larger than the SV.

• Reverse action: MV is increased when the PV is smaller than the SV.

Adjusting PID Parameters The general relationship between PID parameters and control status is shown
below.

• When it is not a problem if a certain amount of time is required for stabili-
zation (settlement time), but it is important not to cause overshooting,
then enlarge the proportional band.

• When overshooting is not a problem but it is desirable to quickly stabilize
control, then narrow the proportional band. If the proportional band is nar-
rowed too much, however, then hunting may occur.

• When there is broad hunting, or when operation is tied up by overshooting
and undershooting, it is probably because integral action is too strong.
The hunting will be reduced if the integral time is increased or the propor-
tional band is enlarged.

SV SV

Output Output

Forward ActionReverse Action

Low
temperature

High
temperature

Low
temperature

High
temperature

SV

Control by measured PID

When P is enlarged

SV

When P is narrowed

Control by measured PID

SV

Control by measured PID
(when loose hunting occurs)

Enlarge I or P.
630

Data Control Instructions Section 3-17
• If the period is short and hunting occurs, it may be that the control system
response is quick and the derivative action is too strong. In that case, set
the derivative action lower.

3-17-2 PID CONTROL WITH AUTOTUNING: PIDAT(191)
Purpose Executes PID control according to the specified parameters. The PID con-

stants can be autotuned.

Ladder Symbol

Variations

Applicable Program Areas

Parameters The following diagrams show the locations of the parameter data. For details
on the parameters, refer to PID Parameter Settings in this section.

SV

Control by measured PID
(when hunting occurs in a short period)

Lower D.

PIDAT(191)

S

C

D

S: Input word
C: First parameter word
D: Output word

Variations Executed Each Cycle for ON Condition PIDAT(191)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
631

Data Control Instructions Section 3-17
Operand Specifications

15 8 07

C+5 0
3 2 14

Set value (SV)

Proportional band (P)
Integral constant (Tik)

Derivative constant (Tdk)

Sampling period (τ)

Forward/reverse designation
PID constant update timing designation

Manipulated variable output setting

2-PID parameter (α)

Output range

Integral and derivative unit

Input range

Manipulated variable output limit control

C+7

C+8

015

C+11

C+40

C+9

C+10
015

015 1214 13
0 0 0

Manipulated variable output lower limit
Manipulated variable output upper limit

Work area
(30 words: Cannot be used by user.)

AT Command Bit

AT Calculation Gain

Limit-cycle Hysteresis

Area S C D

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6105

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W473 W0 to W511

Holding Bit Area H0 to H511 H0 to H473 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A921 A448 to A959

Timer Area T0000 to T4095 T0000 to T4057 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4057 C0000 to C4095

DM Area D0 to D32767 D0 to D32729 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants DR0 to DR15 --- DR0 to DR15

Data Registers ---
632

Data Control Instructions Section 3-17
Description When the execution condition is ON, PIDAT(191) carries out target value fil-
tered PID control with two degrees of freedom according to the parameters
designated by C (set value, PID constant, etc.). It takes the specified input
range of binary data from the contents of input word S and carries out the PID
action according to the parameters that are set. The result is then stored as
the manipulated variable in output word D.

The parameter settings are read when the execution condition turns from OFF
to ON, and the Error Flag will turn ON if the settings are outside of the permis-
sible range.

If the settings are within the permissible range, PID processing will be exe-
cuted using the initial values. Bumpless operation is not performed at this
time. It will be used for manipulated variables in subsequent PID processing
execution. (Bumpless operation is processing that gradually and continuously
changes the manipulated variable in order to avoid the adverse effects of sud-
den changes.)

When the execution condition turns ON, the PV for the specified sampling
period is entered and processing is performed.

Autotuning

The status of the AT Command Bit (bit 15 of C+9) is checked every cycle. If
this control bit is turned ON in a given cycle, PIDAT(191) will begin autotuning
the PID constants. (The changes in the SV will not be reflected while autotun-
ing is being performed.)

The limit-cycle method is used for autotuning. PIDAT(191) forcibly changes
the manipulated variable (max. manipulated variable ↔ min. manipulated
variable) and monitors the characteristics of the controlled system. The PID
constants are calculated based on the characteristics that were observed,
and the new P, I, and D constants are stored automatically in C+1, C+2, and
C+3. At this point, the AT Command Bit (bit 15 of C+9) is turned OFF and PID
control resumes with the new PID constants in C+1, C+2, and C+3.

• If the AT Command Bit is ON when PIDAT(191) execution begins, auto-
tuning will be performed first and then PID control will start with the calcu-
lated PID constants.

• If the AT Command Bit is turned ON during PIDAT(191) execution,
PIDAT(191) interrupts the PID control being performed with the user-set
PID constants, performs autotuning, and then resumes PID control with
the calculated PID constants.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

Area S C D

Parameters (C to C+8)

Manipulated variable (D)

PV input (S) PID control
633

Data Control Instructions Section 3-17
The following flowchart shows the autotuning procedure:

Note (1) If autotuning is interrupted by turning OFF the AT Command Bit during
autotuning, PID control will start with the PID constants that were being
used before autotuning began.

(2) Also, if an AT execution error occurs, PID control will start with the PID
constants that were being used before autotuning began.

In both cases described in notes 1 and 2, the PID constants will be enabled if
they were already calculated when autotuning was interrupted.

PID Control

The number of valid input data bits within the 16 bits of the PV input (S) is
designated by the input range setting in C+6, bits 08 to 11. For example, if 12
bits (4 hex) is designated for the input range, the range from 0000 hex to 0FFF
hex will be enabled as the PV. (Values greater than 0FFF hex will be regarded
as 0FFF hex.)

The set value range also depends on the input range.

Measured values (PV) and set values (SV) are in binary without sign, from
0000 hex to the maximum value of the input range.

The number of valid output data bits within the 16 bits of the manipulated vari-
able output is designated by the output range setting in C+6, bits 00 to 03. For
example, if 12 bits (4 hex) is designated for the output range, the range from
0000 hex to 0FFF hex will be output as the manipulated variable.

For proportional operation only, the manipulated variable output when the PV
equals the SV can be designated as follows:

0: Output 0%
1: Output 50%.

The direction of proportional operation can be designated as either forward or
reverse.

The upper and lower limits of the manipulated variable output can be desig-
nated.

The sampling period can be designated in units of 10 ms (0.01 to 99.99 s), but
the actual PID action is determined by a combination of the sampling period
and the time of PIDAT(191) instruction execution (with each cycle).

The calculated P, I, and D constants are
set in C+1, C+2, and C+3 respectively.
The AT Command Bit is turned OFF.

PID control is interrupted, the PV is
forcibly changed, and the PID constants
are calculated automatically.

The AT Command Bit (bit 15 of C+9) is
ON at the start of PIDAT(191) execution
or it is turned ON during execution.

PID control starts (or restarts) with the
new PID constants.
634

Data Control Instructions Section 3-17
The timing of enabling changes made to PID constants can be set to either 1)
the beginning of PIDAT(191) instruction execution or 2) the beginning of PID
instruction execution and each sampling period. Only the proportional band
(P), integral constant (Tik), and derivative constant (Tdk) can be changed
each sampling cycle (i.e., during PID instruction execution). The timing is set
in bit 1 of C+5.

When changing the PID constants manually, set the PID constant change
enable setting (bit 1 of C+5) to 1 so that the values in C+1, C+2, and C+3 are
refreshed each sampling period in the PID calculation. This setting also allows
the PID constants to be adjusted manually after autotuning.

Of the PID parameters (C to C+38), only the following parameters can be
changed when the execution condition is ON. When any other values have
been changed, be sure to change the execution condition from OFF to ON to
enable the new settings.

• Set value (SV) in C
(Can be changed during PID control only. An SV change during autotun-
ing will not be reflected.)

• PID constant change enable setting (bit 1 of C+5)

• P, I, and D constants in C+1, C+2, and C+3
(Changes to these constants will be reflected each sampling period only if
the PID constant change enable setting (bit 1 of C+5) is set to 1.)

• AT Command Bit (bit 15 of C+9)

• AT Calculation Gain (bits 0 to 14 of C+9) and Limit-cycle Hysteresis
(C+10) (These values are read when autotuning starts.)

Note The PIDAT(191) instruction is the same as the PID(190) instruction with the
added autotuning (AT) function, so the PID control operations are identical.
Refer to 3-17-1 PID CONTROL: PID(190) for details on PID control operations
and examples.

Flags

Precautions PIDAT(191) is executed as if the execution condition was a STOP-RUN signal.
PID calculations are executed when the execution condition remains ON for
the next cycle after C+11 to C+40 are initialized. Therefore, when using the
Always ON Flag (ON) as an execution condition for PIDAT(191), provide a
separate process where C+11 to C+40 are initialized when operation is
started.

If the C data is out of range, an error will occur and the Error Flag will turn ON.

If an error occurred during autotuning, the Error Flag will turn ON.

Name Label Operation

Error Flag ER ON if the C data is out of range.
ON if the actual sampling period is more than twice the
designated sampling period.
ON if an error occurred during autotuning.
OFF in all other cases.

Greater Than
Flag

> ON if the manipulated variable after the PID action
exceeds the upper limit.

OFF in all other cases.

Less Than Flag < ON if the manipulated variable after the PID action is
below the lower limit.

OFF in all other cases.

Carry Flag CY ON while PID control is being executed.

OFF in all other cases.
635

Data Control Instructions Section 3-17
If the actual sampling period is more than twice the designated sampling
period, an error will occur and the Error Flag will turn ON. PID control will still
be executed, however.

The Carry Flag turns ON while PID control is being executed.

The Greater Than Flag turns ON if the manipulated variable after the PID
action exceeds the upper limit. At this time, the results are output at the upper
limit.

The Less Than Flag turns ON if the manipulated variable after the PID action
is below the lower limit. At this time, the results are output at the lower limit.

PID Parameter Settings

Control
data

Item Contents Setting range Change with
ON input
condition

C Set value (SV) The target value of the process
being controlled.

Binary data (of the same number
of bits as specified for the input
range)

Allowed

C+1 Proportional band The parameter for P action
expressing the proportional con-
trol range/total control range.

0001 to 270F hex (1 to 9999);
(0.1% to 999.9%, in units of
0.1%)

Can be
changed with
input condition
ON if bit 1 of
C+5 is 1.

C+2 Tik
Integral Constant

A constant expressing the
strength of the integral action. As
this value increases, the integral
strength decreases.

0001 to 1FFF hex (1 to 8191);
(9999 = Integral operation not
executed) (See note 1.)

C+3 Tdk
Derivative Constant

A constant expressing the
strength of the derivative action.
As this value increases, the
derivative strength decreases.

0001 to 1FFF hex (1 to 8191);
(0000 = Derivative operation not
executed) (See note 1.)

C+4 Sampling period (τ) Sets the period for executing the
PID action.

0001 to 270F hex (1 to 9999);
(0.01 to 99.99 s, in units of
10 ms)

Not allowed

Bits 04 to 15
of C+5

2-PID parameter (α) The input filter coefficient. Nor-
mally use 0.65 (i.e., a setting of
000). The filter efficiency
decreases as the coefficient
approaches 0.

000 hex: α = 0.65
Setting from 100 to 163 hex
means that the value of the right-
most two digits is set from α=
0.00 to α= 0.99. (See note 2.)

Bit 03 of C+5 Manipulated vari-
able output designa-
tion

Designates the manipulated vari-
able output for when the PV
equals the SV.

0: Output 0%
1: Output 50%

Bit 01 of C+5 PID constant
change enable set-
ting

The timing of enabling changes
made to the proportional band
(P), integral constant (Tik), and
derivative constant (Tdk) for use
in PID calculations.

0: At start of PID instruction exe-
cution
1: At start of PID instruction exe-
cution and each sampling period

Allowed
636

Data Control Instructions Section 3-17
Bit 00 of C+5 PID forward/reverse
designation

Determines the direction of the
proportional action.

0: Reverse action
1: Forward action

Not allowed

Bit 12 of C+6 Manipulated vari-
able output limit
control

Determines whether or not limit
control will apply to the manipu-
lated variable output.

0: Disabled (no limit control)
1: Enabled (limit control)

Bits 08 to 11
of C+6

Input range The number of input data bits. 0: 8 bits 5: 13 bits
1: 9 bits 6: 14 bits
2: 10 bits7: 15 bits
3: 11 bits8: 16 bits
4: 12 bits

Bits 04 to 07
of C+6

Integral and deriva-
tive unit

Determines the unit for express-
ing the integral and derivative
constants.

1: Sampling period multiple
9: Time (unit: 100 ms)

Bits 00 to 03
of C+6

Output range The number of output data bits.
(The number of output bits is
automatically the same as the
number of input bits.)

0: 8 bits 5: 13 bits
1: 9 bits 6: 14 bits
2: 10 bits7: 15 bits
3: 11 bits8: 16 bits
4: 12 bits

C +7 Manipulated vari-
able output lower
limit

The lower limit for when the
manipulated variable output limit
is enabled.

0000 to FFFF (binary)
(See note 3.)

C +8 Manipulated vari-
able output upper
limit

The upper limit for when the
manipulated variable output limit
is enabled.

0000 to FFFF (binary)
(See note 3.)

Bit 15 of C+9 AT Command Bit This control bit starts autotuning.
• Set the AT Command Bit to 1 to

perform autotuning. (Autotuning
can be started while
PIDAT(191) is being executed.)

• This bit is turned OFF automati-
cally when autotuning is com-
pleted.

Autotuning will be interrupted if
the AT Command Bit is turned
OFF manually. In this case, the
PID constants will be enabled if
they were already calculated
when autotuning was inter-
rupted.

As a Control Bit:

• 0 → 1:
Executes autotuning.

• 1 → 0:
Interrupts autotuning.
(PID(191) turns the bit OFF
automatically when autotuning
is completed.

As a Flag:
0: Autotuning is not being exe-
cuted.
1: Autotuning is being executed.

Allowed

Control
data

Item Contents Setting range Change with
ON input
condition
637

Data Control Instructions Section 3-17
Note (1) When the unit is designated as 1, the range is from 1 to 8,191 times the
period. When the unit is designated as 9, the range is from 0.1 to 819.1 s.
When 9 is designated, set the integral and derivative times to within a
range of 1 to 8,191 times the sampling period.

(2) Setting the 2-PID parameter (α) to 000 yields 0.65, the normal value.

When the manipulated variable output limit control is enabled (i.e., set to
“1”), set the values as follows:

0000 ≤ MV output lower limit ≤ MV output upper limit ≤ Max. value of output
range

Example 1:
Interrupting PID Control to
Perform Autotuning

At the rising edge of CIO 0.00 (OFF to ON), the work area in D211 to D240 is
initialized according to the parameters (shown below) set in D200 to D208.
After the work area has been initialized, PID control is executed and the
manipulated variable is output to CIO 2000.

While CIO 0.00 is ON, PID control is executed at the sampling period intervals
according to the parameters set in D200 to D210. The manipulated variable is
output to CIO 2000.

The PID constants used in PID calculations will not be changed even if the
proportional band (P), integral constant (Tik), or derivative constant is
changed after CIO 0.00 turns ON.

At the rising edge of W 0.00 (OFF to ON), SETB(532) turns ON bit 15 of D209
(C+9) and starts autotuning. When autotuning is completed, the calculated P,
I, and D constants are written to C+1, C+2, and C+3. PID control is then
restarted with the new PID constants.

Bits 00 to 11
of C+9

AT Calculation Gain Set this parameter to adjust the
contribution of the PID calcula-
tion results to the stored values.

Normally, leave this parameter
set to its default (0000).
• Increase the value when

emphasizing stability.
• Decrease the value when

emphasizing responsiveness.

0000 hex: 1.00 (Default)
0001 to 03E8 hex (1 to 1000);
(0.01 to 10.00, in units of 0.01)

Allowed
(These param-
eters are read
when autotun-
ing starts.)

C+10 Limit-cycle Hystere-
sis

Sets the hysteresis when the
limit cycle is generated. The
default setting for reverse opera-
tion turns ON the MV with a hys-
teresis of SV−20%.
Increase this setting if a proper
limit cycle cannot be generated
because the PV is unstable.
However, the AT accuracy will
decline if the Limit-cycle Hyster-
esis is higher than necessary.

0000 hex: 0.20% (Default)
0001 to 03E8 hex:
0.01 to 10.00% in units of 0.01%

FFFF hex: 0.00%
Note The percentage is with

respect to the input range.

Control
data

Item Contents Setting range Change with
ON input
condition
638

Data Control Instructions Section 3-17
PIDAT

1000

D200

2000

0.00

S

C

D

C: D200
C+1: D201
C+2: D202
C+3: D203
C+4: D204
C+5: D205
C+6: D206
C+7: D207
C+8: D208
C+9: D209

C+10: D210
C+11: D211

C+40: D240

0 1 2 C

0 0 6 4

0 4 B 0

0 1 9 0

0 0 3 2

0 0 0 8

0 4 9 4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

W0.00
SETB

D209

#000F

Work area

Proportional band: 10.0%

Integral time: 120.0 s
Derivative time: 40.0 s

Sampling
period: 0.5 s

Reverse operation (bit 00: 0), PID constant change enable setting =
OFF (bit 01: 0), set value = manipulated variable output 50% (bit
03: 1), 2-PID parameter = 0.65 (bits 04 to 15: 000 hex)

Manipulated variable output range: 12 bits (bits 00 to 03: 4 hex),
Integral/derivative constant: time designation (bits 04 to 07: 9 hex)
Input range: 12 bits (bits 08 to 11: 4 hex),
Manipulated variable output limit control disabled (bit 12: 0)

AT Command Bit OFF (bit 15: 0),
AT Calculation Gain = 1.00 (bits 00 to 11: 000 hex)
Limit-cycle Hysteresis = 0.20%

Parameters

PV:
CIO 1000

MV output: CIO 2000
to

PID calculation

Set value: 300

CIO 0.00

W0.00

PV

SV

MV

PID control starts.
Calculated PID
constants are set.

PID control PID controlAT executing

Bit 15 of
D209

Time

Time
639

Data Control Instructions Section 3-17
Example 2:
Starting PIDAT(191) with
Autotuning

At the rising edge of CIO 0.00 (OFF to ON), autotuning will be performed first
if bit 15 of D209 (C+9) is ON. When autotuning is completed, the calculated P,
I, and D constants are written to C+1, C+2, and C+3. PID control is then
started with the calculated PID constants.

Example 3:
Interrupting Autotuning
Before Completion

Autotuning can be interrupted by turning bit 15 of D209 (C+9) from ON to
OFF. PID control will be restarted with the P, I, and D constants that were in
effect before autotuning was started.

CIO 0.00

PV

SV

MV

PID

1000

D200

2000

0.00

S

C

D

PID control and
autotuning start.

Calculated PID
constants are set.

PID controlAT executing

Bit 15 of
D209

Time

Time

CIO 0.00

PV

SV

PID control starts.

PID control PID controlAT executing

Bit 15 of
D209

Time

AT starts AT is interrupted.

PID control is restarted with
the existing PID constants.
640

Data Control Instructions Section 3-17
3-17-3 LIMIT CONTROL: LMT(680)
Purpose Controls output data according to whether or not input data is within upper

and lower limits.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description When the execution condition is ON, LMT(680) controls output data according
to whether or not the specified input data (signed 16-bit binary) is within the
upper and lower limits. The contents of words C and C+1 are as follows:

C and C+1 must have the same area classification.

LMT(680)

S

C

D

S: Input word

C: First limit word

D: Output word

Variations Executed Each Cycle for ON Condition LMT(680)

Executed Once for Upward Differentiation @LMT(680)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S C D

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6142

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W510 W0 to W511

Holding Bit Area H0 to H511 H0 to H510 H0 to H511

Auxiliary Bit Area A0 to 959 A0 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D0 to D32767 D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

C Lower limit data (minimum output data)

C+1 Upper limit data (maximum output data)
641

Data Control Instructions Section 3-17
If the input data (S) is less than the lower limit (C), the lower limit data will be
output to D and the Less Than Flag will turn ON.

If the input data (S) is greater than the upper limit (C+1), the upper limit data
will be output to D and the Greater Than Flag will turn ON.

If the input data (S) is greater than or equal to the lower limit (C) and less than
or equal to the upper limit (C+1), the input data (S) will be output to D.

Flags

Precautions If the upper limit is less than the lower limit, an error will occur and the Error
Flag will turn ON.

If the input data (S) is greater than the upper limit, the Greater Than Flag will
turn ON.

If the output word D is 0000 hex, the Equals Flag will turn ON.

If the input data (S) is less than the lower limit, the Less Than Flag will turn
ON.

If the status of the leftmost bit of the output word D is “1,” the Negative Flag
will turn ON.

Example If D100 is 0050 hex (80), then 0064 hex (100) will be output to D300 because
80 is less than the lower limit of 100.

If D100 is 00C8 hex (200), then 0064 hex (100) will be output to D300
because 200 is within the upper and lower limits.

If D100 is 012C hex (300), then 015E hex (350) will be output to D300
because 350 is greater than the upper limit of 300.

C+1

CLower limit

Upper limit

Name Label Operation

Error Flag ER ON if the upper limit is less than the lower limit.
OFF in all other cases.

Greater Than
Flag

> ON if the input data (S) is greater than the upper limit.

OFF in all other cases.

Equals Flag = ON if the result is 0.

OFF in all other cases.

Less Than Flag < ON if the input data (S) is less than the lower limit.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the result is “1.”
OFF in all other cases.
642

Data Control Instructions Section 3-17
3-17-4 DEAD BAND CONTROL: BAND(681)
Purpose Controls output data according to whether or not input data is within the lower

and upper limits of the range (dead band range.)

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

0.00

D100
D200

D300

D300

D100

C: D200

D201

Lower limit: 100

Upper limit: 300

BAND(681)

S

C

D

S: Input word

C: First limit word

D: Output word

Variations Executed Each Cycle for ON Condition BAND(681)

Executed Once for Upward Differentiation @BAND(681)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S C D

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6142

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W510 W0 to W511

Holding Bit Area H0 to H511 H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095
643

Data Control Instructions Section 3-17
Description When the execution condition is ON, BAND(681) controls output data accord-
ing to whether or not the specified input data (signed 16-bit binary) is within
the upper and lower limits (dead band). The contents of words C and C+1 are
as follows:

C and C+1 must have the same area classification.

If the input data (S) is greater than or equal to the lower limit (C) and less than
or equal to the upper limit (C+1), 0000 (hex) will be output to D and the Equals
Flag will turn ON.

If the input data (S) is less than the lower limit (C), the difference between the
input data minus the lower limit data will be output to D and the Less Than
Flag will turn ON.

If the input data (S) is greater than the upper limit (C+1), the difference
between the input data minus the upper limit data will be output to D and the
Greater Than Flag will turn ON.

If the output data is smaller than the 8000 (hex) or if is greater than 7FFF, the
sign will be reversed. For example, for a lower limit of 0100 (hex) and input
data of 8000 (hex), the output data will be as follows:
8000 (hex) [–32768] – 0100 (hex) [256] = 7F00 (hex) [32512]

Flags

DM Area D0 to D32767 D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S C D

C Lower limit data (dead band lower limit)

C+1 Upper limit data (dead band upper limit)

Upper limit (C+1)

Output

Input

Lower limit (C)

Name Label Operation

Error Flag ER ON if the upper limit is less than the lower limit.

OFF in all other cases.

Greater Than
Flag

> ON if the input data (S) is greater than the upper limit.

OFF in all other cases.
644

Data Control Instructions Section 3-17
Precautions If the upper limit is less than the lower limit, an error will occur and the Error
Flag will turn ON.

If the input data (S) is greater than the upper limit, the Greater Than Flag will
turn ON.

If the output word D is 0000 hex, the Equals Flag will turn ON.

If the input data (S) is less than the lower limit, the Less Than Flag will turn
ON.

If the status of the leftmost bit of the output word D is “1,” the Negative Flag
will turn ON.

Example If D100 is 00B4 hex (180), then 180–200=FFEC hex (–20) will be output to
D300 because 180 is less than the lower limit of 200.

If D100 is 00E6 hex (230), then 0 will be output to D300 because 230 is within
the upper and lower limits.

If D100 is 015E hex (350), then 350–300=0032 hex (50) will be output to D300
because 350 is greater than the upper limit of 300.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Less Than Flag < ON if the input data (S) is less than the lower limit.
OFF in all other cases.

Negative Flag N ON if the leftmost bit of the result is “1.”
OFF in all other cases.

Name Label Operation

D100

D200

D300

D300 D300

D100

C: D200
D201

Upper limit

Lower limit: 200

Upper limit: 300

Upper
limit:
300

Lower
limit:
200

Lower limit
645

Data Control Instructions Section 3-17
3-17-5 DEAD ZONE CONTROL: ZONE(682)
Purpose Adds the specified bias to input data and outputs the result.

Ladder Symbol

Variations

Applicable Program Areas

Operand Specifications

Description When the execution condition is ON, ZONE(682) adds the specified bias to
the specified input data (signed 16-bit binary) and places the result in a speci-
fied word. The contents of words C and C+1 are as follows:

If the input data (S) is less than zero, the input data plus the negative bias will
be output to D and the Less Than Flag will turn ON.

ZONE(682)

S

C

D

S: Input word

C: First limit word

D: Output word

Variations Executed Each Cycle for ON Condition ZONE(682)

Executed Once for Upward Differentiation @ZONE(682)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S C D

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6142

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W510 W0 to W511

Holding Bit Area H0 to H511 H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D0 to D32767 D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

C Negative bias

C+1 Positive bias
646

Data Control Instructions Section 3-17
If the input data (S) is greater than zero, the input data plus the positive bias
will be output to D and the Greater Than Flag will turn ON.

If the input data (S) is equal to zero, 0000 will be output to D and the Equals
Flag will turn ON.

If the output data is smaller than the 8000 (hex) or if is greater than 7FFF, the
sign will be reversed. For example, for a negative bias value of FF00 (hex) and
input data of 8000 (hex), the output data will be as follows:
8000 (hex) [–32768] – FF00 (hex) [–256] = 7F00 (hex) [32512]

Flags

Precautions If the upper limit is less than the lower limit, an error will occur and the Error
Flag will turn ON.

If the input data (S) is greater than the upper limit, the Greater Than Flag will
turn ON.

If the output word D is 0000 hex, the Equals Flag will turn ON.

If the input data (S) is less than the lower limit, the Less Than Flag will turn
ON.

If the status of the leftmost bit of the output word D is “1,” the Negative Flag
will turn ON.

Example When CIO 0.00 is ON, a bias of –100 will be applied to the value of D100 if
that value is less than 0, and the resulting value will be stored in D300.

If the value of D100 is 0, then 0000 hex will be stored in D300.

If the value of D100 is greater than 0, then a bias of +100 will be applied and
the resulting value will be stored in D300.

Input

Negative bias (C)

Positive bias (C+1)

Output

Name Label Operation

Error Flag ER ON if the upper limit is less than the lower limit.
OFF in all other cases.

Greater Than
Flag

> ON if the input data (S) is greater than the upper limit.
OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Less Than Flag < ON if the input data (S) is less than the lower limit.

OFF in all other cases.

Negative Flag N ON if the leftmost bit of the result is “1.”

OFF in all other cases.
647

Data Control Instructions Section 3-17
3-17-6 TIME-PROPORTIONAL OUTPUT: TPO(685)
Purpose Inputs the duty ratio or manipulated variable from the specified word, converts

the duty ratio to a time-proportional output based on the specified parameters,
and outputs the result from the specified output.

Ladder Symbol

Variations

Applicable Program Areas

–100

0.00

D100

D200

D300

C: D200

D201

Decimal values

Negative bias

Positive biasContents of D300

Contents of D200

TPO

S

C

R

S: Input word

C: First parameter word

R: Pulse output bit

Variations Executed Each Cycle for ON Condition TPO(685)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK
648

Data Control Instructions Section 3-17
Operands S: Input Word

Specifies the input word containing the input duty ratio or manipulated vari-
able. Bits 04 to 07 of C specify the input type, i.e., whether the input word con-
tains an input duty ratio or manipulated variable. (Set these bits to 0 hex to
specify a input duty ratio or to 1 hex to specify a manipulated variable.)

• Input duty ratio: 0000 to 2710 hex (0.00% to 100.00%)

• Input manipulated variable (See note.): 0000 to FFFF hex (0 to 65,535
max.) (Bits 00 to 03 of C specify the manipulated variable range, i.e., the
number of valid bits in the manipulated variable. Specify the same number
of bits as specified for the output range setting in PID(190).)

Note If S is a manipulated variable, specify the word containing the ma-
nipulated variable output from a PID(190) or PIDAT(191) instruc-
tion.

C to C+6: Parameters

The following diagram shows the locations of the parameter data. For details
on the parameters, refer to Parameter Settings in this section.

R: Pulse Output Bit

Specifies the destination output bit for the pulse output.

Normally, specify an output bit allocated to a Transistor Output Unit and con-
nect a solid state relay to the Transistor Output Unit.

Operand Specifications

C+1

C+2

C+3

C+4

C+5

C+6

015

C

815 1211 0347

Manipulated variable range

Input type

Input read timing

Output limit function

Note: For details, see the description of each parameter.

Control period

Output lower limit

Output upper limit

Work area
(3 words, cannot be used by user)

Area S C R

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6137

CIO 0.00 to
CIO 6143.15

Work Area W0 to W511 W0 to W505 W0.00 to
W511.15

Holding Bit Area H0 to H511 H0 to H505 H0.00 to H511.15

Auxiliary Bit Area A0 to 959 A0 to A953 A448.00 to
A959.15

Timer Area T0000 to T4095 T0000 to T4089 ---

Counter Area C0000 to C4095 C0000 to C4089 ---

DM Area D0 to D32767 D0 to D32761 ---

Indirect DM addresses
in binary

@ D0 to @ D32767 ---
649

Data Control Instructions Section 3-17
Description Receives a duty ratio or manipulated variable input from the word address
specified by S, converts the duty ratio to a time-proportional output (see note)
based on the parameters specified in words C to C+3, and outputs a pulse
output to the bit specified by R.

Note A time-proportional output is changed proportionally based on the ON/OFF
ratio in input word S. The period in which the ON and OFF status changes is
known as the control period and is set in parameter word C+1.
Example: When the control period is 1 s and the input value is 50%, the bit is
ON for 0.5 s and OFF for 0.5 s. When the control period is 1 s and the input
value is 80%, the bit is ON for 0.8 s and OFF for 0.2 s.

Generally, TPO(685) is used together with PID(190) or PIDAT(191) and the
PID instruction’s manipulated variable result word (D) is specified as the input
word (S) for the TPO(685) instruction. Also, an output bit allocated to a Tran-
sistor Output Unit is generally specified as R and a solid state relay is con-
nected to the Transistor Output Unit to perform time-proportional control of a
heater (proportional control of the ON/OFF ratio).

Combining TPO(685) with a PID Control Instruction

When combining TPO(685) with a PID control instruction, the manipulated
variable input is divided by the manipulated variable range to calculate the
duty ratio, that duty ratio is converted to a time-proportional output, and pulses
are output.

Indirect DM addresses
in BCD

*D0 to *D32767 ---

Constants #0000 to #FFFF
(binary)

--- ---

Data Registers DR0 to DR15 --- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S C R

0.00
PID

S

C

D0

TPO

D0

C

R

MVD0

PV input

PID parameters

MV

Parameters

Pulse output

Manipulated variable (MV)

Output range

= MV range

MV ÷ MV range

Duty ratio (0.00% to 100.00%)

Manipulated
variable

PID calculation

Conversion to time-proportional
output
650

Data Control Instructions Section 3-17
In this case, set the same value for the PID Control instruction’s output range
and the TPO(685) instruction’s manipulated variable range. For example,
when the PID Control instruction’s output range and the TPO(685) instruc-
tion’s manipulated variable range are both set to 12 bits (0000 to 0FFF hex),
the duty ratio is calculated by dividing the manipulated variable from the PID
Control instruction by 0FFF hex and TPO(685) converts that duty ratio to a
time-proportional output.

External Wiring Example

Connect the Transistor Output Unit to a solid state relay (SSR) as shown in
the following diagram.

Parameter Settings

COM
SSR

AC

+

−

Transistor Output Unit
Heater

12 to 24 VDC

Control data Item Contents Setting range Change with
ON input
condition

Word Bits

C 00 to 03 Manipulated
variable range

Specifies the number of input
data bits.

0 hex: 8 bits 5 hex: 13 bits
1 hex: 9 bits 6 hex: 14 bits
2 hex: 10 bits 7 hex: 15 bits
3 hex: 11 bits 8 hex: 16 bits
4 hex: 12 bits

Allowed

04 to 07 Input type Specifies whether S contains a
duty ratio or manipulated vari-
able.

0 hex: Duty ratio
Setting range for S: 0000 to
2710 hex (0.00 to 100.00%)

1 hex: Manipulated variable
Setting range for S: 0000 to
FFFF hex (0 to 65,535)
(The maximum setting
depends on the MV range
set with bits 00 to 03 of C.)

Allowed

08 to 11 Input read timing Specifies the input read timing. 0 hex: Use the beginning value of
the control period

1 hex: Use lower value
2 hex: Use higher value
3 hex: Continuous adjustment

Allowed

12 to 15 Output limit con-
trol

Specifies whether the output
limit function is enabled or dis-
abled.

0 hex: Disabled
1 hex: Enabled (See note.)

Allowed

C+1 00 to 15 Control period Control period
(Time period in which the ON/
OFF changes are made.)

0064 to 270F hex (1.00 to 99.99 s)
Note For example, 1.00 s is set as

0064 hex, and not 0001 hex.

Allowed

C +2 00 to 15 Output lower
limit

Specifies the lower limit when
the output limit is enabled.

0000 to 2710 hex (0 to 100.00%) Allowed

C +3 00 to 15 Output upper
limit

Specifies the upper limit when
the output limit is enabled.

0000 to 2710 hex (0 to 100.00%) Allowed

C+4 00 to 15 Work area This work area is used by the
system. It cannot be used by the
user.

Cannot be used. ---

C+5 00 to 15

C+6 00 to 15
651

Data Control Instructions Section 3-17
Note When the output limit control function is enabled, set the lower and upper lim-
its as follows: 0000 hex ≤ lower limit ≤ upper limit ≤ 2710 hex.

Execution • The instruction is executed while the input condition is ON.

• When instruction execution starts, the output bit (R) is turned ON/OFF
according to the duty ratio.

• The parameters (in C to C+3) are read in real time each time that the
instruction is executed. When changing the parameters, change all of
them at the same time so that different sets of parameters are not mixed.

• The output (R) is turned ON/OFF when the instruction is executed and the
accuracy of the output’s ON/OFF timing is 10 ms max.

• Execution of the instruction stops when the input condition goes OFF. At
that time, the elapsed time value will be reset and the control period will
be initialized.

• The input type setting (bits 04 to 07 of C) determines whether the input
word (S) contains a duty ratio or manipulated variable. When S contains
the manipulated variable, the duty ratio is calculated by dividing the
manipulated variable input by the manipulated variable range (bits 00 to
03 of C).

Input Read Timing Setting
(C bits 08 to 11)

The input read timing setting (bits 08 to 11 of C) specifies when the input word
(S) is read, as shown in the following table:

Input read timing Description

0: Use the beginning
value of the control
period

The duty ratio input is read at the beginning of the control
period and the ratio cannot be changed during the control
period.

1: Use lower value If the duty ratio input falls below the duty ratio at the
beginning of the control period, the lower value will take
precedence and the output ON time will be reduced
accordingly.

2: Use higher value If the duty ratio input rises above the duty ratio at the
beginning of the control period, the higher value will take
precedence and the output ON time will be increased
accordingly.

3: Continuous adjustment The duty ratio will be read in real time each time the
instruction is executed and the ON/OFF operation will be
repeated within the control period.
652

Data Control Instructions Section 3-17
The following diagrams show the operation of each input read timing setting.

• Input time setting = 0 (Use the beginning value of the control period.)

• Input time setting = 1 (Use lower value.)

100%

a × 0.55 s a × 0.45 s a × 0.70 s a × 0.30 s

70%
55%

0%

Control period (a)

Read only at the beginning of the control period.

Control period (a)

Time

Output

Duty ratio
(MV/MV range)

Each control period's output is determined by the duty ratio at the beginning of that period.
Use this setting for general applications.

100%

a × 0.35 s a × 0.65 s a × 0.70 s a × 0.30 s

70%
55%

35%

0%

Control period (a) Control period (a)

Time

Output

Duty ratio
(MV/MV range)

55% target
cut to 35%.

70% target
is kept.

If the duty ratio falls below the initial value early enough, the duty ratio will be
adjusted and the output will be turned OFF sooner.
Use this setting for applications such as avoiding overshooting when using time-
proportional control to control heating and using a relatively long control period.
653

Data Control Instructions Section 3-17
• Input time setting = 2 (Use higher value.)

• Input time setting = 3 (Continuous adjustment)

Flags

100%

a × 0.45 s a × 0.55 s a × 0.80 s

80%
70%
55%

0%

a ×
0.20 s

70% target is kept.

Control period (a) Control period (a)

Time

Output

Duty ratio
(MV/MV range)

70% target
raised to 80%.

If the duty ratio rises above the initial value early enough, the duty ratio will be
adjusted and the output will be turned ON sooner. (With this setting the output's
ON/OFF order is reversed and the output goes from OFF to ON.)
Use this setting for applications such as avoiding undershooting when using time-
proportional control to control cooling and using relatively long control period.

100%

100%

a × 0.35 s

0%
a ×
0.20 s

a ×
0.20 s

a ×
0.20 s

Control period (a)Control period (a)

Output

Duty ratio
(MV/MV range)

: Output ON

: Output OFF

Time
Changes in the duty ratio are monitored in real time. If the duty ratio falls
below the initial value early enough, the duty ratio will be adjusted and the
output will be turned OFF sooner. If the duty ratio rises again after that,
the ratio will be adjusted again and the output will be turned ON. This
process is repeated continuously.
Use this setting to improve responsiveness when the control period is
relatively long and the duty ratio changes quickly. This setting is also
appropriate for lighting or power applications that require precise control.

Name Label Operation

Error Flag ER ON if the input data in S is out of range. (The input data
setting range depends on the input type setting.)
ON if the C data is out of range. (The manipulated vari-
able range will cause an error only when the input type is
set to manipulated variable.)
ON if the control period in C+1 is out of range.

ON if the output limit function is enabled but the output
lower limit (C+2) or output upper limit (C+3) is out of
range.

ON if the output limit function is enabled but the output
lower limit (C+2) is less than or equal to the output upper
limit (C+3).

OFF in all other cases.
654

Data Control Instructions Section 3-17
Example Example 1: Combining TPO(685) with PID(190)

When CIO 0.00 is ON, TPO(685) takes the manipulated variable output from
PID(190) (contained in D0), calculates the duty ratio from that manipulated
variable value (Duty ratio = MV ÷ MV range), converts the duty ratio to a time-
proportional output, and outputs the pulses to CIO 100.05.

In this case, CIO 100 is allocated to a Transistor Output Unit and bit
CIO 100.05 is connected to a solid state relay for heater control.

Note When using TPO(685) in combination with PID(190) in a cyclic task and also
using an interrupt task, temporarily disable interrupts by executing DI(693)
(DISABLE INTERRUPTS) ahead PID(190) and TPO(685). If interrupts are not
disabled and an interrupt occurs between the PID(190) and TPO(685), the
control period may be shifted.

0.00
PID

1000

D200

D0

TPO

D0

D5000

100.05

S

C

D

D200
D201
:

D206
:
:

D5000

S

C

R

4

41

PV input

PID parameters

Manipulated variable

Manipulated variable

Parameters

Pulse output

Set value (SV)
Proportional band (P)

When CIO 0.00 goes from OFF to ON, PID(190)
reads the parameters, performs the PID calculation
with the PV input in CIO 1000, and outputs the
manipulated variable (MV) to D0.

TPO(685) calculates the duty ratio by dividing the
MV in D0 by the MV range (0FFF Hex since the
range is set to 12 bits), converts that duty ratio to
a time-proportional output, and outputs the pulse
output to CIO 100.05.

Output range: 4 hex
(12 bits: 0000 to 0FFF hex)

MV range: 4 hex
(12 bits: 0000 to 0FFF hex)

Input type: 1 hex (MV)

DI

EI

S

C

D

S

C

R

Reception prohibited

Reception allowed

Interrupt task

Interrupt task

Cyclic task

PID

PV input

PID parameters

TPO

Parameters

Pulse output

Manipulated
variable

Manipulated
variable
655

Data Control Instructions Section 3-17
Example 2: Using TPO(685) Alone

When CIO 0.00 is ON, TPO(685) takes the duty ratio in D10, converts the
duty ratio to a time-proportional output, and outputs the pulses to CIO 100.06.

In this case, the control period is 1 s and the output limit function is enabled
with a lower limit 20.00% and an upper limit of 80.00%.

3-17-7 SCALING: SCL(194)
Purpose Converts unsigned binary data into unsigned BCD data according to the

specified linear function.

Ladder Symbol

Variations

Applicable Program Areas

0.00
TPO

D10

D0

100.06

S

C

R

D0
D1
D2
D3
D4
D5
D6

:
:
D10

0
4

0
0

0
6

D
4

1
0

7
F

1
0

0
1

Duty ratio

Parameters

Pulse output

Duty ratio input, read initial value, and enable output limit function.
Control period = 1.00 s
Output lower limit = 20.00%
Output upper limit = 80.00%

0 to 100.00%

Do not set.
Do not set.
Do not set.

0 to 2710 hex

TPO(685) takes the duty ratio in D10, converts that
duty ratio to a time-proportional output, and outputs
the pulse output to bit 00 of CIO 100.06.

SCL(194)

S

P1

R

S: Source word

P1: First parameter word

R: Result word

Variations Executed Each Cycle for ON Condition SCL(194)

Executed Once for Upward Differentiation @SCL(194)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
656

Data Control Instructions Section 3-17
Operands The contents of the four words starting with the first parameter word (P1) are
shown in the following diagram.

Operand Specifications

Description SCL(194) is used to convert the unsigned binary data contained in the source
word S into unsigned BCD data and place the result in the result word R
according to the linear function defined by points (As, Ad) and (Bs, Bd). The
address of the first word containing the coordinates of points (As, Ar) and (Bs,
Br) is specified for the first parameter word P1. These points define by 2 val-
ues (As and Bs) before scaling and 2 values (Ar and Br) after scaling.

P1

P1+1

P1+2

P1+3

15 0

15 0

15 0

15 0

Scaled value for point A (Ar)
0000 to 9999 (4-digit BCD)

Unscaled value for point A (As)
0000 to FFFF (binary)

Scaled value for point B (Br)
0000 to 9999 (4-digit BCD)

Unscaled value for point B (Bs)
0000 to FFFF (binary)

Area S P1 R

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6140

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W508 W0 to W511

Holding Bit Area H0 to H511 H0 to H508 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A956 A448 to A959

Timer Area T0000 to T4095 T0000 to T4092 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4092 C0000 to C4095

DM Area D0 to D32767 D0 to D32764 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
657

Data Control Instructions Section 3-17
The following equations are used for the conversion.

Points A and B can define a line with either a positive or negative slope. Using
a negative slope enables reverse scaling.

The result will be rounded to the nearest integer. If the result is less than
0000, 0000 will be output as the result. If the result is greater than 9999, 9999
will be output.

SCL(194) can be used to scale the results of analog signal conversion values
from Analog Input Units according to user-defined scale parameters. For
example, if a 1 to 5-V input to an Analog Input Unit is input to memory as 0000
to 0FA0 hexadecimal, the value in memory can be scaled to 50 to 200°C
using SCL(194).

SCL(194) converts unsigned binary to unsigned BCD. To convert a negative
value, it will be necessary to first add the maximum negative value in the pro-
gram before using SCL(194) (see example).

SCL(194) cannot output a negative value to the result word, R. If the result is
a negative value, 0000 will be output to R.

Flags

Precautions An error will occur and the Error Flag will turn ON if the values for Ar (C) and
Br (C+2) are not in BCD, or if the values for As (C+1) and Bs (C+3) are equal.

The Equals Flag will turn ON when the contents of the result word D is 0000.

Examples In the following example, it is assume that an analog signal from 1 to 5 V is
converted and input to D0 as 0000 to 0FA0 hexadecimal. SCL(194) is used to
convert (scale) the value in CIO 200 to a value between 0000 and 0300 BCD.

When CIO 0.00 is ON, the contents of D0 is scaled using the linear function
defined by point A (0000, 0000) and point B (0FA0, 0300). The coordinates of
these points are contained in D100 to D103, and the result is output to D200.

– ×

–

(Bd – Ad)
R = Bd

R = Bd

BCD conversion of (Bs – As)
 BCD conversion of (Bs – S)

The slope of the line is as follows:

 (Bd – Ad)

 BCD conversion of (Bs – As)

P

P1+1

P1+2

P1+3

(BCD)

(BIN)

(BCD)

(BIN)

R (unsigned BCD) Scaling is performed according
to the linear function defined by
points A and B.

Converted value

Converted value

S (unsigned binary)

Point B

Point A

Name Label Operation

Error Flag ER ON if the contents of C (Ar) or C+1 (Br) is not BCD.
ON if the contents of C+1 (As) and C+3 (Bs) are equal.

OFF in all other cases.

Equals Flag = ON if the result is 0.

OFF in all other cases.
658

Data Control Instructions Section 3-17
Negative Values

An Analog Input Unit actually inputs values from FF38 to 1068 hexadecimal
for 0.8 to 5.2 V. SCL(194), however, can handle only unsigned binary values
between 0000 and FFFF hexadecimal, making it impossible to use SCL(194)
directly to handle signed binary values below 1 V (0000 hexadecimal), i.e.,
FF38 to FFFF hexadecimal. In an actual application, it is thus necessary to
add 00C8 hexadecimal to all values so that FF38 hexadecimal is represented
as 0000 hexadecimal before using SCL(194), as shown in the following exam-
ple.

In this example, values from 0000 to 00C8 hexadecimal will be converted to
negative values. SCL(194), however, can output only unsigned BCD values
from 0000 to 9999, so 0000 BCD will be output whenever the contents of D0
is between 0000 and 00C8 hexadecimal.

(BCD)

(BIN)

(BCD)

(BIN)

P1: D100

P1+1: D101

P1+2: D102

P1+3: D103

P1

R

D0

0.00

D100

D200

Contents of D0 (R)

Contents of D0 (S)

Point B

Point A

(BCD)

(BIN)

(BCD)
(BIN)

P1: D100

P1+1: D101

P1+2: D102

P1+3: D103

+

+00C8 Hex

200

#C8

D0

D0

D100

D200

Contents of D200 (R)

Point B

Point A
Contents of D0 (S)

Point A (00C8 Hex → 0000 (BCD))
Point B (1068 Hex → 0300 (BCD))

The value in CIO
200 plus 00C8
hexadecimal
659

Data Control Instructions Section 3-17
Reverse Scaling

Reverse scaling can also be used by setting As < Bs and Ar > Br. The follow-
ing relationship will result.

Reverse scaling can be used, for example, to convert (reverse scale) 1 to 5 V
(0000 to 0FA0 hexadecimal) to 0300 to 0000, respectively, as shown in the fol-
lowing diagram.

3-17-8 SCALING 2: SCL2(486)
Purpose Converts signed binary data into signed BCD data according to the specified

linear function. An offset can be input in defining the linear function.

Ladder Symbol

Variations

Applicable Program Areas

S (unsigned binary)

Point B

Point A

R (unsigned BCD)

R

Point B

Point A

SCL2(486)

S

P1

R

S: Source word

P1: First parameter word

R: Result word

Variations Executed Each Cycle for ON Condition SCL2(486)

Executed Once for Upward Differentiation @SCL2(486)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
660

Data Control Instructions Section 3-17
Operands The contents of the three words starting with the first parameter word (P1) are
shown in the following diagram.a

Operand Specifications

Description SCL2(486) is used to convert the signed binary data contained in the source
word S into signed BCD data (the BCD data contains the absolute value and
the Carry Flag shows the sign) and place the result in the result word R
according to the linear function defined by the slope (∆X, ∆Y) and an offset.
The address of the first word containing ∆X, ∆Y, and the offset is specified for
the first parameter word P1. The sign of the result is indicated by the status of
the Carry Flag (ON: negative, OFF: positive).

The following equations are used for the conversion.

∆Y

∆X

P1

P1+1

P1+2

15 0

15 0

15 0

Offset of linear function
8000 to 7FFF (signed binary)

8000 to 7FFF (signed binary)

0000 to 9999 (BCD)

Area S P1 R

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6141

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W509 W0 to W511

Holding Bit Area H0 to H511 H0 to H509 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A957 A448 to A959

Timer Area T0000 to T4095 T0000 to T4093 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4093 C0000 to C4095

DM Area D0 to D32767 D0 to D32765 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

∆Y
R = BCD conversion of ∆X

The slope of the line is ∆Y/∆X.

 x ((BCD conversion of S) – (BCD conversion of offset)
661

Data Control Instructions Section 3-17
The offset and slope can be a positive value, 0, or a negative value. Using a
negative slope enables reverse scaling.

The result will be rounded to the nearest integer.

The result in R will be the absolute BCD conversion value and the sign will be
indicated by the Carry Flag. The result can thus be between –9999 and 9999.

If the result is less than –9999, –9999 will be output as the result. If the result
is greater than 9999, 9999 will be output.

SCL2(486) can be used to scale the results of analog signal conversion val-
ues from Analog Input Units according to user-defined scale parameters. For
example, if a 1 to 5-V input to an Analog Input Unit is input to memory as 0000
to 0FA0 hexadecimal, the value in memory can be scaled to –100 to 200°C
using SCL2(486).

SCL2(486) converts signed binary to signed BCD. Negative values can thus
be handled directly for S. The result of scaling in R and the Carry Flag can
also be used to output negative values for the scaling result.

Flags

Precautions An error will occur and the Error Flag will turn ON if the value for ∆X (C+1) is
0000 or if the value for ∆Y (C+2) is not BCD.

The Equals Flag will turn ON when the contents of the result word D is 0000.

The Carry Flag will turn ON if the value placed in the result word is negative.

∆Y

∆X

∆Y

∆X

∆Y

∆X

∆Y

∆X

P1

P1+1

P1+2

R (signed BCD)

S (signed binary)

Offset

R (signed BCD)

S (signed binary)
Offset

R (signed BCD)

S (signed binary)

Offset of 0000

Offset = 0000 hex

Offset (Signed binary)

(Signed binary)

(Signed BCD)

Positive Offset Negative Offset

Name Label Operation

Error Flag ER ON if the contents of C+1 (∆X) is 0000.
ON if the contents of C+2 (∆Y) is not BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Carry Flag CY ON if the result is negative.
OFF if the result is zero or positive.
662

Data Control Instructions Section 3-17
Examples Scaling 1 to 5-V Analog Input to 0 to 300

In the following example, it is assumed that an analog signal from 1 to 5 V is
converted and input to CIO 2005 as 0000 to 0FA0 hexadecimal. SCL2(486) is
used to convert (scale) the value in CIO 2005 to a value between 0000 and
0300 BCD.

When CIO 0.00 is ON, the contents of CIO 2005 is scaled using the linear
function defined by ∆X (0FA0), ∆Y (0300), and the offset (0). These values are
contained in D100 to D102, and the result is output to D200.

∆X

∆Y

(∆X)

P1:

P1+1:

P1+2:

P1

R

0.00

D100

D200

D100

D101

D102

Contents of R (D200)

Contents of S (CIO 2005)

Offset

1068Hex
663

Data Control Instructions Section 3-17
Scaling 1 to 5-V Analog Input to –200 to 200

In the following example, it is assume that an analog signal from 1 to 5 V is
converted and input to CIO 2005 as 0000 to 0FA0 hexadecimal. SCL2(486) is
used to convert (scale) the value in CIO 2005 to a value between –0200 and
0200 BCD.

When CIO 0.00 is ON, the contents of CIO 2005 is scaled using the linear
function defined by ∆X (0FA0), ∆Y (0400), and the offset (07D0). These values
are contained in D100 to D102, and the result is output to D200.

3-17-9 SCALING 3: SCL3(487)
Purpose Converts signed BCD data into signed binary data according to the specified

linear function. An offset can be input in defining the linear function.

Ladder Symbol

Variations

Applicable Program Areas

X

∆

P1:

P1+1:

P1+2:

0400 (∆Y)

P1

R

0 F A 0

D100

D101

D102

∆
Y

0.00

D100

D200

Offset

Contents of R (D200)

Offset
07D0 Hex

Contents of S (CIO 200)

0FA0 Hex
(∆X)

SCL3(487)

S

P1

R

S: Source word

P1: First parameter word

R: Result word

Variations Executed Each Cycle for ON Condition SCL3(487)

Executed Once for Upward Differentiation @SCL3(487)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
664

Data Control Instructions Section 3-17
Operands The contents of the five words starting with the first parameter word (P1) are
shown in the following diagram.

Operand Specifications

∆Y

∆X

P1

P1+1

P1+2

P1+3

P1+4

15 0

15 0

15 0

15 0

15 0

Offset of linear function
8000 to 7FFF (signed binary)

0001 to 9999 (BCD)

8000 to 7FFF (signed binary)

Maximum conversion
8000 to 7FFF (signed binary)

Minimum conversion
8000 to 7FFF (signed binary)

Area S P1 R

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6139

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W507 W0 to W511

Holding Bit Area H0 to H511 H0 to H507 H0 to H511

Auxiliary Bit Area A0 to A447
A448 to A959

A0 to A443
A448 to A955

A448 to A959

Timer Area T0000 to T4095 T0000 to T4091 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4091 C0000 to C4095

DM Area D0 to D32767 D0 to D32763 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
665

Data Control Instructions Section 3-17
Description SCL3(487) is used to convert the signed BCD data (the BCD data contains
the absolute value and the Carry Flag shows the sign) contained in the source
word S into signed binary data and place the result in the result word R
according to the linear function defined by the slope (∆X, ∆Y) and an offset.
The maximum and minimum conversion values are also specified. The
address of the first word containing ∆X, ∆Y, the offset, the maximum conver-
sion, and the minimum conversion is specified for the first parameter word P1.

The sign of the result is indicated by the status of the Carry Flag (ON: nega-
tive, OFF: positive). Use STC(040) and CLC(041) to turn the Carry Flag ON
and OFF.

The following equations are used for the conversion.

The offset and slope can be a positive value, 0, or a negative value. Using a
negative slope enables reverse scaling.

The result will be rounded to the nearest integer.

The source value in S is treated as an absolute BCD value and the sign is
indicated by the Carry Flag. The source value can thus be between –9999
and 9999.

If the result is less than the minimum conversion value, the minimum conver-
sion value will be output as the result. If the result is greater than the maxi-
mum conversion value, the maximum conversion value will be output.

SCL3(487) is used to convert data using a user-defined scale to signed binary
for Analog Output Units. For example, SCL3(487) can convert 0 to 200 °C to
0000 to 0FA0 (hex) and output an analog output signal 1 to 5 V from the Ana-
log Output Unit.

∆Y
R = Binary conversion of ∆X

x ((Binary conversion of S)+(Offset))

The slope of the line is ∆Y/∆X.

∆X

∆Y

∆X

∆Y

∆X

∆Y

S (signed BCD)

Offset Offset

S (signed BCD)

Offset of 0000

Positive Offset

R (signed binary)

Negative Offset

R (signed binary)

Max conversionMax conversion

Min. conversion S (signed BCD)

Min. conversion

R (signed binary)

Max conversion

Min. conversion
666

Data Control Instructions Section 3-17
Flags

Precautions An error will occur and the Error Flag will turn ON if the contents of S is not
BCD or if the value for ∆X (C+1) is not between 0001 and 9999 BCD.

The Equals Flag will turn ON when the contents of the result word D is 0000.

The Negative Flag will turn ON if the MSB of the result in R is 1, i.e., if the
result is negative.

Examples When a value from 0 to 200 is scaled to an analog signal (1 to 5 V, for exam-
ple), a signed BCD value of 0000 to 0200 is converted (scaled) to signed
binary value of 0000 to 0FA0 for an Analog Output Unit.

When CIO 0.00 turns ON in the following example, the contents of D0 is
scaled using the linear function defined by ∆X (0200), ∆Y (0FA0), and the off-
set (0). These values are contained in D100 to D102. The sign of the BCD
value in D0 is indicated by the Carry Flag. The result is output to CIO 2011.

Name Label Operation

Error Flag ER ON if the contents of S is not BCD.
ON if the contents of C+1 (∆X) is not between 0001 and
9999 BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0.
OFF in all other cases.

Negative Flag N ON when the MSB of the R (the result) is 1.

OFF in all other cases.

∆X (0200)

∆Y

∆X

P1:

P1+1:

P1+2:

P1+3:

P1+4:

P1

R

0.00

D0

D100

D100

D101

D102

D103

D104

Offset
Contents of R (D200, signed binary)

 ∆Y (0FA0 Hex)

Contents of S (D0, signed BCD)

Max. conversion

Min. conversion
667

Data Control Instructions Section 3-17

s.)
3-17-10 AVERAGE: AVG(195)
Purpose Calculates the average value of an input word for the specified number of

cycles.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of Cycles

The number of cycles must be between 0001 and 0040 hexadecimal (0 to 64
cycles).

R: Result Word and R+1: First Work Area Word

R will contain the average value after the specified number of cycles. R+1 pro-
vides information on the averaging process and R+2 to R+N+1 contain the
previous values of S as shown in the following diagram.

Operand Specifications

S

N

R

AVG(195)

S: Source word

N: Number of cycles

R: Result word

R+1: First work area word

Variations Executed Each Cycle for ON Condition AVG(195)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK OK

R+1

R+2:

15 014

R+N+1:

Used by system.

 Previous value #1

 Previous value #N

R: Average
R+1: Processing information

Average Valid Flag
OFF: Not valid (AVG(195) has not yet been executed the specified number of cycle
ON: Valid.

Area S N R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095
668

Data Control Instructions Section 3-17
Description For the first N–1 cycles when the execution condition is ON, AVG(195) writes
the values of S in order to words starting with R+2. The Previous Value
Pointer (bits 00 to 07 of R+1) is incremented each time a value is written. Until
the Nth value is written, the contents of S will be output unchanged to R and
the Average Value Flag (bit 15 of R+1) will remain OFF.

When the Nth value is written to R+N+1, the average of all the values that
have been stored will be computed, the average will be output to R as an
unsigned binary value, and the Average Value Flag (bit 15 of R+1) will be
turned ON. For all further cycles, the value in R will be updated for the most
current N values of S.

The maximum value of N is 64.

The Previous Value Pointer will be reset to 0 after N–1 values have been writ-
ten.

The average value output to R will be rounded to the nearest integer.

Flags

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

#0001 to #0040
(binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15

Area S N R

R+N+1

R

R+1

R+2

R+3

S Cycle 1

S Cycle 2

S Cycle N

S: Source word

N: Number of cycles

Average

N values

Average Valid Flag

Pointer

Name Label Operation

Error Flag ER ON if the contents of N is 0.
OFF in all other cases.
669

Data Control Instructions Section 3-17
Precautions The contents of the First Work Area Word (D+1) is cleared to 0000 each time
the execution condition changes from OFF to ON.

The contents of the First Work Area Word (D+1) will not be cleared to 0000
the first time the program is executed at the start of operation. If AVG(195) is
to be executed in the first program scan, clear the First Work Area Word from
the program.

If N (Number of Cycles) contains 0000, an error will occur and the Error Flag
will turn ON.

When CIO 0.00 is ON in the following example, the contents of D100 will be
stored one time each scan for the number of scans specified in D200. The
contents will be stored in order in the ten words from CIO 302 to CIO 311. The
average of the contents of these ten words will be placed in CIO 300 and then
bit 15 of CIO 301 will be turned ON.

Examples In the following example, the content of CIO 200 is set to #0000 and then
incremented by 1 each cycle. For the first two cycles, AVG(195) moves the
content of CIO 200 to D1002 and D1003. The contents of D1001 will also
change (which can be used to confirm that the results of AVG(195) has
changed). On the third and later cycles AVG(195) calculates the average
value of the contents of D1002 to D1004 and writes that average value to
D1000.

S: D100

N: D200

R: CIO 300

R+1: CIO 301

R+2: CIO 302

R+3: CIO 303

R+11: CIO 311

S

N

R

0.00

D100

D200

Average

Pointer

Average Valid Flag

(10 times)

S, scan 2

S, scan 1

S, scan n
670

Data Control Instructions Section 3-17
D1000 0000 0001 0001 0002
D1001 0001 0002 8000 8001
D1002 0000 0000 0000 0003
D1003 --- 0001 0001 0001
D1004 --- --- 0002 0002

CIO 200 0000 0001 0002 0003

@MOV

0.01

#0

200

200

#3

D1000

200

#1

2000

 1st cycle 2nd cycle 3rd cycle 4th cycle

Average

Pointer

3 previous values of IR 40
671

Subroutines Section 3-18
3-18 Subroutines
This section describes instructions used to create and control subroutines.

3-18-1 SUBROUTINE CALL: SBS(091)
Purpose Calls the subroutine with the specified subroutine number and executes that

program.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Subroutine number

Specifies the subroutine number between 0 and 255 decimal.

Operand Specifications

Instruction Mnemonic Function code Page

SUBROUTINE CALL SBS 091 672

MACRO MCRO 099 678

SUBROUTINE ENTRY SBN 092 682

SUBROUTINE RETURN RET 093 684

GLOBAL SUBROUTINE CALL GSBS 750 685

GLOBAL SUBROUTINE ENTRY GSBN 751 692

GLOBAL SUBROUTINE RETURN GRET 752 695

SBS(091)

N N: Subroutine number

Variations Executed Each Cycle for ON Condition SBS(091)

Executed Once for Upward Differentiation @SBS(091)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0 to 255 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

672

Subroutines Section 3-18
Description SBS(091) calls the subroutine with the specified subroutine number. The sub-
routine is the program section between SBN(092) and RET(093). When the
subroutine is completed, program execution continues with the next instruc-
tion after SBS(091).

Subroutine
program
(SBN(092) to
RET(093))

Main program

Execution condition ON

Program end
673

Subroutines Section 3-18
Subroutines can be nested up to 16 levels. Nesting is when another subrou-
tine is called from within a subroutine program, such as shown in the following
example, which is nested to 3 levels.

Note A subroutine can be called more than once in a program.

SBN 10

SBN 11

RET

SBN 11

SBS 12

RET RET

SBN 12

Execution condition ON

Main program

Execution condition ONSubroutine
program n

Two-level
nesting

Subroutine
program m

Program end
674

Subroutines Section 3-18
Subroutines and
Differentiation

Observe the following precautions when using differentiated instructions
(DIFU(013), DIFU(014), or up/down differentiated instructions) in subroutines.

The operation of differentiated instructions in a subroutine is unpredictable if a
subroutine is executed more than once in the same cycle. In the following
example, subroutine 0001 is executed when CIO 0.00 is ON and CIO 100.00
is turned ON by DIFU(013) when CIO 0.01 has gone from OFF to ON. If
CIO 0.01 is ON in the same cycle, subroutine 0001 will be executed again but
this time DIFU(013) will turn CIO 100.00 OFF without checking the status of
CIO 0.01.

In contrast, the output of a differentiated instruction (DIFU(013) or DIFD(014))
would remain ON if the instruction was executed and the output was turned
ON but the same subroutine was not called a second time.

In the following example, subroutine 0001 is executed if CIO 0.00 is ON. Out-
put CIO 100.00 is turned ON by DIFU(013) when CIO 0.01 has gone from
OFF to ON. If CIO 0.00 is OFF in the following cycle, subroutine 0001 will not
be executed again and output CIO 100.00 will remain ON.

Flags

1

3

2

4

5

1

1

1

0.00

0.01

0.01

100.00

Subroutine
0001 The subroutine is

executed again.

1

3

2

1

1

100.00

0.00

0.01
The subroutine is not
executed in following cycles.

Name Label Operation

Error Flag ER ON if nesting exceeds 16 levels.
ON if the specified subroutine number does not exist.
ON if a subroutine calls itself.

ON if a subroutine being executed is called.
ON if the specified subroutine is not defined in the current
task.

OFF in all other cases.
675

Subroutines Section 3-18
Precautions SBS(091) and the corresponding SBN(092) must be programmed in the same
task. An error will occur if the corresponding SBN(092) is not in the task.

SBS(091) will be treated as NOP(000) when it is within a program section
interlocked by IL(002) and ILC(003).

When SBS(091) is executed in the following cases, the subroutine will not
actually be called and the Error Flag will be turned ON:

1,2,3... 1. The specified subroutine is not defined within the current task.

2. The subroutine is calling itself.

3. Subroutine nesting exceeds 16 levels.

4. The specified subroutine is being executed.

Examples Example 1: Sequential (Non-nested) Subroutines

When CIO 0.00 is ON in the following example, subroutine 1 is executed and
program execution returns to the next instruction after SBS(091). The remain-
der of the main program (through the instruction just before SBN(092) 1) is
then executed.

1

3

A S→B

A→B

CIO 0.00 ON

2

0.00

0.00

→
Subroutine 1

Main program

Subroutine program:
S

Order of execution
676

Subroutines Section 3-18
Example 2: Sequential (Non-nested) Subroutines

When CIO 0.00 is ON in the following example, subroutine 1 is executed and
program execution returns to the next instruction after SBS(091) 1. When
CIO 0.01 is ON, subroutine 2 is executed and program execution returns to
the next instruction after SBS(091) 2.

1

3

5

2

4

A→S1→B→S2→C

A→S1→B→C

A→B→S2→C

A→B→C

CIO 0.00 ON

CIO 0.01 ON

0.00

0.00

0.01

0.01

Subroutines

Program end

Main program

Order of execution
677

Subroutines Section 3-18
Example 3: Nested Subroutines

When CIO 0.00 is ON in the following example, subroutine 1 is executed. If
CIO 0.01 is ON, subroutine 2 is executed from within subroutine 1 and pro-
gram execution returns to the next instruction after SBS(091) 2 when subrou-
tine 2 is completed. Execution of subroutine 1 continues and program
execution returns to the next instruction after SBS(091) 1 when subroutine 1
is completed.

3-18-2 MACRO: MCRO(099)
Purpose Calls the subroutine with the specified subroutine number and executes that

program using the input parameters in S to S+3 and the output parameters in
D to D+3.

Ladder Symbol

1

5

2

4

3

CIO 0.00 ON

CIO 0.01 ON

1

2

2

1

A→S1-1→S2→S1-2→B

A→S1-1→S1-2→B

A→B

A→B

0.00

0.00

0.01

0.01

Subroutine 1

Subroutine 2

Order of execution

MCRO(099)

N

S

D

N: Subroutine number

S: First input parameter word

D: First output parameter word
678

Subroutines Section 3-18
Variations

Applicable Program Areas

Operands N: Subroutine number

Specifies the subroutine number between 0 and 255 decimal.

Operand Specifications

Description MCRO(099) calls the subroutine with the specified subroutine number just like
SBS(091). Unlike SBS(091), MCRO(099) operands S and D can be used to
change bit and word addresses in the subroutine, although the structure of
the subroutine is constant.

When MCRO(099) is executed, the contents of S through S+3 are copied to
A600 through A603 (macro area inputs) and the specified subroutine is exe-
cuted. When the subroutine is completed, the contents of A604 through A607
(macro area outputs) are copied to D through D+3 and program execution
continues with the next instruction after MCRO(099).

Variations Executed Each Cycle for ON Condition MCRO(099)

Executed Once for Upward Differentiation @MCRO(099)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N S D

CIO Area --- CIO 0 to CIO 6140

Work Area --- W0 to W508

Holding Bit Area --- H0 to H508

Auxiliary Bit Area --- A0 to A444
A448 to A956

A448 to A956

Timer Area --- T0000 to T4092

Counter Area --- C0000 to C4092

DM Area --- D0 to D32764

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants 0 to 255 (decimal) ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to
+2047, IR15
DR0 to DR15, IR0 to IR15, IR0+(++)
to IR015+(++)
,–(– –)IR0 to, –(– –)IR15
679

Subroutines Section 3-18
MCRO(099) can be used to consolidate two or more subroutines with the
same structure but different input and output addresses into a single subrou-
tine program. When MCRO(099) is executed, the specified input and output
data is transferred to the specified subroutine.

Flags

The following table shows relevant words in the Auxiliary Area.

Precautions The four words of input data (words or bits) in A600 to A603 and the four
words of output data (words or bits) in A604 to A607 must be used in the sub-
routine called by MCRO(099). It is not possible to pass more than four words
of data.

It is possible to nest MCRO(099) instructions, but the data in the macro area
input and output words (A600 to A607) must be saved before calling another
subroutine because all MCRO(099) instructions use the same 8 words.

Example When CIO 0.00 is ON in the following example, two MCRO(099) instructions
pass different input and output data to subroutine 1.

1,2,3... 1. The first MCRO(099) instruction passes the input data in CIO 100 to
CIO 103 and executes the subroutine. When the subroutine is completed,
the output data is stored in CIO 300 to CIO 303.

MCRO(099)

MCRO(099)

Execution of subrou-
tine between
SBN(092) and
RET(093).

The subroutine uses A600 to
A603 as inputs and A604 to
A607 as outputs.

Name Label Operation

Error Flag ER ON if nesting exceeds 16 levels.
ON if the specified subroutine number does not exist.

ON if a subroutine calls itself.
ON if a subroutine being executed is called.
ON if the specified subroutine is not defined in the current
task.
OFF in all other cases.

Name Address Operation

Macro area input
words

A600 to
A603

When MCRO(099) is executed the four words
from S to S+3 are copied to A600 to A603. These
input words are passed to the subroutine.

Macro area input
words

A604 to
A607

After the subroutine specified in MCRO(099) has
been executed, the output data in these output
words and copied to D to D+3.
680

Subroutines Section 3-18
2. The second MCRO(099) instruction passes the input data in CIO 200 to
CIO 203 and executes the subroutine. When the subroutine is completed,
the output data is stored in CIO 400 to CIO 403.

The second MCRO(099) instruction operates in the same way, but the input
data in CIO 200 to CIO 203 is passed to A600 to A603 and the output data in
A604 to A607 is passed to CIO 400 to CIO 403.

D: 300

D+1: 301

D+2: 302

D+3: 303

A604

A605

A606

A607

1

1

1

0.00

A600.01

A601.02

A604.03

S: 100

S+1: 101

S+2: 102

S+3: 103

Input

Output

Subroutine 1
Output data is passed when
returning from the subroutine. Macro area output words

Input data is passed when
the subroutine is called. Macro area input words

Execution of
subroutine 1

0.00

100.01

101.02

200.01

201.02

300.03

400.03

Just the addresses
are different.
681

Subroutines Section 3-18
3-18-3 SUBROUTINE ENTRY: SBN(092)
Purpose Indicates the beginning of the subroutine program with the specified subrou-

tine number. Used in combination with RET(093) to define a subroutine
region.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Subroutine number

Specifies the subroutine number between 0 and 255 decimal.

Operand Specifications

Description SBN(092) indicates the beginning of the subroutine with the specified subrou-
tine number. The end of the subroutine is indicated by RET(093).

The region of the program beginning at the first SBN(092) instruction is the
subroutine region. A subroutine is executed only when it has been called by
SBS(091) or MCRO(099).

SBN(092)

N N: Subroutine number

Variations Executed Each Cycle for ON Condition SBN(092)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0 to 255 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

SBS

n

MCRO

n

SBN

n

RET

Subroutine
region
682

Subroutines Section 3-18
Precautions When the subroutine is not being executed, the instructions are treated as
NOP(000).

Place the subroutines after the main program and just before the END(001)
instruction in the program for each task. If part of the main program is placed
after the subroutine region, that program section will be ignored.

Be sure to place each subroutine in the same program (task) as its corre-
sponding SBS(091) or MCRO(099) instruction. A subroutine in one task can-
not be called from another task. It is possible to program a subroutine within
an interrupt task.

Subroutine region

OR

This part of the
program won't be
executed.

OK

Task 2

Task 1 Task

Not allowed
683

Subroutines Section 3-18
The step instructions, STEP(008) and SNXT(009) cannot be used in subrou-
tines.

Example When CIO 0.00 is ON in the following example, subroutine 10 is executed and
program execution returns to the next instruction after the SBS(091) or
MCRO(099) instruction that called the subroutine.

3-18-4 SUBROUTINE RETURN: RET(093)
Purpose Indicates the end of a subroutine program. Used in combination with

SBN(092) to define a subroutine region.

Ladder Symbol

Variations

Applicable Program Areas

Description RET(093) indicates the end of a subroutine and SBN(092) indicates the
beginning of a subroutine. See 3-18-3 SUBROUTINE ENTRY: SBN(092) for
more details on the operation of subroutines.

When program execution reaches RET(093) it is automatically returned to the
next instruction after the SBS(091) or MCRO(099) instruction that called the
subroutine. When the subroutine has been called by MCRO(099), the output
data in A604 through A607 is written to D through D+3 before program execu-
tion is returned.

Not allowed

OR
10

10

10

0.00

Subroutine 10

RET(093)

Variations Executed Each Cycle for ON Condition RET(093)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed OK OK
684

Subroutines Section 3-18
Precautions When the subroutine is not being executed, the instructions are treated as
NOP(000).

Example See 3-18-3 SUBROUTINE ENTRY: SBN(092) for examples of the operation
of RET(093).

3-18-5 GLOBAL SUBROUTINE CALL: GSBS(750)
Purpose Calls the global subroutine with the specified subroutine number and exe-

cutes that program. The same global subroutine can be called from two or
more tasks.

GSBS(750) is used in combination with GSBN(751) and GRET(752), the
GLOBAL SUBROUTINE ENTRY and GLOBAL SUBROUTINE RETURN
instructions.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Global subroutine number

Specifies the global subroutine number between 0 and 255 decimal.

Operand Specifications

Description GSBS(750) calls the global subroutine with the specified global subroutine
number. The global subroutine is the program section between GSBN(751)
and GRET(752). When the global subroutine is completed, program execution
continues with the next instruction after GSBS(750).

N: Global subroutine number
GSBS(750)

N

Variations Executed Each Cycle for ON Condition GSBS(750)

Executed Once for Upward Differentiation @GSBS(750)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0 to 255 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

685

Subroutines Section 3-18
This instruction can be written into multiple tasks with the same global subrou-
tine number to call that program from the different tasks. The program can be
modularized by making global subroutines into standard subroutines that are
common to many tasks.

The global subroutine region (between GSBN(751) and GRET(752)) must be
defined in interrupt task 0. If it is defined in another task, an error will occur
and the Error Flag will be turned ON when the GSBS(750) instruction is exe-
cuted.

The GSBS(750) instruction can be written in both cyclic tasks (including extra
cyclic tasks) and interrupt tasks.

B

A

END

A

GSBN

n

GRET

C

A

B

GSBS

n

0.00

C

GSBS

n

0.01

Execution
condition ON

Execution
condition ON

Main
program

Cyclic or interrupt task Cyclic or interrupt task

Interrupt task 0

Global subroutine
program
(GSBN(751) to
GRET(752))
686

Subroutines Section 3-18
Multiple global subroutine regions (GSBN(751) to GRET(752)) can be defined
in interrupt task 0.

An SBS(091) or GSBS(750) instruction can be written within a subroutine
region (SBN(092) to RET(093)) or global subroutine region (GSBN(751) to
GRET(752)) to “nest” subroutines. Subroutines can be nested up to 16 levels.

Global Subroutines and
Differentiation

Observe the following precautions when using differentiated instructions
(DIFU(013), DIFU(014), or up/down differentiated instructions) in subroutines.

B

A

D

C

B

GSBS

n

0.00

D

GSBS

m

0.01

END

A

GSBN

n

C

GSBN

m

GRET

END

GRET

Execution
condition ON

Execution
condition ON

Cyclic or interrupt task

Interrupt task 0

Subroutine functions
divided by task.

GSBN 10

GSBS 11

GRET

GSBN 11

GSBS 12

GRET

GSBN 12

GRET
to

Interrupt task 0

to

to

to

to
687

Subroutines Section 3-18
The operation of differentiated instructions in a global subroutine is unpredict-
able if a subroutine is executed more than once in the same cycle. In the fol-
lowing example, global subroutine 0001 is executed when CIO 0.00 is ON and
CIO 100.00 is turned ON by DIFU(013) when CIO 0.01 has gone from OFF to
ON. If CIO 0.01 is ON in the same cycle, global subroutine 0001 will be exe-
cuted again but this time DIFU(013) will not detect the rising edge of CIO 0.01
and CIO 100.00 will be turned OFF.

In contrast, the output of a differentiated instruction (DIFU(013) or DIFD(014))
would remain ON if the instruction was executed and the output was turned
ON but the same global subroutine was not called a second time.

In the following example, global subroutine 0001 is executed if CIO 0.00 is
ON. Output CIO 100.00 is turned ON by DIFU(013) when CIO 0.01 has gone
from OFF to ON. If CIO 0.00 is OFF in the following cycle, subroutine 0001
will not be executed again and output CIO 100.00 will remain ON.

GSBS

1

0.00

GSBS

1

0.01

GSBN

1

DIFU

100.00

0.01

GRET

Cyclic task 1

Cyclic task 2

Interrupt task 0

Executed
again
688

Subroutines Section 3-18
Flags

Precautions The GLOBAL SUBROUTINE ENTRY instruction, GSBN(751), and the corre-
sponding GLOBAL SUBROUTINE RETURN instruction, GRET(752) must be
programmed in interrupt task 0. If the global subroutine region is not pro-
grammed in interrupt task 0, an error will occur and the Error Flag will be
turned ON when the GSBS(750) instruction is executed.

The regular SUBROUTINE CALL instruction, SBS(091), cannot call a global
subroutine region (GSBN(751) to GRET(752)).

GSBS(750) will not be executed when it is within a program section inter-
locked by IL(002) and ILC(003), so interlocks are not allowed within global
subroutine regions.

The same global subroutine region (GSBN(751) to GRET(752)) can be called
more than once.

When GSBS(750) is executed in the following cases, the global subroutine will
not actually be called and the Error Flag will be turned ON:

1,2,3... 1. The specified global subroutine is not defined.

2. Subroutine nesting (counting both regular and global subroutines) ex-
ceeds 16 levels.

3. The global subroutine is calling itself.

4. The specified global subroutine is being executed.

5. The specified global subroutine is not defined in interrupt task 0.

GSBS

1

0.00

GSBN

1

DIFU

000100

0.01

GRET

Cyclic task 1

Interrupt task 0 The subroutine is
not executed in
following cycles.

Name Label Operation

Error Flag ER ON if nesting exceeds 16 levels (counting both regular
and global subroutines).
ON if the specified global subroutine does not exist.
ON if a global subroutine calls itself.

ON if a global subroutine being executed is called.
ON if the specified subroutine is not defined in interrupt
task 0.

OFF in all other cases.
689

Subroutines Section 3-18
Examples Example 1

When CIO 0.00 is ON in the following example, global subroutine 1 is exe-
cuted and program execution returns to the next instruction after GSBS(750).

When CIO 0.01 is ON in the following example, global subroutine 1 is exe-
cuted and program execution returns to the next instruction after GSBS(750).

Example 2

Two or more global subroutine programs can be programmed in interrupt task
0. In this case, interrupt task 0 can be divided and used as the subroutine
function’s task.

Status of CIO 0.00 Order of program execution

ON A → S → B

OFF A → B

Status of CIO 0.01 Order of program execution

ON C → S → D

OFF C → D

GSBN

1

END

B

GSBS

n

A

0.00

GRET

END

END

D

GSBS

n

C

0.01CIO 0.00 ON

Cyclic or interrupt task Cyclic or interrupt task

Interrupt task 0

Global
subroutine
program S

CIO 0.01 ON
690

Subroutines Section 3-18
When CIO 0.00 is ON, global subroutine program 1 is executed.
When CIO 0.01 is ON, global subroutine program 2 is executed.

B

GSBS

1

A

GSBS

2

END

0.00

GSBN

1

GSBN

2

GRET

GRET

0.01

CIO 0.00 ON

Cyclic or interrupt task

It is possible to debug problems
within particular tasks by using
regular subroutines in the local task
only as well as global subroutines
that are shared with other tasks.

Interrupt task 0

Global subroutine
program S1

Global subroutine
program S2

Subroutine program
S

CIO 0.01
OFF

CIO 0.01 ON
691

Subroutines Section 3-18
3-18-6 GLOBAL SUBROUTINE ENTRY: GSBN(751)
Purpose Indicates the beginning of the global subroutine program with the specified

subroutine number. Used in combination with GRET(752) to define a global
subroutine region.

GSBN(751) is used in combination with GSBS(750) and GRET(752), the
GLOBAL SUBROUTINE CALL and GLOBAL SUBROUTINE RETURN
instructions.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Global subroutine number

Specifies the global subroutine number between 0 and 255 decimal.

Operand Specifications

Description GSBN(751) indicates the beginning of the global subroutine with the specified
subroutine number. The end of the subroutine is indicated by GRET(752).

The region of the program beginning at the first GSBN(751) instruction is the
subroutine region. A subroutine is executed only when it has been called by
GSBS(750).

The global subroutine region (between GSBN(751) and GRET(752)) must be
defined in interrupt task 0. If it is defined in another task, an error will occur
and the Error Flag will be turned ON when the GSBS(750) instruction is exe-
cuted.

GSBN(751)

N
N: Global subroutine number

Variations Executed Each Cycle for ON Condition GSBN(751)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed --- OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0 to 255 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

692

Subroutines Section 3-18
The GSBS(750) instruction can be written both cyclic tasks (including extra
cyclic tasks) and interrupt tasks.

Precautions • When the subroutine is not being executed, the instructions are treated as
NOP(000).

• Place the global subroutine region (GSBN(751) to GRET(752)) in inter-
rupt task 0 just before the END(001) instruction. When two or more global
subroutines are being used, group them together in interrupt task 0 after
the end of the main program. If part of the main program is placed after
the global subroutine region, that program section will be ignored.

GSBS

n

GSBN

n

GRET

END

Cyclic or interrupt task

Interrupt task 0

Global
subroutine
region

GSBN

n

GRET

END

Global
subroutine
region

This part of the
program will not
be executed.

Interrupt task 1
693

Subroutines Section 3-18
• Always place the global subroutines in interrupt task 0. An error will occur
if a global subroutine is called and the subroutine is not in interrupt task 0.

• The step instructions, STEP(008) and SNXT(009) cannot be used in glo-
bal subroutines.

GSBS

n

END

GSBN

n

GRET

END

GSBS

n

END

GSBN

n

GRET

END

Cyclic task 1

Not allowed OK

Cyclic task 1

Cyclic task 2 Interrupt task 0

GSBN

SNXT

STEP

GRET

Not allowed
694

Subroutines Section 3-18
Example When CIO 0.00 is ON in the following example, global subroutine 10 is exe-
cuted and program execution returns to the next instruction after the
GSBS(750) instruction that called the subroutine.

3-18-7 GLOBAL SUBROUTINE RETURN: GRET(752)
Purpose Indicates the end of a subroutine program. Used in combination with

GSBN(751) to define a subroutine region.

GRET(752) is used in combination with GSBS(750) and GSBN(751), the
GLOBAL SUBROUTINE CALL and GLOBAL SUBROUTINE ENTRY instruc-
tions.

Ladder Symbol

Variations

Applicable Program Areas

Description GRET(752) indicates the end of a global subroutine and GSBN(751) indicates
the beginning of a global subroutine. See 3-18-6 GLOBAL SUBROUTINE
ENTRY: GSBN(751) for more details on the operation of global subroutines.

When program execution reaches GRET(752) it is automatically returned to
the next instruction after the GSBS(750) instruction that called the global sub-
routine.

Precautions When the subroutine is not being executed, the instructions are treated as
NOP(000).

Example See 3-18-6 GLOBAL SUBROUTINE ENTRY: GSBN(751) for examples of the
operation of GRET(752).

GSBS

10

0.00

GSBN

10

GRET

END

Global subroutine
region

Cyclic or interrupt task

Interrupt task 0

GRET(752)

Variations Executed Each Cycle for ON Condition GRET(752)

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed Not allowed Not allowed OK
695

Interrupt Control Instructions Section 3-19
3-19 Interrupt Control Instructions
This section describes instructions used to control interrupts.

3-19-1 SET INTERRUPT MASK: MSKS(690)
Purpose Both input interrupt tasks and scheduled interrupt tasks are masked (dis-

abled) and the internal timer for scheduled interrupts is stopped when the
PLC enters RUN mode. MSKS(690) can be used to unmask or mask input
interrupts and set the time intervals for scheduled interrupts.

Ladder Symbol

Variations

Applicable Program Areas

Instruction Mnemonic Function code Page

SET INTERRUPT MASK MSKS 690 696

READ INTERRUPT MASK MSKR 692 700

CLEAR INTERRUPT CLI 691 703

DISABLE INTERRUPTS DI 693 706

ENABLE INTERRUPTS EI 694 707

MSKS(690)

N

S

N: Interrupt identifier

S: Interrupt data

Variations Executed Each Cycle for ON Condition MSKS(690)

Executed Once for Upward Differentiation @MSKS(690)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
696

Interrupt Control Instructions Section 3-19
Operands Input Interrupts

N specifies the input interrupt number and the function of MSKS(690) and S
specifies operational details.

Note Input interrupts 2 and 3 cannot be used on Y CPU Units.

Scheduled Interrupts

N specifies the scheduled interrupt number and the starting method and S
specifies the interrupt interval.

Operand Contents

Specify ON or OFF
to generate interrupt

Mask or unmask interrupt

N Input interrupt 0
(interrupt task 140)

110 (or 10) 100 (or 6)

Input interrupt 1
(interrupt task 141)

111 (or 11) 101 (or 7)

Input interrupt 2
(interrupt task 142)
(See note.)

112 (or 12) 102 (or 8)

Input interrupt 3
(interrupt task 143)
(See note.)

113 (or 13) 103 (or 9)

Input interrupt 4
(interrupt task 144)

114 104

Input interrupt 5
(interrupt task 145)

115 105

Input interrupt 6
(interrupt task 146)

116 106

Input interrupt 7
(interrupt task 147)

117 107

S 0000 hex: Detect ON
(default)
0001 hex: Detect OFF

0000 hex: Unmask, direct mode
0001 hex: Mask
0002 hex: Unmask, counter mode,
start decrementing
0003 hex: Unmask, counter mode,
start incrementing

Operand Contents

N Scheduled interrupt 0 (interrupt
task 2)

14 hex: Reset start (Reset internal timer
and start timing.)

4 hex: Start without reset (Specify the time
to the first interrupt separately with
CLI(691).)

S 0000 hex: Prohibit schedule interrupts and
stop internal timer.

PLC Setup parameter
(Scheduled Interrupt
Interval)

10 ms Scheduled interrupt interval:
0001 to 270F hex (10 to 99,990 ms)

1 ms Scheduled interrupt interval:
0001 to 270F hex (1 to 9,999 ms)

0.1 ms Scheduled interrupt interval:
0005 to 270F hex (5 to 999.9 ms)

Note An error will occur if 0001 to 0004 hex
is set.
697

Interrupt Control Instructions Section 3-19
Operand Specifications

Description MSKS(690) controls input interrupts and scheduled interrupts. The value of N
identifies the interrupt.

Input Interrupts: N = 100 to 107, 110 to 117, or 6 to 13

• MSKS(690) specifies whether interrupts are generated when the interrupt
input turns ON or turns OFF and whether to mask or unmask the inter-
rupt. If the specification is omitted, interrupts are generated when the
interrupt input turns ON.

• When an interrupt is unmasked, either direct mode or counter mode
(incrementing or decrementing) is specified. Refer to 5-1 Interrupt Func-
tions in the CP1H Operation Manual for details.

• Any interrupts that are masked will be cleared when the interrupt is
unmasked or the ON/OFF specification for generating interrupts is
changed.

Scheduled Interrupt: N = 4 or 14

• MSKS(690) specifies the interrupt interval and starts the internal timer.
The interrupt interval also depends on the setting of the Scheduled Inter-
rupt Interval in the PLC Setup.

• The internal timer can be reset or not reset depending on the operands
for MSKS(690).

• When the internal timer is reset, timing will start after the timer is reset
and scheduled interrupt will occur at the interval specified in S from the
time MSKS(690) is executed.

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A447
A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ 32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants Specified values only

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047, IR0 to
–2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –) IR0 to, –(– –) IR15
698

Interrupt Control Instructions Section 3-19
• When the internal timer is not reset, the internal timer will continue operat-
ing from the present time and the time to the first interrupt is specified
separately with CLI(691). If the time to the first interrupt is not specified
with CLI(691), the time to the first interrupt will be undefined, but sched-
uled interrupts will be started at the latest after two scheduled interrupt
intervals have elapsed.

Flags

The following table shows relevant flags in the Auxiliary Area.

Precautions Be sure that the time interval is longer than the time required to execute the
scheduled interrupt task.

When IORF(097) is being executed within an interrupt task to refresh I/O in a
Special I/O Unit, cyclic refreshing with that Special I/O Unit must be disabled
in the PLC Setup. If cyclic refreshing with the Special I/O Unit is not disabled,
IORF(097) might be executed during cyclic refreshing resulting in a non-fatal
Duplicate Refresh Error and turning ON the Interrupt Task Error Flag
(A402.13).

A440 contains the maximum processing time for interrupt tasks and the right-
most byte of A441 contains the interrupt task number of the task with the long-
est processing time.

Examples Enabling Input Interrupts in Direct Mode

When W0.00 turns ON in the following example, the first MSKS(690) (1) spec-
ifies generating input interrupts for input interrupt 1 (CIO 0.01) when the inter-
rupt input turns ON and the second MSKS(690) (2) unmasks the interrupt.

Name Label Operation

Error Flag ER ON if N is not within the specified range.
For input interrupts: ON if S is not within the specified
range of 0000 to 0003.

For scheduled interrupts: ON if S is not within the speci-
fied range of 0000 to 270F hex when the scheduled inter-
rupt interval is in 10 or 1 ms units or 0005 to 270F hex
when the interval is in 0.1 ms units.
OFF in all other cases.

Equals Flag = OFF

Negative Flag N OFF

Name Address Operation

Interrupt Task Error
Flag

A402.13 ON in the following case:
IORF(097) was executed in an interrupt task with-
out disabling Special I/O cyclic refreshing.

Interrupt Task Error
Cause Flag

A426.15 Indicates whether Interrupt Task Error 1 or 2
occurred.

Interrupt Task Error
Task Number

A426.00 to
A426.11

Indicates the unit number of the Special I/O Unit
where the multiple I/O refreshing occurred.

MSKS

111

#0000

W0.00

N

S

MSKS

101

#0000

N

S

(1)

(2)
699

Interrupt Control Instructions Section 3-19
Starting Scheduled Interrupts while Resetting the Scheduled Interrupt
Timer

When W0.01 turns ON in the following example, MSKS(690) sets the sched-
ule interrupt interval for schedule interrupt 0 to 10.5 ms (assuming the unit is
set to 0.1 ms in the PLC Setup), resets the internal timer, and starts the inter-
nal timer.

3-19-2 READ INTERRUPT MASK: MSKR(692)
Purpose Reads the current interrupt processing settings that were set with

MSKS(690).

Ladder Symbol

Variations

Applicable Program Areas

MSKS

14

&105

W0.01

N

S

MSKR(692)

N

D

N: Interrupt identifier

D: Destination word

Variations Executed Each Cycle for ON Condition MSKR(692)

Executed Once for Upward Differentiation @MSKR(692)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
700

Interrupt Control Instructions Section 3-19
Operands Input Interrupts

N specifies the input interrupt number and the data to read and D specifies
the storage location for the read data.

Note Input interrupts 2 and 3 cannot be used on Y CPU Units.

Scheduled Interrupts

N specifies the scheduled interrupt number and the data to read and D speci-
fies the storage location for the read data.

Note If the scheduled interrupt has been prohibited, he time elapsed until the
schedule interrupt’s internal timer was stopped can be read. The present
value will be 0 if the scheduled interrupt has never been started.

Operand Contents

Read ON or OFF to
generate interrupt

Read mask status

N Input interrupt 0
(interrupt task 140)

110 (or 10) 100 (or 6)

Input interrupt 1
(interrupt task 141)

111 (or 11) 101 (or 7)

Input interrupt 2
(interrupt task 142)
(See note.)

112 (or 12) 102 (or 8)

Input interrupt 3
(interrupt task 143)
(See note.)

113 (or 13) 103 (or 9)

Input interrupt 4
(interrupt task 144)

114 104

Input interrupt 5
(interrupt task 145)

115 105

Input interrupt 6
(interrupt task 146)

116 106

Input interrupt 7
(interrupt task 147)

117 107

D 0000 hex: Detect ON
(default)
0001 hex: Detect OFF

0000 hex: Unmask, direct mode
0001 hex: Mask
0002 hex: Unmask, counter mode,
start decrementing
0003 hex: Unmask, counter mode,
start incrementing

Operand Contents

Read scheduled
interrupt interval

Read present value of
internal timer (i.e., time
from first interrupt or

previous interrupt
processing)

N 4 7

D 0000 hex: Scheduled
interrupts prohibited.

0000 to 270F hex (1 to
9999): Present value of
internal timer0001 to 270F hex (1 to

9999): Scheduled inter-
rupt interval

PLC Setup
parameter
(Scheduled
Interrupt Inter-
val)

10 ms 10 to 99.990 ms 0 to 99.990 ms

1 ms 1 to 9.999 ms 0 to 9.999 ms

0.1 ms 0.1 to 999.9 ms 0 to 999.9 ms
701

Interrupt Control Instructions Section 3-19
Operand Specifications

Description The value of N identifies the interrupt.

Input Interrupts: N = 100 to 107, 110 to 117, or 6 to 13

The mask status or the trigger specification (ON or OFF) specified with N is
stored in D.

Scheduled Interrupt: N = 4 or 14

The scheduled interrupt interval (set value) or the present value of the internal
timer specified with N is stored in D as a hexadecimal value. The units for the
scheduled interrupt interval is specified in the PLC Setup as the Scheduled
Interrupt Interval.

Flags

Precautions MSKR(692) can be executed in the main program or in interrupt tasks.

Examples Input Interrupts

When W0.00 turns ON in the following example, the mask status of input
interrupt 0 (CIO 0.00) is stored in D100. The value in the example (0003) says
that the interrupt is unmasked in incrementing counter mode.

Area N D

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants Specified values only ---

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047, IR0 to
–2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0 to 5 (0 to 15
for the CJ1M).
OFF in all other cases.

MSKR

100

D100

W0.00

N

D
D100

015 8 7
30 0 0
702

Interrupt Control Instructions Section 3-19
Scheduled Interrupts

When W0.01 turns ON in the following example, the scheduled interrupt inter-
val is stored in D200. The value in the example (0069) says that the interval is
10.5 ms (0069 hex = 105 decimal) assuming that the schedule interrupt inter-
val unit is set to 0.1 ms in the PLC Setup.

3-19-3 CLEAR INTERRUPT: CLI(691)
Purpose Clears or retains recorded interrupt inputs for input interrupts and high-speed

counter interrupts, or sets the time to the first scheduled interrupt for sched-
uled interrupts.

Ladder Symbol

Variations

Applicable Program Areas

Operands Input Interrupts

N specifies the input interrupt number and S specifies the operation.

Note Input interrupts 2 and 3 cannot be used on Y CPU Units.

MSKR

4

D200

W0.01

N

D
D200

015 8 7
90 0 6

CLI(691)

N

S

N: Interrupt identifier

S: Interrupt data

Variations Executed Each Cycle for ON Condition CLI(691)

Executed Once for Upward Differentiation @CLI(691)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Operand Contents

N Input Interrupt Number
100 or 6: Input interrupt 0 (interrupt task 140)
101 or 7: Input interrupt 1 (interrupt task 141)
102 or 8: Input interrupt 2 (interrupt task 142) (See note.)
103 or 9: Input interrupt 3 (interrupt task 143) (See note.)
104: Input interrupt 4 (interrupt task 144)
105: Input interrupt 5 (interrupt task 145)
106: Input interrupt 6 (interrupt task 146)
107: Input interrupt 7 (interrupt task 147)

S Recorded Interrupt Clear Specification
0000 hex: Recorded interrupt retained

0001 hex: Recorded interrupt cleared
703

Interrupt Control Instructions Section 3-19
Scheduled Interrupts

N specifies the scheduled interrupt number and S specifies the time to the first
scheduled interrupt.

High-speed Counter Interrupts

N specifies the high-speed counter interrupt number and S specifies the oper-
ation

Operand Specifications

Description Depending on the value of N, CLI(691) either clears the specified recorded
input interrupts or high-speed counter interrupts, or sets the time before exe-
cution of the first scheduled interrupt.

Operand Contents

N Specify the scheduled interrupt number.

4: Scheduled interrupt 0 (interrupt task 2)

S 0000 to 270F hex:
Time to first scheduled interrupt (0 to 9999)

Note The unit for the scheduled interrupt interval can be set to 10 ms,
1.0 ms, or 0.1 ms in the PLC Setup interrupt settings.

Operand Contents

N High-speed Counter Interrupt Number
10: High-speed counter input 0
11: High-speed counter input 1
12: High-speed counter input 2
13: High-speed counter input 3

S Recorded Interrupt Clear Specification

0000 hex: Recorded interrupt retained
0001 hex: Recorded interrupt cleared

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants --- DR0 to DR15

Data Registers Specified values only

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15

–2048 to +2047, IR0 to –
2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15
704

Interrupt Control Instructions Section 3-19
Input Interrupts: N = 100 to 107 or 6 to 9

Recorded interrupts are either cleared or retained according to the value of S
for the input interrupt specified by N.

If an input interrupt task is being executed and an interrupt input with a differ-
ent interrupt number is received, that interrupt number is recorded internally.
The recorded input interrupts are executed later in order of their priority (from
the lowest number to the highest). CLI(691) can be used to clear these
recorded interrupts before they are executed.

Scheduled Interrupts: N = 4

N is 4, the content of S specifies the time interval to the first scheduled inter-
rupt task after MSKS(690) is executed.

High-speed Counter Interrupts: N = 10 to 13

Recorded interrupts are either cleared or retained according to the value of S
for the high-speed counter interrupt specified by N.

Flags

Precautions A new interrupt input will be ignored if that interrupt has already been
recorded. Furthermore, a new interrupt input will be ignored if it is received
while its interrupt task is being executed.

Examples Input Interrupts

When W0.00 turns ON in the following example, CLI(691) clears all interrupts
stored for input interrupt 0.

Interrupt
input n

Internal
status

Recorded interrupt retainedRecorded interrupt cleared

Internal status

Interrupt input n

MSKS(690)
Execution of scheduled
interrupt task.

Time to first
scheduled interrupt

Name Label Operation

Error Flag ER ON if N is not within the specified range.

ON if S is not 0000 or 0001 hex (for high-speed counter
interrupts and input interrupts only).
ON if S is not within the specified range of 0000 to 270F
hex for scheduled interrupts.
OFF in all other cases.

CLI

100

#0001

W0.00

N

S

705

Interrupt Control Instructions Section 3-19
Scheduled Interrupts

When W0.01 turns ON in the following example, CLI(691) sets the time to the
first schedule interrupt 10.5 ms (0069 hex = 105 decimal) assuming that the
schedule interrupt interval unit is set to 0.1 ms in the PLC Setup.

High-speed Counter Interrupts

When W0.02 turns ON in the following example, CLI(691) clears all interrupts
stored for high-speed counter interrupt 0.

3-19-4 DISABLE INTERRUPTS: DI(693)
Purpose Disables execution of all interrupt tasks.

Ladder Symbol

Variations

Applicable Program Areas

Description DI(693) is executed from the main program to temporarily disable all interrupt
tasks (input interrupts, scheduled interrupts, high-speed counter interrupts,
and external interrupts).

All interrupt tasks will be disabled until they are enabled again by execution of
EI(694).

Flags

Precautions All interrupt tasks will remain disabled until EI(694) is executed.

DI(693) cannot be executed from an interrupt task.

DI(693) cannot be executed for more than one cyclic task at a time. To disable
more than one cycle execution task, insert DI(693) in each cyclic task. Any
interrupts that occur while one cycle execution task is being executed will be
executed after the cycle execution task has been completed as shown in the
following example unless they are disabled by CLI(691).

CLI

4

D1100

W0.01

N

S D1100
015

90 0 6

CLI

10

#0001

W0.02

N

S

DI(693)

Variations Executed Each Cycle for ON Condition DI(693)

Executed Once for Upward Differentiation @DI(693)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed

Name Label Operation

Error Flag ER ON if DI(693) is executed from an interrupt task.
OFF in all other cases.
706

Interrupt Control Instructions Section 3-19
Examples When CIO 0.,00 is ON in the following example, DI(693) disables all interrupt
tasks.

3-19-5 ENABLE INTERRUPTS: EI(694)
Purpose Enables execution of all interrupt tasks that were disabled with DI(693).

Ladder Symbol

Variations

Applicable Program Areas

Description EI(694) is executed from the main program to temporarily enable all interrupt
tasks that were disabled by DI(693). DI(693) disables all interrupts (input inter-
rupts, scheduled interrupts, high-speed counter interrupts, and external inter-
rupts).

Flags

DI

END

DI

END

DI instruction is valid.

Interrupt tasks are executed
under registered conditions.

DI instruction is valid.

Task No. 0

Task No. 1

0.00

Disables execution of all interrupt tasks.

EI(694)

Variations Executed Each Cycle for Normally ON
Condition

EI(694)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed

Name Label Operation

Error Flag ER ON if EI(694) is executed from an interrupt task.

OFF in all other cases.
707

Interrupt Control Instructions Section 3-19
Precautions EI(694) does not require an execution condition. It is always executed with an
ON execution condition.

EI(694) cannot unmask input interrupts that have not been unmasked by
MSKS(690) or set scheduled interrupts that have not been set by MSKS(690).

EI(694) cannot be executed in an interrupt task.

Examples In the following example, EI(694) enables all interrupt tasks that were disabled
by DI(693).

000000

Disables execution of all interrupt tasks.

Enables execution of all disabled
interrupt tasks.
708

High-speed Counter/Pulse Output Instructions Section 3-20
3-20 High-speed Counter/Pulse Output Instructions
This section describes instructions used to control the high-speed counters
and pulse outputs.

3-20-1 MODE CONTROL: INI(880)
Purpose INI(880) can be used to execute the following operations for built-in I/O:

• To start comparison with the high-speed counter comparison table

• To stop comparison with the high-speed counter comparison table

• To change the PV of the high-speed counter.

• To change the PV of interrupt inputs in counter mode.

• To change the PV of the pulse output (origin fixed at 0).

• To stop pulse output.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier

P specifies the port to which the operation applies.

Instruction Mnemonic Function
code

Page

MODE CONTROL INI 880 709

HIGH-SPEED COUNTER PV READ PRV 881 713

COUNTER FREQUENCY CONVERT PRV2 881 719

REGISTER COMPARISON TABLE CTBL 882 722

SPEED OUTPUT SPED 885 726

SET PULSES PULS 886 731

PULSE OUTPUT PLS2 887 734

ACCELERATION CONTROL ACC 888 741

ORIGIN SEARCH ORG 889 747

PULSE WITH VARIABLE DUTY FACTOR PWM 891 751

INI(880)

P

C

NV

P: Port specifier
C: Control data
NV: First word with new PV

Variations Executed Each Cycle for ON Condition INI(880)

Executed Once for Upward Differentiation @INI(880)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

0002 hex Pulse output 2

0003 hex Pulse output 3

0010 hex High-speed counter 0
709

High-speed Counter/Pulse Output Instructions Section 3-20
C: Control Data

The function of INI(880) is determined by the control data, C.

NV: First Word with New PV

NV and NV+1 contain the new PV when changing the PV.

If C is 0002 hex (i.e., when changing a PV), NV and NV+1 contain the new PV.
Any values in NV and NV+1 are ignored when C is not 0002 hex.

Operand Specifications

0011 hex High-speed counter 1

0012 hex High-speed counter 2

0013 hex High-speed counter 3

0100 hex Interrupt input 0 in counter mode

0101 hex Interrupt input 1 in counter mode

0102 hex Interrupt input 2 in counter mode

0103 hex Interrupt input 3 in counter mode

0104 hex Interrupt input 4 in counter mode

0105 hex Interrupt input 5 in counter mode

0106 hex Interrupt input 6 in counter mode

0107 hex Interrupt input 7 in counter mode

1000 hex PWM output 0

1001 hex PWM output 1

C INI(880) function

0000 hex Starts comparison.

0001 hex Stops comparison.

0002 hex Changes the PV.

0003 hex Stops pulse output.

P Port

S

S+1

015

For Pulse Output or High-speed Counter Input:
 0000 0000 to FFFF FFFF hex

For Interrupt Input in Counter Mode:
 0000 0000 to 0000 FFFF hex

Lower word of new PV

Upper word of new PV

Area P C NV

CIO Area --- --- CIO 0 to CIO 6142

Work Area --- --- W0 to W510

Holding Bit Area --- --- H0 to H510

Auxiliary Bit Area --- --- A448 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area --- --- D0 to D32766

Indirect DM addresses
in binary

--- --- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- --- *D0 to *D32767

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

710

High-speed Counter/Pulse Output Instructions Section 3-20
Description INI(880) performs the operation specified in C for the port specified in P. The
possible combinations of operations and ports are shown in the following
table.

■ Starting Comparison (C = 0000 hex)

If C is 0000 hex, INI(880) starts comparison of a high-speed counter’s PV to
the comparison table registered with CTBL(882).

Note A target value comparison table must be registered in advance with
CTBL(882). If INI(880) is executed without registering a table, the Error Flag
will turn ON.

■ Stopping Comparison (C = 0001 hex)

If C is 0001 hex, INI(880) stops comparison of a high-speed counter’s PV to
the comparison table registered with CTBL(882).

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to

–2048 to +2047 ,IR15
DR0 to DR15, IR0 to
IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area P C NV

P: Port specifier C: Control data

0000 hex:
Start

comparison

0001 hex:
Stop

comparison

0002 hex:
Change PV

0003 hex:
Stop pulse

output

0000 to 0003 hex:
Pulse output

Not allowed. Not allowed. OK OK

0010 to 0013 hex:
High-speed counter
input

OK OK OK Not allowed.

0100 to 0107 hex:
Interrupt input in
counter mode

Not allowed. Not allowed. OK Not allowed.

1000 or 1001 hex:
PWM output

Not allowed. Not allowed. Not allowed. OK
711

High-speed Counter/Pulse Output Instructions Section 3-20
■ Changing a PV (C = 0002 hex)

If C is 0002 hex, INI(880) changes a PV as shown in the following table.

■ Stopping Pulse Output (P = 0000 to 0003, 1000, or 1001 hex and C = 0003
hex)

If C is 0003 hex, INI(880) immediately stops pulse output for the specified
port. If this instruction is executed when pulse output is already stopped, then
the pulse amount setting will be cleared.

Flags

Port and mode Operation Setting range

Pulse output (P = 0000 to 0003
hex)

The present value of the
pulse output is changed.
The new value is speci-
fied in NV and NV+1.

Note This instruction
can be executed
only when pulse
output is stopped.
An error will occur
if it is executed dur-
ing pulse output.

8000 0000 to 7FFF
FFFF hex
(-2,147,483,648 to
2,147,483,647)

High-
speed
counter
input (P =
0010 to
0013
hex)

Linear
Mode

Differential
inputs,
increment/
decrement
pulses, or
pulse +
direction
inputs

The present value of the
high-speed counter is
changed. The new value
is specified in NV and
NV+1.
Note An error will occur

for the instruction if
the specified port
is not set for a
high-speed
counter.

8000 0000 to 7FFF
FFFF hex
(-2,147,483,648 to
2,147,483,647)

Increment
pulse input

0000 0000 to FFFF
FFFF hex
(0 to 4,294,967,295)

Ring Mode 0000 0000 to FFFF
FFFF hex
(0 to 4,294,967,295)

Interrupt inputs in counter
mode (P = 0100 to 0107 hex)

The present value of the
interrupt input is
changed. The new value
is specified in NV and
NV+1.

0000 0000 to 0000
FFFF hex
(0 to 65,535)

Note An error will occur
if a value outside
this range is speci-
fied.

Name Label Operation

Error Flag ER ON if the specified range for P, C, or NV is exceeded.

ON if the combination of P and C is not allowed.
ON if a comparison table has not been registered but
starting comparison is specified.

ON if a new PV is specified for a port that is currently out-
putting pulses.
ON if changing the PV of a high-speed counter is speci-
fied for a port that is not specified for a high-speed
counter.
ON if a value that is out of range is specified as the PV for
an interrupt input in counter mode.
ON if INI(880) is executed in an interrupt task for a high-
speed counter and an interrupt occurs when CTBL(882)
is executed.
ON if executed for a port not set for an interrupt input in
counter mode.
712

High-speed Counter/Pulse Output Instructions Section 3-20
Example When CIO 0.00 turns ON in the following example, SPED(885) starts output-
ting pulses from pulse output 0 in Continuous Mode at 500 Hz. When
CIO 0.01 turns ON, pulse output is stopped by INI(880).

3-20-2 HIGH-SPEED COUNTER PV READ: PRV(881)
Purpose PRV(881) reads the following data on the built-in I/O.

• PVs: High-speed counter PV, pulse output PV, interrupt input PV in
counter mode.

• The following status information.

• Range comparison results

• Pulse output frequency of pulse output 0 to pulse output 3

• High-speed counter frequency for high-speed counter input 0.

Ladder Symbol

Variations

@SPED

#0000

#0000

D100

01F4

0000

0.00

@INI

#0000

#0003

0000

0.01

D100

D101Pulse output 0

CW/CCW method, CW, Continuous Mode

Target frequency: 500 Hz

Pulse output 0

Stop pulse output

(Not used.)

Status type Contents

Pulse output status Pulse Output Status Flag

PV Underflow/Overflow Flag
Pulse Output Amount Set Flag
Pulse Output Completed Flag

Pulse Output Flag
No-origin Flag
At Origin Flag

Pulse Output Stopped Error Flag

High-speed counter input status Comparison In-progress Flag

PV Underflow/Overflow Flag

PWM(891) output status Pulse Output In-progress Flag

PRV(881)

P

C

D

P: Port specifier

C: Control data

D: First destination word

Variations Executed Each Cycle for ON Condition PRV(881)

Executed Once for Upward Differentiation @PRV(881)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
713

High-speed Counter/Pulse Output Instructions Section 3-20
Applicable Program Areas

Operands P: Port Specifier

P specifies the port to which the operation applies.

C: Control Data

The function of INI(880) is determined by the control data, C.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

0002 hex Pulse output 2

0003 hex Pulse output 3

0010 hex High-speed counter 0

0011 hex High-speed counter 1

0012 hex High-speed counter 2

0013 hex High-speed counter 3

0100 hex Interrupt input 0 in counter mode

0101 hex Interrupt input 1 in counter mode

0102 hex Interrupt input 2 in counter mode

0103 hex Interrupt input 3 in counter mode

0104 hex Interrupt input 4 in counter mode

0105 hex Interrupt input 5 in counter mode

0106 hex Interrupt input 6 in counter mode

0107 hex Interrupt input 7 in counter mode

1000 hex PWM output 0

1001 hex PWM output 1

C PRV(881) function Variations

0000 hex Reads the PV. ---

0001 hex Reads status. ---

0002 hex Reads range comparison results. ---

00@3 hex P = 0000 or 0001:
Reads the output frequency of
pulse output 0 or pulse output 1.
P = 0010:
Reads the frequency of high-
speed counter input 0.

C = 0003 hex:
Standard operation
C = 0013 hex:
10-ms sampling method for high fre-
quency
C = 0023 hex:
100-ms sampling method for high
frequency
C = 0033 hex:
1-s sampling method for high fre-
quency
714

High-speed Counter/Pulse Output Instructions Section 3-20
D: First Destination Word

The PV is output to D or to D and D+1.

Operand Specifications

Description PRV(881) reads the data specified in C for the port specified in P. The possi-
ble combinations of data and ports are shown in the following table.

D

D+1

015

D PV

015

Lower word of PV

Upper word of PV

2-word PV
Pulse output PV, high-speed counter input PV,
high-speed counter input frequency for high-speed counter input 0

1-word PV
Interrupt input PV in counter mode, status, range comparison results

Area P C D

CIO Area --- --- CIO 0 to CIO 6142

Work Area --- --- W0 to W510

Holding Bit Area --- --- H0 to H510

Auxiliary Bit Area --- --- A448 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area --- --- D0 to D32766

Indirect DM addresses
in binary

--- --- @ D0 to @ D32766

Indirect DM addresses
in BCD

--- --- *D0 to *D32766

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15
DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

P: Port specifier C: Control data

0000 hex:
Read PV

0001 hex:
Read status

0002 hex:
Read range
comparison

results

0003 hex:
Pulse output

read high-
speed

counter
frequency

0000 to 0003 hex:
Pulse output

OK OK Not allowed. OK

0010 to 0013 hex:
High-speed counter
input

OK OK OK OK (high-
speed
counter 0
only)
715

High-speed Counter/Pulse Output Instructions Section 3-20
■ Reading a PV (C = 0000 hex)

If C is 0000 hex, PRV(881) reads a PV as shown in the following table.

■ Reading Status (C = 0001 hex)

If C is 0001 hex, PRV(881) reads status as shown in the following table.

0100 to 0107 hex:
Interrupt input in
counter mode

OK Not allowed. Not allowed. Not allowed.

1000 or 1001 hex:
PWM output

Not allowed. OK Not allowed. Not allowed.

P: Port specifier C: Control data

0000 hex:
Read PV

0001 hex:
Read status

0002 hex:
Read range
comparison

results

0003 hex:
Pulse output

read high-
speed

counter
frequency

Port and mode Operation Setting range

Pulse output (P =
0000 to 0003 hex)

The present value of the
pulse output is stored in
D and D+1.

8000 0000 to 7FFF FFFF hex
(-2,147,483,648 to
2,147,483,647)

High-speed
counter
input (P =
0010 to
0013 hex)

Linear
Mode

The present value of the
high-speed counter is
stored in D and D+1.

8000 0000 to 7FFF FFFF hex
(-2,147,483,648 to
2,147,483,647)

Ring
Mode

0000 0000 to FFFF FFFF hex
(0 to 4,294,967,295)

Interrupt inputs in
counter mode
(P = 0100 to 0107
hex)

The present value of the
interrupt input is stored
in D.

0000 to FFFF hex
(0 to 65,535)

Port and
mode

Operation Results of reading

Pulse out-
put

The pulse output
status is stored in
D.

High-
speed
counter
input

The high-speed
counter status is
stored in D.

PWM out-
put

The PWM output
is stored in D.

015

D 0 0 0 0 0 0 0 0

Pulse Output Stopped Error Flag
 OFF: No error
 ON: Pulse output stopped due to error

Pulse Output Status Flag
 OFF: Constant speed
 ON: Accelerating/decelerating
PV Overflow/Underflow Flag
 OFF: Normal
 ON: Error

Pulse Output Amount Set Flag
 OFF: Not set
 ON: Set
Pulse Output Completed Flag
 OFF: Output not completed
 ON: Output completed

Pulse Output In-progress Flag
 OFF: Stopped
 ON: Outputting
No-origin Flag
 OFF: Origin established
 ON: Origin not established

At-origin Flag
 OFF: Not stopped at origin
 ON: Stopped at origin

015

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Comparison In-progress Flag
 OFF: Stopped
 ON: Comparing

PV Overflow/Underflow Flag
 OFF: Normal
 ON: Error

015

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Pulse Output In-progress Flag
 OFF: Stopped
 ON: Outputting
716

High-speed Counter/Pulse Output Instructions Section 3-20
■ Reading the Results of Range Comparison (C = 0002 hex)

If C is 0002 hex, PRV(881) reads the results of range comparison and stores it
in D as shown in the following diagram.

■ Reading Pulse Output or High-speed Counter Frequency (C = 00@3 hex)

If C is 00@3 hex, PRV(881) reads the frequency being output from pulse out-
put 0 to 3 or the frequency being input to high-speed counter 0 and stores it in
D and D+1.

Frequency Ranges

Pulse Frequency Calculation Methods

There are two ways to calculate the frequency of pulses output from pulse
output 0 to 3 or pulses input to high-speed counter 0.

1. Standard Calculation Method (Earlier Method)

The count is calculated by counting each pulse regardless of the frequen-
cy. At high frequencies, the rising or falling edges of some pulses will be
corrupted, resulting in errors (roughly 1% error max. at 100 kHz).

2. High-frequency Calculation Method

In this case, the counting method is switched at high and low frequencies.

• High-frequency counting

015

D 0 0 0 0 0 0 0 0

Comparison Result 1
 OFF: Not in range ON: In range

Comparison Result 2
 OFF: Not in range ON: In range

Comparison Result 3
 OFF: Not in range ON: In range

Comparison Result 4
 OFF: Not in range ON: In range

Comparison Result 5
 OFF: Not in range ON: In range

Comparison Result 6
 OFF: Not in range ON: In range

Comparison Result 7
 OFF: Not in range ON: In range

Comparison Result 8
 OFF: Not in range ON: In range

Value of P Conversion result

0000 to 0003 hex
(Reading the frequency
of pulse output 0 to 3)

0000 0000 to 0001 86A0 hex (0 to 100,000)

0010 hex
(Reading the frequency
of high-speed counter 0)

Counter input method: Any input method other than 4×
differential phase mode
Result = 00000000 to 000186A0 hex (0 to 100,000)

Note If a frequency higher than 100 kHz has been input,
the output will remain at the maximum value of
000186A0 hex.

Counter input method: 4× differential phase mode
Result = 00000000 to 00030D40 hex (0 to 200,000)

Note If a frequency higher than 200 kHz has been input,
the output will remain at the maximum value of
00030D40 hex.
717

High-speed Counter/Pulse Output Instructions Section 3-20
At high frequencies (above 1 kHz), the function counts the number of
pulses within a fixed interval (the sampling time) and calculates the fre-
quency from that count. One of the following three sampling times can
be selected by setting the rightmost two digits of C.

• Low-frequency counting

At frequencies below 1 kHz, the Standard Calculation Method is used,
regardless of the sampling time setting.

Flags

Examples Example 1

When CIO 0.00 turns ON in the following programming example, CTBL(882)
registers a range comparison table for high-speed counter 0 and starts com-
parison. When CIO 0.01 turns ON, PRV(881) reads the range comparison
results at that time and stores them in CIO 100.00.

Example 2

When CIO 0.01 turns ON in the following programming example, PRV(881)
reads the frequency of the pulse being input to high-speed counter 0 at that
time and stores it as a hexadecimal value in D201 and D200.

Sampling time Value of C Description

10 ms 0013 hex Counts the number of pulses every 10 ms.
The error is 10% max. at 1 kHz.

100 ms 0023 hex Counts the number of pulses every 100 ms.
The error is 1% max. at 1 kHz.

1 s 0033 hex Counts the number of pulses every 1 s. The
error is 0.1% max. at 1 kHz.

Name Label Operation

Error Flag ER ON if the specified range for P or C is exceeded.

ON if the combination of P and C is not allowed.
ON if reading range comparison results is specified even
though range comparison is not being executed.

ON if reading the output frequency is specified for any-
thing except for high-speed counter 0.
ON if specified for a port not set for a high-speed counter.

ON if executed for a port not set for an interrupt input in
counter mode.

@CTBL

#0000

#0001

D100

0.00

@PRV

#0010

#0002

100

0.01

Range comparison table
registration and comparison start

High-speed counter input 0

Read range comparison results

High-speed counter input 0

PRV

#0010

#0003

D200

0.01

High-speed counter input 0
Read input frequency
718

High-speed Counter/Pulse Output Instructions Section 3-20
3-20-3 COUNTER FREQUENCY CONVERT: PRV2(883)
Purpose PRV2(883) reads the pulse frequency input from a high-speed counter and

either converts the frequency to a rotational speed or converts the counter PV
to the total number of revolutions. The result is output to the destination words
as 8-digit hexadecimal. Pulses can be input from high-speed counter 0 only.

Ladder Symbol

Variations

Applicable Program Areas

Operands C1: Control Data

The function of PRV2(883) is determined by the control data, C1.

Note The second digit of C (@) specifies the units and the third digit (*) specifies
the frequency calculation method.

C2: Pulses per Revolution

Specifies the number of pulses per revolution (0001 to FFFF hex).

PRV2

C1

C2

D

C1: Control data

C2: Pulses per revolution

D: First destination word

Variations Executed Each Cycle for ON Condition PRV2(883)

Executed Once for Upward Differentiation @PRV2(883)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C1 PRV2(883) function

0@*0 hex
(See note.)

Converts frequency to rotation speed.

0001 hex Converts counter PV to total number of revolutions.

C1 0

Conversion Type
0 hex: Frequency to speed
1 hex: Counter PV to total revolutions

(When Conversion Type is "Frequency to speed")
Pulse Frequency Calculation Method
0 hex: Standard calculation method
1 hex: High-frequency calculation method, 10-ms sampling
2 hex: High-frequency calculation method, 100-ms sampling
3 hex: High-frequency calculation method, 1,000-ms sampling

(When Conversion Type is "Frequency to speed")
Speed Unit
0 hex: r/min
1 hex: r/s
2 hex: r/h
719

High-speed Counter/Pulse Output Instructions Section 3-20
D: First Destination Word

The PV is output to D or to D and D+1.

Operand Specifications

Description PRV2(883) converts the pulse frequency input from high-speed counter 0,
according to the conversion method specified in C1 and the pulses/revolution
coefficient specified in C2, and outputs the result to D and D+1.

Select one of the following conversion methods by setting C1 to 0000 hex or
0001 hex.

Converting Frequency to Rotation Speed (C1 = 0@*0 hex)

If C1 is 0@*0 hex, PRV2(883) calculates the rotation speed (r/min) from the
frequency data and pulses/revolution setting. The second digit of C (@) speci-
fies the units and the third digit (*) specifies the frequency calculation method.

1. Rotation Speed Units

• Rotation Speed Units = r/min

When the second digit of C (@) is 0, PRV2(883) calculates the rotation
speed in r/min from the frequency data and pulses/revolution setting.

Rotation speed (r/min) = (Frequency ÷ Pulses/revolution) × 60

• Rotation Speed Units = r/s

When the second digit of C (@) is 1, PRV2(883) calculates the rotation
speed in r/s from the frequency data and pulses/revolution setting.

Rotation speed (r/s) = Frequency ÷ Pulses/revolution

• Rotation Speed Units = r/hr

D

D+1

015

Conversion result (Rightmost 4 digits)

Conversion result (Leftmost 4 digits)

Area C1 C2 D

CIO Area --- CIO 0 to CIO 6143 CIO 0 to CIO 6142

Work Area --- W0 to W511 W0 to W510

Holding Bit Area --- H0 to H511 H0 to H510

Auxiliary Bit Area --- A448 to A959 A448 to A958

Timer Area --- T0000 to T4095 T0000 to T4094

Counter Area --- C0000 to C4095 C0000 to C4094

DM Area --- D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

--- @ D0 to
@ D32767

@ D0 to
@ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767 *D0 to *D32767

Constants See descrip-
tion of oper-
and.

--- ---

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
720

High-speed Counter/Pulse Output Instructions Section 3-20
When the second digit of C (@) is 2, PRV2(883) calculates the rotation
speed in r/hr from the frequency data and pulses/revolution setting.

Rotation speed (r/hr) = (Frequency ÷ Pulses/revolution) × 60 × 60

• Range of Conversion Results

• Counter input method: Any method besides 4× differential phase mode
Conversion result = 00000000 to 000186A0 hex (0 to 100,000

• Counter input method: 4× differential phase mode
Conversion result = 00000000 to 00030D40 hex (0 to 200,000)
(If a frequency higher than 200 kHz has been input, the output will re-
main at the maximum value of 00030D40 hex.)

2. Frequency Calculation Method

There are two ways to calculate the frequency of pulses input to high-
speed counter 0.

a. Standard Calculation Method (C1 = 0@00)

The count is calculated by counting each pulse regardless of the fre-
quency. At high frequencies, the rising or falling edges of some pulses
will be corrupted, resulting in errors (about 1% error max. at 100 kHz).

b. High-frequency Calculation Method

In this case, the counting method is switched at high and low frequen-
cies.

• High-frequency counting (C1 = 0@10, 0@20, or 0@30)

At high frequencies (above 1 kHz), the function counts the number of
pulses within a fixed interval (the sampling time) and calculates the fre-
quency from that count. One of the following three sampling times can
be selected by the third digit of C1.

• Low-frequency counting

At frequencies below 1 kHz, the Standard Calculation Method is used,
regardless of the sampling time setting.

Converting Counter PV to Total Number of Revolutions (C1 = 0001 hex)

If C1 is 0001 hex, PRV2(883) calculates the cumulative number of revolutions
from the counter PV and pulses/revolution setting.

Conversion result = Counter PV ÷ Pulses/revolution

Flags

Sampling time Value of C1 Description

10 ms 0@10 hex Counts the number of pulses every 10 ms.
The error is 10% max. at 1 kHz.

100 ms 0@20 hex Counts the number of pulses every 100 ms.
The error is 1% max. at 1 kHz.

1 s 0@30 hex Counts the number of pulses every 1 s. The
error is 0.1% max. at 1 kHz.

Name Label Operation

Error Flag ER ON if high-speed counter 0 is disabled in the settings.
ON if C1 is not in the specified range (0000 or 0001).

ON if the pulses/revolution setting in C2 is 0000.
721

High-speed Counter/Pulse Output Instructions Section 3-20

ns
Examples Example 1

When CIO 0.01 is ON in the following programming example, PRV2(883)
reads the present pulse frequency at high-speed counter 0, converts that
value to rotation speed (r/min), and outputs the hexadecimal result to D201
and D200.

Example 2

When CIO 0.01 is ON in the following programming example, PRV2(883)
reads the counter PV, converts that value to number of revolutions, and out-
puts the hexadecimal result to D301 and D300.

3-20-4 REGISTER COMPARISON TABLE: CTBL(882)
Purpose CTBL(882) is used to register a comparison table and perform comparisons

for a high-speed counter PV. Either target value or range comparisons are
possible. An interrupt task is executed when a specified condition is met.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier

P specifies the port for which pulses are to be counted as shown in the follow-
ing table.

PRV2

#0000

#0003

D200

0.01

Converting frequency to rotation speed

Pulses per revolution

PRV2

#0001

#0003

D300

0.01

Converting counter PV to total number of revolutio

Pulses per revolution

CTBL(882)

P

C

TB

P: Port specifier
C: Control data
TB: First comparison table word

Variations Executed Each Cycle for ON Condition CTBL(882)

Executed Once for Upward Differentiation @CTBL(882)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex High-speed counter 0

0001 hex High-speed counter 1

0002 hex High-speed counter 2

0003 hex High-speed counter 3
722

High-speed Counter/Pulse Output Instructions Section 3-20
C: Control Data

The function of CTBL(882) is determined by the control data, C, as shown in
the following table.

TB: First Table Comparison Word

TB is the first word of the comparison table. The structure of the comparison
table depends on the type of comparison being performed.

For target value comparison, the length of the comparison table is determined
by the number of target values specified in TB. The table can be between 4
and 145 words long, as shown below.

For range comparison, the comparison table always contains eight ranges.
The table is 40 words long, as shown below. If it is not necessary to set eight
ranges, set the interrupt task number to FFFF hex for all unused ranges.

Note Always set the upper limit greater than or equal to the lower limit for any one
range.

C CTBL(882) function

0000 hex Registers a target value comparison table and starts comparison.

0001 hex Registers a range comparison table and performs one comparison.

0002 hex Registers a target value comparison table. Comparison is started with INI(880).

0003 hex Registers a range comparison table. Comparison is started with INI(880).

TB+1

TB+2

TB+3

TB

015

03478

0 0 0 0 0 0 0

11121415

TB+142

TB+143

TB+144

Lower word of target value 1

Upper word of target value 1

Interrupt task number for target value 1

00000000 to FFFFFFFF hex

00000000 to FFFFFFFF hex

Number of target values 0001 to 0030 hex (1 to 48 target values)

Interrupt Task Number

Interrupt task number
 00 to FF hex (0 to 255)Direction

 OFF: Incrementing,
 ON: Decrementing

Lower word of target value 48

Upper word of target value 48

Interrupt task number for target value 48

TB

TB+1

TB+2

TB+3

015

TB+35

TB+36

TB+37

TB+38

TB+39

Lower word of range 1 lower limit

Upper word of range 1 lower limit

Lower word of range 1 upper limit

Upper word of range 1 upper limit

Range 1 interrupt task number

0000 0000 to FFFF FFFF hex (See note.)

0000 0000 to FFFF FFFF hex (See note.)

0000 0000 to FFFF FFFF hex (See note.)

0000 0000 to FFFF FFFF hex (See note.)

Interrupt task number
 0000 to 00FF hex: Interrupt task number 0 to 255
 AAAA hex: Do not execute interrupt task.
 FFFF hex: Ignore the settings for this range.

Lower word of range 8 lower limit

Upper word of range 8 lower limit

Lower word of range 8 upper limit

Upper word of range 8 upper limit

Range 8 interrupt task number
723

High-speed Counter/Pulse Output Instructions Section 3-20
Operand Specifications

Description CTBL(882) registers a comparison table or registers and comparison table
and starts comparison for the port specified in P and the method specified in
C. Once a comparison table is registered, it is valid until a different table is
registered or until the CPU Unit is switched to PROGRAM mode.

Each time CTBL(882) is executed, comparison is started under the specified
conditions. When using CTBL(882) to start comparison, it is normally suffi-
cient to use the differentiated version (@CTBL(882)) of the instruction or an
execution condition that is turned ON only for one scan.

Note If an interrupt task that has not been registered is specified, a fatal program
error will occur the first time an interrupt is generated.

■ Registering a Comparison Table (C = 0002 or 0003 hex)

If C is set to 0002 or 0003 hex, a comparison table will be registered, but com-
parison will not be started. Comparison is started with INI(880).

■ Registering a Comparison Table and Starting Comparison (C = 0000 or
0001 hex)

If C is set to 0000 or 0001 hex, a comparison table will be registered, and
comparison will be started.

■ Stopping Comparison

Comparison is stopped with INI(880). It makes no difference what instruction
was used to start comparison.

■ Target Value Comparison

The corresponding interrupt task is called and executed when the PV
matches a target value.

Area P C TB

CIO Area --- --- CIO 0 to CIO 6143

Work Area --- --- W0 to W511

Holding Bit Area --- --- H0 to H511

Auxiliary Bit Area --- --- A448 to A959

Timer Area --- --- T0000 to T4095

Counter Area --- --- C0000 to C4095

DM Area --- --- D0 to D32767

Indirect DM addresses
in binary

--- --- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- --- *D0 to *D32767

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15
DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
724

High-speed Counter/Pulse Output Instructions Section 3-20
• The same interrupt task number can be specified for more than one target
value.

• The direction can be set to specify whether the target value is valid when
the PV is being incremented or decremented. If bit 15 in the word used to
specify the interrupt task number for the range is OFF, the PV will be com-
pared to the target value only when the PV is being incremented, and if bit
00 is ON, only when the PV is being decremented.

• The comparison table can contain up to 48 target values, and the number
of target values is specified in TB (i.e., the length of the table depends on
the number of target values that is specified).

• Comparisons are performed for all target values registered in the table.

Note (1) An error will occur if the same target value with the same comparison di-
rection is registered more than once in the same table.

(2) If the high-speed counter is set for incremental pulse mode, an error will
occur if decrementing is set in the table as the direction for comparison.

(3) If the count direction changes while the PV equals a target value that was
reached in the direction opposite to that set as the comparison direction,
the comparison condition for that target value will not be met. Do not set
target values at peak and bottom values of the count value.

■ Range Comparison

The corresponding interrupt task is called and executed when the PV enters a
set range.

• The same interrupt task number can be specified for more than one target
value.

• The range comparison table contains 8 ranges, each of which is defined
by a lower limit and an upper limit. If a range is not to be used, set the
interrupt task number to FFFF hex to disable the range.

• The interrupt task is executed only once when the PV enters the range.

• If the PV is within more than one range when the comparison is made, the
interrupt task for the range closest to the beginning of the table will be
given priority and other interrupt tasks will be executed in following cycles.

• If there is no reason to execute an interrupt task, specify AAAA hex as the
interrupt task number. The range comparison results can be read with
PRV(881) or using the Range Comparison In-progress Flags.

Note An error will occur if the upper limit is less than the lower limit for any one
range.
725

High-speed Counter/Pulse Output Instructions Section 3-20
Flags

Example When CIO 0.00 turns ON in the following programming example, CTBL(882)
registers a target value comparison table and starts comparison for high-
speed counter 0. The PV of the high-speed counter is counted incrementally
and when it reaches 500, it equals target value 1 and interrupt task 1 is exe-
cuted. When the PV is incremented to 1000, it equals target value 2 and inter-
rupt task 2 is executed.

3-20-5 SPEED OUTPUT: SPED(885)
Purpose SPED(885) is used to set the output pulse frequency for a specific port and

start pulse output without acceleration or deceleration. Either independent
mode positioning or continuous mode speed control is possible. For indepen-
dent mode positioning, the number of pulses is set using PULS(886).

SPED(885) can also be executed during pulse output to change the output
frequency, creating stepwise changes in the speed.

Ladder Symbol

Name Label Operation

Error Flag ER ON if the specified range for P or C is exceeded.
ON if the number of target values specified for target
value comparison is set to 0.
ON if the number of target values specified for target
value comparison exceeds 48.

ON if the same target value is specified more than once in
the same comparison direction for target comparison.
ON if the upper value is less than the lower value for any
range.
ON if the set values for all ranges are disabled during a
range comparison.

ON if the high-speed counter is set for incremental pulse
mode and decrementing is set in the table as the direction
for comparison.

ON if an instruction is executed when the high-speed
counter is set to Ring Mode and the specified value
exceeds the maximum ring value.

ON if specified for a port not set for a high-speed counter.
ON if executed for a different comparison method while
comparison is already in progress.

@CTBL

#0000

#0000

D100

0002

01F4

0000

0001

03E8

0000

0002

0.00
D100

D101

D102

D103

D104

D105

D106

Two target values

Target value 1: 0000 01F4 hex (500)

Incrementing, Interrupt task number 1

Target value 2: 0000 03E8 hex (1000)

Incrementing, Interrupt task number 2

Register target comparison table
and start comparison

High-speed counter input 0

SPED(885)

P

M

F

P: Port specifier
M: Output mode
F: First pulse frequency word
726

High-speed Counter/Pulse Output Instructions Section 3-20
Variations

Applicable Program Areas

Operands P: Port Specifier

The port specifier specifies the port where the pulses will be output.

M :Output Mode

The value of M determines the output mode.

F: First Pulse Frequency Word

The value of F and F+1 sets the pulse frequency in Hz.

Note The maximum frequency that can be specified depends on the model and
pulse output support. Refer to the CP1H Operation Manual.

Operand Specifications

Variations Executed Each Cycle for ON Condition SPED(885)

Executed Once for Upward Differentiation @SPED(885)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

0002 hex Pulse output 2

0003 hex Pulse output 3

03478111215

M

Mode
 0 hex: Continuous
 1 hex: Independent

Direction
 0 hex: CW

 1 hex: CCW

Pulse output method (See note.)
 0 hex: CW/CCW
 1 hex: Pulse + direction

Always 0 hex.

Note: Use the same pulse output method when using both pulse outputs 0 and 1.

F

F+1

015

Lower word of target frequency

Upper word of target frequency
0 to 100,000 Hz (See note.)
(0000 0000 to 0001 86A0 hex)

Area P M F

CIO Area --- --- CIO 0 to CIO 6142

Work Area --- --- W0 to W510

Holding Bit Area --- --- H0 to H510

Auxiliary Bit Area --- --- A448 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area --- --- D0 to D32766

Indirect DM addresses
in binary

--- --- @ D0 to @ D32767
727

High-speed Counter/Pulse Output Instructions Section 3-20
Description SPED(885) starts pulse output on the port specified in P using the method
specified in M at the frequency specified in F. Pulse output will be started each
time SPED(885) is executed. It is thus normally sufficient to use the differenti-
ated version (@SPED(885)) of the instruction or an execution condition that is
turned ON only for one scan.

In independent mode, pulse output will stop automatically when the number of
pulses set with PULS(886) in advance have been output. In continuous mode,
pulse output will continue until stopped from the program.

An error will occur if the mode is changed between independent and continu-
ous mode while pulses are being output.

■ Continuous Mode Speed Control

When continuous mode operation is started, pulse output will be continued
until it is stopped from the program.

Indirect DM addresses
in BCD

--- --- *D0 to *D32767

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

See description of oper-
and.

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15
DR0 to DR15, IR0 to
IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area P M F

Target frequency

Time

SPED(885) executed.

Pulse frequency
728

High-speed Counter/Pulse Output Instructions Section 3-20
Note Pulse output will stop immediately if the CPU Unit is changed to PROGRAM
mode.

■ Independent Mode Positioning

When independent mode operation is started, pulse output will be continued
until the specified number of pulses has been output.

Note (1) Pulse output will stop immediately if the CPU Unit is changed to PRO-
GRAM mode.

(2) The number of output pulses must be set each time output is restarted.

(3) The number of output pulses must be set in advance with PULS(881).
Pulses will not be output for SPED(885) if PULS(881) is not executed first.

Operation Purpose Application Frequency changes Description Procedure/
instruction

Starting
pulse out-
put

To out-
put with
speci-
fied
speed

Changing
the speed
(frequency)
in one step

Outputs pulses at
a specified fre-
quency.

SPED(885)
(Continuous)

Changing
settings

To
change
speed in
one step

Changing
the speed
during oper-
ation

Changes the fre-
quency (higher or
lower) of the
pulse output in
one step.

SPED(885)
(Continuous)

↓
SPED(885)
(Continuous)

Stopping
pulse out-
put

Stop
pulse
output

Immediate
stop

Stops the pulse
output immedi-
ately.

SPED(885)
(Continuous)

↓
INI(880)

Stop
pulse
output

Immediate
stop

Stops the pulse
output immedi-
ately.

SPED(885)
(Continuous)
↓
SPED(885)
(Continuous, Tar-
get frequency of
0 Hz)

Pulse frequency

Target frequency

Execution of SPED(885)

Time

Pulse frequency

Target frequency

Present frequency

Execution of SPED(885)

Time

Pulse frequency

Present frequency

Execution of INI(880)

Time

Pulse frequency

Present frequency

Execution of SPED(885)

Time
729

High-speed Counter/Pulse Output Instructions Section 3-20
(4) The direction set in the SPED(885) operand will be ignored if the number
of pulses is set with PULS(881) as an absolute value.

Operation Purpose Application Frequency changes Description Procedure/
instruction

Starting
pulse out-
put

To out-
put with
speci-
fied
speed

Positioning
without
accelera-
tion or
deceleration

Starts outputting
pulses at the
specified fre-
quency and stops
immediately when
the specified num-
ber of pulses has
been output.

Note The target
position
(specified
number of
pulses) can-
not be
changed
during posi-
tioning.

PULS(886)
↓
SPED(885)
(Indepen-
dent)

Changing
settings

To
change
speed in
one step

Changing
the speed in
one step
during oper-
ation

SPED(885) can
be executed dur-
ing positioning to
change (raise or
lower) the pulse
output frequency
in one step.
The target position
(specified number
of pulses) is not
changed.

PULS(886)
↓
SPED(885)
(Indepen-
dent)

↓
SPED(885)
(Indepen-
dent)

Stopping
pulse out-
put

To stop
pulse
output
(Num-
ber of
pulses
setting is
not pre-
served.)

Immediate
stop

Stops the pulse
output immedi-
ately and clears
the number of out-
put pulses setting.

PULS(886)
↓
SPED(885)
(Indepen-
dent)

↓
INI(880)

PLS2(887)

↓
INI(880)

Stop
pulse
output
(Num-
ber of
pulses
setting is
not pre-
served.)

Immediate
stop

Stops the pulse
output immedi-
ately and clears
the number of out-
put pulses setting.

PULS(886)
↓
SPED(885)
(Indepen-
dent)
↓
SPED(885),
(Indepen-
dent, Target
frequency of
0 Hz)

Pulse frequency

Target
frequency

Specified number of
pulses (Specified with
PULS(886).)

Execution of
SPED(885)

Outputs the specified
number of pulses
and then stops.

Time

Pulse
frequency

New target
frequency

Original target
frequency

Specified number
of pulses
(Specified with
PULS(886).)

Number of pulses
specified with
PULS(886) does
not change.

Execution of SPED(885)
(independent mode) SPED(885) (independent

mode) executed again to
change the target
frequency. (The target
position is not changed.)

Time

Pulse frequency

Present
frequency

Execution of
SPED(885)

Execution of
INI(880)

Time

Pulse frequency

Present frequency

Execution of
SPED(885)

Execution of
SPED(885)

Time
730

High-speed Counter/Pulse Output Instructions Section 3-20
Flags

Example When CIO 0.00 turns ON in the following programming example, PULS(886)
sets the number of output pulses for pulse output 0. An absolute value of
5,000 pulses is set. SPED(885) is executed next to start pulse output using
the CW/CCW method in the clockwise direction in independent mode at a tar-
get frequency of 500 Hz.

3-20-6 SET PULSES: PULS(886)
Purpose PULS(886) is used to set the pulse output amount (number of output pulses)

for pulse outputs that are started later in the program using SPED(885) or
ACC(888) in independent mode.

Ladder Symbol

Variations

Name Label Operation

Error Flag ER ON if the specified range for P, M, or F is exceeded.
ON if PLS2(887) or ORG(889) is already being executed
to control pulse output for the specified port.
ON if SPED(885) or INI(880) is used to change the mode
between continuous and independent output during pulse
output.
ON if SPED(885) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.
ON if SPEC(885) is executed in independent mode with
an absolute number of pulses and the origin has not been
established.

@PULS

#0000

#0000

D100

1388

0000

0.00

@SPED

#0000

#0001

D110

D100

D101

01F4

0000

D110

D111

Number of output pulses: 5,000

Target frequency: 500 Hz

Time

5,000 pulses

Target frequency:
500 Hz

Pulse frequency

PULS(881) and the
SPED(885) executed.

PULS(886)

P

T

N

P: Port specifier
T: Pulse type
N: Number of pulses

Variations Executed Each Cycle for ON Condition PULS(886)

Executed Once for Upward Differentiation @PULS(886)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
731

High-speed Counter/Pulse Output Instructions Section 3-20
Applicable Program Areas

Operands P: Port Specifier

The port specifier indicates the port. The parameters set in D and N will apply
to the next SPED(885) or ACC(888) instruction in which the same port output
location is specified.

T: Pulse Type

T specifies the type of pulses that are output as follows:

N and N+1: Number of Pulses

N and N+1 specify the number of pulses for relative pulse output or the abso-
lute target position for absolute pulse in 8-digit hexadecimal.

The actual number of movement pulses that will be output are as follows:

For relative pulse output, the number of movement pulses = the set number of
pulses. For absolute pulse output, the number of movement pulses = the set
number of pulses − the PV.

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

0002 hex Pulse output 2

0003 hex Pulse output 3

T Pulse type

0000 hex Relative

0001 hex Absolute

N

N+1

015

Lower word with number of pulses

Upper word with number of pulses

Relative pulse output:
0 to 2,147,483,647 (0000 0000 to 7FFF FFFF hex)

Absolute pulse output:
−2,147,483,648 to 2,147,483,647 (8000 0000 to 7FFF FFFF hex)

Area P T N

CIO Area --- --- CIO 0 to CIO 6142

Work Area --- --- W0 to W510

Holding Bit Area --- --- H0 to H510

Auxiliary Bit Area --- --- A448 to A958

Timer Area --- --- T0000 to T4094

Counter Area --- --- C0000 to C4094

DM Area --- --- D0 to D32766

Indirect DM addresses
in binary

--- --- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- --- *D0 to *D32767

Constants See descrip-
tion of oper-
and.

See descrip-
tion of oper-
and.

See description of oper-
and.

Data Registers --- --- ---
732

High-speed Counter/Pulse Output Instructions Section 3-20
Description PULS(886) sets the pulse type and number of pulses specified in T and N for
the port specified in P. Actual output of the pulses is started later in the pro-
gram using SPED(885) or ACC(888) in independent mode.

Flags

Precautions • An error will occur if PULS(886) is executed when pulses are already
being output. Use the differentiated version (@PULS(886)) of the instruc-
tion or an execution condition that is turned ON only for one scan to pre-
vent this.

• The calculated number of pulses output for PULS(886) will not change
even if INI(880) is used to change the PV of the pulse output.

• The direction set for SPED(885) or ACC(888) will be ignored if the num-
ber of pulses is set with PULS(881) as an absolute value.

• It is possible to move outside of the range of the PV of the pulse output
amount (−2,147,483,648 to 2,147,483,647).

Example When CIO 0.00 turns ON in the following programming example, PULS(886)
sets the number of output pulses for pulse output 0. An absolute value of
5,000 pulses is set. SPED(885) is executed next to start pulse output using
the CW/CCW method in the clockwise direction in independent mode at a tar-
get frequency of 500 Hz.

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15

DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area P T N

Name Label Operation

Error Flag ER ON if the specified range for P, T, or N is exceeded.

ON if PULS(886) is executed for a port that is already out-
putting pulses.
ON if PULS(886) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.

@PULS

#0000

#0000

D100

0.00

@SPED

#0000

#0001

D110

1388

0000

D100

D101

01F4

0000

D110

D111

Number of output pulses: 5,000

Target frequency: 500 Hz
733

High-speed Counter/Pulse Output Instructions Section 3-20
3-20-7 PULSE OUTPUT: PLS2(887)
Purpose PLS2(887) outputs a specified number of pulses to the specified port. Pulse

output starts at a specified startup frequency, accelerates to the target fre-
quency at a specified acceleration rate, decelerates at the specified decelera-
tion rate, and stops at approximately the same frequency as the startup
frequency. Only independent mode positioning is supported.

PLS2(887) can also be executed during pulse output to change the number of
output pulses, target frequency, acceleration rate, or deceleration rate.
PLS2(887) can thus be used for sloped speed changes with different acceler-
ation and deceleration rates, target position changes, target and speed
changes, or direction changes.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier

The port specifier indicates the port.

M: Output Mode

The content of M specifies the parameters for the pulse output as follows:

PLS2(887)

P

M

S

F

P: Port specifier
M: Output mode
S: First word of settings table
F: First word of starting frequency

Variations Executed Each Cycle for ON Condition PLS2(887)

Executed Once for Upward Differentiation @PLS2(887)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

0002 hex Pulse output 2

0003 hex Pulse output 3

03478111215

M

Mode
 0 hex: Relative pulses

 1 hex: Absolute pulses

Direction
 0 hex: CW

 1 hex: CCW

Pulse output method (See note.)
 0 hex: CW/CCW
 1 hex: Pulse + direction

Always 0 hex.

Note: Use the same pulse output method when using both pulse outputs 0 and 1.
734

High-speed Counter/Pulse Output Instructions Section 3-20
S: First Word of Settings Table

The contents of S to S+5 control the pulse output as shown in the following
diagrams.

The actual number of movement pulses that will be output are as follows:

For relative pulse output, the number of movement pulses = the set number of
pulses. For absolute pulse output, the number of movement pulses = the set
number of pulses − the PV.

F: First Word of Starting Frequency

The starting frequency is given in F and F+1.

Operand Specifications

S1+4

S1+5

S1+2

S1+3

S1

S1+1

015

Lower word with number of output pulses

Upper word with number of output pulses

Relative pulse output: 0 to 2,147,483,647
(0000 0000 to 7FFF FFFF hex)

Absolute pulse output: -2,147,483,648 to 2,147,483,647
(8000 0000 to 7FFF FFFF hex)

Lower word with target frequency

Upper word with target frequency

1 to 100,000 Hz (See note.)
(0000 0000 to 0001 86A0 hex)

Specify the frequency after acceleration in Hz.

Acceleration rate

Deceleration rate

1 to 65,535 Hz (0001 to FFFF hex)

Specify the increase or decrease in the frequency per pulse control period (4 ms).

Note: The maximum frequency that can be specified
depends on the model and pulse output support.
Refer to the CP1H Operation Manual.

F

F+1

015

Lower word with starting frequency

Upper word with starting frequency

0 to 100,000 Hz
(0000 0000 to 0001 86A0 hex)

Specify the starting frequency in Hz.

Area P M S F

CIO Area --- --- CIO 0 to CIO 6138 CIO 0 to CIO 6142

Work Area --- --- W0 to W506 W0 to W510

Holding Bit Area --- --- H0 to H506 H0 to H510

Auxiliary Bit Area --- --- A448 to A954 A448 to A958

Timer Area --- --- T0000 to T4090 T0000 to T4094

Counter Area --- --- C0000 to C4090 C0000 to C4094

DM Area --- --- D0 to D32762 D0 to D32766

Indirect DM addresses
in binary

--- --- @ D0 to @ D32767 @ D0 to @ D32767

Indirect DM addresses
in BCD

--- --- *D0 to *D32767 *D0 to *D32767

Constants See description
of operand.

See description
of operand.

--- See description of oper-
and.

Data Registers --- --- --- ---
735

High-speed Counter/Pulse Output Instructions Section 3-20
Description PLS2(887) starts pulse output on the port specified in P using the mode spec-
ified in M at the start frequency specified in F (1 in diagram). The frequency is
increased every pulse control period (4 ms) at the acceleration rate specified
in S until the target frequency specified in S is reached (2 in diagram). When
the target frequency has been reached, acceleration is stopped and pulse
output continues at a constant speed (3 in diagram).

The deceleration point is calculated from the number of output pulses and
deceleration rate set in S and when that point is reached, the frequency is
decreased every pulse control period (4 ms) at the deceleration rate specified
in S until the starting frequency specified in S is reached, at which point pulse
output is stopped (4 in diagram).

Pulse output is started each time PLS2(887) is executed. It is thus normally
sufficient to use the differentiated version (@PLS2(887)) of the instruction or
an execution condition that is turned ON only for one scan.

PLS2(887) can be used only for positioning.

PLS2(887) can be executed during pulse output for ACC(888) in either inde-
pendent or continuous mode, and during acceleration, constant speed, or
deceleration. (See note.) ACC(888) can also be executed during pulse output
for PLS2(887) during acceleration, constant speed, or deceleration.

Note Executing PLS2(887) during speed control with ACC(888) (continuous mode)
with the same target frequency as ACC(888) can be used to achieve interrupt
feeding of a fixed distance. Acceleration will not be performed by PLS2(887)
for this application, but if the acceleration rate is set to 0, the Error Flag will
turn ON and PLS2(887) will not be executed. Always set the acceleration rate
to a value other than 0.

Index Registers --- --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

,IR0 to ,IR15
–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area P M S F

A

B

C

DTarget frequency

Starting frequency

Time

PLS2(887) executed.

Pulse frequency
736

High-speed Counter/Pulse Output Instructions Section 3-20
■ Independent Mode Positioning

Note Pulse output will stop immediately if the CPU Unit is changed to PROGRAM
mode.

Opera-
tion

Purpose Application Frequency changes Description Procedure/
instruction

Start-
ing
pulse
output

Com-
plex
trapezoi-
dal con-
trol

Positioning with
trapezoidal
acceleration
and decelera-
tion (Separate
rates used for
acceleration
and decelera-
tion; starting
speed)

The number of
pulses can be
changed during
positioning.

Accelerates and
decelerates at a
fixed rates. The
pulse output is
stopped when the
specified number of
pulses has been
output. (See note.)

Note The target
position
(specified
number of
pulses) can
be changed
during posi-
tioning.

PLS2(887)

Chang-
ing set-
tings

To
change
speed
smoothly
(with
unequal
acceler-
ation
and
deceler-
ation
rates)

Changing the
target speed
(frequency)
during position-
ing

(different accel-
eration and
deceleration
rates)

PLS2(887) can be
executed during
positioning to
change the acceler-
ation rate, decelera-
tion rate, and target
frequency.

Note To prevent the
target posi-
tion from
being
changed
intentionally,
the original
target posi-
tion must be
specified in
absolute coor-
dinates.

PLS2(887)
↓
PLS2(887)

PULS(886)

↓
ACC(888)
(Indepen-
dent)
↓
PLS2(887)

To
change
target
position

Changing the
target position
during position-
ing (multiple
start function)

PLS2(887) can be
executed during
positioning to
change the target
position (number of
pulses), accelera-
tion rate, decelera-
tion rate, and target
frequency.

Note If a constant
speed cannot
be main-
tained after
changing the
settings, an
error will
occur and the
original opera-
tion will con-
tinue to the
original target
position.

PLS2(887)
↓
PLS2(887)

PULS(886)
↓
ACC(888)
(Indepen-
dent)

↓
PLS2(887)

Pulse frequency

Target
frequency

Starting
frequency

Acceler-
ation
rate

Specified number
of pulses

Deceleration
rate

Execution of
PLS2(887) Target

frequency
reached.

Deceleration point
Output stops.

Stop
frequency

Time

Pulse
frequency

Changed target
frequency
Target frequency

Specified number of
pulses (Specified with
PULS(886).)

Acceleration/
deceleration
rate

Execution of
ACC(888)
(independent
mode)

PLS2(887) executed to change
the target frequency and accel-
eration/deceleration rates.
(The target position is not
changed. The original target
position is specified again.)

Time

Execution of
PLS2(887)

PLS2(887) executed to
change the target position.
(The target frequency and
acceleration/deceleration
rates are not changed.)

Pulse
frequency

Target
frequency Acceleration/

deceleration
rate

Specified
number of
pulses

Number of pulses
changed with
PLS2(887).

Time
737

High-speed Counter/Pulse Output Instructions Section 3-20
Chang-
ing set-
tings,
contin-
ued

To
change
target
position
and
speed
smoothly

Changing the
target position
and target
speed (fre-
quency) during
positioning
(multiple start
function)

PLS2(887) can be
executed during
positioning to
change the target
position (number of
pulses), accelera-
tion rate, decelera-
tion rate, and target
frequency.

Note If a constant
speed cannot
be main-
tained after
changing the
settings, an
error will
occur and the
original opera-
tion will con-
tinue to the
original target
position.

PULS(886)

↓
ACC(888)
(Indepen-
dent)
↓
PLS2(887)

Changing the
acceleration
and decelera-
tion rates dur-
ing positioning
(multiple start
function)

PLS2(887) can be
executed during
positioning (acceler-
ation or decelera-
tion) to change the
acceleration rate or
deceleration rate.

PLS2(887)

↓
PLS2(887)

PULS(886)

↓
ACC(888)
(Indepen-
dent)
↓
PLS2(887)

To
change
direction

Changing the
direction dur-
ing positioning

PLS2(887) can be
executed during
positioning with
absolute pulse spec-
ification to change to
absolute pulses and
reverse direction.

PLS2(887)
↓
PLS2(887)

PULS(886)

↓
ACC(888)
(Indepen-
dent)
↓
PLS2(887)

Opera-
tion

Purpose Application Frequency changes Description Procedure/
instruction

Pulse
frequency

Target frequency
Acceleration/
deceleration
rate

Number of
pulses specified
with PLS2(887).

Execution of
PLS2(887) PLS2(887) executed to change

the target frequency, acceleration
rate and deceleration rate.

Time

Number of pulses
changed with PLS2(887).

Changed target
frequency

Pulse
frequency

New target
frequency

Original target
frequency

Acceleration rate n

Acceleration
rate 3

Acceleration
rate 2

Acceleration
rate 1

Number of pulses
specified by
PLS2(887) #N.

Execution of
PLS2(887) #1

Execution of
PLS2(887) #2

Execution of PLS2(887) #3
Execution of PLS2(887) #N

Time

Pulse
frequency

Target
frequency

Specified
number of
pulses

Change of direction at the
specified deceleration rate

Number of pulses
(position) changed
by PLS2(887)

Execution
of PLS2
(887) Execution of PLS2(887)

Time
738

High-speed Counter/Pulse Output Instructions Section 3-20
Note Triangular Control
If the specified number of pulses is less than the number required to reach the
target frequency and return to zero, the function will automatically reduce the
acceleration/deceleration time and perform triangular control (acceleration
and deceleration only.) An error will not occur.

Stop-
ping
pulse
output

Stop
pulse
output
(Num-
ber of
pulses
setting is
not pre-
served.)

Immediate stop Stops the pulse out-
put immediately and
clears the number of
output pulses.

PLS2(887)

↓
INI(880)

Stop
pulse
output
smoothly
. (Num-
ber of
pulses
setting is
not pre-
served.)

Decelerate to a
stop

Decelerates the
pulse output to a
stop.

PLS2(887)

↓
ACC(888)
(Indepen-
dent, target
frequency
of 0 Hz)

Opera-
tion

Purpose Application Frequency changes Description Procedure/
instruction

Pulse frequency

Present
frequency

Execution of
SPED(885)

Execution of
INI(880)

Time

Pulse frequency

Present
frequency

 Target
frequency = 0

Execution of
ACC(888)

Deceleration rate

Time

Execution of
PLS2(887)

Pulse frequency

Target
frequency

Specified number of pulses
(Specified with PLS2(887).)

Execution of PLS2(887)

Time
739

High-speed Counter/Pulse Output Instructions Section 3-20
■ Switching from Continuous Mode Speed Control to Independent Mode
Positioning

Flags

Example When CIO 0.00 turns ON in the following programming example, PLS2(887)
starts pulse output from pulse output 0 with an absolute pulse specification of
100,000 pulses. Pulse output is accelerated at a rate of 500 Hz every 4 ms
starting at 200 Hz until the target speed of 50 kHz is reached. From the decel-
eration point, the pulse output is decelerated at a rate of 250 Hz every 4 ms
starting until the starting speed of at 200 Hz is reached, at which point pulse
output is stopped.

Example
application

Frequency changes Description Procedure/
instruction

Change from speed
control to fixed dis-
tance positioning
during operation

PLS2(887) can be
executed during a
speed control opera-
tion started with
ACC(888) to change
to positioning opera-
tion.

ACC(888) (Con-
tinuous)
↓
PLS2(887)

Fixed distance feed
interrupt

Pulse frequency

Target
frequency

Outputs the number of
pulses specified in
PLS2(887) (Both relative
and absolute pulse
specification can be used.)

Execution of
ACC(888)
(continuous
mode)

Execution of
PLS2(887)

Time

Pulse
frequency

Present
frequency

Execution of
ACC(888)
(continuous
mode)

Execution of PLS2(887)
with the following settings

• Number of pulses = num-
ber of pulses until stop

• Relative pulse specification
• Target frequency = present

frequency
• Acceleration rate = 0001 to

07D0 hex
• Deceleration rate = target

deceleration rate

Time

Name Label Operation

Error Flag ER ON if the specified range for P, M, S, or F is exceeded.
ON if PLS2(887) is executed for a port that is already out-
putting pulses for SPED(885) or ORG(889).

ON if PLS2(887) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.

ON if PLS2(887) is executed for an absolute pulse output
but the origin has not been established.
740

High-speed Counter/Pulse Output Instructions Section 3-20
3-20-8 ACCELERATION CONTROL: ACC(888)
Purpose ACC(888) outputs pulses to the specified output port at the specified fre-

quency using the specified acceleration and deceleration rate. (Acceleration
rate is the same as the deceleration rate.) Either independent mode position-
ing or constant mode speed control is possible. For positioning, ACC(888) is
used in combination with PULS(886). ACC(888) can also be executed during
pulse output to change the target frequency or acceleration/deceleration rate,
enabling smooth (sloped) speed changes.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier

The port specifier specifies the port where the pulses will be output.

@PLS2

#0000

#0000

D100

D110

01F4

00FA

C350

0000

86A0

0001

00C8

0000

0.00
D100

D101

D102

D103

D104

D105

D110

D111

Acceleration rate: 500 Hz/4 ms

Deceleration rate: 250 Hz/4 ms

Target frequency: 50 kHz

Pulse output amount: 100,000 pulses

Time

100,000 pulses

Target frequency
50 kHz

Start frequency
200 Hz

Pulse frequency

PLS2(887) executed.

Start frequency: 200 Hz

ACC(888)

P

M

S

P: Port specifier
M: Output mode
S: First word of settings table

Variations Executed Each Cycle for ON Condition ACC(888)

Executed Once for Upward Differentiation @ACC(888)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

0002 hex Pulse output 2

0003 hex Pulse output 3
741

High-speed Counter/Pulse Output Instructions Section 3-20
M: Output Mode

The content of M specifies the parameters for the pulse output as follows:

S: First Word of Settings Table

The content of S to S+2 controls the pulse output as shown in the following
diagrams.

Operand Specifications

03478111215

M

Mode
 0 hex: Continuous mode
 1 hex: Independent mode

Direction
 0 hex: CW
 1 hex: CCW

Pulse output method (See note.)
 0 hex: CW/CCW
 1 hex: Pulse + direction

Always 0 hex.
Note: Use the same pulse output method when using both pulse outputs 0 and 1.

S+1

S+2

S

015

Lower word with target frequency

Upper word with target frequency

0 to 100,000 Hz (See note.)
(0000 0000 to 0001 86A0 hex)

Specify the frequency after acceleration in Hz.

Acceleration/deceleration rate 1 to 65,535 Hz (0001 to FFFF hex)

Specify the increase or decrease in the frequency per pulse control period (4 ms).

Note: The maximum frequency that can be specified
depends on the model and pulse output support.
Refer to the CP1H Operation Manual.

Area P M S

CIO Area --- --- CIO 0 to CIO 6141

Work Area --- --- W0 to W509

Holding Bit Area --- --- H0 to H509

Auxiliary Bit Area --- --- A448 to A957

Timer Area --- --- T0000 to T4093

Counter Area --- --- C0000 to C4093

DM Area --- --- D0 to D32765

Indirect DM addresses
in binary

--- --- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- --- *D0 to *D32767

Constants See description
of operand.

See description
of operand.

Data Registers --- --- ---

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- --- ,IR0 to ,IR15

–2048 to +2047 ,IR0 to
–2048 to +2047 ,IR15
DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –
)IR15
742

High-speed Counter/Pulse Output Instructions Section 3-20
Description ACC(888) starts pulse output on the port specified in P using the mode speci-
fied in M using the target frequency and acceleration/deceleration rate speci-
fied in S. The frequency is increased every pulse control period (4 ms) at the
acceleration rate specified in S until the target frequency specified in S is
reached.

Pulse output is started each time ACC(888) is executed. It is thus normally
sufficient to use the differentiated version (@ACC(888)) of the instruction or
an execution condition that is turned ON only for one scan.

In independent mode, pulse output stops automatically when the specified
number of pulses has been output. In continuous mode, pulse output contin-
ues until it is stopped from the program.

An error will occur if an attempt is made to switch between independent and
continuous mode during pulse output.

PLS2(887) can be executed during pulse output for ACC(888) in either inde-
pendent or continuous mode, and during acceleration, constant speed, or
deceleration. (See note.) ACC(888) can also be executed during pulse output
for PLS2(887) during acceleration, constant speed, or deceleration.

Note Executing PLS2(887) during speed control with ACC(888) (continuous mode)
with the same target frequency as ACC(888) can be used to achieved inter-
rupt feeding of a fixed distance. Acceleration will not be performed by
PLS2(887) for this application, but if the acceleration rate is set to 0, the Error
Flag will turn ON and PLS2(887) will not be executed. Always set the acceler-
ation rate to a value other than 0.

Target frequency

Time

Acceleration/deceleration rate

ACC(888) executed.

Pulse frequency

ACC(888) executed.
743

High-speed Counter/Pulse Output Instructions Section 3-20
■ Continuous Mode Speed Control

Pulse output will continue until it is stopped from the program.

Note Pulse output will stop immediately if the CPU Unit is changed to PROGRAM
mode.

Operation Purpose Application Frequency changes Description Procedure/
instruction

Starting
pulse output

To output
with speci-
fied accel-
eration and
speed

Accelerating the
speed (frequency)
at a fixed rate

Outputs pulses and
changes the fre-
quency at a fixed
rate.

ACC(888)
(Continu-
ous)

Changing
settings

To change
speed
smoothly

Changing the
speed smoothly
during operation

Changes the fre-
quency from the
present frequency
at a fixed rate. The
frequency can be
accelerated or
decelerated.

ACC(888) or
SPED(885)
(Continu-
ous)
↓
ACC(888)
(Continu-
ous)

Changing the
speed in a
polyline curve
during operation

Changes the accel-
eration or decelera-
tion rate during
acceleration or
deceleration.

ACC(888)
(Continu-
ous)
↓
ACC(888)
(Continu-
ous)

Stopping
pulse output

To stop
pulse out-
put

Immediate stop Immediately stops
pulse output.

ACC(888)
(Continu-
ous)
↓
INI(880)
(Continu-
ous)

To stop
pulse out-
put

Immediate stop Immediately stops
pulse output.

ACC(888)
(Continu-
ous)
↓
SPED(885)
(Continu-
ous, target
frequency of
0)

To stop
pulse out-
put
smoothly

Decelerating to a
stop

Decelerated pulse
output to a stop.
Note If ACC(888)

started the
operation, the
original
acceleration/
deceleration
rate will
remain in
effect.
If SPED(885)
started the
operation, the
acceleration/
deceleration
rate will be
invalid and
the pulse out-
put will stop
immediately.

ACC(888)
(Continu-
ous)
↓
ACC(888)
(Continu-
ous, target
frequency of
0)

Pulse frequency

Target frequency

Present frequency

Acceleration/
deceleration
rate

Execution of ACC(888)

Time

Pulse frequency

Target frequency

Present frequency

Acceleration/
deceleration
rate

Execution of ACC(888)

Time

Pulse frequency

Target frequency

Present frequency

Acceleration rate n

Acceleration
rate 2

Acceleration
rate 1

Execution of ACC(888)
Execution of ACC(888)

Execution of ACC(888)

Time

Pulse frequency

Present frequency

Execution of ACC(888) Execution of INI880)
Time

Pulse frequency

Present frequency

Execution of ACC(888) Execution of SPED(885)
Time

Pulse frequency

Present frequency

Execution of ACC(888)
Execution of ACC(888)

Time

Acceleration/deceleration rate
(value set when starting)

Target frequency = 0
744

High-speed Counter/Pulse Output Instructions Section 3-20
■ Independent Mode Positioning

When independent mode operation is started, pulse output will be continued
until the specified number of pulses has been output.

The deceleration point is calculated from the number of output pulses and
deceleration rate set in S and when that point is reached, the frequency is
decreased every pulse control period (4 ms) at the deceleration rate specified
in S until the specified number of points has been output, at which point pulse
output is stopped.

Note (1) Pulse output will stop immediately if the CPU Unit is changed to PRO-
GRAM mode.

(2) The number of output pulses must be set each time output is restarted.

(3) The number of output pulses must be set in advance with PULS(881).
Pulses will not be output for ACC(888) if PULS(881) is not executed first.

(4) The direction set in the ACC(888) operand will be ignored if the number
of pulses is set with PULS(881) as an absolute value.

Opera-
tion

Purpose Application Frequency changes Description Procedure/
instruction

Starting
pulse out-
put

Simple trap-
ezoidal con-
trol

Positioning with
trapezoidal accel-
eration and decel-
eration (Same
rate used for
acceleration and
deceleration; no
starting speed)
The number of
pulses cannot be
changed during
positioning.

Accelerates and
decelerates at the
same fixed rate and
stops immediately
when the specified
number of pulses
has been output.
(See note.)
Note The target

position
(specified
number of
pulses) can-
not be
changed dur-
ing position-
ing.

PULS(886)
↓
ACC(888)
(Indepen-
dent)

Changing
settings

To change
speed
smoothly
(with the
same accel-
eration and
decelera-
tion rates)

Changing the tar-
get speed (fre-
quency) during
positioning
(acceleration rate
= deceleration
rate)

ACC(888) can be
executed during
positioning to
change the acceler-
ation/deceleration
rate and target fre-
quency.
The target position
(specified number
of pulses) is not
changed.

PULS(886)
↓
ACC(888) or
SPED(885)
(Indepen-
dent)
↓
ACC(888)
(Indepen-
dent)

Pulse frequency

Target
frequency

Specified number of pulses
(Specified with PULS(886).)

Acceleration/
deceleration
rate

Execution of
ACC(888)

Outputs the specified
number of pulses and
then stops.

Time

 Changed target
frequency
Target frequency

Specified
number of
pulses
(Specified with
PULS(886).)

Number of pulses
specified with
PULS(886) does
not change.

Pulse
frequency

Acceleration/
deceleration
rate

Execution of
ACC(888)
(independent
mode)

ACC(888) (independent mode)
executed again to change the
target frequency. (The target
position is not changed, but the
acceleration/deceleration rate is
changed.)

Time
745

High-speed Counter/Pulse Output Instructions Section 3-20
Note Triangular Control
If the specified number of pulses is less than the number required to reach the
target frequency and return to zero, the function will automatically reduce the
acceleration/deceleration time and perform triangular control (acceleration
and deceleration only.) An error will not occur.

Flags

Stopping
pulse out-
put

To stop
pulse out-
put. (Num-
ber of
pulses set-
ting is not
preserved.)

Immediate stop Pulse output is
stopped immedi-
ately and the
remaining number
of output pulses is
cleared.

PULS(886)
↓
ACC(888)
(Indepen-
dent)
↓
INI(880)

To stop
pulse output
smoothly.
(Number of
pulses set-
ting is not
preserved.)

Decelerating to a
stop

Decelerates the
pulse output to a
stop.
Note If ACC(888)

started the
operation, the
original
acceleration/
deceleration
rate will
remain in
effect.
If SPED(885)
started the
operation, the
acceleration/
deceleration
rate will be
invalid and
the pulse out-
put will stop
immediately.

PULS(886)
↓
ACC(888) or
SPED(885)
(Indepen-
dent)
↓
ACC(888)
(Indepen-
dent, inde-
pendent,
target fre-
quency of 0)

PLS2(887)
↓
ACC(888)
(Indepen-
dent, target
frequency of
0)

Opera-
tion

Purpose Application Frequency changes Description Procedure/
instruction

Pulse frequency

Present
frequency

Execution of ACC(888)
Time

Execution of INI(880)

Pulse frequency

Present
frequency

 Target
frequency = 0

Execution of
ACC(888)

Deceleration rate

Time

Execution of
PLS2(887)

Pulse frequency

Target
frequency

Specified number of pulses
(Specified with PLS2(887).)

Execution of PLS2(887)

Time

Name Label Operation

Error Flag ER ON if the specified range for P, M, or S is exceeded.
ON if pulses are being output using ORG(889) for the
specified port.
ON if ACC(888) is executed to switch between indepen-
dent and continuous mode for a port that is outputting
pulses for SPED(885), ACC(888), or PLS2(887).
ON if ACC(888) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.
ON if ACC(888) is executed for an absolute pulse output
in independent mode but the origin has not been estab-
lished.
746

High-speed Counter/Pulse Output Instructions Section 3-20
Example When CIO 0.00 turns ON in the following programming example, ACC(888)
starts pulse output from pulse output 0 in continuous mode in the clockwise
direction using the CW/CCW method. Pulse output is accelerated at a rate of
20 Hz every 4 ms until the target frequency of 500 Hz is reached. When
CIO 0.01 turns ON, ACC(888) changes to an acceleration rate of 10 Hz every
4 ms until the target frequency of 1,000 Hz is reached.

3-20-9 ORIGIN SEARCH: ORG(889)
Purpose ORG(889) performs an origin search or origin return operation.

■ Origin Search

Pulses are output using the specified method to actually drive the motor and
establish the origin based on origin proximity input and origin input signals.

■ Origin Return

The positioning system is returned to the pre-established origin.

Ladder Symbol

Variations

Applicable Program Areas

0014

01F4

0000

D100

D101

D102

000A

03E8

0000

D105

D106

D107

@ACC

#0000

#0000

D100

0.00

@ACC

#0000

#0000

D105

0.01

500 Hz

10Hz/4ms

20 Hz/4 ms

1000 Hz

Target frequency: 500 Hz

Accleration/deceleration rate: 20 Hz

Target frequency: 1,000 Hz

Accleration/deceleration rate: 10 Hz

Time

Target frequency

Pulse frequency

ACC(888) executed. ACC(888) executed.

ORG(889)

P

C
P: Port specifier
C: Control data

Variations Executed Each Cycle for ON Condition ORG(889)

Executed Once for Upward Differentiation @ORG(889)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
747

High-speed Counter/Pulse Output Instructions Section 3-20
Operands P: Port Specifier

The port specifier specifies the port where the pulses will be output.

C: Control Data

The value of C determines the origin search method.

Operand Specifications

Description ORG(889) performs an origin search or origin return operation for the port
specified in P using the method specified in C.

P Port

0000 hex Pulse output 0

0001 hex Pulse output 1

0002 hex Pulse output 2

0003 hex Pulse output 3

03478111215

C

Always 0 hex.

Always 0 hex.

Pulse output method (See note.)
 0 hex: CW/CCW
 1 hex: Pulse + direction

Mode
 0 hex: Origin search
 1 hex: Origin return

Note: Use the same pulse output method when using both pulse outputs 0 and 1.

Area P C

CIO Area --- ---

Work Area --- ---

Holding Bit Area --- ---

Auxiliary Bit Area --- ---

Timer Area --- ---

Counter Area --- ---

DM Area --- ---

Indirect DM addresses
in binary

--- ---

Indirect DM addresses
in BCD

--- ---

Constants See description of operand. See description of operand.

Data Registers --- ---

Index Registers --- ---

Indirect addressing
using Index Registers

--- ---
748

High-speed Counter/Pulse Output Instructions Section 3-20
The following parameters must be set in the PLC Setup before ORG(889) can
be executed. Refer to the CP1H Operation Manual for details.

An origin search or origin return is started each time ORG(889) is executed. It
is thus normally sufficient to use the differentiated version (@ORG(889)) of
the instruction or an execution condition that is turned ON only for one scan.

■ Origin Search (Bits 12 to 15 of C = 0 hex)

ORG(889) starts outputting pulses using the specified method at the Origin
Search Initial Speed (1 in diagram). Pulse output is accelerated to the Origin
Search High Speed using the Origin Search Acceleration Rate (2 in diagram).
Pulse output is then continued at constant speed until the Origin Proximity
Input Signal turns ON (3 in diagram), from which point pulse output is deceler-
ated to the Origin Search Proximity Speed using the Origin Search Decelera-
tion Rate (4 in diagram). Pulses are then output at constant speed until the
Origin Input Signal turns ON (5 in diagram). Pulse output is stopped when the
Origin Input Signal turns ON (6 in diagram).

When the origin search operation has been completed, the Error Counter
Reset Output will be turned ON. The above operation, however, depends on
the operating mode, origin detection method, and other parameters. Refer to
the CP1H Operation Manual for details.

Origin search Origin return

Origin Search Function Enable/Disable
Origin Search Operating Mode

Origin Search Operation Setting
Origin Detection Method
Origin Search Direction Setting

Origin Search/Return Initial Speed
Origin Search High Speed
Origin Search Proximity Speed

Origin Compensation
Origin Search Acceleration Rate
Origin Search Deceleration Rate

Limit Input Signal Type
Origin Proximity Input Signal Type
Origin Input Signal Type

Origin Search/Return Initial Speed
Origin Return Target Speed

Origin Return Acceleration Rate
Origin Return Deceleration Rate

A

B
C

D

E

F

Pulse frequency

Origin search
initial speed

Origin search
high speed

Origin search
proximity speed

ORG(889) executed.

Origin Proximity Input Signal

Stop

Origin Input Signal

Time

Origin search
acceleration rate

Origin search
deceleration rate
749

High-speed Counter/Pulse Output Instructions Section 3-20
■ Origin Return (Bits 12 to 15 of C = 1 hex)

ORG(889) starts outputting pulses using the specified method at the Origin
Return Initial Speed (1 in diagram). Pulse output is accelerated to the Origin
Return Target Speed using the Origin Return Acceleration Rate (2 in diagram)
and pulse output is continued at constant speed (3 in diagram). The decelera-
tion point is calculated from the number of pulses remaining to the origin and
the deceleration rate and when that point is reached, the pulse output is
decelerated (4 in diagram) at the Origin Return Deceleration Rate until the
Origin Return Start Speed is reached, at which point pulse output is stopped
at the origin (5 in diagram).

Flags

Example When CIO 0.00 turns ON in the following programming example, ORG(889)
starts an origin return operation for pulse output 0 by outputting pulses using
the CW/CCW method. According to the PLC Setup, the initial speed is
100 pps, the target speed is 200 pps, and the acceleration and deceleration
rates are 50 Hz/4 ms.

A

B
C

D

E

Pulse frequency Origin return
target speed

Origin return
deceleration rate

Stop

Time

Origin return
initial speed

Origin return
acceleration
rate

ORG(889) executed.

Name Label Operation

Error Flag ER ON if the specified range for P or C is exceeded.
ON if ORG(889) is specified for a port during pulse output
for SPED(885), ACC(888), or PLS2(887).
ON if ORG(889) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.
ON if the origin search or origin return parameters set in
the PLC Setup are not within range.

ON if the Origin Search High Speed is less than or equal
to the Origin Search Proximity Speed or the Origin Search
Proximity Speed is less than or equal to the Origin Search
Initial Speed.
ON if the Origin Return Target speed is less than or equal
to the Origin Return Initial Speed.

ON if an origin return operation is attempted when the ori-
gin has not been established.

@ORG

#0000

#1000

0.00

200 pps

100 pps

Pulse output 0

Origin return, CW/CWW method

Time

Speed

ORG(889) executed. Output stopped.
750

High-speed Counter/Pulse Output Instructions Section 3-20
The PLC Setup parameters are as follows:

3-20-10 PULSE WITH VARIABLE DUTY FACTOR: PWM(891)
Purpose PWM(891) is used to output pulses with the specified duty factor from the

specified port.

Ladder Symbol

Variations

Applicable Program Areas

Operands P: Port Specifier

The port specifier specifies the port where the pulses will be output.

F: Frequency

F specifies the frequency of the pulse output between 0.1 and 6,553.5 Hz
(0.1 Hz units, 0001 to FFFF hex). The accuracy of the PMW(891) waveform
that is actually output (ON duty +5%/−0%) applies only to 0.1 to 1,000.0 Hz
due to limitations in the output circuits.

D: Duty Factor

D specifies the duty factor of the pulse output, i.e., the percentage of time that
the output is ON. The value of D must be between the following range.

• 0.0% and 100.0% (0.1% units, 0000 to 03E8 hex)

Operand Specifications

Parameter Setting

Pulse Output 0 Starting Speed for Origin Search and
Origin Return

0000 0064 hex: 100 pps

Pulse Output 0 Origin Return Target Speed 0000 00C8 hex: 200 pps

Pulse Output 0 Origin Return Acceleration Rate 0032 hex: 50 hex/4 ms

Pulse Output 0 Origin Return Deceleration Rate 0032 hex: 50 hex/4 ms

PWM

P

F

D

P: Port specifier
F: Frequency
D: Duty factor

Variations Executed Each Cycle for ON Condition PWM(891)

Executed Once for Upward Differentiation @PWM(891)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

P Port

1000 hex Pulse output 0 (duty factor: in increments of 0.1%)

1001hex Pulse output 1 (duty factor: in increments of 0.1%)

Area P F D

CIO Area --- CIO 0 to CIO 6143 CIO 0 to CIO 6143

Work Area --- W0 to W511 W0 to W511

Holding Bit Area --- H0 to H511 H0 to H511

Auxiliary Bit Area --- A448 to A959 A448 to A959

Timer Area --- T0000 to T4095 T0000 to T4095

Counter Area --- C0000 to C4095 C0000 to C4095
751

High-speed Counter/Pulse Output Instructions Section 3-20
Description PWM(891) outputs the frequency specified in F at the duty factor specified in
D from the port specified in P. PWM(891) can be executed during duty-factor
pulse output to change the duty factor without stopping pulse output. Any
attempts to change the frequency will be ignored.

Pulse output is started each time PWM(891) is executed. It is thus normally
sufficient to use the differentiated version (@PWM(891)) of the instruction or
an execution condition that is turned ON only for one scan.

The pulse output will continue either until INI(880) is executed to stop it (C =
0003 hex: stop pulse output) or until the CPU Unit is switched to PROGRAM
mode.

Flags

Example When CIO 0.00 turns ON in the following programming example, PWM(891)
starts pulse output from pulse output 0 at 200 Hz with a duty factor of 50%.
When CIO 0.01 turns ON, the duty factor is changed to 25%.

DM Area --- D0 to D32767 D0 to D32767

Indirect DM
addresses in binary

--- @ D0 to @ D32767 @ D0 to @ D32767

Indirect DM
addresses in BCD

--- *D0 to *D32767 *D0 to *D32767

Constants See
descrip-
tion of
operand.

0000 to FFFF hex 0000 to 03E8 hex

Data Registers --- DR0 to DR15 DR0 to DR15

Index Registers --- --- ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area P F D

Name Label Operation

Error Flag ER ON if the specified range for P, F, or D is exceeded.
ON if pulses are being output using ORG(889) for the
specified port.
ON if PWM(891) is executed in an interrupt task when an
instruction controlling pulse output is being executed in a
cyclic task.

@PWM

#0000

#07D0

#0032

0.00

@PWM

#0000

#07D0

#0019

0.01

CIO 0.00 ON CIO 0.01 ON

Pulse output 0

Frequency: 200.0 Hz

Duty factor: 50%

Pulse output 0

Frequency: 200.0 Hz

Duty factor: 25%

Duty factor: 50% Duty factor: 25%
752

Step Instructions Section 3-21
3-21 Step Instructions
This section describes Step Instructions, which are used to set up break
points between sections in a large program so that the sections can be exe-
cuted as units and reset upon completion.

STEP(008)/SNXT(009) can be used together to create step programs.

Note Work bits are used as the control bits for A, B, C and D.

Instruction Mnemonic Function code Page

STEP DEFINE STEP 008 754

STEP START SNXT 009 754

Instruction Operation Diagram

SNXT(009):
STEP START

Controls progression to the next step of the program. Corresponds

STEP(008):
STEP DEFINE

Indicates the start of a step. Repeats the same step
program until the conditions for progression to the
next step are established.

Corresponds

Process A

Process B

Process C

End

Corresponds

Process A

Process B

Process C

a turns ON

Starts the step programming area

Proceeds to the next step

Process A repeated until b turns ON.

b turns ON

Process B repeated until c turns ON.

c turns ON

Process C repeated until d turns ON.

Proceeds to the end of the ladder
step programming area

d turns ON

Step programming area completed
753

Step Instructions Section 3-21
3-21-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009)
Purpose SNXT(009) is placed immediately before the STEP(008) instruction and con-

trols step execution by turning the specified control bit ON. If there is another
step immediately before SNXT(009), it also turns OFF the control bit of that
process.

STEP(008) is placed immediately after the SNXT(009) instruction and before
each process. It defines the start of each process and specified the control bit
for it. It is also placed at the end of the step programming area after the last
SNXT(009) to indicate the end of the step programming area. When it
appears at the end of the step programming area, STEP(008) does not take a
control bit.

Ladder Symbols

When defining the beginning of a step, a control bit is specified as follows:.

When defining the end of a step a control bit is not specified as follows:

Variations

Applicable Program Areas

Operand Specifications

SNXT(009)

B B: Bit

STEP(008)

B B: Bit

STEP(008)

Variations Executed Each Cycle for ON Condition STEP(008)/
SNXT(009)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK Not allowed Not allowed

Area B

CIO Area ---

Work Area W0.00 to W511.15

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---
754

Step Instructions Section 3-21
Description SNXT(009)

SNXT(009) is used in the following three ways:

1,2,3... 1. To start step programming execution.

2. To proceed to the next step control bit.

3. To end step programming execution.

The step programming area is from the first STEP(008) instruction (which
always takes a control bit) to the last STEP(008) instruction (which never
takes a control bit).

Starting Step Execution

SNXT(009) is placed at the beginning of the step programming area to start
step execution. It turns ON the control bit specified for B for the next
STEP(008) and proceeds to step B (all instructions after STEP(008) B). A dif-
ferentiated execution condition must be used for the SNXT(009) instruction
that starts step programming area execution, or step execution will last for
only one cycle.

Proceeding to the Next Step

When SNXT(009) occurs in the middle of the step programming area, it is
used to proceed to the next step. It turns OFF the previous control bit and
turns ON the next control bit B, for the next step, thereby starting step B (all
instructions after STEP(008) B).

Ending the Step Programming Area

When SNXT(009) is placed at the very end of the step programming area, it
ends step execution and turns OFF the previous control bit. The control bit
specified for B is a dummy bit. This bit will however be turned ON, so be sure
to select a bit that will not cause problems.

STEP(008)

STEP(008) functionS in following 2 ways, depending on its position and
whether or not a control bit has been specified.

1,2,3... 1. Starts a specific step.

2. Ends the step programming area (i.e., step execution).

Starting a Step

STEP(008) is placed at the beginning of each step with an operand, B, that
serves as the control bit for the step.

The control bit B will be turned ON by SNXT(009) and the instruction in the
step will be executed from the one immediately following STEP(008). A200.12
(Step Flag) will also turn ON when execution of a step begins.

After the first cycle, step execution will continue until the conditions for chang-
ing the step are established, i.e., until the SNXT(009) instruction turns ON the
control bit in the next STEP(008).

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area B
755

Step Instructions Section 3-21
When SNXT (009) turns ON the control bit for a step, the control bit B of the
current instruction will be reset (turned OFF) and the step controlled by bit B
will become interlocked.

Handling of outputs and instructions in a step will change according to the
ON/OFF status of the control bit B. (The status of the control bit is controlled
by SNXT(009)). When control bit B is turned OFF, the instructions in the step
are reset and are interlocked. Refer to the following tables.

Interlock Status (IL)

Note Indicates all other instructions, such as TTIM(087), TTIMX(555), MTIM(543),
MTIMX(554), SET, REST, CNT, CNTX(546), CNTR(012), CNTRX(548),
SFT(010), and KEEP(011).

The STEP(008) instruction must be placed at the beginning of each step.
STEP(008) is placed at the beginning of a step area to define the start of the
step.

Ending the Step Programming Area

STEP(008) is placed at the end of the step programming area without an
operand to define the end of step programming When the control bit preced-
ing a SNXT(009) instruction is turned OFF, step execute is stopped by
SNXT(009).

Flags:STEP(008)

Flags:SNXT(009)

Precautions The control bit, B, must be in the Work Area for STEP(008)/SNXT(009).

A control bit for STEP(008)/SNXT(009) cannot be use anywhere else in the
ladder diagram. If the same bit is used twice, as duplication bit error will occur.

If SBS(091) is used to call a subroutine from within a step, the subroutine out-
puts and instructions will not be interlocked when the control bit turns OFF.

Control bit status Handling

ON Instructions in the step are executed normally.

ON→OFF Bits and instructions in the step are interlocked as shown in
the next table.

OFF All instructions in the step are processed as NOPs.

Instruction output Status

Bits specified for OUT, OUT NOT All OFF

The following timer instruc-
tions: TIM, TIMX(551),
TIMH(015), TIMHX(551),
TMHH(540), TIMHHX(552),
TIML(542), and TIMLX(553)

PV 0000 hex (reset)

Completion Flag OFF (reset)

Bits or words specified for other instructions (see note) Holds the previous status
(but the instructions are
not executed)

Name Label Operation

Error Flag ER ON when the specified bit B is not in the WR area.
ON when STEP(008) is used in an interrupt program.

OFF in all other cases.

Name Label Operation

Error Flag ER ON when the specified bit B is not in the WR area.
ON when SNXT(009) is used in an interrupt program.

OFF in all other cases.
756

Step Instructions Section 3-21
Control bits within one section of step programming must be sequential and
from the same word.

SNXT(009) will be executed only once, i.e., on the rising edge of the execution
condition.

Input SNXT(009) at the end of the step programming area and make sure that
the control bit is a dummy bit in the Work Area. If a control bit for a step is
used in the last SNXT(009) in the step programming area, the corresponding
step will be started when SNXT(009) is executed.

An error will occur and the Error Flag will turn ON if the operand B specified
for SNXT(009) or STEP(008) is not in the Work Area or if the step program
has been placed anywhere but in a cyclic task.

A200.12 (Step Flag) is turned ON for one cycle when STEP(008) is executed.
This flag can be used to conduct initialization once the step execution has
started.

Placement Conditions for Step Programming Areas (STEP B to STEP)

STEP(008) and SNXT(009) cannot be used inside of subroutines, interrupt
programs, or block programs.

Be sure that two steps are not executed during the same cycle.

Instructions that Cannot be Used Within Step Programs

The instructions that cannot be used within step programs are listed in the fol-
lowing table.

Function Mnemonic Name

Sequence Control Instruc-
tions

END(001) END

IL(002) INTERLOCK

ILC(003 INTERLOCK CLEAR

JMP(004) JUMP

JME(005) JUMP END

CJP(510) CONDITIONAL JUMP

CJPN(511) CONDITIONAL JUMP NOT

JMP0(515) MULTIPLE JUMP

JME0(516) MULTIPLE JUMP END

Subroutine Instructions SBN(092) SUBROUTINE ENTRY

RET(093) SUBROUTINE RETURN

0.00

W0.00

W0.00

0.01

A200.12

A200.12

W0.00

1 cycle

Start
757

Step Instructions Section 3-21
Related Bits

Name Address Details

Step Flag A200.12 ON for one cycle when a step program is started
using STEP(008). Can be used to reset timers
and perform other processing when starting a
new step.

Step a starts when C turns ON

A executed

When d turns ON, b starts (A is interlocked)

B executed

e turns ON (B is interlocked)

End of step programming area

Normal ladder
program Returns to normal ladder program
758

Step Instructions Section 3-21
Examples Sequential Control

0.00

0.01

0.02

W0.00

W0.00

W0.01

W0.01

W100.00

Step (A) ladder program

Step (B) ladder program

Normal ladder program

CIO 0.00 turns ON, step W0.00 starts

Step W0.00 starts from the next instruction

Step W0.00

W0.00 turns OFF, W0.01 turns ON and step W0.01 starts

Step W0.01 starts from the next instruction

W0.01 turns OFF and dummy bit W100.00 turns ON

End of step programming area

Step W0.01

W0.00

W0.01

W0.02

Step (A)

Step (B)

Step (C)

End

0.01 (Step (A) starting condition)

0.02 (Step (A) → Step (B) transition condition)

0.03 (Step (B) → Step (C) transition condition)

0.04 (Step (C) reset conditions)
759

Step Instructions Section 3-21
Branching Control

0.01

W0.00

W0.00

0.02

0.03

W0.01

W0.01

W0.02

W0.02

0.04

W100.00

Step W0.00 (A)

Step W0.01 (B)

Step W0.02 (C)
Step (C) ladder program

Step (B) ladder program

Step (A) ladder program

W0.00 W0.01

W0.02

Step (A) Step (B)

Step (C)

End

0.05 (Step (C) reset conditions)

0.01 (Step (A)
starting condition)

0.02 (Step (B) starting condition)

0.03 (Step (A) →
Step (C) transition
condition)

0.04 (Step (B) → Step (C) transition condition)
760

Step Instructions Section 3-21
The above programming is used when steps A and B cannot be executed
simultaneously. For simultaneous execution of A and B, delete the execution
conditions illustrated below.

Note In the above example, where SNXT(009) is executed for W0.02, the branching
moves onto the next steps even though the same control bit is used twice.
This is not picked up as an error in the program check using the CX-Program-
mer. A duplicate bit error will only occur in a step ladder program only when a
control bit in a step instructions is also used in the normal ladder diagram.

0.01 0.02

0.02 0.01

W0.00

W0.00

W0.01

0.03

W0.02

W0.01

0.04

0.05

W0.02

W0.02

W100.00

Step (A) ladder program

Step (B) ladder program

Step (C) ladder program

Step W0.00 (A)

Step W0.01
(B)

Step W0.02
(C)

0.02 0.01
761

Step Instructions Section 3-21
Parallel Control

W0.00

W0.01

W0.02

W0.03

W0.04

Step (A)

Step (B)

Step (C)

End

0.05 (Step (C) reset conditions)

Step (D)

Step (E)

0.04 (When both Step (B) and Step (D)
are complete, moves to Step (E)

0.03 (Step (C) → Step (D)
transition condition)

0.01 (Step (A), (C) simultaneous starting condition)

0.02 (Step (A) →
Step (B) transition
condition)
762

Step Instructions Section 3-21
0.01

0.02

W0.00

W0.02

W0.00

W0.01

W0.01

200.03 0.04

0.03

W0.04

200.03

W0.02

W0.03

W0.03

W0.04

0.05

W100.00

Step (A) ladder program
Step W0.00 (A)

Step W0.01
(B)Step (B) ladder program

Step W0.02 (C)
Step (C) ladder program

Step W0.03
(D)

Step (D) ladder program

Step W0.04
(E)

Step (E) ladder program
763

Step Instructions Section 3-21
Application Examples The following three examples demonstrate the three types of execution con-
trol possible with step programming. Example 1 demonstrates sequential exe-
cution; Example 2, branching execution; and Example 3, parallel execution.

Example 1:
Sequential Execution

The following process requires that three processes, loading, part installation,
and inspection/discharge, be executed in sequence with each process being
reset before continuing on the next process. Various sensors (SW1, SW2,
SW3, and SW4) are positioned to signal when processes are to start and end.

The following diagram demonstrates the flow of processing and the switches
that are used for execution control.

The program for this process, shown below, utilizes the most basic type of
step programming: each step is completed by a unique SNXT(009) that starts
the next step. Each step starts when the switch that indicates the previous
step has been completed turns ON.

SW 1

SW 2
SW 3

SW 4

Solenoid 1 Robot hand

Solenoid 2

Conveyor belt 1

Loading

Conveyor belt 2

Part installation

Conveyor belt 3

Inspection/discharge

Photomicro-
sensor

0.01 (SW1)

0.02 (SW2)

0.03 (SW3)

0.04 (SW4)

Process A

Process B

Process C

Loading

End

Part Installation

Inspection/discharge
764

Step Instructions Section 3-21
Example 2:
Branching Execution

The following process requires that a product is processed in one of two ways,
depending on its weight, before it is printed. The printing process is the same
regardless of which of the first processes is used. Various sensors are posi-
tioned to signal when processes are to start and end.

The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, either process A or process B is
used depending on the status of SW A1 and SW B1.

0.01 (SW1)

0.02 (SW2)

0.03 (SW3)

W0.00

W0.00

W0.01

W0.01

W0.02

W0.02

0.04 (SW4)

W100.00

Process
A started.

Process
A reset.
Process
B started.

Process
B reset.
Process
C started.

Process
C reset.

Programming for process A

Programming for process B

Programming for process C

SW A1 SW A2

SW C1

SW C2

SW D

SW B2SW B1

Process C

Process B

Process A

Guide

Weight scale

Conveyer B

Conveyer A

Printer
765

Step Instructions Section 3-21
The program for this process, shown below, starts with two SNXT(009)
instructions that start processes A and B. Because of the way CIO 0.01 (SW
A1) and CIO 0.02 (SW B1) are programmed, only one of these will be exe-
cuted with an ON execution condition to start either process A or process B.
Both of the steps for these processes end with a SNXT(009) that starts the
step (process C).

0.01 (SW A1) 0.02 (SW B1)

0.03 (SW A2) 0.04 (SW B2)

0.05 (SW D)

Process A

Process C

End

Process B
766

Step Instructions Section 3-21
Example 3:
Parallel Execution

The following process requires that two parts of a product pass simulta-
neously through two processes each before they are joined together in a fifth
process. Various sensors are positioned to signal when processes are to start
and end.

0.01 0.02

0.01 0.02
W0.00

W0.01

W0.00

0.03 (SW A2)

0.04 (SW B2)

W0.02

W0.01

0.05 (SW D)

W0.02

W0.02

W100.00

Process
C reset.

Process B
reset.
Process C
started.

Process
A reset.
Process
C started.

Process
A started.

Programming for process C

Programming for process B

Programming for process A

SW1

SW2

SW3

SW4 SW6

SW5 SW7

Process C

Process A

Process D

Process B

Process E

Conveyer A

Conveyer C Conveyer D

Conveyer B

Conveyer E
767

Step Instructions Section 3-21
The following diagram demonstrates the flow of processing and the switches
that are used for execution control. Here, process A and process C are started
together. When process A finishes, process B starts; when process C fin-
ishes, process D starts. When both processes B and D have finished, process
E starts.

The program for this operation, shown below, starts with two SNXT(009)
instructions that start processes A and C. These instructions branch from the
same instruction line and are always executed together, starting steps for both
A and C. When the steps for both A and C have finished, the steps for process
B and D begin immediately.

When both process B and process D have finished (i.e., when SW5 and SW6
turn ON), processes B and D are reset together by the SNXT(009) at the end
of the programming for process B. Although there is no SNXT(009) at the end
of process D, the control bit for it is turned OFF by executing SNXT(009)
W0.04. This is because the OUT for bit W0.03 is in the step reset by
SNXT(009) W0.04, i.e., W0.03 is turned OFF when SNXT(009) W0.04 is exe-
cuted. Process B is thus reset directly and process D is reset indirectly before
executing the step for process E.

0.05 (SW7)

0.02 (SW3) 0.03 (SW4)

Process A

Process E

End

Process C

Process B Process D

0.04 (SW5 and SW6 both ON)

0.01 (SW 1 and SW2 both ON)
768

Step Instructions Section 3-21
W0.03 W0.03

0.01 (SW1, SW2)

0.02 (SW3)

W0.00

W0.02

W0.00

W0.01

W0.01

0.04 (SW5, SW6)

W0.04

W0.02

0.03 (SW4)

W0.03

W0.03

W0.04

0.05 (SW7)

W100.00

Process A
started.
Process C
started.

Programming for process A

Process A
reset.
Process B
started.

Used to
turn off
process D.

Process E
started.

Programming for process C

Process C
reset.

Process D
started.

Programming for process D

Programming for process E

Process E
reset.

Programming for process B
769

Basic I/O Unit Instructions Section 3-22
3-22 Basic I/O Unit Instructions
This section describes instructions used with I/O Units.

3-22-1 I/O REFRESH: IORF(097)
Purpose Refreshes the specified I/O words.

Ladder Symbol

Variations

Applicable Program Areas

Operands St: Starting Word

CIO 0 to CIO 999 (I/O Bit Area) or
CIO 2000 to CIO 2959 (Special I/O Unit Bit Area)

E: End Word

CIO 0 to CIO 999 (I/O Bit Area) or
CIO 2000 to CIO 2959 (Special I/O Unit Bit Area)

Note St and E must be in the same memory area.

Operand Specifications

Instruction Mnemonic Function code Page

I/O REFRESH IORF 097 770

7-SEGMENT DECODER SDEC 078 773

INTELLIGENT I/O READ IORD 222 795

INTELLIGENT I/O WRITE IOWR 223 798

DIGITAL SWITCH INPUT DSW 210 776

TEN KEY INPUT TKY 211 780

HEXADECIMAL KEY INPUT HKY 212 783

MATRIX INPUT MTR 213 787

7-SEGMENT DISPLAY OUTPUT 7SEG 214 791

IORF(097)

St

E

St: Starting word

E: End word

Variations Executed Each Cycle for ON Condition IORF(097)

Executed Once for Upward Differentiation @IORF(097)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area St E

CIO Area CIO 0 to CIO 999
CIO 2000 to CIO 2959

Auxiliary Area ---

Holding Bit Area ---

Special Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---
770

Basic I/O Unit Instructions Section 3-22
Description IORF(097) refreshes the I/O words between St and E, inclusively. IORF(097)
is used to refresh words allocated to CPM1A Expansion Units, CPM1A
Expansion I/O, or Special I/O Units.

When refreshing is specified for words in the Special I/O Unit bit area, all 10
words allocated to the Unit will be refreshed as long as the first word of the 10
words allocated to the Unit is included in the specified range of words.

IORF(097) cannot be used for built-in I/O on the CPU Unit or for CPU Bus
Units. Use instructions with the immediate refresh option. IORF(097) and
immediate refresh options cannot be used for built-in analog I/O on XA CPU
Units.

If words for which there is no Unit mounted exist between St and E, nothing
will be done for those words and only the words allocated to Units will be
refreshed.

Applicable Units The following Units can be refreshed with IORF(097).

Note The Units that can be refreshed with IORF(097) are not necessarily the same
as the Units that can be refreshed with immediate refreshing specifications (!).

Indirect DM addresses in
binary

Indirect DM addresses in
BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to IR15

–2048 to +2047, IR0 to IR15
DR0 to DR15, IR0 to IR15,
IR0 to IR15+(++)

,–(– –) IR0 to IR15

Area St E

St

E

I/O refreshing

I/O bit area or
Special I/O Unit bit area

CPM1A Expansion Units,
CPM1A Expansion I/O
Units, or Special I/O Units

I/O Words Applicability
of IORF(097)

Built-in I/O Inputs: CIO 0 and CIO 1
Outputs: CIO 100 and CIO 101

No

Built-in analog inputs CIO 200 to CIO 203 No

Built-in analog outputs CIO 210 and CIO 211 No

CPM1A Expansion I/O Units Inputs: CIO 2 to CIO 99
Output: CIO 102 to CIO 199

Yes

CPM1A Expansion Units

Special I/O Units CIO 2000 to CIO 2959 Yes

CPU Bus Units CIO 1500 to CIO 1899 No
771

Basic I/O Unit Instructions Section 3-22
Flags

Precautions An error will occur if words in both the I/O Bit Area (CIO 0 to CIO 999) and the
Special I/O Unit Bit Area (CIO 2000 to CIO 2959) are specified for the same
instruction.

The I/O refreshing initiated by IORF(097) will be stopped midway if an I/O bus
error occurs during I/O refreshing.

When IORF(097) is used in an interrupt task, be sure to disable Special I/O
Unit cyclic refreshing in the PLC Setup. If cyclic refreshing for Special I/O
Units is enabled and I/O refreshing is executed again by IORF(097), a non-
fatal Duplicate Refreshing Error will occur and the Interrupt Task Error Flag
(A402.13) will be turned ON.

Examples Refreshing Words in the I/O Bit Area

When CIO 0.00 turns ON in the following example, CIO 2 to CIO 4 (36 inputs)
are refreshed (1) and then after the required processing is performed (2),
CIO 104 (8 outputs) is refreshed.

Refreshing Words in the Special I/O Unit Bit Area

The following example shows how to refresh 20 words from CIO 2000 to
CIO 2019 (I/O for Special I/O Units with unit numbers 0 to 1) when CIO 0.00
turns ON.

Name Label Operation

Error Flag ER ON if St is greater than E.
ON if St and E are in different memory areas.

OFF in all other cases.

IORF

2

4

0.00

St

E

St
E

IORF

104

104

St

E

015

015

St CIO 2
CIO 3

E CIO 4

CIO 104

CIO 2 and CIO 3

CIO 102 and CIO 103

CIO 4

CIO 104

(1)

(2)

(3)
I/O
refreshing

Processing
CPM1A Expansion I/O Units

St
E

015
St CIO 2000

CIO 2001

E CIO 2019

0.00

2000

2019

I/O
refreshing

Special I/O Units

Unit 0 Unit 1
772

Basic I/O Unit Instructions Section 3-22
3-22-2 7-SEGMENT DECODER: SDEC(078)
Purpose Converts the hexadecimal contents of the designated digit(s) into 8-bit, 7-seg-

ment display code and places it into the upper or lower 8-bits of the specified
destination words.

Ladder Symbol

Variations

Applicable Program Areas

Operands: Digit Designator

Operand Specifications

SDEC(078)

S

Di

D

S: Source word

Di: Digit designator

D: First destination word

Variations Executed Each Cycle for ON Condition SDEC(078)

Executed Once for Upward Differentiation @SDEC(078)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

0 1/0 m n
15 12 11 8 7 4 3 0

Di

First digit of S to convert (0 to 3)
0: Digit 0 (bits 0 to 3 of S)
1: Digit 1 (bits 4 to 7 of S)
2: Digit 2 (bits 8 to 11 of S)
3: Digit 3 (bits 12 to 15 of S)

Number of digits to convert
 0 to 3: 1 to 4 digits

First half of D to receive converted data
0: Rightmost 8 bits (1st half)
1: Leftmost 8 bits (2nd half)

Not used; set to 0.

Area S Di D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@D0 to @D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values
only

Data Registers DR0 to DR15 ---
773

Basic I/O Unit Instructions Section 3-22
Description SDEC(078) regards the data specified by S as 4-digit hexadecimal data, con-
verts the digits specified in S by Di (first digit and number of digits) to 7-seg-
ment data and outputs the results to D in the bits specified in Di.

Flags

Precautions If more than one digit is specified for conversion in Di, digits are converted in
order toward the most-significant digit. Digit 0 is the next digit after digit 3.

Results are stored in D in order from the specified portion toward higher-
address words. If just one of the bytes in a destination word receives con-
verted data, the other byte is left unchanged.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S Di D

Di
Number of digits

Rightmost 8 bits (0)

7-segment

First digit to convert

Name Label Operation

Error Flag ER ON if settings in Di are not within the specified ranges.

OFF in all other cases.
774

Basic I/O Unit Instructions Section 3-22
Examples When CIO 0.00 turns ON in the following example, the contents of the 3 digits
beginning with digit 1 in D100 will be converted from hexadecimal data to 7-
segment data, and the results will be output to the upper byte of D200 and
both bytes of D201. The specifications of the bytes to be converted and the
location of the output bytes are made in CIO 1000.

7-segment Data The following table shows the data conversions from a hexadecimal digit (4
bits) to 7-segment code (8 bits).

S: D100

Di: 1000
Di

3

0.00

D100

1000

D200

D: D200
D201

Hexadecimal to 7-segment data conversion
(F → 71, 1 → 06, and 2 → 5B)

Original data Converted code (segments) Display
Original data

Digit Bits – g f e d c b a Hex

0 0 0 0 0 0 0 1 1 1 1 1 1 3F

1 0 0 0 1 0 0 0 0 0 1 1 0 06

2 0 0 1 0 0 1 0 1 1 0 1 1 5B

3 0 0 1 1 0 1 0 0 1 1 1 1 4F

4 0 1 0 0 0 1 1 0 0 1 1 0 66

5 0 1 0 1 0 1 1 0 1 1 0 1 6D

6 0 1 1 0 0 1 1 1 1 1 0 1 7D

7 0 1 1 1 0 0 1 0 0 1 1 1 27

8 1 0 0 0 0 1 1 1 1 1 1 1 7F

9 1 0 0 1 0 1 1 0 1 1 1 1 6F

A 1 0 1 0 0 1 1 1 0 1 1 1 77

B 1 0 1 1 0 1 1 1 1 1 0 0 7C

C 1 1 0 0 0 0 1 1 1 0 0 1 39

D 1 1 0 1 0 1 0 1 1 1 1 0 5E

E 1 1 1 0 0 1 1 1 1 0 0 1 79

F 1 1 1 1 0 1 1 1 0 0 0 1 71

1

1

1

1

1

1

1

0

g
f b

c

d

e

a
a

b

c

d

e

f

g

LSB

MSB
775

Basic I/O Unit Instructions Section 3-22
3-22-3 DIGITAL SWITCH INPUT – DSW(210)
Purpose Reads the value set on a external digital switch (or thumbwheel switch) con-

nected to an I/O Unit and stores the 4-digit or 8-digit value in the specified
words.

Ladder Symbol

Variations

Applicable Program Areas

Operands I: Input Word (Data Line D0 to D3 Inputs)

Specify the input word allocated to the Input Unit and connect the digital
switch’s D0 to D3 data lines to the Input Unit as shown in the following dia-
gram.

O: Output Word (CS/RD Control Signal Outputs)

Specify the output word allocated to the Output Unit and connect the digital
switch’s control signals (CS and RD signals) to the Output Unit as shown in
the following diagram.

DSW(210)

I

O

D

C1

C2

I: Input word

O: Output word

D: First result word

C1: Number of digits

C2: System word

Variations Executed Each Cycle for ON Condition DSW(210)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

0123456789101112131415
−−−−−−−−I

D0
D1
D2
D3

D3
D2
D1
D0

Rightmost 4 digitsLeftmost 4 digits

0123456789101112131415
−− −−−−−−−−O

CS0
CS1
CS2
CS3

CS signalsOne Round Flag
RD0 Read signal
776

Basic I/O Unit Instructions Section 3-22
D: First Result Word

Specifies the leading word address where the external digital switch’s set val-
ues will be stored.

C1: Number of Digits

Specifies the number of digits that will be read from the external digital switch.
Set C1 to 0000 hex to read 4 digits or 0001 hex to read 8 digits.

C2: System Word

Specifies a work word used by the instruction. This word cannot be used in
any other application.

Operand Specifications

D

815 1211 0347

D+1

815 1211 0347

Digit 1Digit 2Digit 3Digit 4

Digit 5Digit 6Digit 7Digit 8

Note: Only when C1 = 0001 hex to read 8 digits.

(See note.)

C1

815 1211 0347

Number of digits
0000 hex: 4 digits
0001 hex: 8 digits

C2

15 0

System word
(Cannot be accessed by the user.)

Area I O D C1 C2

CIO Area CIO 0 to CIO 6143 --- CIO 0 to
CIO 6143

Work Area W0 to W511 --- W0 to W511

Holding Bit Area H0 to H511 --- H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A953 --- A448 to A959

Timer Area T0000 to T4095 --- T0000 to T4095

Counter Area C0000 to C4095 --- C0000 to C4095

DM Area D0 to D32767 --- D0 to D32767

Indirect DM
addresses in binary

@ D0 to @ D32767 --- @ D0 to
@ D32767

Indirect DM
addresses in BCD

*D0 to *D32767 --- ---

Constants --- 0000 or
0001 hex

Data Registers DR0 to DR15 DR0 to DR15
777

Basic I/O Unit Instructions Section 3-22
Description DSW(210) outputs control signals to bits 00 to 04 of O, reads the specified
number of digits (either 4-digit or 8-digit, specified in C1) of digital switch data
line data from I, and stores the result in D and D+1. (If 4 digits are read, the
result is stored in D. If 8 digits are read, the result is stored in D and D+1.)

DSW(210) reads the 4-digit or 8-digit switch data once every 16 cycles, and
then starts over and continues reading the data. The One Round Flag (bit 05
of O) is turned ON once every 16 CPU Unit cycles.

DSW(210) reads the 4-digit or 8-digit data once in 16 cycles, and then starts
over and reads the data again in the next 16 cycles.

When executed, DSW(210) begins reading the switch data from the first of the
sixteen cycles, regardless of the point at which the last instruction was
stopped.

There is no restriction on the number of times that DSW(210) can appear in
the program.

External Connections Connect the digital switch or thumbwheel switch to Input Unit contacts 0 to 7
and Output Unit contacts 0 to 4, as shown in the following diagram. The fol-
lowing example illustrates connections for an A7B Thumbwheel Switch.

Index Registers ---

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047 ,IR0
to –2048 to +2047
,IR15
DR0 to DR15, IR0 to
IR15

,IR0+(++) to
,IR15+(++)
,–(– –)IR0 to, –(– –
)IR15

,IR0 to ,IR15
–2048 to +2047
,IR0 to –2048 to
+2047 ,IR15
DR0 to DR15, IR0
to IR15

,IR0+(++) to
,IR15+(++)
,–(– –)IR0 to, –(–
–)IR15

Area I O D C1 C2

C
O

M

00

01

02

03

04

05

06

07

08

09

10

11

IN

CPM1A-20EDT

OUT

C
O

M

00

C
O

M

01

C
O

M

02

03

C
O

M

04

05

06

07

8

No. 1No. 2No. 3No. 4No. 5No. 6No. 7No. 8

4 2 1

A7B
Thumbwheel
Switch

Switch Switch Switch Switch Switch Switch Switch Switch
778

Basic I/O Unit Instructions Section 3-22
Timing Chart

Flags

Precautions Do not read or write the system word (C2) from any other instruction.
DSW(210) will not operate correctly if the system word is accessed by another
instruction. The system word is not initialized by DSW(210) in the first cycle
when program execution starts. If DSW(210) is being used from the first cycle,
clear the system word from the program.

DSW(210) will not operate correctly if I/O refreshing is not performed with the
Input Unit and Output Unit connected to the digital switch or thumbwheel
switch after DSW(210) is executed. Consequently, do not connect the digital
switch or thumbwheel switch to the following Units.

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, DSW(210) is used to read an 8-digit number from a digital
switch and outputs the resulting value constantly to D0 to D3. The digital
switch is connected through CIO 3 and CIO 104.

Since 8 digits of data are being read, C1 (D32000 in this case) is set to 0001
hex. D32001 is used as the system word.

 00

 01

 02

 03

 04

 05

O

100 101 102 103

D+1 D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

I

Leftmost
4 digits

Rightmost
4 digits

Input data

CS signals

One Round Flag

RD (read) signal

16 cycles to complete one round of execution

Eight digits: 00 to 03, 04 to 07

Four digits: 00 to 03

When only 4 digits are read,
only word D is used.

Name Label Operation

Error Flag ER OFF

I

O

D

C1

C2

DSW(210)

3

104

D0

D32000

D32001

P_On

Always ON Flag
779

Basic I/O Unit Instructions Section 3-22
3-22-4 TEN KEY INPUT – TKY(211)
Purpose Reads numeric data from a ten-key keypad and stores up to 8 digits of BCD

data in the specified words.

A Unit with 10 inputs or more is required for this instruction.

Ladder Symbol

Variations

Applicable Program Areas

Operands I: Input Word (Data Line Inputs)

Specify the input word allocated to the Input Unit and connect the ten-key key-
pad’s 0 to 9 data lines to the Input Unit as shown in the following diagram.

D1: First Register Word

Specifies the leading word address where the ten-key keypad’s numeric input
(up to 8 digits) will be stored.

TKY(211)

I

D1

D2

I: Input word

D1: First register word

D2: Key input word

Variations Executed Each Cycle for ON Condition TKY(211)

Executed Once for Upward Differentiation @TKY(211)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

0123456789101112131415
−−−−−−I

0
1
2
3
4
5

9
8
7
6 Bits 00 to 09 correspond

to keys 0 to 9.

D1

815 1211 0347

D1+1

815 1211 0347

Digit 1Digit 2Digit 3Digit 4

Digit 5Digit 6Digit 7Digit 8
780

Basic I/O Unit Instructions Section 3-22
D2: Key Input Word

Bits 00 to 10 of D2 indicate key inputs. When one of the keys on the keypad (0
to 9) has been pressed, the corresponding bit of D2 (0 to 9) is turned ON. Bit
10 of D2 will be ON while any key is being pressed.

Operand Specifications

Description TKY(211) reads numeric data from input word I, which is allocated to a ten-
key keypad connected to an Input Unit, and stores up to 8 digits of BCD data
in register words D1 and D1+1. In addition, each time that a key is pressed,
the corresponding bit in D2 (0 to 9) will be turned ON and remains ON until
another key is pressed. Bit 10 of D2 will be ON while any key is being pressed
and OFF when no key is being pressed.

The two-word register in D1 and D1+1 operates as an 8-digit shift register.
When a key is pressed on the ten-key keypad, the corresponding BCD digit is
shifted into the least significant digit of D1. The other digits of D1, D1+1 are
shifted left and the most significant digit of D1+1 is lost.

When executed, TKY(211) begins reading the key input data from the first
cycle, regardless of the point at which the last instruction was stopped.

When one of the keypad keys is being pressed, input from the other keys is
disabled.

0123456789101112131415
−−−−−D2

0
1
2
3
4
5

9
8
7
6

ON when any
key is pressed.

ON when the corre-
sponding key is press-
ed. (Remains on until
another key is pressed.)

ON when the corre-
sponding key is press-
ed. (Remains on until
another key is pressed.)

Area I D1 D2

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6142

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W510 W0 to W511

Holding Bit Area H0 to H511 H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D0 to D32767 D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
781

Basic I/O Unit Instructions Section 3-22
There is no restriction on the number of times that TKY(211) can appear in
the program.

External Connections Connect the ten-key keypad so that the switches for keys 0 through 9 are
input to contacts 0 through 9 of the Input Unit, as shown in the following dia-
gram.

Timing Chart

Flags

C
O

M

00

01

02

03

04

05

06

07

08

09

10

11

IN

CPM1A-20EDT

OUT

C
O

M

00

C
O

M

01

C
O

M

02

03

C
O

M

04

05

06

07

0

9

Tenkey pad

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 2

0 0 0 0 1 0 2 9

D1+1 D1

(1)

(2)

(3)

(4)

(1) (2) (3) (4)

00

01

02

09

00

01

02

09

10

to

I

to

D2

Input from 10-key

ON if a key is pressed.

"1" key input

"0" key input

"2" key input

"9" key input

Turn ON flags corre-
sponding to 10-key
inputs (The flags re-
main ON until the
next input.)

Before
execution

Name Label Operation

Error Flag ER OFF
782

Basic I/O Unit Instructions Section 3-22
Precautions TKY(211) will not operate correctly if I/O refreshing is not performed with the
Input Unit connected to the ten-key keypad after TKY(211) is executed. Con-
sequently, do not connect the ten-key keypad to the following Units.

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, TKY(211) reads key inputs from a ten-key keypad and stores
the inputs in CIO 200 and CIO 201. The ten-key keypad is connected to CIO
2.

3-22-5 HEXADECIMAL KEY INPUT – HKY(212)
Purpose Reads numeric data from a hexadecimal keypad connected to an Input Unit

and Output Unit and stores up to 8 digits of hexadecimal data in the specified
words.

Ladder Symbol

Variations

Applicable Program Areas

Operands I: Input Word (Data Line D0 to D3 Inputs)

Specify the input word allocated to the Input Unit and connect the hexadeci-
mal keypad’s D0 to D3 data lines to the Input Unit as shown in the following
diagram.

I

D1

D2

TKY(211)

2

200

D0

P_On

Always ON Flag

HKY(212)

I

O

D

C

I: Input word

O: Output word

D: First register word

C: System word

Variations Executed Each Cycle for ON Condition HKY(212)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed

0123456789101112131415
−−−− −−−−−−−−I

0
1
2
3

Bits 00 to 03 correspond
to Input Unit inputs 0 to 3.
783

Basic I/O Unit Instructions Section 3-22
O: Output Word (Selection Signal Outputs)

Specify the output word allocated to the Output Unit and connect the hexa-
decimal keypad’s selection signals to the Output Unit as shown in the follow-
ing diagram.

D: First Register Word

Specifies the leading word address where the hexadecimal keypad’s numeric
input (up to 8 digits) will be stored. (In addition, each time that a key is
pressed, the corresponding bit in D+2 (0 to F) will be turned ON and remains
ON until another key is pressed.)

C: System Word

Specifies a work word used by the instruction. This word cannot be used in
any other application.

Operand Specifications

0123456789101112131415
−−−− −−−−−−−−O

0
1
2
3

Bits 00 to 03 correspond to
Output Unit outputs 0 to 3.

D

815 1211 0347

D+1

815 1211 0347

0123456789101112131415

D+2

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

Digit 1Digit 2Digit 3Digit 4

Digit 5Digit 6Digit 7Digit 8

ON when the corresponding key
is pressed. (Remains on until
another key is pressed.)

C

15 0

System word
(Cannot be accessed by the user.)

Area I O D C

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6141

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W509 W0 to W511

Holding Bit Area H0 to H511 H0 to H509 H0 to H511

Auxiliary Bit Area A0 to A957 A448 to
A959

A448 to A957 A448 to A959

Timer Area T0000 to T4095 T0000 to T4093 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4093 C0000 to C4095
784

Basic I/O Unit Instructions Section 3-22
Description HKY(212) outputs the selection signals to bits 00 to 03 of O, reads the data in
order from bits 00 to 03 of I, and stores up to 8 digits of hexadecimal data in
register words D and D+1.

HKY(212) inputs each digit in 3 to 12 cycles, and then starts over and contin-
ues inputting. In addition, each time that a key is pressed, the corresponding
bit in D+2 (0 to F) will be turned ON and remains ON until another key is
pressed.

HKY(212) determines which key is pressed by identifying which input is ON
when a given selection signal is ON, so it can take anywhere from 3 to 12
cycles for one hexadecimal digit to be read. After the key input is read,
HKY(212) starts over and reads another digit in the next 3 to 12 cycles.

When executed, HKY(212) begins reading the key input data from the first
selection signal, regardless of the point at which the last instruction was
stopped.

The two-word register in D1 and D1+1 operates as an 8-digit shift register.
When a key is pressed on the ten-key keypad, the corresponding hexadeci-
mal digit is shifted into the least significant digit of D1. The other digits of D1,
D1+1 are shifted left and the most significant digit of D1+1 is lost.

When one of the keypad keys is being pressed, input from the other keys is
disabled.

There is no restriction on the number of times that HKY(212) can appear in
the program.

DM Area D0 to D32767 D0 to D32765 D0 to D32767

Indirect DM
addresses in binary

@ D0 to @ D32767

Indirect DM
addresses in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area I O D C
785

Basic I/O Unit Instructions Section 3-22
External Connections Connect the hexadecimal keypad to Input Unit contacts 0 to 3 and Output Unit
contacts 0 to 3, as shown in the following diagram.

Timing Chart

Flags

C
O

M

00

01

02

03

04

05

06

07

08

09

10

11

IN

CPM1A-20EDT

OUT

C
O

M

00

C
O

M

01

C
O

M

02

03

C
O

M

04

05

06

07

4

3210

BA98

FEDC

5 6 7

Sixteen-key Pad

00000000

D+1 D

0000

D+1

000F

D

0000

D+1

00F9

D

I

0

9

D+2
00

09

15
O

04

F

00
01
02
03

1 2 3 4 5 6 7 8 9 1011120

to

to

to

to

Once per 12 cycles

16-key

ON for a 12-cycle
period if a key is
pressed.

Turn ON flags corre-
sponding to input
keys (The flags re-
main ON until the
next input.)

Status of 16 keys

16-key selection
signals

Name Label Operation

Error Flag ER OFF
786

Basic I/O Unit Instructions Section 3-22
Precautions Do not read or write the system word (C) from any other instruction. HKY(212)
will not operate correctly if the system word is accessed by another instruc-
tion. The system word is not initialized by HKY(212) in the first cycle when
program execution starts. If HKY(212) is being used from the first cycle, clear
the system word from the program.

HKY(212) will not operate correctly if I/O refreshing is not performed with the
Input Unit and Output Unit connected to the hexadecimal keypad after
HKY(212) is executed. Consequently, do not connect the hexadecimal keypad
to the following Units.

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, HKY(212) reads up to 8 digits of hexadecimal data from a
hexadecimal keypad and stores the data in D0 and D1. The hexadecimal key-
pad is connected through CIO 2 and CIO 102. D32000 is used as the system
word.

3-22-6 MATRIX INPUT: MTR(213)
Purpose Inputs up to 64 signals from an 8 × 8 matrix connected to an Input Unit and an

Output Unit (using 8 input points and 8 output points) and stores that 64-bit
data in the 4 destination words.

Ladder Symbol

Variations

Applicable Program Areas

I

O

D

C

HKY(212)

2

102

D0

D32000

P_On

Always ON Flag

MTR(213)

I

O

D

C

I: Input word

O: Output word

D: First destination word

C: System word

Variations Executed Each Cycle for ON Condition MTR(213)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
787

Basic I/O Unit Instructions Section 3-22
Operands I: Input Word

Specify the input word allocated to the Input Unit and connect the 8 input sig-
nal lines to the Input Unit as shown in the following diagram.

O: Output Word (Selection Signal Outputs)

Specify the output word allocated to the Output Unit and connect the 8 selec-
tion signals to the Output Unit as shown in the following diagram.

D: First Register Word

Specifies the leading word address of the 4 words that contain the data from
the 8 × 8 matrix.

0123456789101112131415

I

0
1
2
3
4
5
6
7

−−−−−−−−

Bits 00 to 07 correspond to
Input Unit inputs 0 to 7.

0123456789101112131415

O

0
1
2
3
4
5
6
7

−−−−−−−−

Bits 00 to 07 correspond to
Output Unit outputs 0 to 7.

0123456789101112131415

D

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

0123456789101112131415

D+1

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

Bits 00 to 15 correspond to
matrix elements 0 to 15.

Bits 00 to 15 correspond to
matrix elements 16 to 31.
788

Basic I/O Unit Instructions Section 3-22
C: System Word

Specifies a work word used by the instruction. This word cannot be used in
any other application.

Operand Specifications

0123456789101112131415

D+2

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

0123456789101112131415

D+3

0
1
2
3
4
5
6
7

15
14
13
12
11
10
9
8

Bits 00 to 15 correspond to
matrix elements 32 to 47.

Bits 00 to 15 correspond to
matrix elements 48 to 63.

C

15 0

System word
(Cannot be accessed by the user.)

Area I O D C

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6140

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W508 W0 to W511

Holding Bit Area H0 to H511 H0 to H508 H0 to H511

Auxiliary Bit Area A0 to A959 A448 to
A959

A448 to A956 A448 to A959

Timer Area T0000 to T4095 T0000 to T4092 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4092 C0000 to C4095

DM Area D0 to D32767 D0 to D32764 D0 to D32767

Indirect DM
addresses in binary

@ D0 to @ D32767

Indirect DM
addresses in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Regis-
ters

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
789

Basic I/O Unit Instructions Section 3-22
Description MTR(213) outputs the selection signals to bits 00 to 07 of O, reads the data in
order from bits 00 to 07 of I, and stores the 64 bits of data in the 4 words D
through D+3. MTR(213) reads the status of the 64-bit matrix every 24 CPU
Unit cycles. The One Round Flag (bit 08 of O) is turned ON for one cycle in
every 24 cycles after each of the selection signals has been turned ON.

When executed, MTR(213) begins reading the matrix status from the begin-
ning of the matrix, regardless of the point at which the last instruction was
stopped.

There is no restriction on the number of times that MTR(213) can appear in
the program.

External Connections Connect the hexadecimal keypad to Input Unit contacts 0 to 3 and Output Unit
contacts 0 to 3, as shown in the following diagram.

Timing Chart

Flags

C
O

M

00

01

02

03

04

05

06

07

08

09

10

11

IN

CP1M-20EDT

OUT

C
O

M

00

C
O

M

01

C
O

M

02

03

C
O

M

04

05

06

07

1st row

7th row

8th row

00
01
02
03
04
05
06
07
00
32
64
00
32
64
08

:

:

:

:

One round completed in 24 cycles

Selection signals

Matrix status

One Round Flag

Bits indicating status of inputs
(Bit ON when input is ON)

Name Label Operation

Error Flag ER OFF
790

Basic I/O Unit Instructions Section 3-22
Precautions Do not read or write the system word (C) from any other instruction.
MTR(213) will not operate correctly if the system word is accessed by another
instruction. The system word is not initialized by MTR(213) in the first cycle
when program execution starts. If MTR(213) is being used from the first cycle,
clear the system word from the program.

MTR(213) will not operate correctly if I/O refreshing is not performed with the
Input Unit and Output Unit connected to the external matrix after MTR(213) is
executed. Consequently, do not connect the external matrix to the following
Units.

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, MTR(213) reads the 64 bits of data from the 8 × 8 matrix and
stores the data in W0 to W3. The 8 × 8 matrix is connected through CIO 2 and
CIO 102. D32000 is used as the system word.

3-22-7 7-SEGMENT DISPLAY OUTPUT – 7SEG(214)
Purpose Converts the source data (either 4-digit or 8-digit BCD) to 7-segment display

data, and outputs that data to the specified output word.

Ladder Symbol

Variations

Applicable Program Areas

I

O

D

C

MTR(213)

2

102

W0

D32000

P_On

Always ON Flag

7SEG(214)

S

O

C

D

S: Source word

O: Output word

C: Control data

D: System word

Variations Executed Each Cycle for ON Condition 7SEG(214)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
791

Basic I/O Unit Instructions Section 3-22
Operands S: Source Word

Specify the first source word containing the data that will be converted to 7-
segment display data.

O: Output Word (Data and Latch Outputs)

Specify the output word allocated to the Output Unit and connect the 7-seg-
ment display to the Output Unit as shown in the following diagram.

• Converting 4 digits

• Converting 8 digits

C: Control Data

The value of C indicates the number of digits of source data and the logic for
the Input and Output Units, as shown in the following table. (The logic refers to
the transistor output’s NPN or PNP logic.)

Source data Display’s data input logic Display’s latch input logic C

4 digits (S) Same as Output Unit Same as Output Unit 0000

Different from Output Unit 0001

Different from Output Unit Same as Output Unit 0002

Different from Output Unit 0003

8 digits
(S, S+1)

Same as Output Unit Same as Output Unit 0004

Different from Output Unit 0005

Different from Output Unit Same as Output Unit 0006

Different from Output Unit 0007

S

815 1211 0347

S+1

815 1211 0347

Digit 1Digit 2Digit 3Digit 4

Digit 5Digit 6Digit 7Digit 8

0123456789101112131415
−− −−−−−O

D0
D1
D2
D3

LE3
LE2
LE1
LE0

4-digit data outputLatch outputs

One Round Flag

0123456789101112131415
−−−O

D0
D1
D2
D3

LE3
LE2
LE1
LE0

D0
D1
D2
D3

Leftmost 4-digit data output

Rightmost 4-digit data output

Latch outputs

One Round Flag
792

Basic I/O Unit Instructions Section 3-22
D: System Word

Specifies a work word used by the instruction. This word cannot be used in
any other application.

Operand Specifications

Description 7SEG(214) reads the source data, converts it to 7-segment display data, and
outputs that data (as leftmost 4 digits D0 to D3, rightmost 4 digits D0 to D3,
latch output signals LE0 to LE3) to the 7-segment display connected to the
output indicated by O. The value of C indicates the number of digits of source
data (either 4-digit or 8-digit) and the logic for the Input and Output Units.

7SEG(214) displays the 4-digit or 8-digit data in 12 cycles, and then starts
over and continues displaying the data.

The One Round Flag (bit 08 of O when converting 4 digits, bit 12 of O when
converting 8 digits) is turned ON for one cycle in every 12 cycles after
7SEG(214) has turned ON each of the latch output signals. After the 7-seg-
ment data is output in 12 cycles, 7SEG(214) starts over and converts the
present contents of the source word(s) in the next 12 cycles.

When executed, 7SEG(214) begins on latch output 0 at the beginning of the
round, regardless of the point at which the last instruction was stopped.

D

15 0

System word
(Cannot be accessed by the user.)

Area S O C D

CIO Area CIO 0 to CIO 6143 --- CIO 0 to CIO 6143

Work Area W0 to W511 --- W0 to W511

Holding Bit Area H0 to H511 --- H0 to H511

Auxiliary Bit Area A0 to A959 A448 to
A959

--- A448 to A959

Timer Area T0000 to T4095 --- T0000 to T4095

Counter Area C0000 to C4095 --- C0000 to C4095

DM Area D0 to D32767 --- D0 to D32767

Indirect DM
addresses in binary

@ D0 to @ D32767 --- @ D0 to @ D32767

Indirect DM
addresses in BCD

*D0 to *D32767

Constants --- --- 0000 to
0007

Data Registers --- DR0 to
DR15

--- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Regis-
ters

IR0 to IR15, –2048 to
+2047, IR0 to IR15
DR0 to DR15, IR0 to
IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0
to –2048 to +2047
,IR15
DR0 to DR15, IR0 to
IR15

,IR0+(++) to
,IR15+(++)
,–(– –)IR0 to, –(– –
)IR15
793

Basic I/O Unit Instructions Section 3-22
Even if the connected 7-segment display has fewer than 4 digits or 8 digits in
its display, 7SEG(214) will still output 4 digits or 8 digits of data.

External Connections Connect the 7-segment display to the Output Unit as shown in the following
diagram. This example shows an 8-digit display. With a 4-digit display, the
data outputs (D0 to D3) would be connected to outputs 0 to 3 and the latch
outputs (LE0 to LE3) would be connected to outputs 4 to 7. Output point 12
(for 8-digit display) or output point 8 (for 4-digit display) will be turned ON
when one round of data has been output, but it is not necessary to connect
them unless required by the application.

Timing Chart

Flags

C
O

M

00

01

02

03

04

05

06

07

08

09

10

11

00

01

02

03

04

05

06

07

08

09

10

11

IN@ CH IN@ CH

CPM1A-40EDT

OUT@ CH OUT@ CH

C
O

M

00

C
O

M

01

C
O

M

02

03

C
O

M

04

05

06

07

C
O

M

00

01

02

03

C
O

M

04

05

06

07

LE3 LE2 LE1 LE0
D0
D1
D2
D3

VDD
(+)

VSS
(0)

LE3 LE2 LE1 LE0
VDD
(+)
VSS
(0)

D0
D1
D2
D3

7-segment display

Leftmost 4 digits Rightmost 4 digits

Function Bit(s) in O Output status (Data and latch logic depends on C)

(4 digits, 1
block)

(4 digits, 2
blocks)

Latch output 2

Latch output 3

One Round Flag

Latch output 1

Latch output 0

Data output

06

07

08

05

04

00 to 03

10

11

12

09

08

00 to 03
04 to 07 100 101 102 103

1 2 3 4 5 6 7 8 9 10 11 12 1

12 cycles required to complete one round

Note 0 to 3: Data output for word S
 4 to 7: Data output for word S+1

Name Label Operation

Error Flag ER OFF
794

Basic I/O Unit Instructions Section 3-22
Precautions Do not read or write the system word (D) from any other instruction.
7SEG(214) will not operate correctly if the system word is accessed by
another instruction. The system word is not initialized by 7SEG(214) in the
first cycle when program execution starts. If 7SEG(214) is being used from
the first cycle, clear the system word from the program.

7SEG(214) will not operate correctly if I/O refreshing is not performed with the
Output Unit connected to the 7-segment display after 7SEG(214) is executed.
Consequently, do not connect the external matrix to the following Units.

• Communications Slaves (DeviceNet or CompoBus/S Slaves)

Example In this example, 7SEG(214) converts the 8 digits of BCD data in D100 and
D101 and outputs the data through CIO 102.

There are 8 digits of data being output and the 7-segment display’s logic is the
same as the Output Unit’s logic, so the control data (C) is set to 0004. D32000
is used as the system word, D.

3-22-8 INTELLIGENT I/O READ: IORD(222)
Purpose Reads the contents of memory area of a Special I/O Unit or CPU Bus Unit.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Depends on Special I/O Unit or CPU Bus Unit.
S: Special I/O Unit: 0000 to 005F hex

(to specify unit numbers 0 to 95)
CPU Bus Unit: 8000 to 800F hex

(to specify unit numbers 0 to F hex)
S+1: Number of words to transfer

(0001 to 0080 hex, depends on Special I/O Unit or CPU Bus Unit)

S

O

C

D

7SEG(214)

D100

102

004

D32000

P_On

Always ON Flag

IORD(222)

C

S

D

C: Control data

S: Transfer source and number of words

D: Transfer destination

Variations Executed Each Cycle for ON Condition IORD(222)

Executed Once for Upward Differentiation @IORD(222)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

S+1 S
S+1: Leftmost 4 digits
S: Rightmost 4 digits
795

Basic I/O Unit Instructions Section 3-22
Operand Specifications

Description IORD(222) reads the number of words designated in S+1 from the memory
area of the Special I/O Unit or CPU Bus Unit whose unit number is designated
by S and outputs the data to D. Refer to the operation manual of the Special I/
O Unit or CPU Bus Unit from which data is being read for specific details for
each Unit.

Area C S D

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6142

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W510 W0 to W511

Holding Bit Area H0 to H511 H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A958 A448 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D0 to D32767 D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

Specified values
only

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

S
S+1

Unit number of Special I/O Unit
or CPU Bus Unit

Desig-
nated
number
of words
read.
796

Basic I/O Unit Instructions Section 3-22
Flags

Precautions The Equals Flag will turn ON if the reading operation is completed normally.

The Equals Flag will turn OFF if the reading operation cannot be completed
normally due to the Special I/O Unit or CPU Bus Unit being busy.

Whenever any of the following occur, an error will occur and the Error Flag will
turn ON.

• The number of words to transfer (S) is outside the range of 0001 to 0080
(hex).

• The unit number (S) is outside the range of 0000 to 005F hex or 8000 to
800F hex.

• A Special I/O Unit or CPU Bus Unit not affected by IORD(222) is desig-
nated.

• A Special I/O Unit with a setting error or an error is designated.

• A CPU Bus Unit with a setting error or error is designated.

When IORD(222) is executed, the execution results are reflected in the condi-
tion flags. In particular, the Equals Flag turns ON when reading is completed.
Input the condition flags such as the Equals Flag with output branching from
the same input conditions as the IORD(222) instruction.

If the Special I/O Unit or CPU Bus Unit is busy, the reading operation will not
be executed. Use the Equals Flag to create a self-maintaining program, as
shown below, so that IORD(222) will be executed with each cycle until the
reading operation is executed.

When the input condition is met, self maintenance is performed by output A
and IORD(222) is executed with each cycle until the Equals Flag turns ON.
When the reading is completed and the Equals Flag turns ON, output B turns
ON and the self maintenance is cleared.

Name Label Operation

Error Flag ER ON if the number of words to transfer (S) is outside the
range of 0001 to 0080 hex.

ON if the unit number (S) is outside the range of 0000 to
005F hex or 8000 to 800F hex.
ON if a Special I/O Unit or CPU Bus Unit not affected by
IORD(222) is designated.
ON if a Special I/O Unit with a setting error or an error is
designated.

ON if a CPU Bus Unit with a setting error or an error is
designated.
OFF in all other cases.

Equals Flag = ON if reading operation is completed normally.
OFF if reading operation is not completed normally.

B

IORD

C

S

=
B

D

A

A

797

Basic I/O Unit Instructions Section 3-22
Be sure to place condition flags directly after IORD(222) instructions, and not
after any other instructions. If a condition flag is placed after another instruc-
tion, it will be affected by the execution results of that instruction.

Example In this example, IORD(222) is used to read data.

3-22-9 INTELLIGENT I/O WRITE: IOWR(223)
Purpose Outputs the contents of the CPU Unit’s I/O memory area to a Special I/O Unit

or CPU Bus Unit.

Ladder Symbol

Variations

Applicable Program Areas

S+1 S
S

0.00 100.00

1000.01

D100

1000.00

1000.01

D100

D109

CPU Unit Special I/O Unit (Unit #3)

10 words

The control code (C) varies depending on the Special I/O Unit.

Number of words
to transfer: 10

Unit number: 3

When CIO 0.00 is turned ON, 10 words are read from the Special I/O
Unit with unit number 3, and are stored in D100 to D109.

IOWR(223)

C

S

D

C: Control data

S: Transfer source and number of words

D: Transfer destination and number of words

Variations Executed Each Cycle for ON Condition IOWR(223)

Executed Once for Upward Differentiation @IOWR(223)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
798

Basic I/O Unit Instructions Section 3-22
Operands C: Depends on Special I/O Unit or CPU Bus Unit.
D: Special I/O Unit: 0000 to 005F hex

(to specify unit numbers 0 to 95)
CPU Bus Unit: 8000 to 800F hex

(to specify unit numbers 0 to F hex)
D+1: Number of words to transfer

(0000 to 0080 hex, depends on Special I/O Unit or CPU Bus Unit)

Operand Specifications

Description IOWR(223) writes the designated number of words (D) from the first source
word (designated by S) onwards and outputs them to the Special I/O Unit or
CPU Bus Unit that has the unit number designated by D.

D+1 D
D+1: Leftmost 4 digits
D: Rightmost 4 digits

Area C S D

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6142

Work Area W0 to W511 W0 to W510

Holding Bit Area H0 to H511 H0 to H510

Auxiliary Bit Area A0 to A959 A0 to A958

Timer Area T0000 to T4095 T0000 to T4094

Counter Area C0000 to C4095 C0000 to C4094

DM Area D0 to D32767 D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF (binary) Specified values
only

Data Registers DR0 to DR15 --- ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

D
D+1

Desig-
nated
number of
words
written.

Unit number of Special I/O Unit or CPU Bus Unit
799

Basic I/O Unit Instructions Section 3-22
Flags

Precautions When “0001” is designated for the number of words to be transferred (D+1),
the data for S can be designated by a constant. If a constant is designated for
S when the number of words to be transferred is not “0001,” an error will occur
and the Error Flag will turn ON.

The Equals Flag will turn ON if the writing operation is completed normally.

The Equals Flag will turn OFF if the writing operation cannot be completed
normally due to the Special I/O Unit or CPU Bus Unit being busy.

Whenever any of the following occur, an error will occur and the Error Flag will
turn ON.

• There is an I/O Unit verification error, a Special I/O Unit setting error, a
Special I/O Unit setting error, or a Special I/O Unit error at the Special I/O
Unit.

• There is an I/O Unit verification error, a CPU Bus Unit setting error, a CPU
Bus Unit setting error, or a CPU Bus Unit error at the CPU Bus Unit.

• The number of words to transfer (D) is outside the range of 0001 to 0080
(hex).

• The unit number (D) is outside the range of 0000 to 005F hex or 8000 to
800F hex.

• A Special I/O Unit or CPU Bus Unit not affected by IOWR(223) is desig-
nated.

• A Special I/O Unit with a setting error or an error is designated.

• A CPU Bus Unit with a setting error or an error is designated.

When IOWR(223) is executed, the execution results are reflected in the condi-
tion flags. In particular, the Equals Flag turns ON when reading is completed.
Input the condition flags such as the Equals Flag with output branching from
the same input conditions as the IOWR(223) instruction.

If the Special I/O Unit or CPU Bus Unit is busy, the writing operation will not be
executed. Use the Equals Flag to create a self-maintaining program, as
shown below, so that IOWR(223) will be executed with each cycle until the
writing operation is executed.

Name Label Operation

Error Flag ER ON if the number of words to transfer (D) is outside the
range of 0001 to 0080 hex.

ON if the unit number (D) is outside the range of 0000 to
005F hex or 8000 to 800F hex.
ON if S is designated by a constant when the number of
words to be transferred (D+1) is not 0001 hex.
ON if a Special I/O Unit or CPU Bus Unit not affected by
IOWR(223) is designated.

ON if a Special I/O Unit with a setting error or an error is
designated.
ON if a CPU Bus Unit with a setting error or an error is
designated.
OFF in all other cases.

Equals Flag = ON if writing operation is completed normally.
OFF if writing operation is not completed normally.
800

Basic I/O Unit Instructions Section 3-22
When the input condition is met, self maintenance is performed by output A
and IOWR(223) is executed with each cycle until the Equals Flag turns ON.
When the writing is completed and the Equals Flag turns ON, output B turns
ON and the self maintenance is cleared.

Be sure to place condition flags directly after IOWR(223) instructions, and not
after any other instructions. If a condition flag is placed after another instruc-
tion, it will be affected by the execution results of that instruction.

Example In this example, IOWR(223) is used to write data.

3-22-10 CPU BUS UNIT I/O REFRESH: DLNK(226)
Purpose Performs I/O refreshing immediately for the CPU Bus Unit with the specified

unit number. The following data is refreshed:

• The words allocated to the CPU Bus Unit in the PLC’s CPU Bus Unit
Areas (25 words in the CIO Area and 100 words in the DM Area)

• Specific data refreshing for Units such as Units that support data links

Ladder Symbol

B

IOWR

C

S

= B

D

A

A

D

0.00 1000.00

1000.01

D100

1000.00

1000.01

D100

D109

D+1 D

CPU Unit

When CIO 0.00 is turned ON, the 10 words in D100 to D109
are written to the Special I/O Unit.

Number of words
to transfer: 10

Unit number: 3

The control code (C) varies depending on the Special I/O Unit.

Special I/O Unit (Unit #3)

10 words

DLNK(226)
N

N: Unit number
801

Basic I/O Unit Instructions Section 3-22
Variations

Applicable Program Areas

Operands N: Unit number

Specifies the CPU Bus Unit’s unit number (0000 to 000F hex or 0 to 15 deci-
mal).

Operand Specifications

Description DLNK(226) performs immediate I/O refreshing for the CPU Bus Unit with the
specified unit number. The data listed below is refreshed. Refer to the Precau-
tions below for details on the execution conditions to use for immediate
refreshing.

1. The words allocated to the CPU Bus Unit in the PLC’s CPU Bus Unit Areas
(25 words in the CIO Area and 100 words in the DM Area)

2. Data specific the CPU Bus Unit such as data link data or DeviceNet Re-
mote I/O Communications data (refreshed together with the data in the
CPU Bush Unit Areas)

Variations Executed Each Cycle for ON Condition DLNK(226)

Executed Once for Upward Differentiation @DLNK(226)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #000F (binary) or 0 to 15 (decimal)

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

CPU Bus Unit Data refreshing specific to the Unit

Controller Link Unit Data link refreshing

DeviceNet Unit Remote I/O communications refreshing
802

Basic I/O Unit Instructions Section 3-22
The following table shows how DLNK(226) differs from IORF(097).

DLNK(226) refreshes data between the CPU Unit and specified CPU Bus
Unit. There are two special factors to consider when using DLNK(226):

1,2,3... 1. When exchanging data through a data link or DeviceNet remote I/O com-
munications, the data exchange is not performed with the other Units at the
same time that DLNK(226) is executed. The data exchange will be per-
formed when the network communications cycle reaches the Unit in ques-
tion and data is exchanged with that Unit. Consequently, the actual data
exchange may be delayed by as much as the communications cycle time
of the network.

2. DLNK(226) cannot perform I/O refreshing with a CPU Bus Unit if that Unit
is currently exchanging data. If DLNK(226) is executed too frequently, I/O
refreshing will not be performed. We recommend allowing a delay between
executions of DLNK(226) that is longer than the communications cycle
time.

Flags

Instruction Operation

DLNK(226) • I/O refreshing of the CPU Bus Unit Area in the CIO Area (25
words)

• I/O refreshing of the CPU Bus Unit Area in the DM Area (100
words)

• Refreshing of data specific to the CPU Bus Unit, such as data link
data or DeviceNet Remote I/O Communications data

IORF(097) • I/O refreshing of words used by CPM1A Expansion I/O Units or
CPM1A Expansion Units

• I/O refreshing of the 10 CIO words allocated to a Special I/O Unit

CPU Unit
CPU Bus Unit with
unit number NData areas used by the CPU

Bus Unit with unit number N

Words allocated
in CIO Area

Words allocated
in DM Area

Data link area

Refresh

Name Label Operation

Error Flag ER ON if the specified unit number is not between 0000 and
000F hex (between 0 and 15 decimal).
ON if the PLC does not have a CPU Bus Unit with the
specified unit number.

OFF in all other cases.

Equals Flag = OFF if the I/O refreshing could not be performed because
the CPU Bus Unit was refreshing data.

OFF if there was an error or setting error in the specified
CPU Bus Unit.
OFF if DLNK(226) was executed in an interrupt task,
there was a conflict with regular I/O refreshing, and over-
lapping refreshing occurred.
ON if the I/O refreshing was completed normally.
803

Basic I/O Unit Instructions Section 3-22
Precautions I/O refreshing will not be performed if a CPU Bus Unit Error (A402.07) or CPU
Bus Unit Setup Error (A402.03) has occurred in the specified CPU Bus Unit.

I/O refreshing will be stopped if an I/O Bus Error occurs while I/O refreshing is
being performed by DLNK(226).

DLNK(226) refreshes data between the CPU Unit and specified CPU Bus
Unit. Some time is required for the data exchange with the CPU Bus Unit (for
example, a data link with a Controller Link Unit).

If the specified CPU Bus Unit is exchanging data, DLNK(226) will not be exe-
cuted and the Equals Flag will be turned OFF. We recommend programming
the execution conditions shown below so that the execution of DLNK(226) will
be retried automatically.

Example When CIO 0.00 is ON in the following example, DLNK(226) performs immedi-
ate I/O refreshing (in this case, data link refreshing within the PLC) for the
CPU Bus Unit with unit number 1 (in this case, a Controller Link Unit).If I/O
refreshing cannot be performed because the Controller Link Unit is refreshing
data, the Equals Flag will be turned OFF causing W0.01 to be turned ON so
that the instruction execution will be retried in the next cycle. When the I/O
refreshing is completed normally, the Equals Flag will be turned ON and the
instruction will not be retried in the next cycle.

DLNK

N

a

b

b

a

Execution
condition

Equals Flag

Equals Flag

0.00
DLNK

&1

W0.01W0.01

W0.00

W0.00

Equals Flag

Equals Flag
804

Basic I/O Unit Instructions Section 3-22
The actual timing for data link area refreshing in this example is as follows:

• When transmitting: Data is transmitted over the network the next time that
the token right is acquired. (The transmitted data is delayed up to 1 com-
munications cycle time max.)

• When receiving: The data that is input was received from the network the
last time that the token right was acquired. (The data received is delayed
up to 1 communications cycle time max.)

Examples of Data Transfer Processing:

• Transferring Data from the Previous I/O Refreshing

• Transferring Data with Execution of DLNK(226)

DLNK

&1

0.00

Controller Link

Refresh

Data link area

Controller Link Unit
with unit number 1

Data link
refreshing

Cycle time Refreshing data link
data within PLC

Data transfer processing
Data link

One communications
cycle time

Cycle time Refreshing data link
data within PLC

Data transfer processing

Data link

One communications
cycle time
805

Serial Communications Instructions Section 3-23
3-23 Serial Communications Instructions
This section describes instructions used for serial communications.

3-23-1 Serial Communications
There are two types of serial communications instruction. The TXD(236),
RXD(235), TXDU(256), and RXDU(255) instructions send and receive data in
no-protocol (custom) communications with an external device. PMCR(260)
sends and receives data using user-defined protocols with an external device.
The difference is shown in the following tables.

Note (1) The TXD(236) and RXD(235) instructions transfer data only through a
port on a Serial Communications Option Board.

(2) The TXDU(256) and RXDU(255) instructions transfer data only through
a CJ-series Serial Communications Unit (Ver. 1.2 or later)

(3) The PMCR(260) instructions transfers data only through a CJ-series Se-
rial Communications Unit.

Instruction Mnemonic Function code Page

PROTOCOL MACRO PMCR 260 807

TRANSMIT TXD 236 816

RECEIVE RXD 235 821

TRANSMIT VIA SERIAL COMMU-
NICATIONS UNIT

TXDU 256 826

RECEIVE VIA SERIAL COMMU-
NICATIONS UNIT

RXDU 255 834

CHANGE SERIAL PORT SETUP STUP 237 842

Instructions Communications frames Function

TXD(236),
RXD(235),
TXDU(256),
and
RXDU(255)

Sends or receives data in one direction only.
A send delay can be set.

PMCR(260) The following type of frames (messages) can be created to
meet the requirements of the external device.

Up to 16 steps can be defined for sending
and receiving.
Steps can be changed and retry processing
performed based on responses.
Communications monitoring times can be
set.

Symbols can be read/written for the PLC.
Repeat symbols can be used.
Other.

Data Data

Data Data

Only End Code
Data Data

Any of the following can be used.
No Start or End Code Start and End Code

Only Start Code CR+LF End Code

Start and CR+LF End Code

Header Address Data Error check Terminator

Communications steps
can be created.

I/O memory

Read/write
806

Serial Communications Instructions Section 3-23
3-23-2 PROTOCOL MACRO: PMCR(260)
Purpose Calls and executes a communications sequence registered in a CJ-series

Serial Communications Unit.

Note A CJ Unit Adapter is required to use CJ-series Serial Communications Units.

Ladder Symbol

Variations

Applicable Program Areas

Instructions Mode Communications ports

TXD(236) and
RXD(235)

No-protocol
(custom)

Serial Port on a Serial Communications Option Board

TXDU(256) and
RXDU(255)

No-protocol
(custom)

Serial Port of a CJ-series Serial Communications Unit (Version 1.2 or later)

PMCR(260) Protocol macro Serial Port of a CJ-series Serial Communications Unit

CP1H CPU Unit

RXD
TXD

Serial Communications Option Board

TXDU/RXDU
CJ-series Serial
Communications Unit

CP1H CPU Unit

RXD
TXD

CP1H CPU Unit

PMCR
CJ-series Serial
Communications Unit

Receive
Send

PMCR(260)

C1

C2

S

R

C1: Control word 1

C2: Control word 2

S: First send word

R: First receive word

Variations Executed Each Cycle for ON Condition PMCR(260)

Executed Once for Upward Differentiation @PMCR(260)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
807

Serial Communications Instructions Section 3-23
Operands C1: Control Word 1 and C2: Control Word 2

The contents of the two control words are shown below.

S: First Send Word and Send Area

The first word of the words required to send data is specified. S contains the
number of words to be sent +1 (i.e., including the S word) and send data
starts in S+1. Between 0000 and 00FA hex (0 and 250 decimal) words can be
sent.

If there is no operand specified in the execution sequence, such as a direct or
linked word, specify the constant #0000 for S. If a word address or register is
specified, the data in the word or register must always be 0000. An error will
occur and the Error Flag will turn ON if any other constant or a word address
is given and PMCR(260) will not be executed.

R: First Receive Word and Receive Area

Received data is automatically stored in words starting with R+1 and the num-
ber of words received plus R (i.e., including R) is automatically written to R
between 0000 and 00FA hex (0 and 250 decimal).

Setting Before Executing PMCR

Set the data specified by m (beginning with D) as the initial data for the
receive buffer (backup data for receive failure). Data m can be set to 0002 to
00FA (hex) (2 to 255). If 0000 (hex) or 0001 (hex) is specified for m, the initial
value of the receive buffer will be cleared to 0.

Always set a word address for R even if there is no receive data. If a constant
is set, an error will occur, the Error Flag will turn ON, and PMCR(260) will not
be executed. If there is no receive data, R will not be used and can be used for
other purposes.

If there is no operand specified in the execution sequence, such as a direct or
linked word, specify the constant #0000 for R. If a word address or register is
specified, the data in the word or register must always be 0000.

15 8 011 37 412

C1

15 0

C2

Unit address of communications partner
CJ-series CPU Bus Unit: Unit number + 10 hex

Serial port number (physical port)
1 to 2 hex (1 hex: Port 1, 2 hex: Port 2)

Communications port number (logical port)
0 to 7 hex (F hex: Automatic allocation)

Communications sequence number
0000 to 03E7 hex (000 to 999 decimal)

to

Number of send words + 1

n words of data must be
prepared in advance.
808

Serial Communications Instructions Section 3-23
Operand Specifications

Description PMCR(260) will execute the communications sequence specified in C2 using
the logical port specified in bits 12 to 15 of C1 and the physical port specified
in bits 8 to 11 of C1 for the unit address specified in bits 0 to 7 of C1.

If a symbol is specified as the operand for a send message, the number of
send words specified in S and beginning from S+1 will be used as the send
area. If a symbol is specified as the operand for a receive message, receive
data is placed in memory staring with R+1 and the number of words received
is automatically written to R if the transmission is successful.

If the transmission fails, the data (R+1 onward) set before PMCR(260) was
executed will be read from the receive buffer and stored in the R+1 onward
again.

R

to
The m words of data that is
received is stored here.

Number of received words +1

Area C1 C2 S R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447

A448 to A959

A448 to
A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants Specified
values only

0000 to 03E7
hex
(0 to 999)

#0000 (binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
809

Serial Communications Instructions Section 3-23
Flags

Precautions The data in the send area specified with S is actually sent using the symbol
read option, R(), in a send message.

Data is actually received to the receive area specified by R using the symbol
write option, W(), in a receive message.

Refer to the CX-Protocol Operation Manual (W344) for procedures for desig-
nating symbols R() and W().

PMCR(260) can be executed for a serial communications port on a Serial
Communications Unit. Up to 2 Serial Communications Units can be mounted
as CJ-series Expansion Units. The unit address of the communications part-
ner must be set in bits 0 to 7 of C1 to specify which Unit is to be used and the
serial port number must be set in bits 8 to 11. Unit addresses are specified as
shown in the following table.

The corresponding Protocol Macro Execution Flag will turn ON at the start of
PMCR(260) execution. It will turn OFF after the communications sequence
has been completed and data has been written to the specified receive area.
A N.C. input for the corresponding Protocol Macro Execution Flag should be
used as part of the execution condition whenever executing PMCR(260) to be
sure that only one communications sequence is being executed at the same
time for the same physical port. An example is shown below.

R m

S

n

CPU Unit

n

to

to

External
device

CJ-series Serial
Communications Unit

Port

Communications
sequence No.

CJ Unit Adapter

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the specified logical port when PMCR(260) is executed.

ON if C1 is not within the specified ranges. (Error flag will
not turn ON if the C2 data is outside the specified ranges.
The end code will be stored in the Communications Port
Completion Code (A203 to A210) of the auxiliary area.)
ON if the number of words of S or R exceeds 249 (when
words are specified).

OFF in all other cases.

Unit/Board Unit address

Serial Communications Unit Unit number + 10 hex
810

Serial Communications Instructions Section 3-23
SEND(090), RECV(098), and CMND(490) also use the logical ports 0 to 7 to
execution communications sequences through Serial Communications Unit
(internally using FINS commands). PMCR(260) cannot be executed for a logi-
cal port that is already being used by SEND(090), RECV(098), CMND(490)or
PMCR(260). To prevent more than one communications sequence from being
executed for the same logical port, the corresponding Communications Port
Enable Flag (A202.00 to A202.07) should be used as a N.O. input in the exe-
cution condition for PMCR(260), as shown in the above diagram.

The Error Flag will turn ON in the following cases.

• The corresponding Communications Port Enable Flag is OFF for the
specified logical port (0 to 7) when PMCR(260) is executed.

• C1 is not within the specified ranges.

Designation of Receive Area

Before executing PMCR(260), users must set backup data in the receive area
for receive processing failure. Once the PMCR(260) is executed, the data in
the receive buffer is automatically stored in the receive area. One example of
the backup data application is as follows: A certain value (backup data) is set
in advance so that the present value will not be read as zero when transmis-
sion failure occurs while protocol is being executed for reading the present
value of a controller.

PMCR(260)

Communications Port
Enabled Flag

Protocol Macro
Execution Flag

Execution
condition

CP1H

PMCR

PMCR

CJ-series Unit

Internal logic ports (8 ports)
811

Serial Communications Instructions Section 3-23
Related Flags and Words The following flags and words can be used as required when executing
PMCR(260).

Auxiliary Area

Communications Responses

Name Address Contents

Communications Port
Enabled Flag

A202.00 to
A202.07

ON when network communications are
enabled (including PMCR(260).
Bits 00 to 07 correspond to logical ports 0 to
7, respectively.

A Communications Port Enabled Flag will
turn OFF when network communications are
started and will turn ON when they are com-
pleted (regardless of whether communica-
tions end normally or in error.

Communications Port
Error Flag

A219.00 to
A219.07

ON when an error occurs in network commu-
nications.
Bits 00 to 07 correspond to logical ports 0 to
7, respectively.
Flag status will be maintained until the next
network communications start. The flag will
turn OFF when communications start again
even if an error occurred for the last execu-
tion.

Communications Port
Completion Codes

A203 to A210 Contains the completion code stored when
network communications are performed.
Words A203 to A210 correspond to logical
ports 0 to 7, respectively.
The completion code will be 00 while the
communications instruction is being exe-
cuted. The new response code will be stored
when execution has been completed.

The contents of these words is cleared when
operation is started.

Code Contents

1106 (hex) No corresponding program number

Specified Send/Receive Sequence No. that has not been registered.
Modify the Send/Receive Sequence No. or add the number using the
CX-Programmer.

2201 (hex) Not operable due to protocol execution
Since one protocol macro has already been executed, no further exe-
cution is accepted.

Add NC condition to program for the Protocol Macro Execution Flag.

2202 (hex) Not operable due to stoppage

Since the protocol is being switched, no further execution is accepted.
Add NC condition to program for the Serial Setting Change Flag.

2401 (hex) No registration table

An error has occurred in the protocol macro data or data is being trans-
mitted.
Transmit the protocol macro data using the CX-Programmer.

Others Refer to the CJ-series Communications Commands Reference Manual
(W342) for other response codes.
812

Serial Communications Instructions Section 3-23
CPU Bus Unit Area

n = 1500 + 25 x unit number

Examples When CIO 0.00 is ON in the following example, communications sequence
No. 101 (0065 hex) will be executed for port 2 on the Serial Communications
Unit with unit number 0 as long as the Communications Port Enabled Flag for
port 7 (A202.07) is ON and the Protocol Macro Execution Flag (CIO 1500.15)
is OFF.

If an operand is specified for the symbol in a send message, 2 words of data
starting from D101 will be used as the send area (because the contents of
D100 is #0003).

If an operand is specified for the symbol in a receive message, 2 words of
data will be stored starting from D201 and the number of words received +1
will be written to D200.

Name Address Contents

Port 1 Protocol Macro
Execution Flag

Bit 15 of
CIO n+9

ON when PMCR(260) is executed. The flag
will remain OFF if execution fails. The flag
will turn OFF when the communications
sequence has been completed (either an
end or abort).

Port 2 Protocol Macro
Execution Flag

Bit 15 of
CIO n+19
813

Serial Communications Instructions Section 3-23
Holding the Receive Area The receive buffer is cleared to all zeros immediately before a communica-
tions sequence is executed for PMCR(260). If programming such as that
shown below is used to periodically read PV data or other values and data
cannot be read due to a reception error or other cause, the data being read
will be cleared until the next successful read.

A function is provided to maintain the data in the receive area even when a
reception error occurs. If this function is used, data will be transferred from the
first m words of the receive area to the receive buffer after the buffer is cleared
to all zeros but before the communications sequence is executed. This pre-
vents the receive area from being temporarily cleared to all zeros by writing
the most recent receive data when new receive data is not successfully
obtained.

Specify the number of words of the receive area to be maintained as the value
m. If 0 or 1 is specified, the holding function will be disabled and the receive
area will be cleared to all zeros.

0 1 0 0

0 2 0 0

R

3

2

PMCR

CP1H CPU Unit

0.00 1500.15 A202.07

#7210

D100

D200

1 0

D100

D101

D102

D200

D201

Sent

Note

Protocol
Macro
Execution
Flag

Communica-
tions Port En-
abled Flag

Unit address of communications pa
10 hex: CPU Bus Unit, unit number

Serial port number (physical port)
2 hex: Port 2

Communications port number (logical port)
7 hex: Logical port 7

Communications sequence number
0065 hex: 101

R(1),2: 2 bytes sent
from D101Used as

send area

Receiv

W(1),2: 2 bytes received
starting from D201Received

data

As shown above, the symbol read option, R()
in the send message or the symbol write op-
tion, W(), actually sends/receives data.

1 word

2 words

CJ-series
Serial Communications Unit
(unit number 0)

Communications
port 7

Serial
port 2
814

Serial Communications Instructions Section 3-23
The following programming example shows the instructions used to con-
stantly or periodically execute PMCR(260) to read data through a single
receive operation.

Set

m words

Data that was set will be
transfer if new data is not
successfully received.

Receive
buffer

Protocol
Macro
Execution
Flag

Communica-
tions Port En-
abled FlagAlways ON

Flag

Error

Recv

Error

Recv

Receive Area Not Held

Receive Area Held

Communications sequence

Receive buffer Cleared

Receive area (starting at
R+1)

Cleared data (all zeros)
stored.

Communications sequence

Receive buffer Cleared and
previous
data stored

Receive area (starting at
R+1) Set data stored if no new

data has been received
815

Serial Communications Instructions Section 3-23
3-23-3 TRANSMIT: TXD(236)
Purpose Outputs the specified number of bytes of data from a serial port on a Serial

Communications Option Board mounted to the CPU Unit.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the control word, C, is as shown below.

Operand Specifications

TXD(236)

S

C

N

S: First source word

C: Control word

N: Number of bytes
 0000 to 0100 hex (0 to 256)

Variations Executed Each Cycle for ON Condition TXD(236)

Executed Once for Upward Differentiation @TXD(236)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C

Serial port specifier
1 hex: Serial port 1 (on Serial Communicatio
 Option Board in option slot 1)
2 hex: Serial port 2 (on Serial Communicatio
 Option Board in option slot 2)

Always 0

Byte order
0 hex: Most significant bytes fi
1 hex: Least significant bytes f

RS and ER signal control
0 hex: No RS and ER signal control
1 hex: RS signal control
2 hex: ER signal control
3 hex: RS and ER signal control

Area S C N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767
816

Serial Communications Instructions Section 3-23
Description TXD(236) reads N bytes of data from words S to S+(N÷2)–1 and outputs the
raw data in no-protocol mode (RS-232C mode) from a serial port on a Serial
Communications Option Board mounted to the CPU Unit. (The output port is
specified with bits 8 to 11 of C.)

The start and end codes specified for no-protocol mode are added to the data
before the data is output. The start and end codes are specified in the PLC
Setup.

Data can be sent only when the port’s Send Ready Flag is ON. The Send
Ready Flag is A392.13 serial port 1 and A392.05 for serial port 2.

Up to 259 bytes can be sent, including the send data (N = 256 bytes max.),
the start code, and the end code.

Note Serial port 1 is the port on the Serial Communications Option Board mounted
in option slot 1 and serial port 2 is the port on the Serial Communications
Option Board mounted in option slot 2.

Constants --- Specified values
only

#0000 to #0100
(binary) or &0 to
&256 (decimal)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S C N
817

Serial Communications Instructions Section 3-23
The following diagram shows the order in which data is sent and the contents
of the send frame for various start and end code settings.

Flags

Precautions TXD(236) can be used only for Serial Communications Option Board’s serial
ports that are set to no-protocol mode (RS-232C mode).

The following send-message frame format can be set in the PLC Setup.

• Start code: None or 00 to FF hex.

• End code: None, CR+LF, or 00 to FF hex.

The data will be sent with any start and/or end codes specified in the PLC
Setup. If start and end codes are specified, the codes will be added to the
send data (N). In this case, the maximum number of bytes that can be speci-
fied for N is 256 bytes.

Data is sent in the order specified in C.

Nothing will be sent if 0 is specified for N.

If RS signal control is specified in C, bit 15 of S will be used as the RS signal.

1

3

5

2

4

6

CR LF

CR+LF End Code

Only End Code

Data

Data

Data

Data

Data

Data

N bytes of data is sent in the following order when
sending the most significant bytes first is specified:
1, 2, 3, 4, 5, 6

No Start or End Code

N send bytes: 256 max.

Only Start Code

Send bytes after ST:
256 max.

Send bytes before ED:
256 max.

Start and End Code

Send bytes between
ST and ED: 256 max.

Send bytes before
CR+LF: 256 max.

Send bytes between ST
and CR+LF: 256 max.

Start and CR+LF End Code

Data sent.

Serial port on Serial Communications Option Board

Name Label Operation

Error Flag ER ON if no-protocol mode (RS-232C mode) is not set in the
PLC Setup.

ON if the value of C is not within range.
ON if the value for N is not between 0000 and 0100 hex.
ON if a send is attempted when the Send Ready Flag is
OFF.
OFF in all other cases.
818

Serial Communications Instructions Section 3-23
If ER signal control is specified in C, bit 15 of S will be used as the ER signal.

If RS and ER signal control is specified in C, bit 15 of S will be used as the RS
signal and bit 14 of S will be used as the ER signal.

If 1, 2, or 3 hex is specified for RS and ER signal control in C, TXD(236) will be
executed regardless of the status of the Send Ready Flag.

An error will occur and the Error Flag will turn ON in the following cases.

• No-protocol mode is not set for the port in the PLC Setup.

• The value of C is not within range.

• The value for N is not between 0000 and 0100 hex.

• A send was attempted when the Send Ready Flag was OFF.

Related PLC Setup Settings

The following PLC Setup settings must be made for the serial port 1 or serial
port 2 executing TXD(236) after setting the communications mode to no-pro-
tocol (RS-232C mode).

Auxiliary Area

Setting Description

Communications Settings Standard The standard settings are as follows: 9,600
baud, 1 start bit, 7-bit data, even parity, and
2 stop bits.

Custom Baud: 300, 600, 1,200, 2,400, 4,800,
9,600, 19,200, 38,400, 57,600, or
115,200 bps
Format: 7- or 8-bit data; 1 or 2 stop
bits; even, odd, or even parity

Start Code Disable ---

Set 00 to FF hex

End Code Received
Bytes

No ---

Yes 00 hex: 256 bytes
01 to FF hex: 1 to 255 bytes

End Code No ---

CR/LF ---

Set 00 to FF hex

Delay 0000 to 210F hex: 0 to 99,990 ms (10-ms units)

Name Address Contents

Serial Port 1 Send Ready
Flag

A392.13 ON when data can be sent in no-proto-
col mode.

Serial Port 2 Send Ready
Flag

A392.05
819

Serial Communications Instructions Section 3-23
Example: Sending Data When CIO 0.01 and the Serial Port 1 Send Ready Flag (A392.13) are ON in
the following example, five bytes of data starting from the lower byte of D100
is sent to the Serial Communications Option Board mounted in option slot 1.

Example: Performing
Signal Control

When CIO 0.01 and the Serial Port 1 Send Ready Flag (A392.13) are ON in
the following example, the RS signal is set according to the status of D300 bit
15 and the ER signal is set according to the status of D300 bit 14.

TXD

D100

D200

&0

0.01

S

C

N

A392.13

0 1C: D200
812 3415 0711

S: D100

D101

D102

015
3 4 1 2

C D A B

E F

8 7

1 2 3 4 A B C D E F

ST 12 34 AB CD EF ED

Sent

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Start and end codes added according to set-
ting in PLC Setup (this example assumes
that both a start and end code have been

5 bytes

Sent in
specified
order.

Most signifi-
cant bytes

Least signif-
icant bytes

Byte order
0 hex: Most significant byte to least significant byte

RS and ER signal control
0 hex: RS and ER not controlled

Serial Port 1 Send
Ready Flag

Always 0 Serial port specifier
1 hex: Serial port 1

C: D400

S: D300

3 0

1 0 0 0

15 14 13 12

0 1

RS and ER signal control
3: RS and ER signal control.

ER signal set to 0

RS signal set to 1

TXD

D300

D400

&0

S

C

N

0.01 A392.13

Serial Port 1 Send
Ready Flag

Byte order
0: Most significant byte to least significant byte

Always 0

Serial port specifier
0: Serial Port 1 (i.e., Serial Communications Option Board
 mounted in option slot 1)
820

Serial Communications Instructions Section 3-23
3-23-4 RECEIVE: RXD(235)
Purpose Reads the specified number of bytes of data from a serial port on a Serial

Communications Option Board mounted to the CPU Unit.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the control word, C, is as shown below.

Operand Specifications

RXD(235)

D

C

N

D: First destination word

C: Control word

N: Number of bytes to store
 0000 to 0100 hex (0 to 256 decimal)

Variations Executed Each Cycle for ON Condition RXD(235)

Executed Once for Upward Differentiation @RXD(235)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C

812 3415 0711

Byte order
0 Hex: Most significant byte to least significant byte
1 Hex: Lest significant byte to most significant byte

CS and DR signal monitoring
0 hex: No CS and DR signal monitoring
1 hex: CS signal monitoring
2 hex: DR signal monitoring
3 hex: CS and DR signal monitoring.

Always 0

Serial port specifier
1 hex: Serial port 1 (on Serial Communications
 Option Board in option slot 1)
2 hex: Serial port 2 (on Serial Communications
 Option Board in option slot 2)

Area D C N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959 A0 to A447
A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767
821

Serial Communications Instructions Section 3-23
Description RXD(235) reads data that has been received in no-protocol mode at a serial
port on a Serial Communications Option Board and stores N bytes of data in
words D to D+(N÷2)–1. If N bytes of data has not been received at the port,
then only the data that has been received will be stored.

Data can be received only when the port’s Receive Ready Flag is ON. The
Receive Ready Flag is A392.14 for serial port 1 and A396.06 for serial port 2.
Execute RXD(235) only when the corresponding Receive Ready Flag is ON.

Up to 259 bytes can be received, including the receive data (N = 256 bytes
max.), the start code, and the end code.

The following diagram shows the order in which data is received and the con-
tents of the receive frame for various settings.

Note Serial port 1 is the port on the Serial Communications Option Board mounted
in option slot 1 and serial port 2 is the port on the Serial Communications
Option Board mounted in option slot 2.

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values
only

#0000 to #0100
(binary) or &0 to
&256 (decimal)

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area D C N
822

Serial Communications Instructions Section 3-23
Flags

Precautions RXD(235) can be used only for serial ports on Serial Communications Option
Boards mounted to the CPU Unit. In addition, the port must be set to no-proto-
col mode.

The following receive message frame format can be set in the PLC Setup.

• Start code: None or 00 to FF hex

1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1 2 3 4 5 6 0...

1

3

5

2

4

6

1

3

5

2

4

6

1

2

3

4

5

6

LFCR

Bytes

Receive bytes: Specified
in the PLC Setup

Receive bytes after ST:
Specified in the PLC Setup

Receive bytes before
ED: 256 max.

Receive bytes between
ST and ED: 256 max.

Receive bytes before
CR+LF: 256 max.

Receive bytes between
ST and CR+LF: 256 max.

When receiving the most signifi-
cant bytes first is specified (0):

Most signifi-
cant bytes

Least signif-
icant bytes

When receiving the least signifi-
cant bytes first is specified (0):

Most signifi-
cant bytes

Least signif-
icant bytes

N bytes
stored in the
specified or-
der.Max: 256 bytes

Received

Start and CR+LF End Code

CR+LF End Code

 Start and End Code

Only End Code

Only Start Code

No Start or End Code

Serial port on Serial Communications Option Board

Name Label Operation

Error Flag ER ON if no-protocol mode is not set in the PLC Setup.
ON if the value of C is not within range.

ON if the value for N is not between 0000 and 0100 hex.
OFF in all other cases.
823

Serial Communications Instructions Section 3-23
• End code: None, CR+LF, or 00 to FF hex. If no end code is specified, the
number of bytes to received is set from 00 to FF hex (1 to 256 decimal; 00
specifies 256 bytes).

The Reception Completed Flag will turn ON when the number of bytes speci-
fied in the PLC Setup has been received. When the Reception Completed
Flag turns ON, the number of bytes in the Reception Counter will have the
same value as the number of receive bytes specified in the PLC Setup or the
allocated DM Setup Area. If more bytes are received than specified, the
Reception Overflow Flag will turn ON.

If an end code is specified in the PLC Setup, the Reception Completed Flag
will turn ON when the end code is received or when 256 bytes of data have
been received. If more data is received after the Reception Completed Flag
turns ON, the Reception Overflow Flag will turn ON.

When RXD(235) is executed, data is stored in memory starting at D, the
Reception Completed Flag will turn OFF, and the Reception Counter will be
cleared to 0. If the Reception Overflow Flag has turned ON, it will also turn
OFF.

Data will be stored in memory in the order specified in C.

If 0 is specified for N, the Reception Completed Flag will be turned OFF, the
Reception Counter will be cleared to 0, and nothing will be stored in memory.

If CS signal monitoring is specified in C, the status of the CS signal will be
stored in bit 15 of D.

If DR signal monitoring is specified in C, the status of the DR signal will be
stored in bit 15 of D.

If CS and DR signal monitoring is specified in C, the status of the CS signal
will be stored in bit 15 of D and the status of the DR signal will be stored in bit
14 of D.

Receive data will not be stored if CS or DR signal monitoring is specified.

If 1, 2, or 3 hex is specified for RS and ER signal control in C, RXD(235) will
be executed regardless of the status of the Receive Completed Flag.

An error will occur and the Error Flag will turn ON in the following cases.

• The no-protocol mode (RS-232C mode) is not set for the port in the PLC
Setup.

• The value of C is not within range.

• The value for N is not between 0000 and 0100 hex.

Read the data using RXD(235) as soon as possible after the Reception Com-
pleted Flag turns ON. If reception is continued without reading the data, the
reception buffer will overflow and data reception will stop. If this occurs, the
port will have to be restarted to recover operation.

The reception buffer is not cleared when RXD(235) is executed. Thus, more
than one RXD(235) instruction can be used to read the data.
824

Serial Communications Instructions Section 3-23
Related PLC Setup Settings

The following PLC Setup settings must be made for the serial port 1 or serial
port 2 executing RXD(235). after setting the communications mode to no-pro-
tocol (RS-232C mode).

Auxiliary Area Flags

Setting Description

Communications Settings Standard The standard settings are as follows: 9,600
baud, 1 start bit, 7-bit data, even parity, and
2 stop bits.

Custom Baud: 300, 600, 1,200, 2,400, 4,800,
9,600, 19,200, 38,400, 57,600, or
115,200 bps
Format: 7- or 8-bit data; 1 or 2 stop
bits; even, odd, or even parity

Start Code Disable ---

Set 00 to FF hex

End Code Received
Bytes

No ---

Yes 00 hex: 256 bytes
01 to FF hex: 1 to 255 bytes

End Code No ---

CR/LF ---

Set 00 to FF hex

Delay 0000 to 210F hex: 0 to 99,990 ms (10-ms units)

Name Address Contents

Serial Port 1 Reception
Completed Flag

A392.14 ON when the serial port has completed
the reception in no-protocol mode.

When the number of bytes was speci-
fied: ON when the specified number of
bytes is received.

When the end code was specified: ON
when the end code is received or 256
bytes are received.

Serial Port 2 Reception
Completed Flag

A392.06

Serial Port 1 Reception
Overflow Flag

A392.15 ON when a data overflow occurred dur-
ing reception through a serial port in
no-protocol mode.
.When the number of bytes was speci-
fied: ON when more data is received
after the reception was completed but
before RXD(235) was executed.
When the end code was specified: ON
when more data is received after the
end code was received but before
RXD(235) was executed.

ON when 257 bytes are received before
the end code.

Serial Port 2 Reception
Overflow Flag

A392.07

Serial Port 1 Reception
Counter

A394 Indicates (in hexadecimal) the number
of bytes of data received when the
serial port is in no-protocol mode.Serial Port 2 Reception

Counter
A393
825

Serial Communications Instructions Section 3-23
Examples When CIO 0.00 and the Serial Port 1 Reception Completed Flag (A392.14) is
ON in the following example, data is received from serial port 1 and 10 bytes
of data are stored starting in D100.

3-23-5 TRANSMIT VIA SERIAL COMMUNICATIONS UNIT: TXDU(256)
Purpose Outputs the specified number of bytes of data from one of the CJ-series Serial

Communications Unit’s serial ports.

Note A CJ Unit Adapter is required to use CJ-series Serial Communications Units.

Ladder Symbol

Variations

Serial Port 1 Restart Bit A526.01 Turn this bit ON to restart the serial
port. The Reception Completed Flag
and Reception Overflow Flag will be
turned OFF and the Reception Counter
will be cleared to 0.

This bit is turned OFF automatically
when the restart processing is com-
pleted.

Serial Port 2 Restart Bit A526.00

Name Address Contents

C: D200 10

RXD

D100

D200

&10

0.00

D

C

N

A392.14

D: D100

D101

D102

D103

D104

Always 0

Stored

This example assumes that both a start and end
code have been specified in the PLC Setup.

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Most signifi-
cant bytes

Least signif-
icant bytes

CS and DR signal monitoring
0: No CS and DR signal monitoring

Byte order
1: Least significant bytes first

Serial port specifier
1: Serial port 1 (serial port on Serial Communictions
 Option Board mounted in option slot 1)

Reception
Completed
Flag

TXDU(256)

S

C

N

S: First source word

C: First control word

N: Number of bytes
 0000 to 0100 hex (0 to 256)

Variations Executed Each Cycle for ON Condition TXDU(256)

Executed Once for Upward Differentiation @TXDU(256)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
826

Serial Communications Instructions Section 3-23
Applicable Program Areas

Operands The contents of the control words, C and C+1, are as shown below.

Note The serial port’s unit address can be specified directly by setting the serial
port number to 0 and setting the destination unit address to the serial port’s
unit address. (Set the destination unit address to 80 hex + 4 × unit number for
port 1 or 81 hex + 4 × unit number for port 2.)

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 011 37 412

C

15 8 011 37 412

C+1

Destination unit address (See note.)
Serial Communications Unit's unit
address (unit number + 10 hex)

Serial port number
0: Specify directly. (See note.)
1: Port 1
2: Port 2

Port number specifier
(Internal logical port)
Specify 0 to 7 or F.
(F: Automatic allocation)

Always 00

Byte order
0: Most significant bytes first
1: Least significant bytes first

RS and ER signal control
0: No RS and ER signal control
1: RS signal control
2: ER signal control
3: RS and ER signal control

Area S C D

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6142

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W510 W0 to W511

Holding Bit Area H0 to H511 H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A958 A0 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D0 to D32767 D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values
only

#0000 to #0100
(binary) or &0 to
&256 (decimal)

Data Registers --- --- DR0 to DR15
827

Serial Communications Instructions Section 3-23
Description TXDU(256) reads N bytes of data from words S to S+(N÷2)–1 and outputs the
raw data in no-protocol mode from the Serial Communications Unit with the
unit address specified in bits 0 to 7 of C+1, through the port specified with bits
8 to 11 of C+1. The logical port number can be set to any value between 0
and 7 and is specified with bits 12 to 15 of C+1.

The start and end codes specified for no-protocol mode in the allocated DM
Setup Area are added to the data before the data is output. Up to 259 bytes
can be sent, including the send data (N = 256 bytes max.), the start code, and
the end code.

Data can be sent only when the Communications Port Enabled Flag for the
specified logical port (A202.00 to A202.07 for ports 0 to 7) is ON and the
TXDU Instruction Executing Flag (in the allocated DM Setup Area) is OFF.

Note The logical port number can be allocated automatically by setting bits 12 to 15
of C+1 to F. For details, refer to About Communications Port Numbers on
page 852.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S C D
828

Serial Communications Instructions Section 3-23
The following diagram shows the order in which data is sent and the contents
of the send frame for various start and end code settings.

Flags

Precautions TXDU(256) can be used only for a Serial Communications Unit’s serial port
that has been set to no-protocol mode.

The following send-message frame formats can be set in the allocated DM
Setup Area.

• Start code: None or 00 to FF hex.

• End code: None, CR+LF, or 00 to FF hex.

The data will be sent with any combination of start and/or end codes specified
in the allocated DM Setup Area. If start and end codes are specified, the
codes will be added to the send data (N). In this case, the maximum number
of bytes that can be specified for N is 256 bytes.

Data can be sent only when the port’s Send Ready Flag is ON.

Data is sent in the order specified in C.

Nothing will be sent if 0 is specified for N.

1

3

5

2

4

6

CR LF

CR+LF End Code

Only End Code

Data

Data

Data

Data

Data

Data

N bytes of data is sent in the following order when
sending the most significant bytes first is specified:
1, 2, 3, 4, 5, 6

No Start or End Code

N send bytes: 256 max.

Only Start Code

Send bytes after ST:
256 max.

Send bytes before ED:
256 max.

Start and End Code

Send bytes between
ST and ED: 256 max.

Send bytes before
CR+LF: 256 max.

Send bytes between ST
and CR+LF: 256 max.

Start and CR+LF End Code

Serial port on Serial Communications Unit

Data sent.

Name Label Operation

Error Flag ER ON if all of the logical ports are being used or the Com-
munications Port Enabled Flag for the specified logical
port is OFF when the instruction is executed.
ON if the value of C is not within range.
ON if the value for N is not between 0000 and 0200 hex.

OFF in all other cases.
829

Serial Communications Instructions Section 3-23
If RS signal control is specified in C, bit 15 of S will be used as the RS signal.

If ER signal control is specified in C, bit 15 of S will be used as the ER signal.

If RS and ER signal control is specified in C, bit 15 of S will be used as the RS
signal and bit 14 of S will be used as the ER signal.

TXDU(256) uses a logical port (because it sends an internal FINS command)
to output a send sequence command to the Serial Communications Unit (ver-
sion number 1.2 or later). Since SEND(090), RECV(098), CMND(490),
PMCR(260), and RXDU(255) also use logical ports 0 to 7, TXDU(256) cannot
be executed for a logical port if that logical port is already being used by one
of those instructions or another TXDU(256) instruction.

To ensure that TXDU(256) is not executed while the logical port is busy, pro-
gram the port’s Communications Port Enabled Flag (A202.00 to A202.07) as
a normally open condition.

TXDU(256) can not be executed while the TXDU Instruction Executing Flag
(bit 5 of n+9 or n+19, where n = CIO 1500 + 25 × unit number) is ON. To
ensure that another TXDU(256) is not executed for the port before the first
TXDU(256) is completed, program the port’s TXDU Instruction Executing Flag
as a normally closed condition.

An error will occur and the Error Flag will turn ON in the following cases.

• The Communications Port Enabled Flag for the specified logical port is
OFF when TXDU(256) is executed.

• The value of C is not within range.

• The value for N is not between 0000 and 0200 hex.

Note Depending on the external device, it might be necessary to set a send delay
when sending data with TXDU(256). It a send delay is required, set or adjust
the delay time in the allocated DM Setup Area.

Related Flags and Words The following PLC Setup settings and Auxiliary Area flag can be used as
required when executing TXD(236).

DM Setup Area Settings

(m = D30000 + 100 × unit number)

CPU Unit

TXDU

TXDU

CJ-series Units

Internal logic port (8 ports)

Setup Area word Bit Name Settings

Port 1 Port 2

m+2 m+12 15 No-protocol Mode Send
Delay Specifier

0: Default (0 ms)
1: Use delay in bits 1 to 14.

0 to 14 No-protocol Mode Send
Delay Time

0000 to 7530 hex
0 to 300,000 ms decimal
(in 10-ms units)

m+4 m+14 8 to 15 No-protocol Mode Start
Code

00 to FF hex

0 to 7 No-protocol Mode End
Code

00 to FF hex
830

Serial Communications Instructions Section 3-23
Auxiliary Area

Completion Codes

m+5 m+15 12 to 15 No-protocol Mode Start
Code Specifier

0: None
1: Use start code.

8 to 11 No-protocol Mode End
Code Specifier

0: None
1: Use end code.
2: Use CR+LF.

Setup Area word Bit Name Settings

Port 1 Port 2

Name Address Description

Communications
Port Enabled
Flags

A202.00
to
A202.07

ON when a communications instruction (including
TXDU(256) can be executed with the corresponding
port number. Bits 00 to 07 correspond to communica-
tions ports 0 to 7.

The flag is OFF when a communications instruction is
being executed and ON when the execution is com-
pleted (normal end or error end).

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding port numbers when communications
instructions have been executed. Words A203 to
A210 correspond to communications ports 0 to 7.
The code is 00 while the instruction is being executed
and contains the relevant code when execution is
completed.
These words are cleared to 0000 when PLC opera-
tion starts.

Communications
Port Error Flags

A219.00
to
A219.07

ON when an error occurred during execution of a
communications instruction. When a flag is ON,
check the completion code in A203 to A210 to trou-
bleshoot the error.

OFF when execution has been finished normally. Bits
00 to 07 correspond to communications ports 0 to 7.
The flag status is retained until the next communica-
tions instruction is executed. Even if an error has
occurred, a flag will be reset to 0 the next time that a
communications instruction is executed for that port.

Code Meaning

0205 hex Response timeout (This error can occur when the communications
mode is set to host link mode.)

0401 hex Undefined command (This error can occur when the communications
mode is set to protocol macro, NT Link, echoback test, or serial gate-
way mode.)

1001 hex The command is too long.

1002 hex The command is too short.

1003 hex The specified number of data elements does not match the actual
amount of send data.

1004 hex The command format is incorrect.

110C hex Other parameter error

2201 hex Operation could not be performed during operation. (Operation dis-
abled because Unit is busy sending.)

2202 hex Operation could not be performed when stopped. (Operation dis-
abled because Unit is switching protocols.)
831

Serial Communications Instructions Section 3-23
Related Flags in the CPU Bus Unit Area

(n = CIO 1500 + 25 × unit number)

Example: Flag Operation The following diagram shows the operation of the Communications Port
Enabled Flag and TXDU Instruction Executing Flag.

Example: Sending Data When CIO 0.00 is ON, A202.03 (the Communications Port Enabled Flag) is
ON, and CIO 1559.05 (the TXDU Instruction Executing Flag for port 1) is OFF
in the following example, TXDU(256) outputs data through serial port 1 of the
Serial Communications Unit with unit number 2. The 5 bytes of output data
are read from the DM Area beginning at the rightmost byte of D100 and out-
put through logical port 3 to a general-purpose device such as a printer.

Word Bit Name Status

Port 1 Port 2

n+9 n+19 05 TXDU Instruction
Executing Flag

0: TXDU(256) is not being executed.
1: TXDU(256) is being executed.

Instruction
execution

ON

OFF

Communications Port Enabled Flag
(A20200 to A20207 correspond to
communications ports 0 to 7.)

TXDU(256)

CPU Unit

TXDU Executing Flag
(Bit 5 of n+9 or n+19,
n = CIO 1500 + 25 x unit number)

ON

OFF

Send processing Send
processing

Serial
Communications
Unit

Send starts. Send completed.
832

Serial Communications Instructions Section 3-23
C+0: D200 0

 0 7 815

0

11 12

3

 0 7 815

1

11 12

0 1

 4 3

1 2

 4 3

S: D100

 0 7 815

4 1 23

D101 D A BC

D102 E F 1 2 3 4 A B C D E F

3412ST AB CD EF ED

C+1: 3

 0 7 815

0

11 12

8 8

 4 3

D30204

 0 7 815

2

11 12

0 3

 4 3

0

D30205:

 0 7 815

1

11 12 4 3

1

Always 00

RS and ER signal control
0: No RS and ER signal control

Byte order
1: Least significant bytes first

Communications Port
Enabled Flag

TXDU Instruction
Executing Flag

C+1: D201

Serial Communications Unit's unit address (Unit
address as CPU Bus Unit)
12 hex = Unit number + 10 hex

Serial port number
1: Port 1

Note:
The serial port's unit address can be specified directly by setting the serial port number to 0 and
setting the Serial Communications Unit's unit address to the serial port's unit address.
(Set the unit address to 80 hex + 4 x unit number for port 1 or 81 hex + 4 x unit number for port 2.)

Port number specifier
3: Logical port 3

Serial Communications Unit's unit address
88 hex = 80 hex + 4 x unit number

Serial port number
0: Specify port directly.

Port number specifier
3: Logical port 3

Data sent.

In this example, a start and end code have
been specified in the allocated DM Setup

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Most signifi-
cant bytes

Least signif-
icant bytes

Transfer order

5 bytesExample allocated DM Setup Area settings:

Start code
(02 hex)

End code
(03 hex)

Start code and end code values

Start code and end code specifiers

End code specifier
(1: Use end code.)

Start code specifier
(1: Use start code.)

TXDU

D100

D200
&5

1559.05A202.03

S

C

N

0.00
833

Serial Communications Instructions Section 3-23
3-23-6 RECEIVE VIA SERIAL COMMUNICATIONS UNIT: RXDU(255)
Purpose Reads the specified number of bytes of data from one of the CJ-series Serial

Communications Unit’s serial ports.

Note A CJ Unit Adapter is required to use CJ-series Serial Communications Units.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the control words, C and C+1, are as shown below.

Note The serial port’s unit address can be specified directly by setting the serial
port number to 0 and setting the destination unit address to the serial port’s
unit address. (Set the destination unit address to 80 hex + 4 × unit number for
port 1 or 81 hex + 4 × unit number for port 2.)

RXDU(255)

D

C

N

D: First destination word

C: First control word

N: Number of bytes
 0000 to 0100 hex (0 to 256)

Variations Executed Each Cycle for ON Condition RXDU(255)

Executed Once for Upward Differentiation @RXDU(255)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 011 37 412

C

15 8 011 37 412

C+1

Destination unit address (See note.)
Serial Communications Unit's unit
address (unit number + 10 hex)

Serial port number
0: Specify directly. (See note.)
1: Port 1
2: Port 2

Port number specifier
(Internal logical port)
Specify 0 to 7 or F.
(F: Automatic allocation)

Always 00

Byte order
0: Most significant bytes first
1: Least significant bytes first

RS and ER signal control
0: No RS and ER signal control
1: RS signal control
2: ER signal control
3: RS and ER signal control
834

Serial Communications Instructions Section 3-23
Operand Specifications

Description RXDU(255) reads data that has been received in no-protocol mode at the
Serial Communications Unit with the unit address specified in bits 0 to 7 of
C+1, through the port specified with bits 8 to 11 of C+1, and stores that data
starting at D. If fewer than N bytes of data have been received at the port, then
only the data that has been received will be stored. The logical port number
can be set to any value between 0 and 7 and is specified with bits 12 to 15 of
C+1.

Execute RXDU(255) to read the received data from the buffer when the
Reception Completed Flag (in the allocated DM Setup Area) is ON.

Up to 259 bytes can be received, including the receive data (N = 256 bytes
max.), the start code, and the end code.

The following diagram shows the order in which data is received and the con-
tents of the receive frame for various settings.

Note The logical port number can be allocated automatically by setting bits 12 to 15
of C+1 to F. For details, refer to About Communications Port Numbers on
page 852.

Area D C D

CIO Area CIO 0 to
CIO 6143

CIO 0 to
CIO 6142

CIO 0 to
CIO 6143

Work Area W0 to W511 W0 to W510 W0 to W511

Holding Bit Area H0 to H511 H0 to H510 H0 to H511

Auxiliary Bit Area A0 to A959 A0 to A958 A0 to A959

Timer Area T0000 to T4095 T0000 to T4094 T0000 to T4095

Counter Area C0000 to C4095 C0000 to C4094 C0000 to C4095

DM Area D0 to D32767 D0 to D32766 D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values
only

#0000 to #0100
(binary) or &0 to
&256 (decimal)

Data Registers --- --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
835

Serial Communications Instructions Section 3-23
The following diagram shows the order in which data is sent and the contents
of the send frame for various start and end code settings.

Flags

ED

ST

ED

ST

CRLF

ST CR LF

D

D+1

D+2

15 7 08

D

D+1

D+2

15 7 08

1

2

3

4

5

6

1

3

5

2

4

6

1

3

5

2

4

6

CR+LF End Code

Only End Code

Data

Data

Data

Data

Data

Data

No Start or End Code

Number of bytes
(Specified in allocated
DM Setup Area)

Only Start Code

Number of bytes up to ED:
256 max.

Start and End Code

Number of bytes between
ST and ED: 256 max.

Number of bytes up to
CR+LF: 256 max.

Number of bytes between
ST and CR+LF: 256 max.

Start and CR+LF End Code

Serial port on Serial Communications Unit

Data received.

Number of bytes
(Specified in allocated
DM Setup Area)

Bytes

N Storage order
(256 bytes max.)

Most signifi-
cant bytes

Least signif-
icant bytes

Byte order
0: Most significant bytes first

Most signifi-
cant bytes

Least signif-
icant bytes

Byte order
1: Least significant bytes first

Name Label Operation

Error Flag ER ON if all of the logical ports are being used or the Com-
munications Port Enabled Flag for the specified logical
port is OFF when the instruction is executed.
ON if the value of C is not within range.

ON if the value for N is not between 0000 and 0100 hex.
OFF in all other cases.
836

Serial Communications Instructions Section 3-23
Precautions RXDU(255) can be used only for a Serial Communications Unit’s serial port
that has been set to no-protocol mode.

The following receive-message frame formats can be set in the allocated DM
Setup Area.

• Start code: None or 00 to FF hex.

• End code: None, CR+LF, or 00 to FF hex. If no end code is specified, the
number of bytes to be received is set from 00 to FF hex (1 to 256 decimal;
00 specifies 256 bytes).

The Reception Completed Flag will turn ON when the number of bytes speci-
fied the allocated DM Setup Area has been received. When the Reception
Completed Flag turns ON, the number of bytes in the Reception Counter will
have the same value as the number of receive bytes specified in the allocated
DM Setup Area. If more bytes are received than specified, the Reception
Overflow Flag will turn ON.

If an end code is specified in the allocated DM Setup Area, the Reception
Completed Flag will turn ON when the end code is received or when 256
bytes of data have been received. If more data is received after the Reception
Completed Flag turns ON, the Reception Overflow Flag will turn ON.

Reception will be stopped if 259 bytes of data are received. If more data is
input after that, the Overrun Error Flag and Transmission Error Flag will turn
ON.

When more data is input to the Serial Communications Option Board’s serial
port than is specified in N, that data will be discarded when the next
RXDU(255) instruction is executed.

When RXDU(255) is executed, data is stored in memory starting at D, the
Reception Completed Flag will turn OFF (even if the Reception Overflow Flag
(note 3) is ON), and the Reception Counter will be cleared to 0.

Data will be stored in memory in the order specified in C.

If 0 is specified for N, the Reception Completed Flag and Reception Overflow
Flag will be turned OFF, the Reception Counter will be cleared to 0, and noth-
ing will be stored in memory.

If CS signal monitoring is specified in C, the status of the CS signal will be
stored in bit 15 of D.

If DR signal monitoring is specified in C, the status of the DR signal will be
stored in bit 15 of D.

If CS and DR signal monitoring is specified in C, the status of the CS signal
will be stored in bit 15 of D and the status of the DR signal will be stored in bit
14 of D.

Receive data will not be stored if CS or DR signal monitoring is specified.

If 1, 2, or 3 hex is specified for RS and DR signal control in C, RXDU(255) will
be executed regardless of the status of the Receive Completed Flag.

RXDU(255) uses a logical port (because it sends an internal FINS command)
to output a receive sequence command to a Serial Communications Unit.
Since SEND(090), RECV(098), CMND(490), PMCR(260), and TXDU(256)
also use logical ports 0 to 7, RXDU(255) cannot be executed for a logical port
if that logical port is already being used by one of those instructions or another
RXDU(255) instruction.
837

Serial Communications Instructions Section 3-23
To ensure that RXDU(255) is not executed while the logical port is busy, pro-
gram the port’s Communications Port Enabled Flag (A202.00 to A202.07) as
a normally open condition.

RXDU(255) can not be executed while the Reception Completed Flag (bit 6 of
n+9 or n+19, where n = CIO 1500 + 25 × unit number) is ON. Program the
Reception Completed Flag as a normally open condition of RXDU(255).

An error will occur and the Error Flag will turn ON in the following cases.

• The Communications Port Enabled Flag for the specified logical port is
OFF when RXDU(255) is executed.

• The value of C is not within range.

• The value for N is not between 0000 and 0100 hex.

Read the data using RXDU(255) as soon as possible after the Reception
Completed Flag turns ON. If reception is continued without reading the data,
the reception buffer (capacity: 260 bytes) will overflow and data reception will
stop. If this occurs, the port will have to be restarted to recover operation.

The reception buffer is cleared when RXDU(255) is executed for a serial port
on the Serial Communications Unit. Thus, more than one RXDU(255) instruc-
tion cannot be used to read the data.

Related Flags and Words The following words are related to RXDU(255) operation.

DM Setup Area Settings

(m = D30000 + 100 × unit number)

CPU Unit

RXDU

RXDU

CJ-series Unit

Internal logic ports (8 ports)

Setup Area word Bit Name Settings

Port 1 Port 2

m+4 m+14 8 to 15 No-protocol Mode Start
Code

00 to FF hex

0 to 7 No-protocol Mode End
Code

00 to FF hex

m+5 m+15 12 to 15 No-protocol Mode Start
Code Specifier

0: None
1: Use start code.

8 to 11 No-protocol Mode End
Code Specifier

0: None
1: Use end code.
2: Use CR+LF.
838

Serial Communications Instructions Section 3-23
Auxiliary Area

Completion Codes

Name Address Description

Communications
Port Enabled
Flags

A202.00
to
A202.07

ON when a communications instruction (including
RXDU(255)) can be executed with the corresponding
port number. Bits 00 to 07 correspond to communica-
tions ports 0 to 7.
The flag is OFF when a communications instruction is
being executed and ON when the execution is com-
pleted (normal end or error end).

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding port numbers when communications
instructions have been executed. Words A203 to
A210 correspond to communications ports 0 to 7.
The code is 00 while the instruction is being executed
and contains the relevant code when execution is
completed.
These words are cleared to 0000 when PLC opera-
tion starts.

Communications
Port Error Flags

A219.00
to
A219.07

ON when an error occurred during execution of a
communications instruction. When a flag is ON,
check the completion code in A203 to A210 to trou-
bleshoot the error.
OFF when execution has been finished normally. Bits
00 to 07 correspond to communications ports 0 to 7.

The flag status is retained until the next communica-
tions instruction is executed. Even if an error has
occurred, a flag will be reset to 0 the next time that a
communications instruction is executed for that port.

Code Meaning

0205 hex Response timeout (This error can occur when the communications
mode is set to host link mode.)

0401 hex Undefined command (This error can occur when the communications
mode is set to protocol macro, NT Link, echoback test, or serial gate-
way mode.)

1001 hex The command is too long.

1002 hex The command is too short.

1004 hex The command format is incorrect.

110C hex Other parameter error

2201 hex Operation could not be performed during operation. (Operation dis-
abled because Unit is busy sending.)

2202 hex Operation could not be performed when stopped. (Operation dis-
abled because Unit is switching protocols.)
839

Serial Communications Instructions Section 3-23
Related Flags in the CPU Bus Unit Area

(n = CIO 1500 + 25 × unit number)

Example: Flag Operation The following diagram shows the operation of RXDU(255) and related flags.

Word Bit Function

Port 1 Port 2

n+8 n+18 04 Overrun Error Flag
1: The reception buffer contained more than 259

bytes of data before RXDU(255) was executed.
Note: Once this error flag goes ON, it can be turned

OFF only by turning the power OFF and then ON
again or restarting the Board.

n+9 n+19 06 Reception Completed Flag
0: No data received or currently receiving data
1: Reception completed
0 → 1: The Board or Unit has received the specified

number of bytes.

1 → 0: RXDU(255) was executed to write the data from
the buffer to a CPU Unit data area.

n+9 n+19 07 Reception Overflow Flag
0: The Unit has not received more than the speci-

fied number of bytes.

1: The Unit has received more than the specified
number of bytes.

0 → 1: The Unit received more data after data reception
was completed.

1 → 0: RXDU(255) was executed to write the data from
the buffer to a CPU Unit data area.

n+10 n+20 05 Reception Counter
Indicates the number of bytes received in hexadecimal,
between 0000 and 0100 hex (0 to 256 decimal).

End code or specified
number of bytes received.

Instruction
execution

ON

OFF

Communications Port
Enabled Flag
(A20200 to A20207 correspond to
communications ports 0 to 7.)

RXDU(255)

CPU Unit

Reception Completed Flag
(Bit 6 of n+9 or n+19,
n = CIO 1500 + 25 x unit number)

ON

OFF

Serial
Communications

Unit

Reception processing

Reception
processing

Writing data to the CPU Unit's
data area

Write
processing
840

Serial Communications Instructions Section 3-23
Example: Receiving Data When CIO 0.00 is ON, A202.03 (the Communications Port Enabled Flag) is
ON, and CIO 1559.06 (the Reception Completed Flag for port 1) is OFF in the
following example, RXDU(255) reads the data received through serial port 1
of the Serial Communications Unit with unit number 2. (Logical communica-
tions port number 3 is used to receive the data from a general-purpose device
such as a bar-code reader.) The 10 bytes of received data are written to the
DM Area beginning at the rightmost byte of D100.

RXDU
D100

D200

&10

1559.06A202.03

D

C

N

0.00

C: D200 0

 0 7 815

0

11 12

3

 0

Serial Communications Unit's unit address
 (CPU Bus Unit's unit address)
12: Unit address + 10 hex

 7 815

1

11 12

0 1

 4 3

Always 0

0: No RS and ER signal control

1 2

 4 3

3: Communications port No. 3
Communication port No. specifier (internal logic port)

1: Serial port No. 1
Serial Communications Unit's serial port specifier

D: D100

 0 7 815

4 1 2

Most significant bytes Least significant bytes

D101 8 5 6

D102 A B 1 2 3 4 5 6 7 8 A B C D E F G H I J K L

10 bytes

3412ST 56 78 AB CD

ST: Start code (e.g., 02 hex)
ED: End code (e.g., 03 hex)

Data received

D

3

7

C

H E F

L I J

G

K

D103

D104

EF GH IJ KL ED

C+1: D201

C+1 3
 0

88: 80 + (04_Unit No. 2)

 7 815
0

11 12
8 8
 4 3

3: Communications port No. 3
 Communications port No. specifier (internal logic port)

0: Directly specified serial port unit address

Note: Allocated DM Area Settings

• Start code/end code

D30204:
 0

End code (e.g., 03 hex)

 7 815
2

11 12
0 3
 4 3

 Start code (e.g., 02 hex)

0

• Start code/end code specifier

D30205:
 0 7 815

1
11 12 4 3

1

End code specifier
1: Use end code

00: Unlimited (256 bytes max.)

1: Least signeificant byte to most significant byte

RS and ER signal control

Serial Communications Unit's serial port unit address specifier

Number of receive data bytes

Start code specifier
1: Use start code

Communications
Port Enabled
Flag

Reception
Completed
Flag

Note: The Serial Communications Unit's serial port unit address can
also be directly specified in C+1.

Received in
specified
order:

Start and end codes added
according to setting in PLC Setup
841

Serial Communications Instructions Section 3-23
3-23-7 CHANGE SERIAL PORT SETUP: STUP(237)
Purpose Changes the communications parameters of a serial port on a Serial Commu-

nications Option Board or CJ-series Serial Communications Unit (CPU Bus
Unit). STUP(237) thus enables the protocol mode to be changed during PLC
operation.

Ladder Symbol

Variations

Applicable Program Areas

Operands The contents of the control word, C, are as shown below.

Operand Specifications

STUP(237)

C

S

C: Control word (port)

S: First source word

Variations Executed Each Cycle for ON Condition STUP(237)

Executed Once for Upward Differentiation @STUP(237)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed

15 8 011 712
C

Unit address of partner device
00 hex: Serial Communicatons Option Board on CPU Unit
Unit number + 10 hex: CPU Bus Unit

Serial port number
1 hex: Serial port 1
2 hex: Serial port 2
(Settings 3 and 4 hex are reserved.)

Always set to 0.

Area C S

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6134

Work Area W0 to W511 W0 to W502

Holding Bit Area H0 to H511 H0 to H502

Auxiliary Bit Area A0 to A438

A448 to A959

A0 to A438

A448 to A950

Timer Area T0000 to T4095 T0000 to T4086

Counter Area C0000 to C4095 C0000 to C4086

DM Area D0 to D32767 D0 to D32758

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants Specified values only #0000

Data Registers DR0 to DR15 ---
842

Serial Communications Instructions Section 3-23
Description STUP(237) writes 10 words of data from S to S+9 to the communications
setup area of the Unit with the specified unit address, as shown in the follow-
ing table. When the constant #0000 is designated to S, the communications
settings of the corresponding port will be set to default.

Note Serial port 1 is the port on the Serial Communications Option Board mounted
in option slot 1 and serial port 2 is the port on the Serial Communications
Option Board mounted in option slot 2.

When STUP(237) is executed, the corresponding Port Parameters Changing
Flag (A619.01, A619.02, or A619 to A636) will turn ON. The flag will remain
ON until changing the parameters has been completed.

Use STUP(237) to change communications parameter for a port during oper-
ation based on specified conditions. For example, STUP(237) can be used to
change to Host Link communications for monitoring and programming from a
host computer when specified conditions are meet while execution a commu-
nications sequence for a modem connection.

If the PLC is turned OFF and then ON again after STUP(237) has been used
to change the communications parameters, the parameters will revert to the
previous parameters, i.e., the ones before STUP(237) was executed.

Flags

Precautions Communications parameters consist of the protocol mode, baud rate, data
format (protocol macro transmission method and protocol macro maximum
communications data length), and other parameters. Refer to CJ-series Serial
Communications Boards and Serial Communications Unit Operation Manual
(W336) for the serial port that is to be set for details.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area C S

Unit address Unit Port No. Serial port Serial port communications
setup area

00 hex CPU Unit 1 hex Port 1 Communications parameters for
the serial port 1 in the PLC
Setup

2 hex Port 2 Communications parameters for
serial port 2 in the PLC Setup

Unit No. + 10
hex

CJ-series Serial Com-
munications Unit (CPU
Bus Unit)

1 hex Port 1 10 words starting from D30000 +
100 x Unit No.

2 hex Port 2 10 words starting from D30000 +
100 x Unit No. + 10

Name Label Operation

Error Flag ER ON if the values in C are not within range.
ON if STUP(237) is executed for a port whose Communi-
cations Parameter Changing Flag is already ON.

ON if STUP(237) is executed in an interrupt task.
OFF in all other cases.
843

Serial Communications Instructions Section 3-23
Related Flags and Words The following flags can be used as required when executing STUP(237).
These flags are in the Auxiliary Area.

Examples When CIO 0.00 turns ON in the following example, the communications
parameters for serial port 1 of the Serial Communications Unit will be
changed to the settings contained in the 10 words from D100 to D109. In this
example, the setting are changed the protocol mode to the protocol macro
mode.

Name Address Contents

Serial Port 1 Parameters
Changing Flag

A619.01 ON when the communications parame-
ters are being changed for serial port 1.

Serial Port 2 Parameters
Changing Flag

A619.02 ON when the communications parame-
ters are being changed for serial port 2.

Port Parameters Changing
Flags for ports 1 to 4 on
Serial Communications
Units 1 to 15.

A620.01 to
A620.04
A635.01 to
A635.04

ON when the communications parame-
ters are being changed for a port on a
Serial Communications Unit.

S: D100

S+1: D101

S+2: D102

S+9: D109

6

6

0.00

#0110

D100

D30000

D30001
D30002

D30009

to to

to to

Port setting: Default, Protocol mode: 6 hex (protocol macro).

Baud rate: Default (9,600 bps)

Transferred

DM words allocated to the communications
setup of the Serial Communications Unit
844

Serial Communications Instructions Section 3-23
845

Network Instructions Section 3-24
3-24 Network Instructions
This section describes instructions used to send and receive data via net-
works.

3-24-1 About Network Instructions
The network instructions are used between nodes on networks configured
using Serial Communications Option Boards and CJ-series Units to transfer
data and control operation, such as changing the operating mode. Nodes can
consist of CP1H CPU Units, CS/CJ-series CPU Units, CS/CJ-series CPU Bus
Units, and computers.

The commands executed by the network instructions are known as “FINS
commands” and are used for communications between FA control devices.
(Refer to the CS/CJ/CP Series Communications Commands Reference Man-
ual for details on FINS commands.) With FINS commands it is possible to
communicate (by the command/response format) with any Unit in any network
on just by specifying the network address, node number, and unit number of
the destination Unit.

Instruction Mnemonic Function
code

Page

NETWORK SEND SEND 090 866

NETWORK RECEIVE RECV 098 872

DELIVER COMMAND CMND 490 878

EXPLICIT MESSAGE SEND EXPLT 720 885

EXPLICIT GET ATTRIBUTE EGATR 721 892

EXPLICIT SET ATTRIBUTE ESATR 722 899

EXPLICIT WORD READ ECHRD 723 904

EXPLICIT WORD WRITE ECHWR 724 908

Instruction Message content Operation

SEND(090)/
RECV(098)

Commands to transmit/
receive data
(FINS command)

CMND(490) Arbitrary commands
(FINS command)

Data reception

CPU Unit Other device

CPU Unit,
CPU Bus Unit or
computer

Data transmission
SEND(090) or
RECV(098)

CMND(490)

Command sent

Other deviceCPU Unit

Response returned

CPU Unit,
CPU Bus Unit, or
computer
846

Network Instructions Section 3-24
In the following example, a FINS command is sent to the CPU Unit through
node number 2 in network address 00.

1,2,3... 1. Network address:
Address of the network (local network = 00)

2. Node number
Logical address in the network

3. Unit number
Unit number of the destination Unit

a. CP1H or CS/CJ-series CPU Unit: 00

b. CS/CJ-series CPU Bus Unit: Unit number + 10 hexadecimal

c. CS/CJ-series Special I/O Unit: Unit number + 20 hexadecimal

d. CS-series Inner Board: E1 hexadecimal

e. Computer:01

Note It is also possible to directly specify a serial port (unit address) within the des-
tination device.

Network address 01

CPU Unit (Rack)

Node number 2

Node number 1

Network address 00
(local network)

Unit number
(hexadecimal)

Destination device

00

Unit number +10

E1

01

Node number

Node number

Node number

Node number
847

Network Instructions Section 3-24
Serial Port Addresses:

• CS/CJ-series Serial Communications Unit ports

Port 1: 80 hex + 4 × unit number

Port 2: 81 hex + 4 × unit number

• CS-series Serial Communications Board ports

Port 1: E4 hex (228 decimal)
Port 2: E5 hex (229 decimal)

• CS/CJ-series CPU Unit ports

Peripheral port: FD hex (253 decimal)
RS-232C port: FC hex (252 decimal)

• CP1H CPU Unit

Port 1: FD hex (253 decimal)
Port 2: FC hex (252 decimal)

Note Serial port 1 is the port on the Serial Communications Option Board mounted
in option slot 1 and serial port 2 is the port on the Serial Communications
Option Board mounted in option slot 2.

Network Communications
Patterns

The following examples show three types of network communications: com-
munications from a PLC to other devices in a network, communications from a
PLC to serial ports on other devices in a network, and communications to a
host computer connected by a Host Link.

Communications to Another Device in the Network

The following example shows communications from a PLC to devices in
another PLC (the CPU Unit, CPU Bus Unit, or Inner Board). For more details,
refer to the operation manual for the network (Controller Link or Ethernet)
being used.

CS-series Inner Board CS/CJ-series CPU Unit

CS/CJ-series
Serial Communications Unit

Serial port 1

Serial port 2
Serial port 1

Serial port 2

Serial port 2 (Peripheral)

Serial port 1 (RS-232C)

CP1H
CPU Unit Serial port 1

Serial port 2

Unit number 0 1 2 3 4 5 6 7 8 9 A B C D E F

Hexadecimal 80 84 88 8C 90 94 98 9C A0 A4 A8 AC B0 B4 B8 BC

Decimal 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188

Unit number 0 1 2 3 4 5 6 7 8 9 A B C D E F

Hexadecimal 81 85 89 8D 91 95 99 9D A1 A5 A9 AD B1 B5 B9 BD

Decimal 129 133 137 141 145 149 153 157 161 165 169 173 177 181 185 189

PLC to PLC
To Inner Board

To CPU Unit

To CPU
Bus Unit
848

Network Instructions Section 3-24
This example shows communications from a PLC to a personal computer.

Communications to a Serial Port in the Network

These examples show communications from a PLC to serial ports in devices
in the network. The first shows communications to serial ports in devices in
another PLC (the CPU Unit, CPU Bus Unit, or Inner Board) and the second
shows communications to a serial port within the CPU Rack itself.

Note Communications can span up to 8 network levels, including the local network.
(The local network is the network where the communications originate.)

In order to communicate through the network, it is necessary to register a
routing table in each PLC’s CPU Unit which indicates the route by which data
will be transferred to the desired node. Each routing table is made up of a
local network table and a relay network table.

1,2,3... 1. Local network table
This table shows the unit numbers and network addresses of the nodes
connected to the local PLC.

2. Relay network table
This table shows the node numbers and network addresses of the first re-
lay nodes to destination networks that are not connected to the local PLC.

PLC to computer

Through the network

Within the CPU Rack

Network 1
(local network)

Network 2 Network 3

Bridge or gatewayBridge or gateway

SEND(090),
RECV(098), or
CMND(490)
849

Network Instructions Section 3-24
Communications to a Host Computer (Host Link)

By sending a SEND(090), RECV(098), or CMND(490) instruction to a serial
port set to Host Link mode, the necessary Host Link header and terminator
will be attached to the FINS command and the command will be sent to the
host computer.

Note Host Link communications can be sent through the network. In this case, the
FINS command travels through the network normally. When the command
reaches the Host Link system, the necessary Host Link header and terminator
are attached to the FINS command and the command is sent to the host com-
puter.

Serial Gateway Communications to a Component or Host Link Slave

It is possible to send FINS commands (or send/receive data) to a component
or Host Link Slave connected to the PLC through its serial port with the serial
gateway function.

• Sending to a Component

When a CMND(490) instruction is executed to a serial port that supports
the serial gateway function, the serial gateway function converts the com-
mand to a CompoWay/F, Modbus-RTU, or Modbus-ASCII command.

FINS FINS

Host computer

Host Link

Host Link header and address

Host computer

Host Link

Serial Communications Option Board port

Cj-seires Serial
Communications Unit

Host Link FCS
and terminator

CJ-series Serial Communications Unit port

Serial Communications
Option Board

FINS command

Host Link

Host computer

Host Link header

FINS
command

Host Link FCS
and terminator

Serial cable

Modbus-RTU Slave device

Modbus RTU

CMND

CP1H
850

Network Instructions Section 3-24
• Sending to a PLC operating as a Host Link Slave

When a CMND(490), SEND(090), or RECV(098) instruction is executed to
a serial port that supports the serial gateway function, the serial gateway
function can send any FINS command or send/receive data.

Communications from a Host Computer (Host Link)

It is possible to send FINS commands from a host computer to the PLC to
which it is connected as well as other devices in the network (CPU Units, Spe-
cial I/O Units, computers, etc.). In this case, the necessary Host Link header
and terminator must be attached to the FINS command when it is sent.

Communications Flags The operation of the communications flags is outlined below.

• The Communications Port Enabled Flag is reset to 0 when communica-
tions are in progress and set to 1 when communications are completed
(normally or not).

• The status of the Communications Port Error Flag is maintained until the
next time that data is transmitted or received.

• The Communications Port Error Flag will be reset to 0 the next time that
data is transmitted or received, even if there was an error in the previous
operation.

Serial cable

PLC
Host Link Slave

CMND

PLC

Host link FINS

Host computer

Host Link

FINS
command

Host Link header

Host Link FCS
and terminator FINS command

0204

Busy

Communications Port
Enabled Flag

Network instruction
(SEND, RECV, or CMND)

Communications Port
Error Flag

Communications Port
Completion Code

Instruction 1
executing

Previous
completion

0000 (Normal
completion)

Instruction 2
executing

Instruction 3
executing

0000 (Normal completion)
851

Network Instructions Section 3-24
About Communications
Port Numbers

There are 8 logical communications ports provided, so 8 communications
instructions can be executed simultaneously. Only one instruction can be exe-
cuted at a time for each communications port. Exclusive control must be used
when more than 8 instructions are executed.

These 8 communications port numbers are shared by the network instructions
(SEND(090), RECV(098), and CMND(490)), the serial communications
instructions (TXDU(256) and RXDU(255)), and the PROTOCOL MACRO
instruction (PMCR(260)). Be sure not to specify the same port number on two
instructions at the same time.

The following diagram shows an example of exclusive control.

CP1H CPU Unit

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 7

Instruction 8

Communications port
(internal logic port) CJ-series Communications Unit

KEEP A

DIFU B

KEEP C

Reset B

Reset D

Execution
condition

Relevant
Communications
Port Enabled Flag

Creates op-
erand or
control data
with @MOV
or @XFER.

@SEND,
@RECEIVE,
@CMND

Relevant
Communications Port
Enabled Flag

Relevant
Communications Port
Enabled Flag

Execution
condition

Relevant
Communications
Port Enabled Flag

Same as above.

Bit A remains ON while the communications
instruction is being executed.

Copies the operand data and control data for
the communications instruction to the desired
data area.

Executes the communications instruction
for the specified port.

Writes the reset input. (Reset B is turned
ON when the communications instruction
is completed.)

For Transmission Error Flag display
(Good if data is retransmitted.)

Exclusive control to prevent simulta-
neous execution:
Exclusive control prevents another
communications instruction from being
executed until the instruction above is
completed.
852

Network Instructions Section 3-24
Automatic Allocation of
Communications Ports

The port number can be specified as “F” instead of from 0 to 7 to automati-
cally allocate the communications port, i.e., the next open communications
port is used automatically.

This saves the programmer from having to keep track of communications
ports while programming. Even when automatic allocation is used, only a
maximum of 8 ports can be used at the same time. Also, the communications
port numbers must be used to access the flags and responses for specific
communications ports by using A218 (Used Communications Port Number)
and A216 and A217 (Network Communications Completion Code Storage
Address).

The differences between assigning specific port numbers and automatically
allocating port numbers are given in the following table.

■ Auxiliary Area Bits and Words Used when Automatically Allocating
Communications Ports

Item Specific number
assignments

Automatic allocation

Specification of the com-
munications port number
in the control data

0 to 7 F

Exclusive control Required. Not required unless more than 8
communications ports are
required at the same time.

Flag applications LD or LD NOT used
with flag corre-
sponding to the
specified communi-
cations port.

TST(350) or TSTN(351) used with
A218 (Used Communications Port
Number).

Network communica-
tions completion codes

Completion code for
communications
port specified by
user is accessed.

Completion codes are accessed
by using the I/O memory address
stored in A216 and A217 (Network
Communications Completion
Code Storage Address) and index
register indirect addressing.

Communica-
tions port: F

When “F” is specified, the next available
communications port is used automatically.

@Communica-
tions instruction

Address Bits Name Description

A202 15 Network Communications Port
Allocation Enabled Flag

ON when there is a communications port available for automatic
allocation. This flag can be used to confirm if all eight communica-
tions ports have already been allocated before executing communi-
cations instructions.

A214 00 to 07 First Cycle Flags after Network
Communications Finished

Each flag will turn ON for just one cycle after communications have
been completed. Bits 00 to 07 correspond to ports 0 to 7. Use the
Used Communications Port Number stored in A218 to determine
which flag to access.

Note These flags are not effective until the next cycle after the com-
munications instruction is executed. Delay accessing them for
at least one cycle.

08 to 15 Do not use.
853

Network Instructions Section 3-24
Note (1) Use the following flowchart to determine whether to use the Network
Communications Port Allocation Enabled Flag (A20215) and the Network
Communications Completion Code Storage Address (A216 and A217).

(2) The Auxiliary Area bits and words used for user-specified communica-
tions ports are listed in the following table.

A215 00 to 07 First Cycle Flags after Network
Communications Error

Each flag will turn ON for just one cycle after a communications
error occurs. Bits 00 to 07 correspond to ports 0 to 7. Use the Used
Communications Port Number stored in A218 to determine which
flag to access.

Note These flags are not effective until the next cycle after the com-
munications instruction is executed. Delay accessing them for
at least one cycle.

08 to 15 Do not use.

A216
and
A217

--- Network Communications
Completion Code Storage
Address

The completion code for a communications instruction is automati-
cally stored at the address with the I/O memory address given in
these words. Place this address into an index register and use indi-
rect addressing through the index register to reach the communica-
tions completion code.

A218 --- Used Communications Port
Number

When a communications instruction is executed, the number of the
communications port that was used is stored in this word. Values
0000 to 0007 hex correspond to communications ports 0 to 7.

Address Bits Name Description

YES

NO

NO

YES

Use A202.15 and perform exclu-
sive control.

Using more than 8 com-
munications ports?

Communications comple-
tion codes required?

Use A216 and A217 with indirect
addressing via an index register to
check the code.

Use automatic communications
port allocation.

Address Bits Name Description

A202 00 to 07 Communications Port Enabled
Flags

ON when a communications instruction can be executed with the
corresponding port number. Bits 00 to 07 correspond to communica-
tions ports 0 to 7.
The completion of communications can be confirmed by monitoring
when a flag turns ON. The flag will turn OFF when execution of a
communications instruction is started.

A203 to
A210

--- Communications Port Comple-
tion Codes

These words contain the completion codes for the corresponding
port numbers when communications instructions have been exe-
cuted. Words A203 to A210 correspond to communications ports 0
to 7.

A219 00 to 07 Communications Port Error
Flags

ON when an error occurred during execution of a communications
instruction. When a flag is ON, check the completion code in A203
to A210 to troubleshoot the error.
Turn OFF then execution has been finished normally. Bits 00 to 07
correspond to communications ports 0 to 7.
854

Network Instructions Section 3-24
Flag/Word Operation

ON for one cycle

ON for one cycle

Cleared to zeros Response stored

Communications Port Enabled
Flags (A20200 to A20207)

Normal completion:
First Cycle Flags after Network
Communications Finished
(A21400 to A2407)

Communications Port Com-
pletion Codes (A203 to A210)

Error completion:
Communications Port Error
Flags (A21900 to A21907)

First Cycle Flags after
Network Communications
Error (A21500 to A21507)

Communica-
tions instruc-
tion executed.

Communica-
tions completed.
855

Network Instructions Section 3-24
■ Applications Methods

To use automatic communications port allocation, set the communications
port number of “F” and then program as shown below.

Completing and Processing Error after Executing Communications
Instructions

Execution condition

d (Execution completed)

a (Executing)

c (Standby)

d (Execution completed)c (Standby)a (Executing)

MOV

A218

a
(Executing)

TST

A214

TSTN

A215

TST

A215

KEEP

Communications
instructions

Port: F

b
(Used port)

b
(Used port)

b
(Used port)

b
(Used port)

When a (Executing) turns ON, a communications instruction
(SEND(090), RECV(098), CMND(490), or PMCR(260)) is executed with the
communications port specified as “F.”

The communications port number that was automatically allocated is
stored in a work word b (Used port) from A218 (Used Communications
Port Number).

Confirms that the First Cycle Flags after Network Communications Finished for the
automatically allocated port number (corresponding bit for word b in A214) is ON.

Confirms that the First Cycle Flags after Network
Communications Error for the automatically allocated port
number (corresponding bit for word b in A215) is OFF.

Network communications
completion processing

Network communictions error
processing

Bit c turns OFF the cycle after the
communications instruction was
executed to enable checking for
communications completion or
communications errors.

Confirms that the First Cycle Flags after Network
Communications Error for the automatically allocated port
number (corresponding bit for word b in A215) is OFF.
856

Network Instructions Section 3-24
Accessing the Completion Code after Executing Communications
Instructions

The completion codes are generally used to troubleshoot errors when they
occur. A completion code of 0000 hex can, however, also be used to confirm
that communications have completed normally.

Port: F

MOV

A218

KEEP

MOVL

A216

TST

A214

MOVL

IR0

<>

,IR0

#0000

Execution condition

d (Execution completed)

a (Executing)

c (Standby)

Communications
instructions

a (Executing) c (Standby) d (Execution completed)

When a (Executing) turns ON, a communications instruction
(SEND(090), RECV(098), CMND(490), or PMCR(260)) is executed with
the communications port specified as “F.”

The communications port number that was automatically allocated is
stored in a work word b (Used port) from A218 (Used Communications
Port Number).

Places the I/O memory address (A216) containing the completion code
for the communications instruction executed with automatic allocation of
the communication port into work word e (Code storage location).

Confirms that the First Cycle Flags after Network Communications
Finished for the automatically allocated port number (corresponding bit for
word b in A214) is ON.

Places the I/O memory
address of the communications
response code from work word
e (Code storage location into
index register IR0.

Network communications
error processing

Bit c turns OFF the cycle after the
communications instruction was
executed to enable checking the
communication completion code.

If the completion code indirectly address via IR0
does not equal #0000, communications error
processing is performed.

a
 (Executing)

b
 (Used port)

e (Code storage
location)

b
 (Used port)

e (Code storage
location)
857

Network Instructions Section 3-24
Using Communications Instructions Inside Interrupt Tasks

If communications instructions are used inside interrupt tasks, always use
DI(693) and EI(694) to disable interrupts before and after communications
instructions using automatically allocated communications port numbers in
the cyclic tasks regardless of whether user-specified or automatically allo-
cated communications port numbers are being used in the interrupt tasks. An
example is shown below.

a (executing)

Cyclic Execution Task

c (standby)

d (execution completed)
c (standby)a (executing)

@MOV

A218

b (port being used) Disable interrupts using DI(693) and EI(694) in cyclic tasks
when communications instructions are used in any interrupt task.

DI

EI

@MOVL

A216

TST

A214

b (port being used) MOVL

IR0

,IR0

#0000

Network communications
error processing

@Communications
instruction

Communications
port: F

• • •

e (response code
storage location)

e (response code
storage location)
858

Network Instructions Section 3-24
Preventing Exceeding the Maximum Number of Communications Ports

If there is a possibility of executing more than eight communications instruc-
tions at the same time, use the following type of programming to confirm if a
communications port is available even when using automatically allocated
communications port numbers.

Combining Automatic Port Specification with User-specified Ports

Both user-specified communications port numbers and automatically speci-
fied communications port numbers can be used in the same program. It is
possible, however, that the communications port numbers specified by the
user will be used for automatic allocation. It is thus important to check the pro-
gram carefully when adding communications instructions that use automatic
communications port allocation to an existing program, as shown in the follow-
ing example.

Programming Example

Execution
condition

d (execution
completed)

A202.15
KEEP

a (executing)

Use the Network Communications Port Allocation Enabled Flag (A202.15)
and execute communications instructions only when automatic communications port
allocation is possible (i.e., only when a communications port is available).

A202.01W0.00

A202.01W0.01
Communications were previously enabled by
exclusively controlling operation using W0.00
and W0.01.

Automatic
port alloca-
tion was add-
ed to the pro-
gram.

This instruction may, at times, use
communications port 1. Even if W0.00 or
W0.01 is turned ON, A202.01 will be
turned OFF by execution of this
PMCR(260) instruction, so neither of the
CMND(490) instructions will be executed.

Port: 1

Port: 1

Port: F
859

Network Instructions Section 3-24
Timing the Execution of
Network Instructions

A Network Instruction just starts the communications processing when its
execution condition is established. The actual communications processing is
executed in the background in the “serial communications port servicing” por-
tion of peripheral servicing.

The communications processing is performed as follows:

1. If the corresponding Communications Port Enabled Flag (A202.00 to
A202.07) is ON when the execution condition is established, the system
performs the following processes:

• Turns OFF the port’s Communications Port Enabled Flag and Commu-
nications Port Error Flag (A219.00 to A219.07).

• Sets the port’s Communications Port Completion Code (A203 to A210)
to 0000.

• Reads the control words (beginning at C) and starts communications
processing (sending a FINS command or receiving a response.)

2. In the peripheral servicing’s “serial communications port servicing” portion
of the cycle, the system composes a FINS command based on the oper-
ands (see note) and sends the FINS command to the Communications
Unit or other destination node.

Note When SEND(090) is being executed, the contents of S and D are
read and a FINS command for data transmission is composed.
When RECV(098) is being executed, the content of S is read and
a FINS command for data reception is composed.
When CMND(490) is being executed, the content of S is read and
the corresponding FINS command is composed.

3. If the send processing cannot be completed in a the time available in “serial
communications port servicing” period, the processing will be continued in
the next cycle’s serial communications port servicing.

4. When a response is returned, the system performs the following process-
es:

• Refreshes the destination words specified in the Network instruction
with the response data.

• Turns ON the port’s Communications Port Enabled Flag.

• Refreshes the port’s Communications Port Error Flag (A219.00 to
A219.07) and Communications Port Completion Code (A203 to A210).

CMND

S

D

C

Cycle
time

Communications Port
Enabled Flag

Background communications
processing

Cycle
time

Directs the
start of
processing
only.

Execution
Condition

Stores results when
communications
processing is completed.

Composes a FINS
command based on the
command data and sends it.

Receives the response and stores
the information as response data.
The communications results are
reflected in the allocated Auxiliary
Area Flags.

The communications processing
(transmission and reception) is
performed in time-slices over several
cycles during the peripheral
servicing’s “serial communications
port servicing” portion of the cycle.
860

Network Instructions Section 3-24
3-24-2 About Explicit Message Instructions
Methods for Using Explicit
Message Communications

There are two methods that can be used to send explicit messages from a
PLC.

• Use the CMND(490) to send a FINS command code of 2801 hex
(EXPLICIT MESSAGE SEND).

• Use the following Explicit Message Instructions.

Explicit Message
Instructions

The following instructions are called Explicit Message Instructions.

Features of Explicit
Message Instructions

• Explicit Message Instructions do not require giving a 2801 hex FINS com-
mand and are much simpler to program than CMND(490).

• With the EXPLICIT GET/SET ATTRIBUTE instructions, entering the ser-
vice code is not required and only information from the class ID onward
needs to be entered.

• With the EXPLICIT WORD READ/WRITE instructions, the I/O memory
address in the local and remote CPU Units can be specified directly.

Code specifications for area types and hexadecimal word addresses are
not required. (These are required for CMND(490) instructions with service
code 1E (word data read) or 1F hex (word data write).)
This enables easy reading and writing of data between CPU Units using
explicit message communications (like SEND/RECV instructions for FINS
commands).

Cycle time (First cycle)

END(001) executed.

3. Processing is
divided up over
several cycles.

Cycle time (Second cycle)

Program execution Program execution

1. SEND(090),
RECV(098), or
CMND(490)

END(001) executed.

I/O refreshing

Peripheral
servicing

Peripheral
servicing

Sends command. Receives
response.

2. Communications processing
during “serial communications
port servicing” (Composes and
sends FINS command.)

4. Communications processing
during “serial communications
port servicing” (Receives
response.)

I/O refreshing

Instruction Name Outline

EXPLT(720) EXPLICIT MES-
SAGE SEND

Sends an explicit message with any service
code. Note: Functionally, this instruction is the
same as sending CMND(490) with a FINS com-
mand code of 2801 hex.

EGATR(721) EXPLICIT GET
ATTRIBUTE

Sends an explicit message with a service code
of 0E hex (GET ATTRIBUTE SINGLE).

ESATR(721) EXPLICIT SET
ATTRIBUTE

Sends an explicit message with a service code
of 10 hex (SET ATTRIBUTE SINGLE).

EGATR(721) EXPLICIT WORD
READ

Uses an explicit message to read data from a
CPU Unit.

EGATR(721) EXPLICIT WORD
WRITE

Uses an explicit message to write data to a
CPU Unit.
861

Network Instructions Section 3-24
Operation The Explicit Communications Error Flag is used to determine if communica-
tions ended normally or in error.

For error completions (i.e., when the flag is ON), the Communications Port
Error Flag for FINS commands is used to determine if the explicit message
was never sent (i.e., when the flag is ON) or if there was an error in the explicit
message that was sent (i.e., when the flag is OFF).

The Communications Port Completion Code will contain 0000 hex after a nor-
mal end, an explicit message error code after an explicit communications
error end, and a FINS message completion code after a FINS error end.

1) Normal End An explicit message is sent and a normal response is returned.

The corresponding Explicit Communications Error Flag (A213.00 to A213.07:
Communications port No. 0 to 7) will be OFF and the Communications Port
Completion Code (A203 to A210: Communications port No. 0 to 7) will contain
the explicit message normal response code of 0000 hex.

Condition Explicit
Communications Error

Flag (A213.00 to
A213.07:

Communications port
No. 0 to 7)

Communications Port
Error Flag (A219.00 to

A219.07:
Communications port

No. 0 to 7)

Communications Port
Completion Code (A203

to A210:
Communications port

No. 0 to 7)

1) Normal end OFF OFF 0000 hex

2) Error end a) When the explicit
message could not
be sent

ON ON FINS messages comple-
tion code

b) When the explicit
message was sent
but an explicit error
response was
returned

OFF Explicit message error
code

OK

OKOK

OK
CPU Unit

FINS header

FINS header FINS response Explicit response Explicit response

CJ-series
CPU Bus
Unit
(e.g.,
DeviceNet
Unit)

Explicit message Explicit message

Explicit message sent

Processed normally
Normal explicit response
received

Explicit
message
instruction

DeviceNet network

DeviceNet
node

(e.g., slave)

1
0

1
0

1
0

0000 hex 0000 hex

Communications Port
Enabled Flag

Explicit Message
Instruction

Explicit Communications
Error Flag

Communications Port
Error Flag

Communications Port
Completion Code

Instruction
being

executed

0000 hex
(normal end)

Previous

Instruction
being

executed
862

Network Instructions Section 3-24
2) Error End The are two possibilities for error ends, as described in the next two subsec-
tions.

a) When the Explicit Message Could Not Be Sent

In this case, the explicit message was never sent on the network, e.g.,
because the network was not running. Here, both the Explicit Communica-
tions Error Flag (A213.00 to A213.07: Communications port No. 0 to 7) and
the Communications Port Error Flag (A219.00 to A219.07: Communications
port No. 0 to 7) will turn ON.

After completion, the Communications Port Completion Code (A203 to A210:
Communications port No. 0 to 7) will contain the FINS message error code.

Explicit response

OK
FINS error

FINS error response No explicit response

CPU Unit
FINS header

FINS header FINS response

CJ-series
CPU Bus
Unit

(e.g.,
DeviceNet
Unit)

Explicit message

Explicit message not sent

Network not running, etc.

Explicit
message
instruction

DeviceNet network

DeviceNet
node

(e.g., slave)

Error

1
0

1
0

1
0

0000 hex 0000 hex

Communications Port
Enabled Flag

Explicit Message
Instruction

Explicit Communications
Error Flag

Communications Port
Error Flag

Communications Port
Completion Code

Instruction
being

executed

FINS end codePrevious

Instruction
being

executed
863

Network Instructions Section 3-24
b) When the Explicit Message Was Sent But an Explicit Error Response
Was Returned

In this case, the explicit message was sent but an error existed in the explicit
message command frame (code not supported, illegal size, etc.). Here, the
Explicit Communications Error Flag (A213.00 to A213.07: Communications
port No. 0 to 7) will turn ON and the Network Communications Error Flag
(A219.00 to A219.07: Communications port No. 0 to 7) will remain OFF.

After completion, the Network Communications Response Code (A203 to
A210: Communications port No. 0 to 7) will contain the explicit message error
code.

OK

Error

OK

Explicit error

CPU Unit
FINS header

FINS header FINS response Explicit error
response

Explicit response

CJ-series
CPU Bus
Unit

(e.g.,
DeviceNet
Unit)

Explicit message Explicit message

Explicit message sent

Normal error response
received

Explicit
message
instruction

DeviceNet network

DeviceNet
node

(e.g., slave)

Error

1
0

1
0

1
0

0000 hex 0000 hex

Communications Port
Enabled Flag

Explicit Message
Instruction

Explicit Communications
Error Flag

Communications Port
Error Flag

Communications Port
Completion Code

Instruction
being

executed

Explicit error codePrevious

Instruction
being

executed
864

Network Instructions Section 3-24
Ladder Programming
Examples

Example 1: User Specification of Communications Port Number

A213.00

A213.00 A219.00

A219.00

Execution
condition

Communications Port
Enabled Flag

A202.00

d (Execution completed)

a (Executing) The explicit message instruction is executed when a (executing)
turns ON. The port number 0 is specified.

a (Executing) is turned ON and held ON when the
execution condition and Communications Port
Enabled Flag (A202.00) turn ON.
a (Executing) is turned OFF when d (Execution
completed) turns ON.

Explicit
message
instruction

Port: 0

a (Executing)

KEEP

a (Executing)

Processing after
completing network
communications

Processing for network
communications error:
Explicit error

The Communications Port Enabled Flag (A202.00) is OFF during
network communications and turns ON when they are completed
(for either normal or error completion).
d (Execution completed) is turned ON when a (Executing) turns
ON and the Communications Port Enabled Flag (A202.00) turns
ON.

If the Explicit Communications Error Flag
(A213.00) when execution is completed, explicit
memory communications were completed
normally and normal processing after network
communications is performed.

If the Explicit Communications Error Flag
(A213.00) is ON when execution is completed,
an error has occurred in explicit message
communications and the Communications Port
Error Flag (A219.00) is checked. If it is OFF,
processing for an explicit communications error is
performed on the assumption that an explicit
message was sent and an explicit message
response was received.

If the Explicit Communications Error Flag
(A213.00) is ON when execution is completed, an
error has occurred in explicit message
communications and the Communications Port
Error Flag (A219.00) is checked. If it is ON,
processing for a FINS communications error is
performed on the assumption that an explicit
message was never sent.

Communications Port
Enabled Flag

A202.00
d (Execution completed)

Processing for network
communications error:
FINS error
865

Network Instructions Section 3-24
Example 2: Automatic Allocation of Communications Port Number

3-24-3 NETWORK SEND: SEND(090)
Purpose Sends data to a node in the network.

Ladder Symbol

Variations

Execution
condition

d (Execution completed)

a (Executing)

c (Standby)

d (Execution completed)
c (Standby)

The explicit message instruction is executed when a (executing)
turns ON. The port number F is specified.

a (Executing)

MOV

A218

b (port)

The automatically allocated port number stored in A218 (application
communications port numbers 0 to 7 is moved to a user-specified work
word b (port).

Detects when the First Cycle Flag after Network Communications Finished
for the automatically allocated communications port is ON in A214, i.e., the
bit corresponding to b (port).

Detects when the Explicit Communications Error Flag for the
automatically allocated communications port is OFF in A213,
i.e., the bit corresponding to b (port).

Detects when the Explicit Communications Error Flag for the
automatically allocated communications port is ON in A213,
i.e., the bit corresponding to b (port).

"c" turns OFF in the cycle after
communications instruction execution
is completed and communications
completion or errors are detected
from that cycle.

KEEP

a (Executing)

TST

A214

b (port)

TSTN

A213

b (port)

TST

A213

b (port)

TSTN

A219

b (port)

TST

A219

b (port)

Explicit
message
instruction

Port: F

Processing after network

communications

Network communications
error processing: Explicit
error processing

Network communications
error processing: FINS
error processing

SEND(090)

S

D

C

S: First source word (local node)

D: First destination word (remote node)

C: First control word

Variations Executed Each Cycle for ON Condition SEND(090)

Executed Once for Upward Differentiation @SEND(090)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
866

Network Instructions Section 3-24
Applicable Program Areas

Operands C: First control word

The five control words C to C+4 specify the number of words being transmit-
ted, the destination, and other settings shown in the following table.

Note (1) The maximum number of words allowed depends on the network being
used. For a Controller Link, the allowed range is 0001 to 03DE (1 to 990
words).

(2) Set the destination network address to 00 to transmit within the local net-
work. When two or more CPU Bus Units are mounted, the network ad-
dress will be the unit number of the Unit with the lowest unit number.

(3) The following two methods can be used to send data to the host computer
through a serial port with the host link while initiating communications
from the PLC.

(a) Set the destination unit address (bits 00 to 07 of C+2) to the unit
address of the CPU Unit or CJ-series Serial Communications
Unit and set the serial port number (bits 08 to 11 of C+1) to 1 for
port 1 or 2 for port 2.

(b) Set the destination unit address directly into bits 00 to 07 of C+2.
In this case, set the serial port number in bits 08 to 11 of C+1 to
0 for direct specification.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Word Bits 00 to 07 Bits 08 to 15

C Number of words: 0001 to maximum allowed1 (4-digit hexadecimal)

C+1 Destination network address:
00 to 7F (0 to 127)2, 4

Bits 08 to 11:Serial port number3
(physical port)
1 hex: Port 1
2 hex: Port 2
(Do not set 0, 3, or 4.)

Bits 12 to 15: Always 0.

C+2 Destination unit address: 00 to FE5 Destination node address:
00 to maximum allowed6

C+3 No. of retries: 00 to 0F (0 to 15) Bits 08 to 11:
Communications port number (inter-
nal logic port): 0 to 7, Automatic allo-
cation: F7

Bits 12 to 15: Response setting
0: Response requested.
8: No response requested.8

C+4 Response monitoring time: 0001 to FFFF (0.1 to 6553.5 seconds)

(The default setting of 0000 sets a monitoring time of 2 seconds.)

Unit address
(C+2, bits 00

to 07)

Unit Serial port number
(C+1, bits 08 to 11)

Serial port

00 hex CP1H with Serial Com-
munications Option
Board mounted

1 hex Port 1

2 hex Port 2

10 hex + unit
number

CJ-series Serial Com-
munications Unit (CPU
Bus Unit)

1 hex Port 1

2 hex Port 2
867

Network Instructions Section 3-24
CPU Unit Ports on Serial Communications Option Boards

CJ-series Serial Communication Unit Ports

(4) When specifying the serial port without a routing table for the serial gate-
way function (conversion to host link FINS), set the serial port’s unit ad-
dress in the destination network address byte.

(5) The unit address indicates the Unit, as shown in the following table.

(6) The maximum node number depends on the network being used. For a
Controller Link, the allowed range is 00 to 20 hexadecimal (0 to 32). Set
the destination node number to FF to broadcast to all nodes; set it to 00
to transmit within the local node.

(7) Refer to Automatic Allocation of Communications Ports on page 853 for
details on using automatic allocation of the communications port number
(logical port).

(8) When the destination node number is set to FF (broadcast transmission),
there will be no response even if bits 12 to 15 are set to 0.

Operand Specifications

Port Port’s unit address

Port 1 FD hex (253 decimal)

Port 2 FC hex (252 decimal)

Port Port’s unit address Example: Unit number = 1

Port 1 80 hex + 4 × unit number 80 + 4 × 1 = 84 hex (132 decimal)

Port 2 81 hex + 4 × unit number 81 + 4 × 1 = 85 hex (133 decimal)

Unit Unit address setting

CP1H CPU Unit (Serial Com-
munications Option Board) or
CJ-series CPU Unit

00 hex

CS/CJ-series CPU Bus Unit 10 hex + unit number

CS/CJ-series Special I/O Unit 20 hex + unit number

CS-series Inner Board E1 hex

Computer 01 hex

Unit connected to network
(not necessary to specify
Unit)

FE hex

Direct specification of the
serial port’s unit address

CP1H CPU Unit with Serial Communications
Option Board Mounted

Port 1: FD hex (253 decimal)
Port 2: FC hex (252 decimal)

CS/CJ-series Serial Communications Unit ports

Port 1: 80 hex + 4 × unit number
Port 2: 81 hex + 4 × unit number

CS-series Serial Communications Board ports

Port 1: E4 hex (228 decimal)
Port 2: E5 hex (229 decimal)

CS/CJ-series CPU Unit ports

Peripheral port: FD hex (253 decimal)
RS-232C port: FC hex (252 decimal)

Area S D C

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6139

Work Area W0 to W511 W0 to W507
868

Network Instructions Section 3-24
Description SEND(090) transfers the data beginning at word S to addresses beginning at
D in the designated device through the PLC’s CPU Bus or over a network.
The number of words to be transmitted is specified in C.

If the destination node number is set to FF, the data will be broadcast to all of
the nodes in the designated network. This is known as a broadcast transmis-
sion.

If a response is requested (bits 12 to 15 of C+3 set to 0) but a response has
not been received within the response monitoring time, the data will be
retransmitted up to 15 times (retries set in bits 0 to 3 of C+3). There will be no
response or retries for broadcast transmissions.

SEND(090) can be used to transmit data to a particular serial port in the des-
tination device as well as the device itself.

Data can be transmitted to a host computer connected to the PLC’s serial port
(when set to host link mode) as well as a PLC or computer connected through
a Controller Link or Ethernet network.

If the Communications Port Enabled Flag is ON for the communications port
specified in C+3 when SEND(090) is executed, the corresponding Communi-
cations Port Enabled Flag (ports 00 to 07: A202.00 to A202.07) and Commu-
nications Port Error Flag (ports 00 to 07: A219.00 to A219.07) will be turned
OFF and 0000 will be written to the word that contains the completion code
(ports 00 to 07: A203 to A210). Data will be transmitted to the destination
node once the flags have be set.

Holding Bit Area H0 to H511 H0 to H507

Auxiliary Bit Area A0 toA959 A0 to A955

Timer Area T0000 to T4095 T0000 to T4091

Counter Area C0000 to C4095 C0000 to C4091

DM Area D0 to D32767 D0 to D32763

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D C

Local node Destination node

Number
of words
to trans-
mit, n
869

Network Instructions Section 3-24
Transmission through the
Network

SEND(090) can be used to transmit data from the PLC to the specified data
area in a PLC or computer connected by a Controller Link network or Ethernet
link.

Transmission through
Host Link

When a Serial Communications Option Board mounted on a CP1H CPU Unit
or a CJ-series Serial Communications Unit is in Host Link mode and con-
nected one-to-one with a host computer, SEND(090) can be executed to
transmit data from the PLC to the host computer the next time that the PLC
has the right to transmit. It is also possible to transmit to other host computers
connected to other PLCs elsewhere in the network.

Sending Data to a Host
Link Slave PLC Connected
by Serial Gateway

If SEND(090) is used to send to a Serial Communications Option Board
mounted on a CP1H CPU Unit or a CJ-series Serial Communications Unit, a
command is sent from the serial port to the host computer. The command is a
FINS message enclosed between a host link header and terminator. The
FINS command is a MEMORY AREA WRITE command (command code
0102) and the host link header code is 0F hexadecimal.

The serial gateway function can be used to send data to a PLC connected as
a Host Link Slave to a Serial Communications Board or Unit. In this case, the
destination node address must be set to the host link unit number + 1.

A program must be created in the host computer to process the received com-
mand (the FINS command enclosed in the host link header and terminator).

If the destination serial port is in the local PLC, set the network address to 00
(local network) in C+1, set the node address to 00 (local PLC) in C+2, and set
the unit address to 00 (Serial Communications Option Board on CPU Unit), or
unit number + 10 hexadecimal (CJ-series Serial Communications Unit).

Network

Data

Serial port

Data
Host Link

Host computer

PLC
Host Link Slave

Set the destination node address to
the host link unit number + 1 = S+1.

Data

Serial cable

Host link unit number: S

CMND

CP1H
870

Network Instructions Section 3-24
Flags

The following table shows relevant bits and flags in the Auxiliary Area.

Precautions If the Communications Port Enabled Flag is OFF for the port number specified
in C+3, the instruction will be treated as NOP(000) and will not be executed.
The Error Flag will be turned ON in this case.

When an address in the current bank of the EM Area is specified for D, the
transmitted data will be written to the current EM bank of the destination node.

When data will be transmitted outside of the local network, the user must reg-
ister routing tables in the PLCs (CPU Units) in each network. (Routing tables
indicate the routes to other networks in which destination nodes are con-
nected.)

Refer to the FINS command response codes in the CS/CJ/CP Series Com-
munications Commands Reference Manual (W342) for details on the comple-
tion codes for network communications.

Only one network instruction may be executed for a communications port at
one time. To ensure that SEND(090) is not executed while a port is busy, pro-
gram the port’s Communications Port Enabled Flag (A202.00 to A202.07) as
a normally open condition.

Communications port numbers 00 to 07 are shared by the network instruc-
tions and PMCR(260), so SEND(090) cannot be executed simultaneously
with PMCR(260) if the instructions are using the same port number.

Noise and other factors can cause the transmission or response to be cor-
rupted or lost, so we recommend setting the number of retries to a non-zero
value which will cause SEND(090) to be executed again if the response is not
received within the response monitoring time.

Name Label Operation

Error Flag ER ON if the serial port number specified in C+1 is not within
the range of 00 to 04.

ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C+3.
OFF in all other cases.

Name Address Operation

Communications
Port Enabled Flag

A202.00 to
A202.07

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).

A flag is turned OFF when a network instruction is
being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Communications
Port Error Flag

A219.00 to
A219.07

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of a network instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execution
of a network instruction.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
an instruction is executed.
871

Network Instructions Section 3-24
Example 1 When the input condition and A202.00 (the Communications Port Enabled
Flag for port 7) are ON in the following example, the ten words from CIO 100
to CIO 109 are transmitted to the host computer connected to port 1 of the
CJ-series Serial Communications Unit with unit address 10 (hex) at node
number 3 in network 0.

It is necessary create a program at the host computer to receive the data and
send a response.

Example 2 When CIO 0.00 and A202.07 (the Communications Port Enabled Flag for port
07) are ON in the following example, the ten words from D100 to D109 are
transmitted to node number 3 in the local network where they are written to
the ten words from D200 to D209. The data will be retransmitted up to 3 times
if a response is not received within ten seconds.

3-24-4 NETWORK RECEIVE: RECV(098)
Purpose Requests data to be transmitted from a node in the network and receives the

data.

Ladder Symbol

Variations

Applicable Program Areas

@SEND

100

0

D200

 C D200 0 0 0 A

 C+1 D201 0 1 0 0

 C+2 D202 0 0 1 0

 C+3 D203 0 0 0 0

 C+4 D204 0 0 0 0

A202.00
Input
condition

Number of words to send: 10 words

Transmit to network 0 and port 1 of Serial Communications Unit

Node number 0, unit address 10

Response requested, port number 0, no retries

Response monitoring time: 2 seconds (0000: default value)

0

0

0

0

6

0.00 A202.07

D100

D200

D300

C: D300

C+1: D301

C+2: D302

C+3: D303

C+4: D304

Number of words to send: 10 words

Node number 3, unit address 00 (CPU Unit)

Response requested, port number 7, 3 retries
Response monitoring time: 0064 hexadecimal (10 seconds)

Transmit to the local network and the device itself

RECV(098)

S

D

C

S: First source word (remote node)

D: First destination word (local node)

C: First control word

Variations Executed Each Cycle for ON Condition RECV(098)

Executed Once for Upward Differentiation @RECV(098)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
872

Network Instructions Section 3-24
Operands C: First control word

The five control words C to C+4 specify the number of words to be received,
the source of the transmission, and other settings shown in the following table.

Note (1) The maximum number of words allowed depends on the network being
used. For a Controller Link, the allowed range is 0001 to 03DE (1 to 990
words).

(2) Set the source network address to 00 to specify a source within the local
network. When two or more CPU Bus Units are mounted, the network ad-
dress will be the unit number of the Unit with the lowest unit number.

(3) The following two methods can be used to receive data from a host com-
puter through a serial port with the host link while initiating communica-
tions from the PLC.

(a) Set the source unit address (bits 00 to 07 of C+2) to the unit ad-
dress of the CP1H CPU Unit or the Serial Communications Unit
and set the serial port number (bits 08 to 11 of C+1) to 1 for port
1 or 2 for port 2.

(b) Set the source unit address directly into bits 00 to 07 of C+2. In
this case, set the serial port number in bits 08 to 11 of C+1 to 0
for direct specification.

CPU Unit Serial Communications Option Board Ports

CJ-series Serial Communication Unit Ports

Word Bits 00 to 07 Bits 08 to 15

C Number of words: 0001 to maximum allowed1 (4-digit hexadecimal)

C+1 Source network address:
00 to 7F (0 to 127)2, 4

Bits 08 to 11:Serial port number
(physical port)
1 hex: Port 1
2 hex: Port 2
(Do not set 0, 3, or 4.)
Bits 12 to 15: Always 0.

C+2 Source unit address5 Source node address:
00 to maximum allowed6

C+3 No. of retries: 00 to 0F (0 to 15) Port number: 00 to 07
(F: Automatic allocation)7

Response is fixed to “required.”

C+4 Response monitoring time: 0001 to FFFF (0.1 to 6553.5 seconds)
(The default setting of 0000 sets a monitoring time of 2 seconds.)

Unit address
(C+2, bits 00

to 07)

Unit Serial port number
(C+1, bits 08 to 11)

Serial port

00 hex CP1H CPU Unit 1 hex Port 1

2 hex Port 2

10 hex + unit
number

CJ-series Serial Com-
munications Unit (CPU
Bus Unit)

1 hex Port 1

2 hex Port 2

Port Port’s unit address

Port 1 FD hex (253 decimal)

Port 2 FC hex (252 decimal)

Port Port’s unit address Example: Unit number = 1

Port 1 80 hex + 4 × unit number 80 + 4 × 1 = 84 hex (132 decimal)

Port 2 81 hex + 4 × unit number 81 + 4 × 1 = 85 hex (133 decimal)
873

Network Instructions Section 3-24
(4) When specifying the serial port without a routing table for the serial gate-
way function (conversion to host link FINS), set the serial port’s unit ad-
dress in the source network address byte.

(5) The unit address indicates the Unit, as shown in the following table.

(6) The maximum node number depends on the network being used. For a
Controller Link, the allowed range is 00 to 20 hexadecimal (0 to 32). Set
the source node number to 00 to transmit within the local node.

(7) Refer to Automatic Allocation of Communications Ports on page 853 for
details on using automatic allocation of the communications port number
(logical port).

Operand Specifications

Unit Unit address setting

CP1H CPU Unit (Serial Commu-
nications Option Board) or CJ-
series CPU Unit

00 hex

CS/CJ-series CPU Bus Unit 10 hex + unit number

CS/CJ-series Special I/O Unit 20 hex + unit number

CS-series Inner Board E1 hex

Computer 01 hex

Unit connected to network (not
necessary to specify Unit)

FE hex

Direct specification of the serial
port’s unit address

CP1H CPU Unit with Serial Communications
Option Board Mounted

Port 1: FD hex (253 decimal)
Port 2: FC hex (252 decimal)

CS/CJ-series Serial Communications Unit
ports

Port 1: 80 hex + 4 × unit number
Port 2: 81 hex + 4 × unit number

CS-series Serial Communications Board
ports

Port 1: E4 hex (228 decimal)
Port 2: E5 hex (229 decimal)

CS/CJ-series CPU Unit ports
Peripheral port: FD hex (253 decimal)
RS-232C port: FC hex (252 decimal)

Area S D C

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6139

Work Area W0 to W511 W0 to W507

Holding Bit Area H0 to H511 H0 to H507

Auxiliary Bit Area A0 to A447
A448 to A959

A448 to A959 A0 to A443
A448 to A955

Timer Area T0000 to T4095 T0000 to T4091

Counter Area C0000 to C4095 C0000 to C4091

DM Area D0 to D32767 D0 to D32763

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---
874

Network Instructions Section 3-24
Description RECV(098) requests the number of words specified in C beginning at word S
to be transferred from the designated device to the local PLC. The data is
received through the PLC’s CPU Bus or over the network and written to the
PLC’s data area beginning at D.

A response is required with RECV(098) because the response contains the
data being received. If the response has not been received within the
response monitoring time set in C+4, the request for data transfer will be
retransmitted up to 15 times (retries set in bits 0 to 3 of C+3).

RECV(098) can be used to request a data transmission from a particular
serial port in the source device as well as the device itself.

Data can be received from a host computer connected to the PLC’s serial port
(when set to host link mode) as well as a PLC or computer connected through
a Controller Link or Ethernet network.

If the Communications Port Enabled Flag is ON for the communications port
specified in C+3 when SEND(090) is executed, the corresponding Communi-
cations Port Enabled Flag (ports 00 to 07: A202.00 to A202.07) and Commu-
nications Port Error Flag (ports 00 to 07: A219.00 to A219.07) will be turned
OFF and 0000 will be written to the word that contains the completion code
(ports 00 to 07: A203 to A210). Data will be received from the destination
node once the flags have be set.

Transmission through the
Network

RECV(098) can be used to receive data transmitted the specified data area in
a PLC or computer connected by a Controller Link network or Ethernet link
and write that data to the specified data area in the local PLC.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D C

Local node Source node (remote node)

Number of words
to receive

PLC PLC

Data

Network
875

Network Instructions Section 3-24
Transmission through
Host Link

When the Serial Communications Option Board mounted on a CP1H CPU
Unit or a CJ-series Serial Communications Unit is in Host Link and connected
one-to-one with a host computer, RECV(098) can be executed to receive data
from the host computer the next time that the PLC has the right to transmit
commands. It is also possible to receive data from other host computers con-
nected to other PLCs elsewhere in the network.

If RECV(098) is executed for the Serial Communications Option Board
mounted on a CP1H CPU Unit or a CJ-series Serial Communications Unit, a
command is sent from the serial port to the host computer. The command is a
FINS message enclosed between a host link header and terminator. The
FINS command is a MEMORY AREA READ command (command code
0101) and the host link header code is 0F hexadecimal.

A program must be created in the host computer to process the send com-
mand (the FINS command enclosed in the host link header and terminator).

If the destination serial port is in the local PLC, set the network address to 00
(local network) in C+1, set the node address to 00 (local PLC) in C+2, and set
the unit address to 00 (Serial Communications Option Board on CPU Unit), or
unit number + 10 hexadecimal (CJ-series Serial Communications Unit).

Receiving Data from a
Host Link Slave PLC
Connected by Serial
Gateway

The serial gateway function can be used to receive data from a PLC con-
nected as a host link Slave to a Serial Communications Unit. In this case, the
source node address must be set to the host link unit number + 1.

Flags

CP1H

Host computer

Host Link
Data

Serial port

Serial cable

PLC
Host Link Slave

Set the source node address to the host
link unit number + 1 = S+1.

Host link unit number: S

RECV

CP1H

Data

Name Label Operation

Error Flag ER ON if the serial port number specified in C+1 is not within
the range of 00 to 04.
ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C+3.

OFF in all other cases.
876

Network Instructions Section 3-24
The following table shows relevant bits and flags in the Auxiliary Area.

Precautions If the Communications Port Enabled Flag is OFF for the port number specified
in C+3, the instruction will be treated as NOP(000) and will not be executed.
The Error Flag will be turned ON in this case.

When an address in the current bank of the EM Area is specified for D, the
transmitted data will be written to the current EM bank of the destination node.

When data will be transmitted outside of the local network, the user must reg-
ister routing tables in the PLCs (CPU Units) in each network. (Routing tables
indicate the routes to other networks in which destination nodes are con-
nected.)

Refer to the FINS command response codes in the CS/CJ/CP Series Com-
munications Commands Reference Manual (W342) for details on the comple-
tion codes for network communications.

Only one network instruction may be executed for a communications port at
one time. To ensure that RECV(098) is not executed while a port is busy, pro-
gram the port’s Communications Port Enabled Flag (A202.00 to A202.07) as
a normally open condition.

Communications port numbers 00 to 07 are shared by the network instruc-
tions and PMCR(260), so RECV(098) cannot be executed simultaneously
with PMCR(260) if the instructions are using the same port number.

Noise and other factors can cause the transmission or response to be cor-
rupted or lost, so we recommend setting the number of retries to a non-zero
value which will cause RECV(098) to be executed again if the response is not
received within the response monitoring time.

Name Address Operation

Communications
Port Enabled Flag

A202.00 to
A202.07

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Communications
Port Error Flag

A219.00 to
A219.07

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of a network instruction.

The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for
the corresponding ports (00 to 07) following exe-
cution of a network instruction.
The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.
877

Network Instructions Section 3-24
3-24-5 DELIVER COMMAND: CMND(490)
Purpose Sends an FINS command and receives the response. Refer to the CS/CJ/CP

Series Communications Commands Reference Manual for details on FINS
commands.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: First control word

The six control words C to C+5 specify the number of bytes of command data
and response data, the destination, and other settings shown in the following
table.

Note (1) The number of bytes of command data in C is 0002 to the maximum data
length in hexadecimal. For example, the number of bytes would be 0002
to 07C6 hex (2 to 1,990 bytes) for Controller Link systems. The number
of bytes for the local CPU Unit is 07C6 hex (1,990 bytes). The number of
bytes of command data depends on the network.

CMND(490)

S

D

C

S: First command word

D: First response word

C: First control word

Variations Executed Each Cycle for ON Condition CMND(490)

Executed Once for Upward Differentiation @CMND(490)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Word Bits 00 to 07 Bits 08 to 15

C Bytes of command data: 0002 to maximum allowed1 (4-digit hexadecimal)

C+1 Bytes of response data: 0000 to maximum allowed1 to 3 (4-digit hexadecimal)

C+2 Destination network address:
00 to 074, 6

Bits 08 to 11:Serial port number
(physical port)
1 hex: Port 1
2 hex: Port 2
(Do not set 0, 3, or 4.)
Bits 12 to 15: Always 0.

C+3 Destination unit address:
00 to FE5, 7, 9

Destination node number:
00 to maximum allowed8

C+4 No. of retries: 00 to 0F (0 to 15) Bits 08 to 11:
Port number (internal logic port):

0 to 7
(F: Automatic allocation)10

Bits 12 to 15: Response setting
0: Response requested.
8: No response requested.11

C+5 Response monitoring time: 0001 to FFFF (0.1 to 6553.5 seconds)
(The default setting of 0000 sets a monitoring time of 2 seconds.)
878

Network Instructions Section 3-24
(2) The number of bytes of response data in C+1 is 0000 to the maximum
data length in hexadecimal. For example, the number of bytes would be
0000 to 07C6 hex (0 to 1,990 bytes) for Controller Link systems. The
number of bytes for the local CPU Unit is 07C6 hex (1,990 bytes). The
number of bytes of response data depends on the network.

(3) Refer to the operation manual for the specific network for the maximum
data lengths for the command data and response data. For any FINS
command passing through multiple networks, the maximum data lengths
for the command data and response data are determined by the network
with the smallest maximum data lengths.

(4) Set the destination network address to 00 to transmit within the local net-
work. When two or more CPU Bus Units are mounted, the network ad-
dress will be the unit number of the Unit with the lowest unit number.

(5) The following two methods can be used to send a FINS command to a
host computer through a serial port with the host link host link while initi-
ating communications from the PLC, or the serial gateway function (con-
verted to CompoWay/F, Modbus-RTU, or Modbus-ASCII).

(a) Set the destination unit address (bits 00 to 07 of C+3) to the unit
address of the CP1H CPU Unit or CJ-series Serial Communica-
tions Unit and set the serial port number (bits 08 to 11 of C+2) to
1 for port 1 or 2 for port 2.

(b) Set the destination unit address directly into bits 00 to 07 of C+3.
In this case, set the serial port number in bits 08 to 11 of C+2 to
0 for direct specification.

CPU Unit Serial Communications Option Board Ports

CJ-series Serial Communication Unit Ports

(6) When specifying the serial port without a routing table for the serial gate-
way function (conversion to host link FINS), set the serial port’s unit ad-
dress in the destination network address byte.

(7) The unit address indicates the Unit, as shown in the following table.

Unit address
(C+3, bits 00

to 07)

Unit Serial port number
(C+2, bits 08 to 11)

Serial port

00 hex CP1H CPU Unit 1 hex Port 1

2 hex Port 2

10 hex + unit
number

CJ-series Serial Com-
munications Unit (CPU
Bus Unit)

1 hex Port 1

2 hex Port 2

Port Port’s unit address

Port 1 FD hex (253 decimal)

Port 2 FC hex (252 decimal)

Port Port’s unit address Example: Unit number = 1

Port 1 80 hex + 4 × unit number 80 + 4 × 1 = 84 hex (132 decimal)

Port 2 81 hex + 4 × unit number 81 + 4 × 1 = 85 hex (133 decimal)

Unit Unit address setting

CP1H CPU Unit (Serial Commu-
nications Option Board) or CJ-
series CPU Unit

00 hex

CS/CJ-series CPU Bus Unit 10 hex + unit number

CS/CJ-series Special I/O Unit 20 hex + unit number
879

Network Instructions Section 3-24
(8) The maximum node number depends on the network being used. For a
Controller Link, the allowed range is 00 to 20 hexadecimal (0 to 32). Set
the destination node number to FF to broadcast to all nodes; set it to 00
to transmit within the local node.

(9) When specifying the serial port in the serial gateway function (conversion
to host link FINS), set the destination unit address to the host link unit
number of the destination PLC + 1 (setting range: 1 to 32).

(10) Refer to Automatic Allocation of Communications Ports on page 853 for
details on using automatic allocation of the communications port number
(logical port).

(11) When the destination node number is set to FF (broadcast transmission),
there will be no response even if bits 12 to 15 are set to 0.

CS-series Inner Board E1 hex

Computer 01 hex

Unit connected to network (not
necessary to specify Unit)

FE hex

Direct specification of the serial
port’s unit address

CP1H CPU Unit with Serial Communications
Option Board Mounted

Port 1: FD hex (253 decimal)
Port 2: FC hex (252 decimal)

CS/CJ-series Serial Communications Unit
ports

Port 1: 80 hex + 4 × unit number
Port 2: 81 hex + 4 × unit number

CS-series Serial Communications Board
ports

Port 1: E4 hex (228 decimal)
Port 2: E5 hex (229 decimal)

CS/CJ-series CPU Unit ports
Peripheral port: FD hex (253 decimal)
RS-232C port: FC hex (252 decimal)

Unit Unit address setting
880

Network Instructions Section 3-24
Description CMND(490) transfers the specified number of bytes of FINS command data
beginning at word S to the designated device through the PLC’s CPU Bus or
over a network. The response is stored in memory beginning at word D.

CMND(490) can be used to transmit command data to a particular serial port
in the destination device as well as the device itself. CMND(490) operates just
like SEND(090) if the FINS command code is 0102 (MEMORY AREA WRITE)
and just like RECV(098) if the code is 0101 (MEMORY AREA READ).

If the destination node number is set to FF, the command data will be broad-
cast to all of the nodes in the designated network. This is known as a broad-
cast transmission.

If a response is requested (bits 12 to 15 of C+4 set to 0) but a response has
not been received within the response monitoring time, the command data will
be retransmitted up to 15 times (retries set in bits 0 to 3 of C+3). There will be
no response and no retries for broadcast transmissions. For instructions that
require no response, set the response setting to “not required.”

Area S C D

CIO Area CIO 0 to CIO 6143 CIO 0 to
CIO 6138

Work Area W0 to W511 W0 to W506

Holding Bit Area H0 to H511 H0 to H506

Auxiliary Bit Area A0 to A447
A448 to A959

A448 to A959 A0 to A442
A448 to A954

Timer Area T0000 to T4095 T0000 to T4090

Counter Area C0000 to C4095 C0000 to C4090

DM Area D0 to D32767 D0 to D32762

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Local node

Command

Response

Command
data
(n bytes)

Response
data
(m bytes)

Execute

Interpret

Destination node
881

Network Instructions Section 3-24
An error will occur if the amount of response data exceeds the number of
bytes of response data set in C+1.

FINS command data can be transmitted to a host computer connected to a
PLC serial port as well as a PLC (CP1H CPU Unit , CS/CJ-series CPU Unit,
CS/CJ-series CPU Bus Unit, or CS-series Inner Board) or computer con-
nected through a Controller Link or Ethernet network.

If the Communications Port Enabled Flag is ON for the communications port
specified in C+3 when CMND(490) is executed, the corresponding Communi-
cations Port Enabled Flag (ports 00 to 07: A202.00 to A202.07) and Commu-
nications Port Error Flag (ports 00 to 07: A219.00 to A219.07) will be turned
OFF and 0000 will be written to the word that contains the completion code
(ports 00 to 07: A203 to A210). The command data will be transmitted to the
destination node(s) once the flags have be set.

Transmission through the
Network

CMND(490) can be used to transmit any FINS command to a personal com-
puter or a PLC (CP1H CPU Unit , CS/CJ-series CPU Unit, CS/CJ-series CPU
Bus Unit, or CS-series Inner Board) connected by a Controller Link network or
Ethernet link.

Transmission through
Host Link

When the serial port on a Serial Communications Option Board mounted to
the CPU Unit’s built-in serial port or a serial port on a CJ-series Serial Com-
munications Unit is in host link mode and connected one-to-one with a host
computer, CMND(490) can be executed to transmit any FINS command from
the PLC to the host computer the next time that the PLC has the right to trans-
mit. It is also possible to transmit to other host computers connected to other
PLCs elsewhere in the network.

CMND(490) can be executed for the either port on the CPU Unit (Serial Com-
munications Option Boards) or CJ-series Serial Communications Unit to send
a command to the connected host computer. (Specify the serial port as 1 hex
or 2 hex in bits 08 to 11 of C+2.) The command is a FINS message enclosed
between a host link header and terminator. Any FINS command command
can be sent; the host link header code is 0F hexadecimal.

A program must be created in the host computer to process the received com-
mand (the FINS command enclosed in the host link header and terminator).

If the destination serial port is in the local PLC, set the network address to 00
(local network) in C+2, set the node address to 00 (local PLC) in C+3, and set
the unit address to 00 (Serial Communications Option Boards on a CP1H
CPU Unit), or unit number + 10 hexadecimal (CJ-series Serial Communica-
tions Unit).

PLC PLC

Network

FINS command

CMND

CP1H

Host computer

Host Link

FINS command
882

Network Instructions Section 3-24
Serial Gateway
Communications to a
Component or Host Link
Slave

It is possible to send FINS commands (or send/receive data) to a component
or Host Link Slave connected to the PLC through a serial port on a CP1H
Serial Communications Option Board or CJ-series Serial Communications
Unit using the serial gateway function.

• Sending to a Component
(Conversion to CompoWay/F, Modbus-RTU, or Modbus-ASCII)

The serial gateway function can convert the following FINS commands to
CompoWay/F, Modbus-RTU, or Modbus-ASCII commands when the FINS
command is sent to a Serial Communications Board or Unit’s serial port or
one of the CPU Unit’s serial ports (peripheral or RS-232C).

Convert to CompoWay/F command: 2803 hex
Convert to Modbus-RTU command: 2804 hex
Convert to Modbus-ASCII command: 2805 hex (Not supported for serial
ports on CP1H Serial Communications Option Boards.)

• Sending to a PLC operating as a Host Link Slave

The serial gateway function can be used to send any FINS command to a
PLC that is connected as a host link slave and through a serial port on a
CP1H Serial Communications Option Board or CJ-series Serial Commu-
nications Unit. In this case, the destination node address must be set to the
host link unit number + 1.

Flags

Serial cable

Modbus-RTU Slave device

Modbus RTU

CMND

CP1H

PLC
Host Link Slave

Set the destination node address to
the host link unit number + 1 = S+1.

Data

Serial cable

Host link unit number: S

CMND

CP1H

Name Label Operation

Error Flag ER ON if the serial port number specified in C+2 is not within
the range of 00 to 04.
ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C+4.

OFF in all other cases.
883

Network Instructions Section 3-24
The following table shows relevant bits and flags in the Auxiliary Area.

Precautions If the Communications Port Enabled Flag is OFF for the port number specified
in C+4, the instruction will be treated as NOP(000) and will not be executed.
The Error Flag will be turned ON in this case.

When data will be transmitted outside of the local network, the user must reg-
ister routing tables in the PLCs (CPU Units) in each network. (Routing tables
indicate the routes to other networks in which destination nodes are con-
nected.)

Refer to the FINS command response codes in the CS/CJ/CP Series Com-
munications Commands Reference Manual (W342) for details on the comple-
tion codes for network communications.

Communications port numbers 00 to 07 are shared by the network and serial
communications instruction instructions (SEND(090), RECV(098),
CMND(490), PMCR(260), TXDU(256), or RXDU(255)), so only one of these
instructions may be executed for a communications port at one time. To
ensure that CMND(490) is not executed while a port is busy, program the
port’s Communications Port Enabled Flag (A202.00 to A202.07) as a normally
open condition.

Noise and other factors can cause the transmission or response to be cor-
rupted or lost, so we recommend setting the number of retries to a non-zero
value which will cause CMND(490) to be executed again if the response is not
received within the response monitoring time.

Examples The following program section shows an example of sending a FINS com-
mand to another CPU Unit.

When CIO 0.00 and A202.07 (the Communications Port Enabled Flag for port
07) are ON, CMND(490) transmits FINS command 0101 (MEMORY AREA
READ) to node number 3. The response is stored in D200 to D211.

The MEMORY AREA READ command reads 10 words from D10 to D19. The
response contains the 2-byte command code (0101), the 2-byte completion
code, and then the 10 words of data, for a total of 12 words or 24 bytes.

Name Address Operation

Communications
Port Enabled Flag

A202.00 to
A202.07

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Communications
Port Error Flag

A219.00 to
A219.07

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of a network instruction.

The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.
The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.
884

Network Instructions Section 3-24
The data will be retransmitted up to 3 times if a response is not received
within ten seconds.

3-24-6 EXPLICIT MESSAGE SEND: EXPLT(720)
Purpose Sends an explicit message with any service code.

Ladder Symbol

Variations

Applicable Program Areas

0

0

0

0

0

1

0

0

0

6

0.00 A202.07

D100

D200

D300

S: D100

S+1: D101

S+2: D102

S+3: D103

C: D300

C+1: D301

C+2: D302

C+3: D303

C+4: D304

C+5: D305

Command code: 0101 hexadecimal (MEMORY AREA READ)

D10 (Data area = 82 hexadecimal, address = 000A00)

Number of words to read = 0A hexadecimal (10 decimal)

Bytes of command data: 0008 (8 decimal)

Bytes of response data: 0018 (24)

Transmit to the local network and the device itself

Node number 3, unit address 00 (CPU Unit)

Response requested, port number 7, 3 retries

Response monitoring time: 0064 hexadecimal (10 seconds)

EXPLT(720)

S

D

C

S: First word of send message

D: First word of received message

C: First control word

Variations Executed Each Cycle for ON Condition EXPLT(720)

Executed Once for Upward Differentiation @EXPLT(720)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
885

Network Instructions Section 3-24
Operands S: First word of send message

Specifies the first word of the send message (S to S+272 max.).

S

015

S+1 0 0

8111215 07

S+2 0 0

8111215 07

S+3 0 0

8111215 07

S+4 0 0

8111215 07

S+5 0 0

8111215 0

S+6

S+272

15 0

7

...

Service Code (hex)

Class ID (hex)

Instance ID (hex)

Attribute ID (hex)

Set the number of bytes of source data from words S+1 on. For
example, set S to 000A hex if there are 5 words of data (S+1 to
S+5). Do not include the 2 bytes in word S itself. Include the
leftmost bytes of S+1 to S+5, which contain 00.
Also, include the number of bytes of Service Data starting at S+6.
(If the first or last word contains just one byte of data, do not count
the empty byte in that word.)

Destination Node Address
(00 to max. node address (hex))

If the Attribute ID is not used, set it to FFFF hex.
(The Attribute ID cannot be set to 0000 hex.)

When there is Service Data (data other than the Attribute
ID), the byte-order of this data is specified in bits 12 to 15
of C+1. Up to 534 bytes (267 words) can be set.

to

Service Data
886

Network Instructions Section 3-24
D: First word of received message

Specifies the first word of the received message (D to D+269 max.).

C: First control word

Specifies the first of four control words (C to C+3).

D

015

D+1 0 0

8111215 07

D+2 0 0

8111215 07

D+3

D+269

15 0

...

Contains the response’s service data (data following the service
code). The byte-order of this data is specified in bits 12 to 15 of
C+1. Can contain up to 534 bytes (267 words) of data.

to

Contains the service code or error code (hex).
Normal response: Returns the command’s Service Code with bit 07 ON.
Error response: Returns 94 hex, regardless of the command’s Service Code.

Contains the Source node address.
(00 to 3F hex (0 to 63) for DeviceNet))

Contains the number of bytes of data from words D+1 on.
Does not include the 2 bytes in word D itself.
This value does include the leftmost bytes of D+1 and D+2, which contain 00.
This value also includes the number of bytes of Service Data starting at D+3.
(If the first or last word contains just one byte of data, the empty byte in that
word is not counted.)

Service Data

C

015

C+1

8111215 07

C+2

15 0

C+3

15 0

Set the total number of words of response data beginning at D.
The allowed setting range is 0 to 010E hex (270 words).
If the number of words of received data exceeds the value set here, a FINS error will
occur (response too long, code 11 0B) and no data at all will be stored (in the area
starting at D+3).
If the number of words of received data is less than the value set here, the remaining
words (in the area starting at D+3) will be left unchanged.

FINS unit address of relaying Communications Unit.
CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port (logical port) for the network
instruction: 0 to 7 hex (F hex: Automatic allocation)

Byte order of service data (frame data) stored in areas beginning at S+6 and D+3
0 hex: Stored from leftmost byte (Left → Right → Left → Right ...)
8 hex: Stored from rightmost byte (Right → Left → Right → Left ...)

Response monitoring time
0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

Explicit message format
0000 hex: DeviceNet (same as using the 2801
FINS command)
887

Network Instructions Section 3-24
Operand Specifications

Description Sends the explicit message command (stored in the range of words beginning
at S+2) to the node address specified in S+1, via the Communications Unit
with the FINS unit address specified in bits 00 to 07 of C+1. When the
response to the explicit message is received, it is stored in the range of words
beginning at D+2.

Number of Bytes Settings

The number of bytes of send data in S includes the 10 bytes in S+1 to S+5 as
well as the number of bytes of service data beginning at S+6. (For example, if
there is 1 byte of service data, there are 11 bytes of data all together, so S
must be set to 000B hex.)

The number of bytes of received data in D includes the 4 bytes in D+1 and
D+2 as well as the number of bytes of service data beginning at D+3. (For
example, if there is 1 byte of service data, there are 5 bytes of data all
together and D contains 0005 hex.)
The setting in bits 12 to 15 of C+1 (0 or 8 hex) determines the byte-order of
the service data stored at S+6 and D+3.

• Storing Data from the Leftmost Byte
Set bits 12 to 15 of C+1 to 0 hex.

Area S D C

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6140

Work Area W0 to W511 W0 to W508

Holding Bit Area H0 to H511 H0 to H508

Auxiliary Bit Area A0 to A959 A448 to A959 A0 to A956

Timer Area T0000 to T4095 T0000 to T4092

Counter Area C0000 to C4095 C0000 to C4092

DM Area D0 to D32767 D0 to D32764

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

A

15

AD+3
D+4

B

C D

08 07 00

B C D

Frame (order of data in line)

Stored from leftmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area
888

Network Instructions Section 3-24
• Storing Data from the Rightmost Byte
Set bits 12 to 15 of C+1 to 8 hex.

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the explicit message instructions, refer
to 3-24-2 About Explicit Message Instructions.

The following table shows relevant bits and flags in the Auxiliary Area.

A

15

BD+3
D+4

A

D C

08 07 00

B C D

Frame (order of data in line)

Stored from rightmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.
OFF in all other cases.

Name Address Operation

Communications
Port Enabled Flag

A202.00 to
A202.07

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A213.00 to
A213.07

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.
The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.
The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.
889

Network Instructions Section 3-24
Precautions Be sure that the order of bytes in the source data matches the order in the
explicit message’s frame (order of data in the line). For example, when the
service data is in 2-byte or 4-byte units, the order of data in the frame is left-
most to rightmost order in 2-digit pairs, as shown in the following diagram.

The following diagrams show how data is stored in the data areas when the
service data is in 2-byte or 4-byte units.

1. Data in 2-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 1234 hex in D+3

Communications
Port Error Flag

A219.00 to
A219.07

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.
The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.
The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

Name Address Operation

78 56 34 1234 12

Service Data:12345678HexService Data:1234Hex

Command format
Example: Cumulative time 12345678
hex stored in 78 → 56 → 34 → 12 order

Example: Address 1234
hex stored in 34 → 12 order

34

15

3 4 1D+3 2
08 07 00

12Frame

The data in the frame is in the order 34 → 12.

In this case, 1234 hex is
stored from the leftmost
byte in the order 34 → 12.
890

Network Instructions Section 3-24
• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 1234 hex in D+3

2. Data in 4-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 12345678 hex in D+3 and D+4

• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 12345678 hex in D+3 and D+4

Note The examples above only show the storage of received data in D+3, but send
data is stored in S+6 in the same way.

Example In this example, EXPLT(720) is used to read the total ON time or number of
contact operations from a DRT2 Slave (I/O Terminal).

When CIO 0.00 and A202.06 (the Communications Port Enabled Flag for port
06) are ON, EXPLT(720) reads the Total ON Time (s) or Number of Contact
Operations from a DRT2 Slave (I/O Terminal). In this case, the Total ON Time
or Number of Contact Operations for input 3 are read.

Service Code = 0E hex, Class ID = 09 hex, Instance ID = 03 hex, and Attribute
ID = 66 hex.

For example, a value of 2,752,039 s is returned as the response for the Total
ON Time.

34

15

D+3
08 07 00

12

1 2 3 4

Frame

The data in the frame is in the order 34 → 12.

In this case, 1234 hex is
stored from the
rightmost byte in the
order 34 → 12.

78

15

7 8 5D+3
D+4

6
3 4 1 2

08 07 00

56 34 12Frame

The data in the frame is in the order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the leftmost byte in
the order 78 → 56 → 34 → 12.

78

15

D+3
D+4 1 2 3 4

08 07 00

56 34 12

5 6 7 8

Frame

The data in the frame is in the order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the rightmost byte in
the order 78 → 56 → 34 → 12.

0.00 A202.06

S

D

C

EXPLT

D000

D100

D200

Communications Port
Enabled Flag (Port 6)
891

Network Instructions Section 3-24
3-24-7 EXPLICIT GET ATTRIBUTE: EGATR(721)
Purpose Sends an information/status read command in an explicit message (Get

Attribute Single, ServiceCode: 0E hex).

Ladder Symbol

0E 09 03 66

CP1H

Attribute ID

Instance ID

Class ID

Service Code

Explicit message command format

Destination node address

CS1W-DRM21 DeviceNet Unit
(CPU Bus Unit with unit number 2)

EXPLT(720)
instruction

Unit address 12 hex (because
the unit number is 2)

Explicit
message

DRM2-OD16 Slave
with node address 45

S: D0 0 0 0 A
S+1: D1 0 0 2 D
S+2: D2 0 0 0 E
S+3: D3 0 0 0 9
S+4: D4 0 0 0 3
S+5: D5 0 0 6 6

D: D100 0 0 0 8
D+1: D101 0 0 2 D
D+2: D102 0 0 8 E
D+3: D103 2 7 F E
D+4: D104 2 9 0 0

C: D200 0 0 0 4

C+1: D201 0 6 1 2

C+2: D202 0 0 0 0
C+3: D203 0 0 0 0

Number of bytes of data: S+1 to S+5 = 5 words = 10 bytes = 0A hex
Slave’s node address = 45 = 2D hex
Service Code = 0E hex
Class ID = 09 hex
Instance ID = 03 hex (Input 3)
Attribute ID = 66 hex

Contains 08 hex for 8 bytes of received data in response frame.

Returns Slave’s node address = 45 = 2D hex.

Service Code = 8E hex (normal completion)

Service Data = 0029FE27 hex (2,752,039 s decimal)

Set 5 words = 0005 hex since there are 5 words in D to D+5.
Byte order = 0 hex (from leftmost byte), communications port = 6 hex
(port 6), and the DeviceNet Unit’s unit address = 12 hex
Response monitoring time = 0000 hex (2 s)
Explicit format type = 0000 hex (DeviceNet format)

EGATR(721)

S

D

C

S: First word of send message

D: First word of received message

C: First control word
892

Network Instructions Section 3-24
Variations

Applicable Program Areas

Operands S: First word of send message

Specifies the first word of the send message (S to S+3).

D: First word of received message

Specifies the first word of the received message (D to D+267 max.).

Variations Executed Each Cycle for ON Condition EGATR(721)

Executed Once for Upward Differentiation @EGATR(721)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

S 0 0

8111215 07

S+1 0 0

8111215 07

S+2 0 0

8111215 07

S+3 0 0

8111215 07

Class ID (hex)

Instance ID (hex)

Attribute ID (hex)

Destination Node Address
00 to max. node address (hex)
(00 to 3F hex (0 to 63) for DeviceNet))

If the Attribute ID is not used, set it
to FFFF hex. (The Attribute ID
cannot be set to 0000 hex.)

D

015

D+1

D+267

15 0

...

Service Data

Contains the number of bytes of received service data from
words D+1 on. Does not include the 2 bytes in word D itself.

Includes only the number of bytes of Service Data starting at
D+1. (If the first or last word contains just one byte of data,
the empty byte in that word is not counted.)

Contains the response’s service data (data following
the service code). The byte-order of this data is
specified in bits 12 to 15 of C+1.
Can contain up to 534 bytes (267 words) of data.

to
893

Network Instructions Section 3-24
C: First control word

Specifies the first of four control words (C to C+3).

Operand Specifications

Description Sends the “read information/status” explicit message command (stored in
words S+1 to S+3) to the node address specified in S, via the Communica-
tions Unit with the FINS unit address specified in bits 00 to 07 of C+1.

C

015

C+1

8111215 07

C+2

15 0

C+3

15 0

Set the maximum number of words of data in the received data beginning at D.
The allowed setting range is 0 to 010C hex (268 words).
If the number of words of received data exceeds the value set here, a FINS
error will occur (response too long, code 11 0B) and no data at all will be stored
(in the area starting at D+3).
If the number of words of received data is less than the value set here, the
remaining words (in the area starting at D+3) will be left unchanged.

FINS unit address of relaying Communications Unit.
CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port (logical port) for the network
instruction: 0 to 7 hex (F hex: Automatic allocation)

Byte order of service data (frame data) stored in areas beginning at S+6 and D+3
0 hex: Stored from leftmost byte (Left → Right → Left → Right ...)
8 hex: Stored from rightmost byte (Right → Left → Right → Left ...)

Response monitoring time
0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

Explicit message format
0000 hex: DeviceNet (same as using the 2801 FINS command)

Area S D C

CIO Area CIO 0 to
CIO 6140

CIO 0 to
CIO 6143

CIO 0 to
CIO 6140

Work Area W0 to W508 W0 to W511 W0 to W508

Holding Bit Area H0 to H508 H0 to H511 H0 to H508

Auxiliary Bit Area A0 to A956 A0 to A959 A0 to A956

Timer Area T0000 to T4092 T0000 to T4095 T0000 to T4092

Counter Area C0000 to C4092 C0000 to C4095 C0000 to C4092

DM Area D0 to D32764 D0 to D32767 D0 to D32764

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
894

Network Instructions Section 3-24
When the response to the explicit message is received, the response’s ser-
vice data (data following the service code) is stored in the range of words
beginning at D+1.

The number of bytes of received data indicated in D is the number of bytes of
service data. (For example, if there is 1 byte of service data, D will contains
0001 hex. D will contain 0001 hex regardless of the byte order setting, i.e.,
whether the byte is stored in the rightmost or leftmost byte of D.)
The setting in bits 12 to 15 of C+1 (0 or 8 hex) determines the byte-order of
the service data stored at S+6 and D+3.

• Storing Data from the Leftmost Byte
Set bits 12 to 15 of C+1 to 0 hex.

• Storing Data from the Rightmost Byte
Set bits 12 to 15 of C+1 to 8 hex.

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the explicit message instructions, refer
to 3-24-2 About Explicit Message Instructions.

A

15

AD+1
D+2

B

C D

08 07 00

B C D

Frame (order of data in line)

Stored from leftmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area

A

15

BD+1
D+2

A

D C

08 07 00

B C D

Frame (order of data in line)

Stored from rightmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.
OFF in all other cases.
895

Network Instructions Section 3-24
The following table shows relevant bits and flags in the Auxiliary Area.

Precautions Be sure that the order of bytes in the source data matches the order in the
explicit message’s frame (order of data in the line). For example, when the
service data is in 2-byte or 4-byte units, the order of data in the frame is left-
most to rightmost order in 2-digit pairs, as shown in the following diagram.

Name Address Operation

Communications
Port Enabled Flag

A202.00 to
A202.07

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A213.00 to
A213.07

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.
The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.
The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.

Communications
Port Error Flag

A219.00 to
A219.07

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.

The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.
The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.

The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

78 56 34 1234 12

Service Data:12345678HexService Data:1234Hex

Command format

Example: Address 1234 hex
stored in 34 → 12 order

Example: Cumulative time12345678
hex stored in 78 → 56 → 34 → 12 order
896

Network Instructions Section 3-24
The following diagrams show how data is stored in the data areas when the
service data is in 2-byte or 4-byte units.

1. Data in 2-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 1234 hex in D+1

• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 1234 hex in D+1

2. Data in 4-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 12345678 hex in D+1 and D+2

• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 12345678 hex in D+1 and D+2

Example In this example, EGATR(721) is used to read the general status of a DRT2
Slave (I/O Terminal).

34

15

3 4 1D+1 2
08 07 00

12Frame

The data in the frame is
in the order 34 → 12.

In this case, 1234 hex is
stored from the leftmost
byte in the order 34 → 12.

34

15

1 2 3D+1 4
08 07 00

12Frame

The data in the frame is in
the order 34 → 12.

In this case, 1234 hex is
stored from the rightmost
byte in the order 34 → 12.

78

15

7 8 5D+1
D+2

6
3 4 1 2

08 07 00

56 34 12Frame

The data in the frame is in the
order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the leftmost byte in
the order 78 → 56 → 34 → 12.

78

15

5 6 7D+1
D+2

8
1 2 3 4

08 07 00

56 34 12Frame

In this case, 12345678 hex is
stored from the rightmost byte in
the order 78 → 56 → 34 → 12.

The data in the frame is in the
order 78 → 56 → 34 → 12.

0.00 A202.06

S

D

C

EGATR

D0

D100

D200

Communications Port
Enabled Flag (Port 6)
897

Network Instructions Section 3-24
When CIO 0.00 and A202.06 (the Communications Port Enabled Flag for port
06) are ON, EGATR(721) reads the general status of the DRT2 Slave (I/O Ter-
minal). In this case, the Total ON Time or Number of Contact Operations for
input 3 are read.

Service Code = 0E hex, Class ID = 95 hex, Instance ID = 01 hex, and Attribute
ID = 65 hex.

The general status is returned in 1 byte.

CP1H

Attribute ID

Instance ID

Class ID
Service Code

0E 95 01 65

Explicit message command format

Destination node address

CS1W-DRM21 DeviceNet Unit
(CPU Bus Unit with unit number 2)

Unit address 12 hex (because
the unit number is 2)

Slave (I/O Terminal)
with node address 10

Explicit
message

EGATR(721)
instruction

S: D0 0 0 0 A

S+1: D1 0 0 9 5

S+2: D2 0 0 0 1

S+3: D3 0 0 6 5

C: D200 0 0 0 2

C+1: D201 8 6 1 2

C+2: D202 0 0 0 0

C+3: D203 0 0 0 0

Set 2 words = 0002 hex since there are 2 words in D to D+1.
Byte order = 8 hex (from rightmost byte), communications port = 6
hex (port 6), and the DeviceNet Unit’s unit address = 12 hex
Response monitoring time = 0000 hex (2 s)
Explicit format type = 0000 hex (DeviceNet format)

Slave’s node address = 10 = 0A hex
Class ID = 95 hex
Instance ID = 01 hex
Attribute ID = 65 hex

D: D100 0 0 0 1

D+1: D101 0 0 4 8

7 6 5 4 3 2 1 0

D101 0 1 0 0 1 0 0 0

Basic Unit's I/O Power Status Flag

Expansion Unit's I/O Power Status Flag

Low Network Power Voltage Flag

Unit Maintenance Flag

Sensor Disconnected Flag
Sensor Power Shorted Flag

Operation Time Over Flag

Connected Device Maintenance Flag

D contains 0 hex for the 1 byte of data returned to the rightmost byte
of D+1.
The Slave’s general status is returned to bits 00 to 07.
(The data is stored in bits 00 to 07 because the byte order setting in
C+1 bits 12 to 15 was set to 8 hex (from rightmost byte).

General
status
898

Network Instructions Section 3-24
3-24-8 EXPLICIT SET ATTRIBUTE: ESATR(722)
Purpose Sends an information write command in an explicit message (Set Attribute

Single, ServiceCode: 10 hex).

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First word of send message

Specifies the first word of the send message (S to S+271 max.).

ESATR(722)

S

C

S: First word of send message

C: First control word

Variations Executed Each Cycle for ON Condition ESATR(722)

Executed Once for Upward Differentiation @ESATR(722)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

S

015

S+1 0 0

8111215 07

S+2 0 0

8111215 07

S+3 0 0

8111215 07

S+4 0 0

8111215 0

S+5

S+271

15 0

7

...

Service Data

Class ID (hex)

Instance ID (hex)

Attribute ID (hex)

Set the number of bytes of source data from words S+1 on.
For example, set S to 0008 hex if there are 4 words of data
(S+1 to S+4). Do not include the 2 bytes in word S itself.
Include the leftmost bytes of S+1 to S+4, which contain 00.
Also, include the number of bytes of Service Data starting at
S+5. (If the first or last word contains just one byte of data, do
not count the empty byte in that word.)

to

Destination Node Address 00 to
max. node address (hex) (00 to
3F hex (0 to 63) for DeviceNet))

If the Attribute ID is not used, set it
to FFFF hex. (The Attribute ID
cannot be set to 0000 hex.)

When there is Service Data (data other than
the Attribute ID), the byte-order of this data
is specified in bits 12 to 15 of C+1. Up to
534 bytes (267 words) can be set.
899

Network Instructions Section 3-24
C: First control word

Specifies the first of three control words (C to C+2).

Operand Specifications

Description Sends the explicit message command with service code 10 hex (stored in the
range of words beginning at S+2) to the node address specified in S+1, via
the Communications Unit with the FINS unit address specified in bits 00 to 07
of C. When the response to the explicit message is received, it is stored in the
range of words beginning at D+2.

The setting in bits 12 to 15 of C (0 or 8 hex) determines the byte-order of the
service data stored at S+5.

C

8111215 07

C+1

15 0

C+2

15 0

Response monitoring time

Explicit message format

FINS unit address of relaying Communications Unit.
CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port (logical port) for the
network instruction: 0 to 7 hex (F hex: Automatic allocation)

Byte order of service data (frame data) stored in areas beginning at S+5
0 hex: Stored from leftmost byte (Left → Right → Left → Right ...)
8 hex: Stored from rightmost byte (Right → Left → Right → Left ...)

0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

0000 hex: DeviceNet (same as using the 2801 FINS command)

Area S C

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6141

Work Area W0 to W511 W0 to W509

Holding Bit Area H0 to H511 H0 to H509

Auxiliary Bit Area A0 to A959 A0 to A957

Timer Area T0000 to T4095 T0000 to T4093

Counter Area C0000 to C4095 C0000 to C4093

DM Area D0 to D32767 D0 to D32765

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in BCD *D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
900

Network Instructions Section 3-24
• Storing Data from the Leftmost Byte
Set bits 12 to 15 of C to 0 hex.

• Storing Data from the Rightmost Byte
Set bits 12 to 15 of C to 8 hex.

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the explicit message instructions, refer
to 3-24-2 About Explicit Message Instructions.

A

15

AS+5
S+6

B

C D

08 07 00

B C D

Frame (order of data in line)

Stored from leftmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area

A

15

BS+5
S+6

A

D C

08 07 00

B C D

Frame (order of data in line)

Stored from rightmost byte.

Note: A, B, C, and D represent bytes of data.

Data
area

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.
OFF in all other cases.
901

Network Instructions Section 3-24
The following table shows relevant bits and flags in the Auxiliary Area.

Precautions Be sure that the order of bytes in the source data matches the order in the
explicit message’s frame (order of data in the line). For example, when the
service data is in 2-byte or 4-byte units, the order of data in the frame is left-
most to rightmost order in 2-digit pairs, as shown in the following diagram.

Name Address Operation

Communications
Port Enabled Flag

A202.00 to
A202.07

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A213.00 to
A213.07

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.
The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.
The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.

Communications
Port Error Flag

A219.00 to
A219.07

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.

The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.
The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.

The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

78 56 34 1234 12

Service Data:12345678HexService Data:1234Hex

Command format

Example: Cumulative time12345678
hex stored in 78 → 56 → 34 → 12 order

Example: Address 1234 hex
stored in 34 → 12 order
902

Network Instructions Section 3-24
The following diagrams show how data is stored in the data areas when the
service data is in 2-byte or 4-byte units.

1. Data in 2-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 1234 hex in S+5

• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 1234 hex in S+5

2. Data in 4-byte Units

• Storing Data from the Leftmost Byte (Bits 12 to 15 of C = 0 hex)
Example: Storing the value 12345678 hex in S+5 and S+6

• Storing Data from the Rightmost Byte (Bits 12 to 15 of C = 8 hex)
Example: Storing the value 12345678 hex in S+5 and S+6

Example In this example, ESATR(722) is used to overwrite the Number of Contact
Operations set value in a DRT2 Slave (I/O Terminal).

34

15

3 4 1S+5 2
08 07 00

12Frame

The data in the frame is
in the order 34 → 12.

In this case, 1234 hex is
stored from the leftmost
byte in the order 34 → 12.

34

15

1 2 3S+5 4
08 07 00

12Frame

The data in the frame is
in the order 34 → 12.

In this case, 1234 hex is
stored from the rightmost
byte in the order 34 → 12.

78

15

7 8 5S+5
S+6

6
3 4 1 2

08 07 00

56 34 12Frame

The data in the frame is in the
order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the leftmost byte in
the order 78 → 56 → 34 → 12.

78

15

5 6 7S+5
S+6

8
1 2 3 4

08 07 00

56 34 12Frame

The data in the frame is in the
order 78 → 56 → 34 → 12.

In this case, 12345678 hex is
stored from the rightmost byte in
the order 78 → 56 → 34 → 12.

0.00 A202.06

S

C

ESATR

D0

D100

Communications Port
Enabled Flag (Port 6)
903

Network Instructions Section 3-24
When CIO 0.00 and A202.06 (the Communications Port Enabled Flag for port
06) are ON, EXPLT(720) writes the Number of Contact Operations set value
for input 2 in a DRT2 Slave (I/O Terminal).

(Service Code = 10 hex,) Class ID = 08 hex, Instance ID = 02 hex, and
Attribute ID = 68 hex.

In this case, the Number of Contact Operations is being set to 500 (1F4 hex),
so the service data is set to 000001F4.

3-24-9 EXPLICIT WORD READ: ECHRD(723)
Purpose Reads data to the local CPU Unit from another CPU Unit in the network.

Ladder Symbol

10 08 02 68 F4 01 00 00

CP1H

Attribute ID

Service Data:01F4Hex

Instance ID

Class ID

Service Code

Explicit message command format

Destination node address

CS1W-DRM21 DeviceNet Unit
(CPU Bus Unit with unit number 2)

Unit address 12 hex (because
the unit number is 2)

Slave (I/O Terminal)
with node address 10

Explicit
message

ESATR(722)
instruction

S D0 0 0 0 C

S:+1 D1 0 0 0 A

S+2: D2 0 0 0 8

S+3: D3 0 0 0 2

S+4: D4 0 0 6 8

S+5: D5 0 1 F 4

S+6: D6 0 0 0 0

C: D201 8 6 1 2

C+1: D202 0 0 0 0

C+2: D203 0 0 0 0

Number of bytes of data: S+1 to S+6 = 6 words = 12 bytes = 0C hex
Slave’s node address = 10 = 0A hex
Class ID = 08 hex
Instance ID = 02 hex
Attribute ID = 68 hex
Service Data = F401 hex

Byte order = 8 hex (from rightmost byte), communications port = 6
hex (port 6), and the DeviceNet Unit’s unit address = 12 hex
Response monitoring time = 0000 hex (2 s)
Explicit format type = 0000 hex (DeviceNet format)

ECHRD(723)

S

D

C

S: First source word in remote CPU Unit

D: First destination word in local CPU Unit

C: First control word
904

Network Instructions Section 3-24
Variations

Applicable Program Areas

Operands S: First Source Word in Remote CPU Unit

Specifies the leading word address containing the data to be read from the
remote CPU Unit.

D: First Destination Word in Local CPU Unit

Specifies the leading word address where the read data will be stored in the
local CPU Unit.

C: First Control Word

Specifies the first of five control words (C to C+4).

Operand Specifications

Variations Executed Each Cycle for ON Condition ECHRD(723)

Executed Once for Upward Differentiation @ECHRD(723)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

C+2 0

8111215 07

C 0 0

8111215 07

C+1 0 0

8111215 07

C+3

15 0

C+4

15 0

FINS unit address of relaying Communications Unit.
• CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
• Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port
(logical port) for the network instruction:
0 to 7 hex (F hex: Automatic allocation)

Source node address (remote CPU Unit)
(00 to maximum node address (hex))
Example: DeviceNet: 00 to 3F hex (0 to 63)

Read data size (words):
01 to 64 hex (1 to 100 words)

Response monitoring time
0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

Explicit message format
0000 hex: DeviceNet
(same as using the 2801 FINS command)

Area S D C

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6139

Work Area W0 to W511 W0 to W507

Holding Bit Area H0 to H511 H0 to H507

Auxiliary Bit Area A0 to A959 A448 to A959 A0 to A955

Timer Area T0000 to T4095 T0000 to T4091

Counter Area C0000 to C4095 C0000 to C4091
905

Network Instructions Section 3-24
Description Reads the specified number of words from the first read word (specified in S)
in the remote CPU Unit with the node address specified in C, and stores the
data in the local CPU Unit memory words beginning at D.

Note ECHRD(723) sends an explicit message with the Service Code 1C hex (Byte
Data Read).

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the network instructions, refer to 3-24-
2 About Explicit Message Instructions.

DM Area D0 to D32767 D0 to D32763

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D C

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.
OFF in all other cases.
906

Network Instructions Section 3-24
The following table shows relevant bits and flags in the Auxiliary Area.

Example In this example, ECHRD(723) is used to read the I/O memory of a CJ-series
CPU Unit on the DeviceNet network, and store the data in the I/O memory of
the local CPU Unit.

Name Address Operation

Communications
Port Enabled Flag

A202.00 to
A202.07

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A213.00 to
A213.07

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.
The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.
The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.

Communications
Port Error Flag

A219.00 to
A219.07

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.

The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.
The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.

The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

0.00

S

D

C

ECHRD

D0

D100

D200

Communications
Port Enabled Flag (Port 6)

A202.06
907

Network Instructions Section 3-24
When CIO 0.00 and A202.06 (the Communications Port Enabled Flag for port
6) are ON, ECHRD(723) reads D0 to D2 from the I/O memory of the CJ-
series CPU Unit with node address 7 on the DeviceNet Network and stores
the data in D100 to D102 of the local CPU Unit.

3-24-10 EXPLICIT WORD WRITE: ECHWR(724)
Purpose Writes data from the local CPU Unit to another CPU Unit in the network.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: First Source Word in Local CPU Unit

Specifies the leading word address in the local CPU Unit containing the write
data.

D: First Destination Word in Remote CPU Unit

Specifies the leading word address of the write destination in the remote CPU
Unit.

CP1H
CJ1W-DRM21 DeviceNet Unit(CPU Bus Unit with unit number 2)

Node address 07

CJ1W-DRM21 DeviceNet Unit

CPU Unit

ECHRD(723)
instruction

DeviceNet
Unit address 12 hex (because
the unit number is 2)

Explicit message

15 0

D: D100

D+1: D100

D+2:

15 0

S: D0

S+1: D1

S+2: D2

15 8 7 0

D200 0 0 0 7

C+1: D201 0 0 0 3

C+2: D202 0 6 1 2

C+3: D203 0 0 0 0

C+4: D204 0 0 0 0

C: Node address of remote CPU Unit to be read = 07 hex (node 07)

Read data size (number of words) = 3 hex

Communications port = 6 hex (port 6),

and the DeviceNet Unit’s unit address = 12 hex

Response monitoring time = 0000 hex (2 s)

Explicit format type = 0000 hex (DeviceNet format)

ECHWR(724)

S

D

C

S: First source word in local CPU Unit

D: First destination word in remote CPU Unit

C: First control word

Variations Executed Each Cycle for ON Condition ECHWR(724)

Executed Once for Upward Differentiation @ECHWR(724)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
908

Network Instructions Section 3-24
C: First Control Word

Specifies the first of five control words (C to C+4).

Operand Specifications

Description Writes the specified number of words beginning at S from the local CPU Unit
to the write destination beginning at D in the remote CPU Unit with the node
address specified in C.

C+2 0

8111215 07

C 0 0

8111215 07

C+1 0 0

8111215 07

C+3

15 0

C+4

15 0

FINS unit address of relaying Communications Unit.
• CPU Bus Unit: 10 to 1F hex (unit number + 10 hex)
• Special I/O Unit: 20 to 7F hex (unit number + 20 hex)

Port number of the communications port (logical port)
for the network instruction: 0 to 7 hex
(F hex: Automatic allocation)

Source node address (remote CPU Unit)
(00 to maximum node address (hex))
Example: DeviceNet: 00 to 3F hex (0 to 63)

Write data size (words):
01 to 64 hex (1 to 100 words)

Response monitoring time
0001 to FFFF hex (0.1 to 6553.5 s)
0000 hex: 2 s (default setting)

Explicit message format
0000 hex: DeviceNet (same as using the 2801 FINS c

Area S D C

CIO Area CIO 0 to CIO 6143 CIO 0 to CIO 6139

Work Area W0 to W511 W0 to W507

Holding Bit Area H0 to H511 H0 to H507

Auxiliary Bit Area A0 to A959 A448 to A959 A0 to A955

Timer Area T0000 to T4095 T0000 to T4091

Counter Area C0000 to C4095 C0000 to C4091

DM Area D0 to D32767 D0 to D32763

Indirect DM addresses in
binary

@ D0 to @ D32767

Indirect DM addresses in
BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing using
Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
909

Network Instructions Section 3-24
Note ECHWR(724) sends an explicit message with the Service Code 1E hex (Byte
Data Write).

Flags

The corresponding Explicit Communications Error Flag will be OFF if the
instruction ended normally or ON if an error occurred.

If an error occurred (corresponding flag in A213 ON), the corresponding Com-
munications Port Error Flag can be used to determine whether the explicit
message itself was not sent (corresponding flag in A219 ON) or that the mes-
sage was sent but there was an error in the message (corresponding flag in
A219 OFF).

The corresponding Communications Port Completion Code (A203 to A210)
will be 0000 hex if the instruction ended normally, an explicit message error
code if an explicit messaging error occurred, or a FINS error code if a FINS
error occurred.

For details on the general operation of the explicit message instructions, refer
to 3-24-2 About Explicit Message Instructions.

The following table shows relevant bits and flags in the Auxiliary Area.

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag is OFF for
the communications port number specified in C.

OFF in all other cases.

Name Address Operation

Communications
Port Enabled Flag

A202.00 to
A202.07

These flags are turned ON to indicate that net-
work instructions, including PMCR(260) may be
executed for the corresponding ports (00 to 07).
A flag is turned OFF when a network instruction
is being executed for the corresponding port and
turned ON again when the instruction is com-
pleted.

Explicit Communica-
tions Error Flag

A213.00 to
A213.07

These flags are turned ON to indicate that an
error has occurred at the corresponding ports (00
to 07) during execution of explicit message com-
munications.

The flags will be turned ON if the explicit mes-
sage was not sent or the message was sent but
an error response was returned.

The flag status is retained until the next explicit
message instruction is executed. The flag will be
turned OFF when the next instruction is executed
even if an error occurred previously.
910

Network Instructions Section 3-24
Example In this example, ECHWR(724) is used to write data from the I/O memory of
the local CPU Unit to the I/O memory of a CJ-series CPU Unit on the
DeviceNet Network.

When CIO 0.00 and A202.06 (the Communications Port Enabled Flag for port
6) are ON, ECHWR(724) reads D0 to D2 from the I/O memory of the local
CPU Unit and stores the data in D100 to D102 of the CJ-series CPU Unit with
node address 7 on the DeviceNet Network.

Communications
Port Error Flag

A219.00 to
A219.07

These flags are turned ON to indicate that the
explicit message itself was not sent from the cor-
responding ports (00 to 07) during execution of
an explicit message instruction.
The flag status is retained until the next network
instruction is executed. The flag will be turned
OFF when the next instruction is executed even if
an error occurred previously.

Communications
Port Completion
Codes

A203 to
A210

These words contain the completion codes for the
corresponding ports (00 to 07) following execu-
tion of a network instruction.

The corresponding word will contain 0000
while the Explicit Communications Error Flag
is OFF.
The corresponding word will contain a FINS
error code when that port’s Explicit Communi-
cations Error Flag and Communications Port
Error Flag are both ON.
The corresponding word will contain the
appropriate explicit message error code when
that port’s Explicit Communications Error Flag
is ON and the Communications Port Error
Flag is OFF.

The corresponding word will contain 0000 while
the network instruction is being executed and the
completion code will be written when the instruc-
tion is completed. These words are cleared when
program execution begins.

Name Address Operation

0.00

S

D

C

ECHWR

D0

D100

D200

Communications
Port Enabled Flag (Port 6)

A202.06

CP1H

DeviceNet

CJ1W-DRM21 DeviceNet Unit(CPU Bus Unit with unit number 2)

Node address 07

CJ1W-DRM21 DeviceNet Unit

CPU Unit

ECHWR(724)
instruction

Unit address 12 hex (because
the unit number is 2)

Explicit message

D: D100

D+1: D101

D+2: D102

S: D0

S+1: D1

S+2: D2
911

Display Instructions Section 3-25
3-25 Display Instructions
This section describes instructions used to display messages.

3-25-1 DISPLAY MESSAGE: MSG(046)
Purpose Reads the specified sixteen words of extended ASCII and displays the mes-

sage on the Programming Device.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Message number

The message number must be 0000 to 0007 hexadecimal (or 0 to 7 decimal).

M: First message word

When displaying a message, M specifies the address of the first of the words
containing the ASCII message. When clearing a message, M can be any
hexadecimal constant (0000 through FFFF).

Operand Specifications

15 8 7 0

C: D200 0 0 0 7

C+1: D201 0 0 0 3

C+2: D202 0 6 1 2

C+3: D203 0 0 0 0

C+4: D204 0 0 0 0

Node address of remote CPU Unit to be written to = 07 hex (node 07)

Write data size (number of words) = 3 hex

Communications port = 6 hex (port 6),

and the DeviceNet Unit’s unit address = 12 hex

Response monitoring time = 0000 hex (2 s)

Explicit format type = 0000 hex (DeviceNet format)

Instruction Mnemonic Function
code

Page

DISPLAY MESSAGE MSG 046 912

SEVEN-SEGMENT LED
WORD DATA DISPLAY

SCH 047 914

SEVEN-SEGMENT LED CON-
TROL

SCTRL 048 916

MSG(046)

N

M

N: Message number

M: First message word

Variations Executed Each Cycle for ON Condition MSG(046)

Executed Once for Upward Differentiation @MSG(046)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area M N

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959
912

Display Instructions Section 3-25
Description When the execution condition is ON, MSG(046) registers the 16 words of
ASCII data (up to 32 characters including the null character) from M to M+15
for the message number specified by N. Once a message has been regis-
tered, the Programming Device can be connected and the message will be
displayed after any error messages that have been generated.

After a message has been registered, the message display can be changed
by overwriting the message in the message storage area.

To clear a message that has been registered, execute MSG(046) with S set to
the message number of the message you want to clear and N set to a con-
stant (0000 to FFFF).

A message registered during program execution will be retained even if pro-
gram execution is stopped, but all messages will be cleared when the pro-
gram is executed again.

Flags

Precautions Registered messages are updated each time MSG(046) is executed.

All message characters after the null character (00) are converted to spaces
in the Programming Device display.

The character stored in the leftmost byte is displayed before the character in
the rightmost byte.

Examples When CIO 0.00 turns ON in the following example, the 16 words of data in
D100 through D115 are read as the 32 characters of ASCII data for message
number 7 and displayed at the Programming Device.

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #0007 (binary) or
&0 to &7

#0000 to #FFFF (binary)

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area M N

Name Label Operation

Error Flag ER ON if the content of S is not 0000 to 0007 hexadecimal.

OFF in all other cases.
913

Display Instructions Section 3-25
ASCII

3-25-2 SEVEN-SEGMENT LED WORD DATA DISPLAY: SCH(047)
Purpose SCH(047) displays two user-specified digits on the 7-segment display on the

CPU Unit.

Ladder Symbol

Variations

4D 41

54 45

52 49

41 4C

20 53
48 4F

52 54

MSG
MATERIAL SHORT

D107

D115

0.00

D100

M: D100

D101

D102

D103

D104

D105

D106

N

M

Spaces

16 characters × 2 lines max.
Reads ASCII
data up to 00.

Leave out spaces.
(Values ignored)

SP

Four leftmost bits

F
ou

r
rig

ht
m

os
t b

its

SCH(047)
S
C

S: Display source word
C: Control word (digit specification)

Variations Executed Each Cycle for ON Condition SCH(047)

Executed Once for Upward Differentiation @SCH(047)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
914

Display Instructions Section 3-25
Applicable Program Areas

Operands S: Display source word

C: Control word (digit specification)

0000 hex: Display leftmost two digits
0001 hex: Display rightmost two digits

Operand Specifications

Description When the execution condition goes ON, SCH(047) displays the leftmost or
rightmost two hexadecimal digits of S on the 7-segment display on the CPU
Unit. Any value between 00 and FF hexadecimal can be displayed. The value
of C determines if the leftmost two digits or rightmost two digits are displayed.

The display will remain even if the execution condition of SCH(047) goes OFF.
Use SCTRL(048) to clear the display.

If the contents of C is not 0000 or 0001 hex, an error will occur, the ER Flag
will turn ON, and nothing will be displayed.

Flags

Precautions If displays are created by more than one SCTRL(048) or SCH(047) instruc-
tion, the last one that is executed with take priority.

Messages on the 7-segment display on the CPU Unit are displayed in the fol-
lowing order of priority. Therefore, system error message will be given priority
even if there is a display created with SCTRL(048) or SCH(047).

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S C

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF #0000, #0001

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Name Label Operation

Error Flag ER C contains a value other than 0000 or 0001 hex.
OFF in all other cases.
915

Display Instructions Section 3-25
1. Error messages
2. SCTRL(048) or SCH(047) displays
3. Analog adjustment displays
4. Memory Cassette processing displays

If an error occurs while a SCTRL(048) or SCH(047) display is in effect, the
error message will be given priority, but the SCTRL(048) or SCH(047) display
will return when the error is cleared.

Example When CIO 2.00 turns ON in the following example, “AC” is displayed on the 7-
segment display on the CPU Unit. The display remains even when CIO 2.00
turns OFF. When CIO 2.01 turns ON, the display is cleared by SCTRL(048).

3-25-3 SEVEN-SEGMENT LED CONTROL: SCTRL(048)
Purpose SCH(047) displays two user-specified digits on the 7-segment display on the

CPU Unit according to specifications for individual display segments.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control data

Each bit of the control data corresponds to a segment of the two display digits
on the CPU Unit.

ON: Light digit
OFF: Do not light digit

Operand Specifications

SCH(047)
#00AC
#0000

2.00

2.01

SCTRL(048)
#0000

CP1H CPU Unit

Display data
Display rightmost
digits.

Clears the display.

SCTRL(048)
C C: Control data

Variations Executed Each Cycle for ON Condition SCTRL(048)

Executed Once for Upward Differentiation @SCTRL(048)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area C

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767
916

Display Instructions Section 3-25
Description When the execution condition goes ON, SCTRL(048) lights or does not light
individual segments of the two digits of the 7-segment display on the CPU
Unit according to the value of C. Any combination of segments can be lit.

The display will remain until SCTRL(048) is executed with C set to #0000 to
clear all of the display segments. This will also clear displays created with
SCH(047). It will not clear displays generated by the system.

Flags There are no flags affected by SCTRL(048).

Precautions If displays are created by more than one SCTRL(048) or SCH(047) instruc-
tion, the last one that is executed with take priority.

Messages on the 7-segment display on the CPU Unit are displayed in the fol-
lowing order of priority. Therefore, system error message will be given priority
even if there is a display created with SCTRL(048) or SCH(047).

1. Error messages
2. SCTRL(048) or SCH(047) displays
3. Analog adjustment displays
4. Memory Cassette processing displays

If an error occurs while a SCTRL(048) or SCH(047) display is in effect, the
error message will be given priority, but the SCTRL(048) or SCH(047) display
will return when the error is cleared.

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047, IR0 to IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area C

Left digit Right digit

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 14 Bit 15

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Bit 6 Bit 7
917

Display Instructions Section 3-25
Example When W0.02 turns ON in the following example, the individual segments of
the 7-segment display on the CPU Unit will be controlled according to the con-
tents of D200 (7678 =“Ht”). The display remains even when W0.02 turns OFF.
When W0.03 turns ON, the display is cleared.

Numeric Values Corresponding to 7-segment Displays

Left digit Right digit

SCTRL(048)
D200

W0.02

D200
7 7 8

SCTRL(048)
#0000

W0.03
6

Bit 13

Bit 12

Bit 11

Bit 10

Bit 9

Bit 8

Bit 14

Bit 15

Bit 15 14 13 10 09 08
0 1 0 1 1 0

7 6

12 11
11

Bit 5

Bit 4

Bit 3

Bit 2

Bit 1

Bit 0

Bit 6

Bit 7

Bit 07 06 05 04 03 02 01 00
0 1 1 1 1 0 0 0

0 (3F) 1 (06) 2 (5B) 3 (4F) 4 (66) 5 (6D) 6 (7D) 7 (27) 8 (7F) 9 (6F)

A (77) B (7C) C (39) D (5E) E (79) F (71) G (3D) H (76) I (19) J (0D)

K (72) L (38) M (55) N (54) O (5C) P (73) Q (67) R (50) S (6D) T (78)

U (6E) V (1C) W (6A) X (1D) Y (6E) Z (49)

918

Clock Instructions Section 3-26
3-26 Clock Instructions
This section describes instructions used with the system clock.

3-26-1 CALENDAR ADD: CADD(730)
Purpose Adds time to the calendar data in the specified words.

Ladder Symbol

Variations

Applicable Program Areas

Instruction Mnemonic Function code Page

CALENDAR ADD CADD 730 919

CALENDAR SUBTRACT CSUB 731 922

HOURS TO SECONDS SEC 065 925

SECONDS TO HOURS HMS 066 928

CLOCK ADJUSTMENT DATE 735 930

CADD(730)

C

T

R

C: First calendar word

T: First time word

R: First result word

Variations Executed Each Cycle for ON Condition CADD(730)

Executed Once for Upward Differentiation @CADD(730)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
919

Clock Instructions Section 3-26
Operands C through C+2: Calendar Data

Set the calendar data in C through C+2 as shown in the following diagram.

T and T+1: Time Data

Set the time data in T and T+1 as shown in the following diagram.

15 8 07

C

15 8 07
C+1

15 8 07

C+2

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Day: 01 to 31 (BCD)

15 8 07

T

15 0

T+1

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hours: 0000 to 9999 (BCD)
920

Clock Instructions Section 3-26
R through R+2: Result Data

R through R+2 contain the result of the addition.

Operand Specifications

15 8 07

R

15 8 07

R+1

15 8 07

R+2

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Day: 01 to 31 (BCD)

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Area C T R

CIO Area CIO 0 to
CIO 6141

CIO 0 to
CIO 6142

CIO 0 to
CIO 6141

Work Area W0 to W509 W0 to W510 W0 to W509

Holding Bit Area H0 to H509 H0 to H510 H0 to H509

Auxiliary Bit Area A0 to A957 A0 to A958 A448 to A957

Timer Area T0000 to T4093 T0000 to T4094 T0000 to T4093

Counter Area C0000 to C4093 C0000 to C4094 C0000 to C4093

DM Area D0 to D32765 D0 to D32766 D0 to D32765

Indirect DM addresses
in binary

@D0 to @D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values
only

Data Registers ---

Index Registers –

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR05+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
921

Clock Instructions Section 3-26
Description CADD(730) adds the calendar data (words C through C+2) to the time data
(words T and T+1) and outputs the resulting calendar data to R through R+2.

Flags

Examples When CIO 0.00 turns ON in the following example, the calendar data in D100
through D102 (year, month, day, hour, minutes, seconds) is added to the time
data in D200 and D201 (hours, minutes, seconds) and the result is output to
D300 through D302.

3-26-2 CALENDAR SUBTRACT: CSUB(731)
Purpose Subtracts time from the calendar data in the specified words.

Ladder Symbol

C+1
C

C+2

T+1
T

R+1
R

R+2

Minutes Seconds
Day Hour
Year Month

Minutes Seconds

Minutes Seconds

Day Hour
Year Month

Hours

Name Label Operation

Error Flag ER ON if the calendar data in C through C+2 is not within the
specified ranges.

ON if the time data in T and T+1 is not within the specified
ranges.
OFF in all other cases.

18:30:20

18:40:35

99 12

06 00

04 18
00 01

C

T

R

0.00

D100

D200

D300

C: D100
D101
D102

T: D200
D201

R: D300
D301
D302

10 December, 1999

10 minutes, 15 seconds
600 hours

4 January, 2000

CSUB(731)

C

T

R

C: First calendar word

T: First time word

R: First result word
922

Clock Instructions Section 3-26
Variations

Applicable Program Areas

Operands C through C+2: Calendar Data

Set the calendar data in C through C+2 as shown in the following diagram.

T and T+1: Time Data

Set the time data in T and T+1 as shown in the following diagram.

Variations Executed Each Cycle for ON Condition CSUB(731)

Executed Once for Upward Differentiation @CSUB(731)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

C

15 8 07
C+1

15 8 07

C+2

Minutes: 00 to 59 (BCD)

Seconds: 00 to 59 (BCD)

Day: 01 to 31 (BCD)

Hour: 00 to 23 (BCD)

Year: 00 to 99 (BCD)

Month: 01 to 12 (BCD)

15 8 07

T

15 0

T+1

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hours: 0000 to 9999 (BCD)
923

Clock Instructions Section 3-26
R through R+2: Result Data

R through R+2 contain the result of the addition.

Operand Specifications

15 8 07

R

15 8 07

R+1

15 8 07

R+2

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Day: 01 to 31 (BCD)

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Area C T R

CIO Area CIO 0 to
CIO 6141

CIO 0 to
CIO 6142

CIO 0 to
CIO 6141

Work Area W0 to W509 W0 to W510 W0 to W509

Holding Bit Area H0 to H509 H0 to H510 H0 to H509

Auxiliary Bit Area A0 to A957 A0 to A958 A448 to A957

Timer Area T0000 to T4093 T0000 to T4094 T0000 to T4093

Counter Area C0000 to C4093 C0000 to C4094 C0000 to C4093

DM Area D0 to D32765 D0 to D32766 D0 to D32765

Indirect DM addresses
in binary

@D0 to @D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- Specified values
only

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR05+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
924

Clock Instructions Section 3-26
Description CSUB(731) subtracts the time data (words T and T+1) from the calendar data
(words C through C+2) to and outputs the resulting calendar data to R
through R+2.

Flags

Examples When CIO 0.00 turns ON in the following example, the time data in D200 and
D201 (hours, minutes, seconds) is subtracted from the calendar data in D100
through D102 (year, month, day, hour, minutes, seconds) and the result is out-
put to D300 through D302.

3-26-3 HOURS TO SECONDS: SEC(065)
Purpose Converts time data in hours/minutes/seconds format to an equivalent time in

seconds only.

Ladder Symbol

C+1
C

C+2

T+1
T

R+1
R

R+2

Hours

Minutes Seconds

Minutes Seconds

Day Hour
Year Month

Minutes Seconds
Day Hour
Year Month

Name Label Operation

Error Flag ER ON if the calendar data in C through C+2 is not within the
specified ranges.

ON if the time data in T and T+1 is not within the specified
ranges.
OFF in all other cases.

18:30:20

16:20:05

C

T
R

0.00

D100
D200

D300

C: D100
D101
D102

T: D200
D201

R: D300
D301
D302

10 July, 1998

50 hours, 10 minutes, 15 seconds

8 July, 1998

SEC(065)

S

D

S: First source word

D: First destination word
925

Clock Instructions Section 3-26
Variations

Applicable Program Areas

Operands S and S+1: Source Data

Set the hours/minutes/seconds source data in S and S+1, as shown in the fol-
lowing diagram.

D and D+1: Result Data

D and D+1 contain the result data in seconds-only format.

Operand Specifications

Variations Executed Each Cycle for ON Condition SEC(065)

Executed Once for Upward Differentiation @SEC(065)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

S

15

S+1
0

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hours: 0000 to 9999 (BCD)

15 0

D

15 0

D+1

Rightmost 4 digits
Seconds: 0000 to 9999 (BCD)

Leftmost 4 digits
Seconds: 0000 to 3599 (BCD)

Area S D

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094
926

Clock Instructions Section 3-26
Description SEC(065) converts the 8-digit BCD hours/minutes/seconds data in S and S+1
to 8-digit BCD seconds-only data and outputs the result to D and D+1.

Flags

Precautions The maximum value for the source data is 9,999 hours, 59 minutes, and 59
seconds (35,999,999 seconds).

Examples When CIO 0.00 turns ON in the following example, the hours/minutes/sec-
onds data in D200 and D201 (34 hours, 17 minutes, and 36 seconds) is con-
verted to seconds-only data and the result is output to D100 and D101.

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants Specified values only ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

Hours

Seconds

Minutes Seconds

Name Label Operation

Error Flag ER ON if the minutes data in S (bits 08 to 15) is not BCD and in
the range 00 to 59.
ON if the seconds data in S (bits 00 to 07) is not BCD and in
the range 00 to 59.
OFF in all other cases.

Equals Flag = ON if the content of D is 0000 after the operation.

OFF in all other cases.

0.00

D200

D100
S: D200

D201

D: D100
D101

 seconds

17 minutes, 36 seconds
34 hours

Hours/minutes/seconds

123,456 seconds

→

927

Clock Instructions Section 3-26
3-26-4 SECONDS TO HOURS: HMS(066)
Purpose Converts seconds data to an equivalent time in hours/minutes/seconds for-

mat.

Ladder Symbol

Variations

Applicable Program Areas

Operands S and S+1: Source Data

Set the seconds source data in S and S+1, as shown in the following diagram.

D and D+1: Result Data

D and D+1 contain the result data in hours/minutes/seconds format.

HMS(066)

S

D

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition HMS(066)

Executed Once for Upward Differentiation @HMS(066)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

15 0

S+1

Rightmost 4 digits
Seconds: 0000 to 9999 (BCD)

Leftmost 4 digits
Seconds: 0000 to 3599 (BCD)

15 8 07

D

15 0

D+1

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hours: 0000 to 9999 (BCD)
928

Clock Instructions Section 3-26
Description HMS(066) converts the 8-digit BCD seconds-only data in S and S+1 to 8-digit
BCD hours/minutes/seconds data and outputs the result to D and D+1.

Flags

Precautions The maximum value for the source data is 35,999,999 seconds (9,999 hours,
59 minutes, and 59 seconds).

Area S D

CIO Area CIO 0 to CIO 6142

Work Area W0 to W510

Holding Bit Area H0 to H510

Auxiliary Bit Area A0 to A958 A448 to A958

Timer Area T0000 to T4094

Counter Area C0000 to C4094

DM Area D0 to D32766

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants 00000000 to 35999999
(BCD)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Seconds

Hours
Minutes Seconds

Name Label Operation

Error Flag ER ON if the seconds data in S and S+1 is not BCD and in the
range 0 to 35,999,999.

OFF in all other cases.

Equals Flag = ON if the content of D is 0000 after the operation.
OFF in all other cases.
929

Clock Instructions Section 3-26
Examples When CIO 0.00 turns ON in the following example, the seconds data in D100
and D101 (123,456 seconds) is converted to hours/minutes/seconds data and
the result is output to D200 and D201.

3-26-5 CLOCK ADJUSTMENT: DATE(735)
Purpose Changes the internal clock setting to the setting in the specified source words.

Note The internal clock setting can also be changed from the CX-Programmer or
the CLOCK WRITE FINS command (0702).

Ladder Symbol

Variations

Applicable Program Areas

0.00

D100

D200
S: D100

D101

D: D200
D201

123,456 seconds

 Hours/minutes/secondsSeconds

17 minutes, 36 seconds
34 hours

→

S

DATE(735)

S: First source word

Variations Executed Each Cycle for ON Condition DATE(735)

Executed Once for Upward Differentiation @DATE(735)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
930

Clock Instructions Section 3-26
Operands S through S+3: New Clock Setting

Set the new clock setting in S through S+3 as shown in the following diagram.
S through S+3 must be in the same data area.

The following table shows the structure of the Calendar/Clock Area.

Operand Specifications

Addresses Contents

A351.00 to A351.07 Second (00 to 59, BCD)

A351.08 to A351.15 Minute (00 to 59, BCD)

A352.00 to A352.07 Hour (00 to 23, BCD)

A352.08 to A352.15 Day of month (01 to 31, BCD)

A353.00 to A353.07 Month (01 to 12, BCD)

A353.08 to A353.15 Year (00 to 99, BCD)

A354.00 to A354.07 Day of week (00 to 06 = Sunday to Saturday, hexadecimal)

A354.08 to A354.15 Always set to 00.

15 8 07

S

15 8 07

S+1

15 8 07

S+2

15 8 07

S+3

Seconds: 00 to 59 (BCD)

Minutes: 00 to 59 (BCD)

Hour: 00 to 23 (BCD)

Day: 01 to 31 (BCD)

Month: 01 to 12 (BCD)

Year: 00 to 99 (BCD)

Always set to 00.

Day of the week: 00 = Sunday
01 = Monday
02 = Tuesday
03 = Wednesday
04 = Thursday
05 = Friday
06 = Saturday

Area S

CIO Area CIO 0 to CIO 6140

Work Area W0 to W508]

Holding Bit Area H0 to H508

Auxiliary Bit Area A0 to A956

Timer Area T0000 to T4092
931

Clock Instructions Section 3-26
Description DATE(735) changes the internal clock setting according to the clock data in
the four source words. The new internal clock setting is immediately reflected
in the Calendar/Clock Area (A351 to A354).

Flags

Precautions An error will not be generated even if the internal clock is set to a non-existent
date (such as November 31).

Counter Area C0000 to C4092

DM Area D0 to D32764

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S

00

CPU Unit

Internal clock

New setting

Day of week

Minutes Seconds

Day Hour
Year Month

Name Label Operation

Error Flag ER ON if the new clock setting in S through S+3 is not within
the specified range.
OFF in all other cases.
932

Debugging Instructions Section 3-27
Examples When CIO 0.00 turns ON in the following example, the internal clock is set to
20:15:30 on Thursday, May 2, 2005.

3-27 Debugging Instructions
This section describes instructions used to debug programs.

3-27-1 Trace Memory Sampling: TRSM(045)
Purpose When TRSM(045) is executed, the status of a preselected bit or word is sam-

pled and stored in Trace Memory. TRSM(045) can be used anywhere in the
program, any number of times.

Ladder Symbol

Variations

Applicable Program Areas

0.00

D100

02

05 05

S: D100

D101

D102

D103

Second

Hour

Minute

Day of
the month

Year Month

Always
set to 00.

Day of the week

Instruction Mnemonic Function
code

Page

Trace Memory Sampling TRSM 045 933

TRSM(045)

Variations Executed Each Cycle TRSM(045)

Executed Once for Upward Differentiation Not supported

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
933

Debugging Instructions Section 3-27
Description Before TRSM(045) is executed, the bit or word to be traced must be specified
with the CX-Programmer. Each time that TRSM(045) is executed, the current
value of the specified bit or word is sampled and recorded in order in Trace
Memory. The trace ends when the Trace Memory is full. The contents of Trace
Memory can be monitored from the CX-Programmer when necessary.

This instruction only indicates when the specified data will be sampled. All
other settings and data trace operations are set with the CX-Programmer. The
other two ways to control data sampling are sampling at the end of each cycle
and sampling at a specified interval (independent of the cycle time).

TRSM(045) does not require an execution condition and is always executed
as if it had an ON execution condition. Connect TRSM(045) directly to the left
bus bar.

Use TRSM(045) to sample the value of the specified bit or word at the point in
the program when the instruction’s execution condition is ON. If the instruc-
tion’s execution condition is ON every cycle, the specified bit or word’s value
will be stored in Trace Memory every cycle.

It is possible to incorporate two or more TRSM(045) instructions in a program.
In this case, the value of the same specified bit or word will be stored in Trace
Memory each time that one of the TRSM(045) instructions is executed.

Note Refer to the CX-Programmer’s Operation Manual for details on data tracing.

The data-tracing operations performed with the CX-Programmer are summa-
rized in the following list.

Tracing ends when
Trace Memory is full.

Trace Memory

Data sampling

Specified bit or word

PLC data area
TRSM(045) executed.

Use the CX-Programmer to specify
which address will be traced.

Data from
address m is
stored in
Trace
Memory.

Data from
address m is
stored in
Trace
Memory.

Data stored every cycle.

Trace Memory
934

Debugging Instructions Section 3-27
1,2,3... 1. Set the following parameters with the CX-Programmer.

a. Set the address of the bit or word to be traced.

b. Set the trigger condition. One of the three following conditions can con-
trol when data stored into Trace Memory is valid.
i) The Trace Start Bit goes from OFF to ON.
ii) A specified bit goes from OFF to ON.
iii) The value of a specified word matches the set value.

c. Set the sampling interval to “TRSM” for sampling at the execution of
TRSM(045) in the program.

d. Set the delay.

2. When the Sampling Start Bit is turned from OFF to ON with the CX-Pro-
grammer, the specified data will begin being sampled each time that
TRSM(045) is executed and the sampled data will be stored in Trace Mem-
ory. The Trace Busy Flag (A508.13) will be turned ON at the same time.

3. When the trigger condition (Trace Start Bit ON, specified bit ON, or value
of specified word matching set value) is met, the sampled data will be valid
beginning with the next sample plus or minus the number of samples set
with the delay setting. The Trace Trigger Monitor Flag (A508.11) will be
turned ON at the same time.

4. The trace will end when TRSM(045) has been executed enough times to
fill the Trace Memory. When the trace ends, the Trace Completed Flag
(A508.12) will be turned ON and the Trace Busy Flag (A508.13) will be
turned OFF.

5. Read the contents of Trace Memory with the CX-Programmer.

The following table shows relevant bits and flags in the Auxiliary Area. Only
A508.14 and A508.15 are meant to be controlled by the user, and A508.15
must not be turned ON from the program, i.e., it must be turned ON only from
the CX-Programmer.

Name Address Operation

Trace Trigger Monitor
Flag

A508.11 This flag is turned ON when the trigger condition
has been established with the Trace Start Bit. It is
turned OFF when sampling is started for the next
trace (by the Sampling Start Bit).

Trace Completed
Flag

A508.12 This flag is turned ON when trace samples have
filled the Trace Memory. It is turned OFF the next
time that the Sampling Start Bit goes from OFF to
ON.

Trace Busy Flag A508.13 This flag is turned ON when the Sampling Start
Bit goes from OFF to ON. It is turned OFF when
the trace is completed.

Trace Start Bit A508.14 The trace trigger conditions are established when
this bit is turned from OFF to ON. Samples will be
recorded after the specified delay (positive delay)
or the specified number of existing samples will
be valid (negative delay).

Sampling Start Bit A508.15 When this bit is turned from OFF to ON from the
CX-Programmer, data samples will start being
stored in Trace Memory with one of the following
three methods used to determine sampling:

1) Periodic sampling (10 to 2,550 ms intervals)
2) Sampling at TRSM(045) execution
3) Sampling at the end of each cycle

This bit must be turned ON and OFF from the
CX-Programmer.
935

Debugging Instructions Section 3-27
Precautions TRSM(045) is processed as NOP(000) when data tracing is not being per-
formed or when the sampling interval set in the parameters with the CX-Pro-
grammer is not set to sample on TRSM(045) instruction execution.

Do not turn the Sampling Start Bit (A508.15) ON or OFF from the program.
This bit must be turned ON and OFF from the CX-Programmer.

Example The following example shows the overall data trace operation.

Note Trace Memory has a ring structure. Data is stored to the end of the Trace
Memory area and then wraps to the beginning of the area, ending just before
the first valid data sample.

Sampling

Operated from CX-Programmer
(Sampling Start Bit: A508.15)

Trace Start Bit: A508.14

Trace Busy Flag: A508.13

Trace Completed Flag: A508.12

Trace Trigger Monitor Flag: A508.11

Example: word data

Trace Memory

See note.

Valid from here on

Delay
setting

Valid
samples Trace ends when

Trace Memory is full.

: Execution of TRSM(045)
936

Failure Diagnosis Instructions Section 3-28
3-28 Failure Diagnosis Instructions
This section describes instructions used to define and handle errors.

3-28-1 FAILURE ALARM: FAL(006)
Purpose Generates or clears user-defined non-fatal errors. Non-fatal errors do not stop

PLC operation.

Ladder Symbol • Generating or Clearing User-defined Non-fatal Errors

• Generating Non-fatal System Errors

Variations

Applicable Program Areas

Operands The function of the operands when FAL(006) is used to generate/clear user
defined errors is slightly different from the function when FAL(006) is used to
generate system errors.

Generating or Clearing User-defined Non-fatal Errors

The following table shows the function of the operands.

Note The value of operand N must be different from the content of A529
(the system-generated FAL/FALS number).

Instruction Mnemonic Function code Page

FAILURE ALARM FAL 006 937

SEVERE FAILURE ALARM FALS 007 945

FAILURE POINT DETECTION FPD 269 951

N

S

FAL(006)

N: FAL number

S: First message word or
constant (0000 to FFFF)

N

S

FAL(006)

N: FAL number (value in A529)

S: First word containing the
error code and error details

Variations Executed Each Cycle for ON Condition FAL(006)

Executed Once for Upward Differentiation @FAL(006)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

N S Function

0 #0001 to #01FF Clears the non-fatal error with the correspond-
ing FAL number.

#FFFF Clears all non-fatal errors.

Other* Clears the most serious non-fatal error.
937

Failure Diagnosis Instructions Section 3-28
Note *Other settings would be constants #0200 through #FFFE or a word address.

Generating Non-fatal System Errors

The following table shows the function of the operands.

Note The value of operand N must be the same as the content of A529
(the system-generated FAL/FALS number).

Operand Specifications

Description The operation of FAL(006) depends on the value of N. Set N to 0000 to clear
an error and set N to 0001 to 01FF to generate an error. A system error will be
generated if the value of N equals the content of A529.

Generating Non-fatal User-defined Errors

When FAL(006) is executed with N set to an FAL number (&1 to &511) that is
not equal to the content of A529 (the system-generated FAL/FALS number), a
non-fatal error will be generated with that FAL number and the following pro-
cessing will be performed:

1,2,3... 1. The FAL Error Flag (A402.15) will be turned ON. (PLC operation will con-
tinue.)

1 to 511
(These FAL num-
bers are shared
with FALS num-
bers.)

#0000 to #FFFF Generates a non-fatal error with the corre-
sponding FAL number (no message).

Word address Generates a non-fatal error with the corre-
sponding FAL number.
The 16-character ASCII message contained in
S through S+7 will be displayed on the CX-
Programmer.

N S Function

Operand Function

N 1 to 511 (These FAL numbers are shared with FALS numbers.)

S Error code that will be generated. (See Description below.)

S+1 Error details code that will be generated. (See Description below.)

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants 0 to 511 #0000 to #FFFF (binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to
+2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
938

Failure Diagnosis Instructions Section 3-28
2. The Executed FAL Number Flag will be turned ON for the corresponding
FAL number. Flags A360.01 to A391.15 correspond to FAL numbers 0001
to 01FF (1 to 511).

3. The error code will be written to A400. Error codes 4101 to 42FF corre-
spond to FAL numbers 0001 to 01FF (1 to 511).

Note If a fatal error or a more serious non-fatal error occurs at the same
time as the FAL(006) instruction, the more serious error’s error
code will be written to A400.

4. The error code and the time that the error occurred will be written to the
Error Log Area (A100 through A199).

Note The error record will not be written to the Error Log Area if the PLC
Setup has been set so that errors generated by FAL(006) are not
recorded.

5. The ERR Indicator on the CPU Unit will flash.

6. If a word address has been specified in S, the message beginning at S will
be registered (displayed on the Programming Device).

The following table shows the error codes and FAL Error Flags for FAL(006).

Displaying Messages with Non-fatal User-defined Errors

If S is a word address and an ASCII message has been stored at S, that mes-
sage will be displayed at the Programming Device when FAL(006) is exe-
cuted. (If a message is not required, set S to a constant.)

The message beginning at S will be registered when FAL(006) is executed.
Once the message is registered, it will be displayed when the Programming
Device is connected.

An ASCII message up to 16 characters long can be stored in S through S+7.
The leftmost (most significant) byte in each word is displayed first.

The end code for the message is the null character (00 hexadecimal). All 16
characters in words S to S+7 will be displayed if the null character is omitted.

If the contents of the words containing the message are changed after
FAL(006) is executed, the message will change accordingly.

FAL number FAL error codes Executed FAL Number Flags

1 to 511 decimal 4101 to 42FF A360.01 to A391.15

FAL Error Flag ON
Corresponding Executed FAL Number Flag ON
Error code written to A400

Error code and time written to Error Log Area

ERR Indicator flashes

Message displayed on
Programming Device

Execution of
FAL(006)
generates a
non-fatal er-
ror with FAL
number N.
939

Failure Diagnosis Instructions Section 3-28
Generating Non-fatal System Errors

When FAL(006) is executed with N set to an FAL number (&1 to &511) that is
equal to the content of A529 (the system-generated FAL/FALS number), a
non-fatal error will be generated with the error code and error details code
specified in S and S+1. The following processing will be performed at the
same time:

1,2,3... 1. The specified error code will be written to A400.

2. The error code and the time that the error occurred will be written to the
Error Log Area (A100 through A199).

3. The appropriate Auxiliary Area Flags are set based on the error code and
error details.

4. The ERR Indicator on the CPU Unit will flash and PLC operation will con-
tinue.

5. The non-fatal error message for the specified system error will be dis-
played on the CX-Programmer.

Note (1) FAL(006) can be used to generate non-fatal errors from the system when
debugging the program. For example, a system error can be generated
intentionally to check whether or not error messages are being displayed
properly at an interface such as a Programmable Terminal (PT).

(2) The value of A529 (the system-generated FAL/FALS number) is a dummy
FAL number (FAL, FALS, and FPD numbers are shared.) used when a
non-fatal error is generated intentionally by the system. This number is a
dummy FAL number, so it does not change the status of the Executed
FAL Number Flags (A360.01 to A391.15) or the error code.
When it is necessary to generate two or more system errors (fatal and/or
non-fatal errors), different errors can be generated by executing the FAL/
FALS/FPD instructions more than once with the same values in A529 and
N, but different values in S and S+1.

(3) If a more serious error (including a system-generated fatal error or
FALS(007) error) occurs at the same time as the FAL(006) instruction, the
more serious error’s error code will be written to A400.

(4) To clear a system error generated by FAL(006), turn the PLC OFF and
then ON again. The PLC can be kept ON, but the same processing will
be required to clear the error as if the specified error had actually oc-
curred.

FAL

N

S

NA529

S
S+1

Execution of FAL(006)
generates a non-fatal
system error with the
error code/details
specified in S and
S+1.

Error code
Error details

Error code written to A400

Error code and time written to Error Log Area

The corresponding Auxiliary Area Flags are set
based on the error code and error details.

ERR Indicator flashes.

Message displayed on
Programming Device.

Matching
values
940

Failure Diagnosis Instructions Section 3-28
The following table shows how to specify error codes and error details in S
and S+1.

Disabling Error Log Entries of User-defined Errors)

Normally when FAL(006) generates a user-defined error, the error code and
the time that the error occurred are written to the Error Log Area (A100
through A199). It is possible to set the PLC Setup so that user-defined errors
generated by FAL(006) are not recorded in the Error Log.

Even though the error will not be recorded in the Error Log, the FAL Error Flag
(A402.15) will be turned ON, the corresponding flag in the Executed FAL
Number Flags (A360.01 to A391.15) will be turned ON, and the error code will
be written to A400.

Disable Error Log entries for user-defined FAL(006) errors when you want to
record only the system-generated errors. For example, this function is useful
during debugging if the FAL(006) instructions are used in several applications
and the Error Log is becoming full of user-defined FAL(006) errors. The follow-
ing table shows the PLC Setup setting:

Even if PLC Setup word 129 bit 15 is set to 1 (Do not record FAL Errors in
Error Log.), the following errors will be recorded:

• Fatal errors generated by FALS(007)

• Non-fatal errors from the system

• Fatal errors from the system

• Non-fatal errors from the system generated intentionally with FAL(006) or
FPD(269)

• Fatal errors from the system generated intentionally with FALS(007)

Error name S S+1

Flash Memory Error 00F1 hex --- (not fixed)

Interrupt Task Error 008B hex • Bit 15 ON: Interrupt task execution conflicted
with Special I/O Unit refreshing
Bits 00 to 14: Unit number of Special I/O Unit
with refreshing conflict

PLC Setup Error 009B hex PLC Setup Error Location

Built-in Analog I/O
Error

008A hex --- (not fixed)

CPU Bus Unit Error 0200 hex CPU Bus Unit’s unit number:
0000 to 000F hex

Special I/O Unit
Error

0300 hex Special I/O Unit’s unit number:0000 to 005F hex
or 00FF hex (unit number undetermined)

Option Board Error 00D0 hex Option slot number: 0001 or 0002 hex

Battery Error 00F7 hex --- (not fixed)

Item Setting

Name FAL Error Log Registration

Settings 0: Record FAL Errors in Error Log.

1: Do not record FAL Errors in Error Log.

Default setting 0: Record FAL Errors in Error Log.

Times that PLC Setup set-
ting is read

Every cycle (when an FAL Error occurs)
941

Failure Diagnosis Instructions Section 3-28
Clearing Non-fatal Errors without the CX-Programmer

1. Clearing User-defined Non-fatal Errors
When FAL(006) is executed with N set to 0, non-fatal errors can be cleared.
The value of S will determine the processing, as shown in the following ta-
ble.

2. Clearing Non-fatal System Errors
There are two ways to clear non-fatal system errors generated with
FAL(006).

• Turn the PLC OFF and then ON again.

• When keeping the PLC ON, the system error must be cleared as if the
specified error had actually occurred.

Flags

The following tables show relevant words and flags in the Auxiliary Area.

• Auxiliary Area Words/Flags for User-defined Errors Only

• Auxiliary Area Words/Flags for System Errors Only

S Process

&1 to &511 (0001 to 01FF hex) The FAL error of the specified number will be
cleared.

FFFF hex All non-fatal errors (including system errors) will
be cleared.

0200 to FFFE hex or word
specification

The most serious non-fatal error (even if it is a
non-fatal system error) that has occurred.
When more than one FAL error has occurred,
the FAL error with the smallest FAL number will
be cleared.

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0 to 511 deci-
mal.
ON if a non-fatal system error is being generated, but the
specified error code or error details code is incorrect.
OFF in all other cases.

Name Address Operation

FAL Error Flag A402.15 ON when an error is generated with
FAL(006).

Executed FAL Num-
ber Flags

A360.01 to
A391.15

When an error is generated with FAL(006),
the corresponding flag will be turned ON.
Flags A360.01 to A391.15 correspond to FAL
numbers 0001 to 01FF.

Name Address Operation

System-generated
FAL/FALS number

A529 A dummy FAL/FALS number is used when a
system error is generated with FAL(006). Set
the same dummy FAL/FALS number in this
word (0001 to 01FF hex, 1 to 511 decimal).
942

Failure Diagnosis Instructions Section 3-28
• Auxiliary Area Words/Flags for both User-defined and System Errors

Precautions N must between 0000 and 01FF. An error will occur and the Error Flag will be
turned ON if N is outside of the specified range.

Examples Generating a Non-fatal Error

When CIO 0.00 is ON in the following example, FAL(006) will generate a non-
fatal error with FAL number 31 and execute the following processes.

1,2,3... 1. The FAL Error Flag (A402.15) will be turned ON.

2. The corresponding Executed FAL Number Flag (A361.14) will be turned
ON.

3. The corresponding error code (411F) will be written to A400.

Note If two or more errors occur at the same time, the error code of the
most serious error (with the highest error code) will be stored in
A400.

4. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

5. The ERR Indicator on the CPU Unit will flash.

6. The ASCII message in D100 to D107 will be displayed at the Programming
Device. (If a message is not required, specify a constant for S.)

Clearing a Particular Non-fatal Error

When CIO 0.01 is ON in the following example, FAL(006) will clear the non-
fatal error with FAL number 31, turn OFF the corresponding Executed FAL
Number Flag (A361.14), and turn OFF the FAL Error Flag (A402.15).

Name Address Operation

Error Log Area A100 to
A199

The Error Log Area contains the error codes
and time/date of occurrence for the most
recent 20 errors, including errors generated
by FAL(006).

Error code A400 When an error occurs its error code is stored
in A400. The error codes for FAL numbers
0001 to 01FF are 4101 to 42FF, respectively.
If two or more errors occur simultaneously,
the error code of the most serious error will
be stored in A400.

MESSAGE
LOW VOLTAGE

4C 4F

57 20

56 4F

4C 54

41 47

45 00

31

M

0.00

D100 M: D100

D101

D102

D103

D104

D105

D106

D107

M #001F

0.01

 0 Set N to 0 to clear errors.

Set M to the desired FAL
number (031(001F)).
943

Failure Diagnosis Instructions Section 3-28
Clearing All Non-fatal Errors

When CIO 0.02 is ON in the following example, FAL(006) will clear all of the
non-fatal errors, turn OFF the Executed FAL Number Flags (A360.01 to
A391.15), and turn OFF the FAL Error Flag (A402.15).

Clearing the Most Serious Non-fatal Error

When CIO 0.03 is ON in the following example, FAL(006) will clear the most
serious non-fatal error that has occurred and reset the error code in A400. If
the cleared error was originally generated by FAL(006), the corresponding
Executed FAL Number Flag and the FAL Error Flag (A402.15) will be turned
OFF.

Generating a Non-fatal System Error

When CIO 0.00 is ON in the following example, FAL(006) will generate a CPU
Bus Unit Setup Error for unit number 1. In this case, dummy FAL number 10 is
used and the corresponding value (000A hex) is stored in A529.

1,2,3... 1. The specified error code (0200) will be written to A400 if it is the most se-
rious error.

2. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

3. The CPU Bus Unit Error Flag (A402.07) and CPU Bus Unit Error Flag for
unit number 1 (A417.01) will be turned ON.

4. The CPU Unit’s ERR Indicator will flash.

5. A message (CPU BU ST ERR 01) will be displayed at the Programming
Device indicating that an error has occurred with CPU Bus Unit 1.

M

0.02

0

#FFFF

Set N to 0 to clear errors.

Set M to FFFF to clear all non-fatal errors
(both FAL(006) and system errors).

M #0000

0.03

 0 Set N to 0 to clear errors.
Set M to 0000, another constant between
0200 and FFFE, or a word address to
clear the most serious non-fatal error.
(In this case, M is set to 0000.)

MOV

#000A

A529

000AA529

S : D200
D201

0200
0001

0.00

FAL

10

D200

N

S

Error code: 0200 (CPU Bus Unit Error)

Matching
values

Error unit number: 1
944

Failure Diagnosis Instructions Section 3-28
3-28-2 SEVERE FAILURE ALARM: FALS(007)
Purpose Generates user-defined fatal errors. Fatal errors stop PLC operation.

Ladder Symbol • Generating User-defined Fatal Errors

• Generating Fatal System Errors

Variations

Applicable Program Areas

Operands Generating User-defined Fatal Errors

The following table shows the function of the operands.

Note The value of operand N must be different from the content of A529
(the system-generated FAL/FALS number).

Generating Fatal Errors from the System

The following table shows the function of the operands.

Note The value of operand N must be the same as the content of A529
(the system-generated FAL/FALS number).

Operand Specifications

FALS(007)

N

S

N: FALS number

S: First message word or
constant (0000 to FFFF)

FALS(007)

N

S

N: FALS number (value in A529)

S: First word containing the error
code and error details

Variations Executed Each Cycle for ON Condition FALS(007)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Operand Function

N 1 to 511 (These FALS numbers are shared with FAL numbers.)

S Specifies the first of eight words containing an ASCII message to be
displayed on the CX-Programmer.
Specify a constant (0000 to FFFF) if a message is not required.

Operand Function

N 1 to 511 (These FALS numbers are shared with FAL numbers.)

S Error code that will be generated. (See Description below.)

S+1 Error details code that will be generated. (See Description below.)

Area N S

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511
945

Failure Diagnosis Instructions Section 3-28
Description FALS(007) generates a fatal error. FALS(007) can also be used to generate
fatal system errors as well as fatal user-defined errors. (A system error will be
generated if the value of N equals the content of A529.)

Generating Fatal User-defined Errors

When FALS(007) is executed with N set to an FALS number (1 to 511) that is
not equal to the content of A529 (the system-generated FAL/FALS number), a
fatal error will be generated with that FALS number and the following process-
ing will be performed:

1,2,3... 1. The FALS Error Flag (A401.06) will be turned ON. (PLC operation will
stop.)

2. The error code will be written to A400. Error codes C101 to C2FF corre-
spond to FALS numbers 0001 to 01FF (1 to 511).

Note If an error more serious than the FALS(007) instruction (one with a
higher error code) has occurred, A400 will contain the more serious
error’s error code.

3. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

4. The ERR Indicator on the CPU Unit will be lit.

5. If a word address has been specified in S, the ASCII message beginning
at S will be registered (displayed on the Programming Device).

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants Specified val-
ues only

#0000 to #FFFF (binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047
,IR15
DR0 to DR15, IR0 to IR15
,IR+(++)0 to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area N S

FALS Error Flag ON
Error code written to A400

Error code and time/date written to Error Log Area

ERR Indicator lit

Message displayed on
Programming Device

Execution of
FALS(007)
generates a
fatal error
with FALS
number N.
946

Failure Diagnosis Instructions Section 3-28
The following table shows the error codes for FALS(007)..

Displaying Messages with Fatal User-defined Errors

If S is a word address, the ASCII message beginning at S will be displayed at
the Programming Device when FALS(007) is executed. (If a message is not
required, set S to a constant.)

The message beginning at S will be registered when FALS(007) is executed.
Once the message is registered, it will be displayed when the Programming
Device is connected.

An ASCII message up to 16 characters long can be stored in S through S+7.
The leftmost (most significant) byte in each word is displayed first.

The end code for the message is the null character (00 hexadecimal). All 16
characters in words S to S+7 will be displayed if the null character is omitted.

If the contents of the words containing the message are changed after
FALS(007) is executed, the message will change accordingly.

Generating Non-fatal System Errors

When FALS(007) is executed with N set to an FAL number (1 to 511) that is
equal to the content of A529 (the system-generated FAL/FALS number), a
fatal error will be generated with the error code and error details code speci-
fied in S and S+1. The following processing will be performed at the same
time:

1,2,3... 1. The specified error code will be written to A400.

2. The error code and the time that the error occurred will be written to the
Error Log Area (A100 through A199).

3. The appropriate Auxiliary Area Flags are set based on the error code and
error details.

4. The ERR Indicator on the CPU Unit will light and PLC operation will be
stopped.

5. The fatal error message for the specified system error will be displayed on
the Programming Device.

Note (1) The value of A529 (the system-generated FAL/FALS number) is a dummy
FAL number (FAL, FALS, and FPD numbers are shared.) used when a
non-fatal error is generated intentionally by the system. This number is a
dummy FAL number, so it is not reflected in the error code.
When it is necessary to generate two or more system errors, different er-
rors can be generated by executing the FAL/FALS/FPD instructions more

FALS number FALS error codes

1 to 511 C101 TO C2FF

FALS

N

S

NA529

S
S+1

Execution of FALS(007)
generates a fatal system
error with the error
code/details specified in
S and S+1.

Error code
Error details

Error code written to A400

Error code and time written to Error Log Area

The corresponding Auxiliary Area Flags are set
based on the error code and error details.

ERR Indicator flashes.

Message displayed on
Programming Device.

Matching
values
947

Failure Diagnosis Instructions Section 3-28
than once with the same values in A529 and N, but different values in S
and S+1.

(2) If a more serious error (including a system-generated fatal error or anoth-
er FALS(007) error) occurs at the same time as the FALS(007) instruc-
tion, the more serious error’s error code will be written to A400.

(3) To clear a system error generated by FALS(007), turn the PLC OFF and
then ON again. The PLC can be kept ON, but the same processing will
be required to clear the error as if the specified error had actually oc-
curred. Refer to information on troubleshooting in the CP Series Opera-
tion Manual for details.

(4) The following table shows how the IOM Hold Bit affects the status of I/O
memory and the status of outputs on Output Units after a fatal system er-
ror has been generated with FALS(007).

Note Unlike user-defined fatal errors, system errors generated by FALS(007) will
clear I/O memory if the IOM Hold Bit is OFF. The following areas will be
cleared: CIO Area, Work Area, Timer Flags and PVs, Index Registers, and
Data registers.

The following table shows how to specify error codes and error details in S
and S+1.

IOM Hold Bit
(A500.12)

Status of I/O memory Status of outputs on Output
Units

ON Retained OFF

OFF Cleared OFF

Error name S S+1

Error code Error details

Memory Error 80F1 hex • Bits 00 to 09: Memory Error Location

Bit 00: User program
Bit 04: PLC Setup
Bit 07: Routing table
Bit 08: CPU Bus Unit Setup
Bit 09: Memory Cassette transfer error

• Bits 10 to 15: Invalid

I/O Bus Error 80C0 hex 0A0A hex: CPM1A Expansion Unit/Expansion I/O
Unit error

0000 hex: CJ-series Unit error (first Unit)
0001 hex: CJ-series Unit error (second Unit)
0F0F hex: CJ-series Unit error (unknown Unit)

0E0E hex: CJ-series Unit error (no End Cover)

Unit Number
Duplication
Error

80E9 hex CPU Bus Unit’s duplicated unit number
0000 to 000F hex

Special I/O Unit’s duplicated unit number
8000 to 805F hex
948

Failure Diagnosis Instructions Section 3-28
Clearing FALS(007) Fatal System Errors

There are two ways to clear fatal system errors generated with FALS(007).

1. Turn the PLC OFF and then ON again.

2. When keeping the PLC ON, the system error must be cleared as if the
specified error had actually occurred.

Clearing FALS(007) User-defined Fatal Errors

To clear errors generated by FALS(007), first eliminate the cause of the error
and then either clear the error from the Programming Device or turn the PLC
OFF and then ON again.

Flags

The following tables show relevant words and flags in the Auxiliary Area.

• Auxiliary Area Words/Flags for User-defined Errors Only

Too Many I/O
Points Error

80E1 hex Bits 13 to 15: Error Cause
Bits 00 to 12: Details
• Too many words for CPM1A Expansion Units/

Expansion I/O Units
Bits 13 to 15: 010
Bits 00 to 12: All zeroes

• Too many CPM1A Expansion Units/Expansion I/O
Units

Bits 13 to 15: 011
Bits 00 to 12: All zeroes

• Too many words for CJ-series Units
Bits 13 to 15: 111
Bits 00 to 12: All zeroes

I/O Table Setting
Error

80E0 hex --- (Not fixed.)

Program Error 80F0 hex • Bits 08 to 15: Error Cause
Bit 15: UM overflow error
Bit 14: Illegal instruction error
Bit 13: Differentiation overflow error
Bit 12: Task error
Bit 11: No END error
Bit 10: Illegal access error
Bit 09: Indirect DM BCD error
Bit 08: Instruction error

• Bits 00 to 07: Invalid

Cycle Time
Overrun Error

809F hex --- (Not fixed.)

Error name S S+1

Error code Error details

Name Label Operation

Error Flag ER ON if N is not within the specified range of 0001 to 01FF
(1 to 511 decimal).

ON if a fatal system error is being generated, but the
specified error code or error details code is incorrect.
OFF in all other cases.

Name Address Operation

FALS Error Flag A401.06 ON when an error is generated with
FALS(007).
949

Failure Diagnosis Instructions Section 3-28
• Auxiliary Area Words/Flags for System Errors Only

• Auxiliary Area Words/Flags for both User-defined and System Errors

Precautions The end code for the message is the null character (00 hexadecimal). All 16
characters in words S to S+7 will be displayed if the null character is omitted.

N must between 0001 and 01FF. An error will occur and the Error Flag will be
turned ON if N is outside of the specified range.

Examples Generating a User-defined Error

When CIO 0.00 is ON in the following example, FALS(007) will generate a
fatal error with FAL number 31 and execute the following processes.

1,2,3... 1. The FALS Error Flag (A401.06) will be turned ON.

2. The corresponding error code (C11F) will be written to A400.

Note A400 will contain the error code of the most serious of all of the er-
rors that have occurred, including non-fatal and fatal system errors,
as well as errors generated by FAL(006) and FAL(007).

3. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

4. The ERR Indicator on the CPU Unit will be lit.

5. The ASCII message in D100 to D107 will be displayed at the Programming
Device. (If a message is not required, specify a constant for S.)

Name Address Operation

System-generated
FAL/FALS number

A529 A dummy FAL/FALS number is used when a
system error is generated with FALS(007). Set
the same dummy FAL/FALS number in this
word (0001 to 01FF hex, 1 to 511 decimal).

Name Address Operation

Error Log Area A100 to
A199

The Error Log Area contains the error codes
and time/date of occurrence for the most
recent 20 errors, including errors generated by
FALS(007).

Error code A400 When an error occurs its error code is stored
in A400. The error codes for FALS numbers
0001 to 01FF (1 to 511 decimal) are C101 to
C2FF, respectively.
If two or more errors occur simultaneously, the
error code of the most serious error will be
stored in A400.

MESSAGE
LOW VOLTAGE

4C 4F

57 20

56 4F

4C 54

41 47

45 00

 31

M

0.00

D100

M: D100

D101

D102

D103

D104

D105

D106

D107
950

Failure Diagnosis Instructions Section 3-28
Generating a Non-fatal System Error

When CIO 0.00 is ON in the following example, FALS(007) will generate a Too
Many I/O Points Error (too many CPM1A Expansion Units/Expansion I/O
Units). In this case, dummy FAL number 10 is used and the corresponding
value (000A hex) is stored in A529.

1,2,3... 1. The specified error code (80E1) will be written to A400 if it is the most se-
rious error.

2. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

3. The Too Many I/O Points Flag (A401.11) will be turned ON.

4. The CPU Unit’s ERR Indicator will light and PLC operation will stop.

5. A message (TOO MANY I/O PNT) will be displayed at the CX-Programmer
indicating that a Too Many I/O Points Error has occurred.

3-28-3 FAILURE POINT DETECTION: FPD(269)
Purpose Diagnoses a failure in an instruction block by monitoring the time between

execution of FPD(269) and execution of a diagnostic output and finding which
input is preventing an output from being turned ON.

Ladder Symbol

Variations

Applicable Program Areas

000AA529

S:D200

D201

80E1
6000

FALS

 10

D200

0.00

N

S

MOV

#000A

A529

Error code: 80E1 (Too Many I/O Points Error)

Matching
values

Too many CPM1A Units

FPD(269)

C

T

R

C: Control word

T: Monitoring time

R: First register word

Variations Executed Each Cycle for ON Condition FPD(269)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

Not allowed OK OK Not allowed
951

Failure Diagnosis Instructions Section 3-28
Operands C: Control Word

C must be a constant between 0000 and 01FF or between 8000 and 81FF.
The following diagram shows the function of the digits in the control word.

T: Monitoring Time

T must be between 0 and 9,999 decimal (between 0000 and 270F hex). A
value of 0 disables time monitoring; values in the range of 1 to 270F set the
monitoring time from 0.1 to 999.9 seconds.

R: First Register Word

The functions of the register words are described on page 955.

Operand Specifications

15 01112

C

FAL number: 000 to 1FF

Diagnostic output mode
0: Bit address output only (hexadecimal)
8: Bit address and message output (ASCII)

Area C T R

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A447
A448 to A959

A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants Specified values
only

#0000 to #270F
(binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to
+2047 ,IR15

DR0 to DR15, IR0 to IR15
952

Failure Diagnosis Instructions Section 3-28
Description FPD(269) performs time monitoring and logic diagnosis. The time monitoring
function generates a non-fatal error with the specified FAL number if the diag-
nostic output is not turned ON within the specified monitoring time. The logic
diagnosis function indicates which input is preventing the output from being
turned ON.

Note *The logic diagnosis block begins with the first LD (not LD TR) or LD NOT
instruction after FPD(269) and ends with the first OUT (not OUT TR) or other
right-hand instruction.

Time Monitoring Function

FPD(269) starts timing when it is executed (when execution condition A goes
ON); it will generate a non-fatal error and turn ON the Carry Flag if the diag-
nostic output is not turned ON within the specified monitoring time.

Note The diagnostic output must go ON within the monitoring time. The teaching
function can be used set the monitoring time automatically.

The following processing will be performed when the Carry Flag is turned ON.
(This processing will not be performed if the FAL number is set to 000 in C.)

1,2,3... 1. The FAL Error Flag (A402.15) will be turned ON. (PLC operation contin-
ues.)

2. The Executed FAL Number Flag for the specified FAL number will be
turned ON. (Flags A360.01 to A391.15 correspond to FAL numbers 001 to
1FF.)

T

R

Diagnostic output B

Logic diagnosis function

Time monitoring function:
Starts timing when execution condition A goes ON.
Generates a non-fatal error if output B isn't turned
ON within the monitoring time.

Execution
condition A

Error-processing
block (optional)

Logic diagnosis block*

Next instruction block

Logic diagnosis
execution condition C

Determines which input in C prevents
output B from going ON.

Non-fatal error generated.

Monitoring
time (T)

Execution condition
for FPD(269)

Diagnostic output B

Carry Flag
953

Failure Diagnosis Instructions Section 3-28
3. The corresponding error code will be written to A400. Error codes 4101 to
42FF correspond to FAL numbers 001 to 1FF.
(If a more serious error has occurred (one with a higher error code) at the
same time, the error code of the more serious error will be stored in A400.)

4. The error code and the time/date that the error occurred will be written to
the Error Log Area (A100 through A199).

5. The ERR Indicator on the CPU Unit will flash.

6. If the output mode has been set for bit address and message output (left-
most digit of C set to 8), the ASCII message stored in R+2 through R+10
will be displayed as a non-fatal error message.

Logic Diagnosis Function

Every cycle that the execution condition for FPD(269) is ON, FPD(269) deter-
mines which input bit is causing the diagnostic output to be OFF and writes
the bit’s address to the register area beginning at R.

If input bits CIO 0.00 through CIO 0.03 are all ON in the following example,
FPD(269) would determine that the normally closed CIO 0.02 condition is
causing output CIO 100.00 to remain OFF. FPD(269) would turn ON the Bit
Address Found Flag (bit 15 of R) and write the bit address to register words
R+2 to R+4.

The logic diagnosis function is executed every cycle as long as the execution
condition for FPD(269) is ON. The operation of the logic diagnosis function is
independent of the time monitoring function.

When two or more input bits are preventing the diagnostic output from being
turned ON, the address of the first input bit in the execution condition (on the
highest instruction line and nearest the left bus bar) will be output to R+2
through R+4.

Input bits in LD, LD NOT, AND, AND NOT, OR, and OR NOT instructions
(including differentiated and immediate-refreshing variations) will be checked
by the logic diagnosis function. Input bits in other instructions and operands
addressed indirectly through Index Registers will not be checked.

The logic diagnosis block begins with the first LD (not LD TR) or LD NOT
instruction after FPD(269) and ends with the first OUT (not OUT TR) or other
right-hand instruction.

There are two diagnostic output modes, set with the leftmost digit of C.

1,2,3... 1. Bit address output mode (Leftmost digit of C = 0)

Bit 15 of R (the Bit Address Found Flag) is turned ON when an input bit
address has been found and bit 14 of R indicates whether the input is nor-
mally ON or normally OFF.
The 8-digit hexadecimal PLC memory address of the input bit is output to
R+3 and R+2.

2. Bit address and message output mode (Leftmost digit of C = 8)

0.00 0.02

0.01 0.03

100.00

Logic diagnosis block
Logic diagnosis
execution condition
954

Failure Diagnosis Instructions Section 3-28
Bit 15 of R (the Bit Address Found Flag) is turned ON when an input bit
address has been found and bit 14 of R indicates whether the input is nor-
mally ON or normally OFF.
The input bit’s address is output to R+2 through R+4 as 6 ASCII charac-
ters.

Register Word Functions The register words contain the results of the diagnostic function and can also
contain an ASCII error message which is displayed when an error is gener-
ated by the time monitoring function. The function of the register words
depends upon the diagnostic output mode which is set with the leftmost digit
of C.

Bit Address Output (C=0@@@)

When the leftmost digit of C is set to 0, the 8-digit hexadecimal PLC memory
address of the input bit is output to R+2 and R+3. R contains two flags which
indicate whether an input bit has been found and whether it is used in a nor-
mally open or normally closed input condition.

Bit Address and Message Output (C=8@@@)

When the leftmost digit of C is set to 8, the ASCII address of the input bit is
output to R+2 to R+4. R contains two flags which indicate whether an input bit
has been found and whether it is used in a normally open or normally closed
input condition.

15 014
R

13

15

R+2 R+3

R+1
0

Not possible to use.
Input type
0: Normally open
1: Normally closed

Bit Address Found Flag
0: Not found yet
1: Bit address found

Not possible to use.

15 014

R

13

15 0

R+1

Not possible to use.
Input type
0: Normally open
1: Normally closed

Bit Address Found Flag
0: Not found yet
1: Bit address found

Not possible to use.
955

Failure Diagnosis Instructions Section 3-28
Register words R+2 to R+4 indicate the address of the input which prevented
the diagnostic output from being turned ON. The bit address is output to these
words in ASCII. The following table shows the ASCII representations for each
area.

Register words R+2 through R+5 would have the following values for
W511.15:

The user can store an ASCII message in register words R+6 to R+9. This
message will be displayed on the CX-Programmer if a non-fatal error is gener-
ated by the time monitoring function. Mark the end of the message with the
null character (00 hexadecimal).

Disabling Error Log
Entries of Non-fatal
FPD(269) Errors

Normally when the FPD(269) Time Monitoring Function generates a non-fatal
error, the error code and the time that the error occurred are written to the
Error Log Area (A100 through A199). It is possible to set the PLC Setup so
that the non-fatal errors generated by FPD(269) are not recorded in the Error
Log.

Even though the error will not be recorded in the Error Log, the FAL Error Flag
(A402.15) will be turned ON, the corresponding flag in the Executed FAL
Number Flags (A360.01 to A391.15) will be turned ON, and the error code will
be written to A400.

Area ASCII text Notes

Auxiliary Area A0.00 to A959.15 ---

Holding Area H0.00 to H511.15 ---

Work Area W0.00 to W511.15 ---

CIO Area 0.00 to 6143.15 ---

Task Flags TK0 to TK1023 ---

Timer Area _T0 to _T4095 The “_” represents an ASCII
space.
(Character code 20.)

Counter Area _C0 to _C4095

Word Bits 8 to 15 Bits 0 to 7

R+2 W 5

R+3 1 1

R+4 1 5

R+5 2D (hexadecimal) Input type (hexadecimal)
30: Normally open
31: Normally closed

15

R+2

R+3

R+4

W 5

1 1

1 5
Bit address written in ASCII

15 8 07
R+6
R+7

R+8

R+9
956

Failure Diagnosis Instructions Section 3-28
Disable Error Log entries for FPD(269) time-monitoring errors when you want
to record only the system-generated errors. For example, this function is use-
ful during debugging if the FPD(269) and FAL(006) instructions are used in
several applications and the Error Log is becoming full of these errors. The fol-
lowing table shows the PLC Setup setting:

Even if PLC Setup word 129 bit 15 is set to 1 (Do not record FAL Errors in
Error Log.), the following errors will be recorded:

• Fatal errors generated by FALS(007)

• Non-fatal errors from the system

• Fatal errors from the system

• Non-fatal errors from the system generated intentionally with FAL(006)

• Fatal errors from the system generated intentionally with FALS(007)

Setting Monitoring Time
with the Teaching
Function

If a word address is specified for T, the monitoring time can be set automati-
cally with the teaching function. Use the following procedure when a word
address has been set for T.

1,2,3... 1. Turn ON the FPD Teaching Bit (A598.00).

2. FPD(269) will measure the time from the point when the execution condi-
tion for FPD(269) goes ON until the diagnostic output is turned ON.

3. If the measured time exceeds the monitoring time setting, a setting 1.5
times the measured time will be stored in T.

Flags

The following table shows relevant words and flags in the Auxiliary Area.

Item Setting

Name FAL Error Log Registration

Settings 0: Record FAL Errors in Error Log.
1: Do not record FAL Errors in Error Log.

Default setting 0: Record FAL Errors in Error Log.

Times that PLC Setup setting is
read

Every cycle (when an FAL Error occurs)

Name Label Operation

Error Flag ER ON if C is not within the specified range of 0000 to 01FF
or 8000 to 81FF.
ON if T is not within the specified range of 0000 to 270F.

OFF in all other cases.

Carry Flag CY ON if the diagnostic output is still OFF after the monitoring
time has elapsed.
OFF in all other cases.

Name Address Operation

FAL Error Flag A402.15 ON when a non-fatal (FAL) error is registered in time
monitoring.

Executed FAL
Number Flags

A360.01 to
A391.15

When a non-fatal (FAL) error is registered in time mon-
itoring, the corresponding flag will be turned ON. Flags
A360.01 to A391.15 correspond to FAL numbers 0001
to 01FF.

Error Log Area A100 to
A199

The Error Log Area contains the error codes and time/
date of occurrence for the most recent 20 errors,
including errors generated by FPD(269).
957

Failure Diagnosis Instructions Section 3-28
Precautions When the time monitoring function is being used, the execution condition for
FPD(269) must remain ON for the entire monitoring time set in T.

The execution condition for FPD(269) must be made up of a combination of
normally open and normally closed inputs.

The error-processing block is optional. When an error-processing block is
included, be sure to use outputs or other right-hand instructions. LD and LD
NOT cannot be used at this point.

FPD(269) can be used more than once in the program, but each instruction
must have a unique register (R) setting.

The monitoring time is refreshed only when FPD(269) is executed. If the cycle
time is longer than 100 ms, the monitoring time will not be refreshed normally
and FPD(269) will not operate correctly because the monitoring time is
updated in units of 100 ms.

Examples The following program example is used to demonstrate the operation of the
time monitoring function and logic diagnosis function. In this example, the
diagnostic output (CIO 1200.00) does not go ON because CIO 1000.00 and
CIO 1000.03 remain OFF in the logic diagnosis execution condition.

Error code A400 When an error occurs its error code is stored in A400.
The error codes for FAL numbers 0001 to 01FF are
4101 to 42FF, respectively.
If two or more errors occur simultaneously, the error
code of the most serious error will be stored in A400.

FPD Teaching
Bit

A598.00 Turn this bit ON when you want the monitoring time to
be set automatically (teaching function) when
FPD(269) is executed.

Name Address Operation

T

R

&100

300.00 300.01

D300

2000.00

1000.00 1000.01

1000.02 1000.03

1200.00

Diagnostic output

Execution
condition

Logic diagnosis block

Logic diagnosis execution condition

The diagnostic output (CIO 200.00) remains
OFF because these input conditions are OFF.

Error-processing
block (optional)
958

Failure Diagnosis Instructions Section 3-28
Time Monitoring Function

If the diagnostic output (CIO 1200.00) does not go ON within 10 seconds after
CIO 300.00 and CIO 300.01 are both ON, a non-fatal error will be generated
and the following processing will be performed.

1,2,3... 1. The Carry Flag is turned ON.

2. When the rightmost 3 digits of C specify an FAL number of 00A hex (10),
the corresponding Executed FAL Number Flag (A360.10) will be turned
ON, the corresponding error code (410A) is written in A400, and the FAL
Error Flag (A402.15) is turned ON.

Logic Diagnosis Function (C=000A)

Since the leftmost digit of C is 0 (bit address output mode) the PLC memory
address of CIO 1200.00 is output to D303 and D302. (CIO 1000.00 is on a
higher instruction line than CIO 1000.03.)

Logic Diagnosis Function (C=800A)

Since the leftmost digit of C is 8 (bit address and message output mode) the
address of CIO 1000.00 (1000.03) is output to D302 through D304 in ASCII.

R: D300

D301

D302

D303

Not used.

Not used.

Bit Address Found Flag
1: Bit address found

FAL number = 10
Diagnostic output mode = 0 (bit address output)

Input type
0: Normally open

Contains internal I/O memory address.

R+1: D301

R: D300

R+2: D302
R+3: D303
R+4: D304

R+5: D305
R+6: D306
R+7: D307
R+8: D308
R+9: D309

C # 8 0 0 A

31 ("1")
30 ("0")
2E (".")
30 ("0")
54 ("E")
25 ("R")
25 ("R")
00 ("_")

30 ("0")
30 ("0")
30 ("0")
2D ("-")

25 ("R")
F4 ("O")
00 ("_")
00 ("_")

015 8 71514
1 0

FAL number = 10
Diagnostic output mode = 8 (bit address and message output)

Bit Address Found Flag
1: Bit address found

Input type
0: Normally open

User-set FAL error message output to the
CX-Programmer by the time monitoring
function. The CX-Programmer will show the
following: 1000.00 ERROR.

Not used.
Not used.

Contains bit address in
ASCII.(1000.00 is
converted to ASCII.)
959

Failure Diagnosis Instructions Section 3-28
Setting the Monitoring Time with the Teaching Function

The monitoring time can be set automatically with the teaching function when
a word address has been specified for T.

To start the teaching function, turn ON A598.00 (the FPD Teaching Bit). While
A598.00 is ON, FPD(269) measures how long it takes for the diagnostic out-
put (CIO 200.00) to go ON after the execution condition (CIO 1000.00) goes
ON. If the measured time exceeds the monitoring time in T, the measured
time is multiplied by 1.5 and that value is stored in T as the new monitoring
time.

ts: Initial setting in T
ta: Measured time
t’s: New setting in T after teaching
(When ta > ts, t’s = ta × 1.5)

T

R

200.00

D200

D300

1000.00

The teaching function
can set the monitoring
time in T automatically.

Execution
condition

Diagnostic output

A598.00

CIO 200.00

CIO 1000.00

t's(ta × 1.5)

No error generated.

Measured time: ta

Teaching

FPD Teaching Bit

Execution condition

Diagnostic output
960

Other Instructions Section 3-29
3-29 Other Instructions
This section describes instructions for manipulating the Carry Flag, extending
the maximum cycle time, saving/loading Condition Flag status, and converting
memory addresses.

3-29-1 SET CARRY: STC(040)
Purpose Sets the Carry Flag (CY).

Ladder Symbol

Variations

Applicable Program Areas

Description When the execution condition is ON, STC(040) turns ON the Carry Flag (CY).
Although STC(040) turns the Carry Flag ON, the flag will be turned ON/OFF
by the execution of subsequent instructions which affect the Carry Flag.

Flags

Precautions ROL(027), ROLL(572), ROR(028), and RORL(573) make use of the Carry
Flag in their rotation shift operations. When using any of these instructions,
use STC(040) and CLC(041) to set and clear the Carry Flag.

3-29-2 CLEAR CARRY: CLC(041)
Purpose Turns OFF the Carry Flag (CY).

Ladder Symbol

Instruction Mnemonic Function code Page

SET CARRY STC 040 961

CLEAR CARRY CLC 041 961

EXTEND MAXIMUM CYCLE TIME WDT 094 962

SAVE CONDITION FLAGS CCS 282 964

LOAD CONDITION FLAGS CCL 283 966

CONVERT ADDRESS FROM CV FRMCV 284 967

CONVERT ADDRESS TO CV TOCV 285 971

STC(040)

Variations Executed Each Cycle for ON Condition STC(040)

Executed Once for Upward Differentiation @STC(040)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Name Label Operation

Error Flag ER ---

Equals Flag = ---

Carry Flag CY ON

Negative Flag N ---

CLC(041)
961

Other Instructions Section 3-29
Variations

Applicable Program Areas

Description When the execution condition is ON, CLC(040) turns OFF the Carry Flag
(CY). Although CLC(040) turns the Carry Flag OFF, the flag will be turned ON/
OFF by the execution of subsequent instructions which affect the Carry Flag.

Flags

Precautions +C(402), +CL(403), +BC(406), and +BCL(407) make use of the Carry Flag in
their addition operations. Use CLC(041) just before any of these instructions
to prevent any influence from other preceding instructions.

–C(412), –CL(413), –BC(416), and –BCL(417) make use of the Carry Flag in
their subtraction operations. Use CLC(041) just before any of these instruc-
tions to prevent any influence from other preceding instructions.

ROL(027), ROLL(572), ROR(028), and RORL(573) make use of the Carry
Flag in their rotation shift operations. When using any of these instructions,
use STC(040) and CLC(041) to set and clear the Carry Flag.

Note The +(400), +L(401), +B(404), +BL(405), –(410), –L(411), –B(414), and
–BL(415) instructions do no include the Carry Flag in their addition and sub-
traction operations. In general, use these instructions when performing addi-
tion or subtraction.

3-29-3 EXTEND MAXIMUM CYCLE TIME: WDT(094)
Purpose Extends the maximum cycle time, but only for the cycle in which the instruc-

tion is executed. WDT(094) can be used to prevent errors for long cycle times
when a longer cycle time is temporarily required for special processing.

Ladder Symbol

Variations

Variations Executed Each Cycle for ON Condition CLC(041)

Executed Once for Upward Differentiation @CLC(041)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Name Label Operation

Error Flag ER ---

Equals Flag = ---

Carry Flag CY OFF

Negative Flag N ---

WDT(094)

T T: Timer setting

Variations Executed Each Cycle for ON Condition WDT(094)

Executed Once for Upward Differentiation @WDT(094)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
962

Other Instructions Section 3-29
Applicable Program Areas

Operands T: Timer Setting

Specifies the watchdog timer setting between 0000 and 0F9F hexadecimal or
between &0000 and &3999 decimal.

Operand Specifications

Description WDT(094) extends the maximum cycle time for the cycle in which this instruc-
tion is executed. The watchdog timer setting in the PLC Setup is extended by
an interval of T × 10 ms (0 to 39,990 ms).

The following table shows the watchdog timer settings in the PLC Setup. The
default value for the maximum cycle time is 1,000 ms, although it can be set
anywhere from 1 to 40,000 ms in 10-ms units.

Flags

The following table shows relevant flags and words in the Auxiliary Area.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area T

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0000 to 0F9F (binary)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

Name Function Settings

Watch cycle
time

A Cycle Time Too Long error (fatal
error) will be registered if the cycle time
exceeds the maximum setting.

0: Default setting (1,000 ms)

1: User time setting

Sets the maximum cycle time.
(This setting is valid only when the first
setting has been set to 1.)

0001 to 0FA0
(1 to 40,000 ms, 10-ms units)

Name Label Operation

Error Flag ER ON if the watchdog timer setting exceeds 40 seconds.

OFF in all other cases.

Name Address Operation

Cycle Time Too Long
Flag

A401.08 ON when the present cycle time exceeds the
maximum cycle time (watch cycle time) set in the
PLC Setup. This is a fatal error which causes pro-
gram execution to stop.
963

Other Instructions Section 3-29
Precautions WDT(094) can be used more than once in a cycle. When WDT(094) is exe-
cuted more than once the cycle time extensions are added together, although
the total must not exceed 40,000 ms. If WDT(094) cannot be executed again if
the cycle has already been extended to 40,000 ms.

Examples The default maximum cycle time (1,000 ms) is used in this example.

1,2,3... 1. When CIO 0.00 turns ON, the first WDT(094) instruction extends the max-
imum cycle time by 300 ms (30 × 10 ms). Thus, the maximum cycle time
is 1,300 ms at this point.

2. When CIO 0.01 turns ON, the second WDT(094) instruction attempts to
extend the maximum cycle time by another 39,000 ms. Since the new max-
imum cycle time (40,300 ms) exceeds the upper limit of 40,000 ms, the ex-
tra 300 ms is ignored. As a result, the second WDT(094) instruction
actually extends the maximum cycle time by 38,700 ms.

3. When CIO 0.02 turns ON, the third WDT(094) instruction attempts to ex-
tend the maximum cycle time by another 1,000 ms. Since the maximum cy-
cle time has already reached the upper limit of 40,000 ms, the third
WDT(094) instruction is not executed.

3-29-4 SAVE CONDITION FLAGS: CCS(282)
Purpose Saves the current status of the Condition Flags in a separate area within the

CPU Unit. The current status of the Flags is preserved so that it can be read
(restored) with CCL(283) at a different location in the program, in a different
task, or even in a later cycle.

Ladder Symbol

Variations

Maximum Cycle
Time

A262 and
A263

These words contain the maximum cycle time in
32-bit binary. This value is updated every cycle.

Present Cycle Time A264 and
A265

These words contain the present cycle time in 32-
bit binary. This value is updated every cycle.

Name Address Operation

1

2

3

0.00

0.01

0.02

CCS(282)

Variations Executed Each Cycle for ON Condition CCS(282)

Executed Once for Upward Differentiation @CCS(282)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
964

Other Instructions Section 3-29
Applicable Program Areas

Description When the execution condition is ON, CCS(282) stores the current status of
the Condition Flags (except for the ALWAYS ON and ALWAYS OFF Flags) in
a separate area in the CPU Unit. The Status of the following Condition Flags
will be preserved: ER, CY, >, =, <, N, OF, UF, >=, <>, and <=.

The preserved status of the Condition Flags can be read (restored) later only
with CCL(283), the LOAD CONDITION FLAGS instruction. The status can be
read in any of the following cases:

• Within a task

• Between different cyclic tasks

• Between cycles

Note (1) The status of the Condition Flags cannot be saved/loaded between a cy-
clic task and interrupt task.

(2) When CCS(282) is executed, it overwrites the previous Condition Flag in-
formation that was saved.

All of the Condition Flags are cleared when operation switches from one task
to another. Use the CCS(282) and CCL(283) instructions to save and load the
Condition Flag status between tasks or cycles.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

A

CCS

CCL

CCS

CCL

A

B

CCS

CCL

Between cycles

Between cyclic tasksWithin a task

CCL(283) is executed to read the status
in the next cycle after CCS(282) was
executed to save the status.
965

Other Instructions Section 3-29
For example, the CCS(282) and CCL(283) instructions make it possible to use
the CY Flag status (time monitoring diagnosis error) from the execution of
FPD(269) at a later point in the program, not immediately after execution of
the instruction.

Flags There are no flags affected by these instructions.

Examples In the following example, CCS(282) preserves the results of a Comparison so
that this result can be used as an execution condition later in the program.

3-29-5 LOAD CONDITION FLAGS: CCL(283)
Purpose Restores the status of the Condition Flags that were saved in a separate area

within the CPU Unit by CCS(282). It is also possible to use CCL(283) inde-
pendently to clear the Condition Flags.

Ladder Symbol

CCS

FPD

CCL

Task

The results of the comparison are stored in the Condition Flags.
(In this case, the results of the COMPARE Instruction can be used
in instruction B even if those results are affected by execution of
instruction A.)

Preserves the status of the Condition Flags in a separate location
in the CPU Unit.

Restores the status of the Condition Flags.

The Equals Flag will reflect the result of the COMPARE instruction,
not the result of instruction A.

Instruction A

Instruction B

CMP
D0
D300

CCS

MOV
D0
D200

CCL

=

0.00
When CIO 0.00 is ON in the following
example, CMP(020) will compare the
contents of D0 and D300 and those results
will be preserved by CCS(282).

The preserved Condition Flags are restored
by CCL(283).

This MOV(021) instruction is executed if the
result of the CMP(020) instruction caused the
Equals flag to be turned ON.

CCL(283)
966

Other Instructions Section 3-29
Variations

Applicable Program Areas

Description When the execution condition is ON, CCL(283) restores (reads) the status of
the Condition Flags (except for the ALWAYS ON and ALWAYS OFF Flags).
The Status of the following Condition Flags will be restored (read): ER, CY, >,
=, <, N, OF, UF, >=, <>, and <=.

Condition Flags are shared by all instructions, so the status of these Flags
may change many times during the PLC cycle as each instruction is executed.
Previously, it was necessary to place conditions using the Condition Flags
immediately after the controlling instruction so that the status of the Condition
Flags would not be affected by intervening instructions. The CCS(282) and
CCL(283) instructions allow the controlling instruction to be separated from
the execution conditions that rely on the result.

For example, CCS(282) can store the status of the Equals Flag after execu-
tion of a Comparison Instruction and the result can be restored later. The
result does not have to be used immediately after execution of the instruction.

Refer to 3-29-4 SAVE CONDITION FLAGS: CCS(282) for more examples
showing how to use CCS(282) and CCL(283).

Flags There are no flags affected by these instructions.

3-29-6 CONVERT ADDRESS FROM CV: FRMCV(284)
Purpose Converts a CV-series PLC memory address to its corresponding CS/CJ/CP-

series PLC memory address. FRMCV(284) can be useful when converting
CV-series programs that use PLC memory addresses so that they are com-
patible with CP-series PLCs.

Ladder Symbol

Variations Executed Each Cycle for ON Condition CCL(283)

Executed Once for Upward Differentiation @CCL(283)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

CCL
CCL(283) is used alone to clear the
Condition Flags after execution of
instruction A so that those results do not
affect instruction B and later instructions.

Task

Instruction A

Instruction B

FRMCV(284)

S

D

S: Word containing the CV-
series PLC memory address
D: Destination Index Register
967

Other Instructions Section 3-29
Variations

Applicable Program Areas

Description When the execution condition is ON, FRMCV(284) executes the following
operations.

1. The CV-series PLC memory address specified in S is converted to its
equivalent CV-series data area address.

2. FRMCV(284) determines the CP-series PLC memory address that corre-
sponds to the same CV-series data area address.

3. The CP-series PLC memory address is output to D. (An index register (IR0
to IR15) must be specified for D.)

The following example shows FRMCV(284) used to convert the CV-series
PLC memory address in D0.

Variations Executed Each Cycle for ON Condition FRMCV(284)

Executed Once for Upward Differentiation @FRMCV(284)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

FRMCV

D0

IR1

#2001D0

2001 Hex D1

D1 10001 Hex

IR1 10001 Hex

1. The CV-series PLC memory address is
converted to its equivalent CV-series data
area address.

CV-series PLC
memory address

CV-series data
area address

CP-series data
area address

CP-series PLC
memory address

2. The corresponding CV-series data area
address is converted to its CP-series PLC
memory address.

Storage
3. The CP-series PLC memory
address is stored in D.
968

Other Instructions Section 3-29
Note If there is no CP-series equivalent to the specified CV-series PLC memory
address, an error will occur, the Error Flag will be turned ON, and the address
will not be converted.

When an Index Register is used as an operand with a “,IR” prefix, the instruc-
tion will operate on the word indicated by the PLC memory address in the
Index Register, not the Index Register itself. Once the desired PLC memory
address has been stored in an Index Register, the Index Register itself can be
used as an operand for an instruction.

The FRMCV(284) instruction can be used to convert a CV-series program
with the following two kinds of programming for use in a CP-series PLC. See
the Examples later in this section for an example.

1. When using indirect binary mode DM addressing (*DM)
(when indirectly specifying a data area address with a PLC memory ad-
dress in DM)

2. When using CV-series PLC memory addresses directly as values
(when storing PLC memory addresses in Index Registers with direct ad-
dressing using an instruction such as MOV(021))

Operand Specifications

0000 hex
0001 hex

2000 hex
2001 hex

FFFD hex

CIO 0
CIO 1

D0
D1

E32765

0C000 hex
0C001 hex

10000 hex
10001 hex

FFFFF hex

CIO 0
CIO 1

D0
D1

D32767

S

IR1 10001 hexD:

Specify the CV-series PLC
memory address in S. (In this
case, 2001 hex is the PLC
memory address of D1.)

Data area address PLC memory address

Convert

Corresponding
data area
address

CV-series

The corresponding CP-series PLC
memory address is stored in D. (In this
case, data area address D1 is
converted to PLC memory address
10001 hex and stored.)

Convert

CP-series

Area S D

CIO Area CIO 0 to CIO 6143 ---

Work Area W0 to W511 ---

Holding Bit Area H0 to H511 ---

Auxiliary Bit Area A448 to A959 ---

Timer Area T0000 to T4095 ---

Counter Area C0000 to C4095 ---

DM Area D0 to D32767 ---

Indirect DM addresses
in binary

@ D0 to @ D32767 ---

Indirect DM addresses
in BCD

*D0 to *D32767 ---

Constants Any constant except 09FF hex, 0A00
to 0AFF hex, or 0D00 to 0E3F hex

Data Registers DR0 to DR15 ---
969

Other Instructions Section 3-29
Flags

Examples Example 1: Converting a CV-series Program with *DM Indirect Binary
Mode DM Addressing

In this FRMCV(284) example, a DM word is specified in S, the PLC memory
address there is stored in an Index Register, and the Index Register is used
for indirectly addressed.

Index Registers --- IR0 to IR15

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to
+2047 ,IR15

DR0 to DR15, IR0 to IR15

Area S D

Name Label Operation

Error Flag ER ON if S specifies one of the following PLC memory
addresses that do not exist in the CP-series:

Temporary Relay (TR) Area (09FF hex)
CPU Bus Link (G) Area (0A00 to 0AFF hex)
SFC Areas (0D00 to 0E3F hex)

OFF in all other cases.

OC0200 Hex

0200 Hex

#1234

#1234

0.00

MOV

#1234

*D0

S

D

0200 Hex

0.00

FRMCV

D0

IR0

S

D

MOV

#1234

,IR0

S

D

0200 Hex

OC0200 Hex

#1234

#1234

000OC0200 Hex

0200 Hex

PLC Setup
Indirect DM data:
When indirect DM addresses are in binary, the content of
the DM word is treated as a PLC memory address and
specifies the corresponding address in I/O memory.

• CV-series program
(Program using indirect DM
binary mode addressing)

• CP-series program

Equivalent program

In this case, the value in D0 is 200 hex. The
corresponding data area address is CIO 512, so
#1234 is transferred to CIO 512.

Word address:
D0

Word address:
CIO 512

MOV(021)

CVM1/CV-series PLC
memory address

CVM1/CV-series PLC
memory address

In this case, the value in D0 is 200 hex. The
corresponding CV-series data area address is CIO 512.
The CP-series PLC memory address for CIO 512 is
0000C200 hex, so this value is stored in IR0. The
destination operand in MOV(021) indirectly addresses the
content of IR0, so #1234 is transferred to CIO 512.

MOV
(021)

FRMCV
(284)

CP-series word
address: D0

CP-series PLC
memory address:CV-series word

address: CIO 512

CP-series word
address: CIO 512

Equivalent

CP-series word
address: IR0

CP-series word
address: CIO 512

CS/CJ-series PLC
memory address:

CS/CJ-series PLC
memory address:

MOV(021)
970

Other Instructions Section 3-29
Example 2: Converting a CV-series Program with PLC Memory
Addresses Stored directly in Index Registers

In this FRMCV(284) example, the CV-series PLC memory address is speci-
fied directly in S.

3-29-7 CONVERT ADDRESS TO CV: TOCV(285)
Purpose Converts a CS/CJ/CP-series PLC memory address to its corresponding CV-

series PLC memory address. TOCV(285) can be useful when converting CP-
series programs that use PLC memory addresses so that they are compatible
with CV-series PLCs.

Ladder Symbol

Variations

Applicable Program Areas

0200Hex

0.00

CIO 512

CIO 512

MOV

#0200

IR0

S

D

0.00

FRMCV

#0200

IR0

S

D

0200Hex

#0200IR0

#000C200IR

• CV-series program
(Program using PLC memory
addresses stored directly in IR)

• CP-series program

Equivalent program

In this case, the PLC memory address
0200 hex is stored in Index Register IR0.

In this case, the CV-series PLC memory address 0200 hex
corresponds to CIO 512. The CP-series PLC memory
address for CIO 512 is 0000C200 hex, so this value is
stored in IR0.

CVM1/CV-series PLC
memory address:
0200 hex

CV-series word
address

CP-series word
address CP-series PLC memory

address: 00C200 hex

TOCV(285)

S

D

S: Index Register containing the
CP-series PLC memory
address
D: Destination word

Variations Executed Each Cycle for ON Condition TOCV(285)

Executed Once for Upward Differentiation @TOCV(285)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
971

Other Instructions Section 3-29
Description When the execution condition is ON, TOCV(285) executes the following oper-
ations.

1. The CP-series PLC memory address specified in S is converted to its
equivalent CP-series data area address. (An index register (IR0 to IR15)
must be specified for S.)

2. TOCV(284) determines the CV-series PLC memory address that corre-
sponds to the same CP-series data area address.

3. The CV-series PLC memory address is output to D.

The following example shows TOCV(285) used to convert the PLC memory
address in IR1.

TOCV

IR1

D100

10001 HexIR1

2001 Hex

D1

D1

10001 Hex

D100 2001 Hex

1. The CP-series PLC memory address is
converted to its equivalent CP-series data
area address.

CP-series PLC
memory address

CP-series data
area address

CV-series data
area address

CV-series PLC
memory address

2. The corresponding CP-series data
area address is converted to its CV-series
PLC memory address.

Storage
3. The CV-series PLC memory
address is stored in D.
972

Other Instructions Section 3-29
Note (1) If there is no CV-series equivalent to the specified CP-series PLC mem-
ory address, an error will occur, the Error Flag will be turned ON, and the
address will not be converted.

(2) The CV-series PLC memory address data stored by TOCV(285) can be
transferred to a CV-series PLC using CX-Programmer.

(3) The same data area address that was used in the CP-series program can
be specified in the CV-series program by using indirect Index Register ad-
dressing (“,IR” prefix) or indirect binary mode DM addressing (*DM).

Operand Specifications

0000 hex
0001 hex

2000 hex
2001 hex

FFFD hex

0C000 hex
0C001 hex

10000 hex
10001 hex

FFFFF hex

CIO 0
CIO 1

D0
D1

D32765

S

D100 2001 hex

CIO 0
CIO 1

D0
D1

D32767

D:

Specify the CS/CJ-series
PLC memory address in S.
(In this case, 10001 hex is
the PLC memory address of
D1.)

Data area address PLC memory address

Convert

Corresponding
data area
address

CP-series

The corresponding CV-series
PLC memory address is
stored in D100. (In this case,
data area address D1 is
converted to CVM1/CV PLC
memory address 2001 hex
and stored.)

Convert

CV-series

Area S D

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A448 to A959

Timer Area --- T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants See note 1. ---

Data Registers --- DR0 to DR15

Index Registers IR0 to IR15 ---

Indirect addressing
using Index Registers

--- ,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to
+2047 ,IR15
DR0 to DR15, IR0 to IR15
973

Other Instructions Section 3-29
Note (1) An error will occur and the Error Flag will be turned ON if S specifies one
of the following PLC memory addresses that do not exist in the CV-series:

(2) An error will occur and the Error Flag will be turned ON if an area other
than the Index Register Area is specified for S.

Flags

Example Converting a CP-series Program with Indirect Index Register Addressing

1. In this TOCV(285) example, an Index Register is specified in S. The CP-
series PLC memory address in that Index Register is converted to its CV-
series equivalent.

2. The CV-series PLC memory address is transferred to the specified data
area address.

3. Use the CV-series PLC memory address in the CV-series program.

Area or addresses PLC memory addresses

Task Flag Area 0000 B800 to 0000 B801 hex

A512 to A959 0000 BA40 to 0000 BBFF hex

CIO 2556 to CIO 6143 0000 C9FC to 0000 D7FF hex

T1024 to T4095 0000 BE40 to 0000 BEFF hex and
0000 E400 to 0000 EFFF hex

C1024 to C4095 0000 BF40 to 0000 BFFF hex and
0000 F400 to 0000 FFFF hex

HR Area 0000 D800 to 0000 D9FF hex

WR Area 0000 DE00 to 0000 DFFF hex

D24576 to D32767 0001 6000 to 0001 7FFF hex

Name Label Operation

Error Flag ER ON if S specifies a PLC memory address that does not
exist in the CV-series PLCs.
ON if S is not a constant or Index Register.
OFF in all other cases.

0.01

TOCV

IR0

D200

S

D

MOV

#1234

,IR0

S

D

MOV

#1234

*D200

S

D

#1234

#1234

10001Hex

#1234

0.00 0.00

D1

IR0 10001Hex

D1 2001Hex

2001Hex

10001Hex

D200 D1

D200 2001Hex

2001Hex#1234

• CP-series program
(Program using indirect Index
Register addressing)

• CP-series program

In this case, IR0 contains 10001 hex. The
data area address corresponding to PLC
memory address 10001 hex is D1, so
#1234 is transferred to D1.

CV-series PLC
memory address:

CP-series
data area
address: IR0

CP-series
data area
address: D1

Transfer contents of
D200 to CV-series.

• CV-series program

In this case, IR0 contains 10001 hex.
Since the data area address
corresponding to CP-series PLC
memory address 10001 hex is D1,
TOCV(285) stores the CV-series PLC
memory address for D1 (2001 hex) in
destination word D200.

PLC memory
address: 10001 hex

CP-series data
area address

CP-series data
area address

CP-series PLC
memory address:

Same

CV-series data
area address

CP-series data
area address

Transfer contents of
D200 to CV-series.

In the CV-series PLC, the destination of the
MOV(021) instruction is indirectly addressed
(in binary mode) through D200, so #1234 is
transferred to D1.

PLC Setup
Indirect DM data:
When indirect DM addresses are in binary, the
content of the DM word is treated as a PLC
memory address and specifies the
corresponding address in I/O memory.

CV-series data
area address

CV-series data
area address

CV-series PLC
memory address

MOV(021)

*DM specification
974

Block Programming Instructions Section 3-30
3-30 Block Programming Instructions
This section describes block programs and the block programming instruc-
tions.

3-30-1 Introduction

Block Programs Up to 128 block programs can be used within the overall user program (all
tasks). The execution of each block program is controlled by a single execu-
tion condition. All instructions between BPRG(096) and BEND<801> are exe-
cuted unconditionally when the execution condition for BPRG(096) is turned
ON. The execution of all the block programming instructions except for
BPRG(096) is not affected by the execution condition. This allow program-
ming that is to be executed under a single execution condition to be grouped
together in one block program.

Each block is started by one execution condition in the ladder diagram and all
instructions within the block are written in mnemonic form. The block program
is thus a combination of ladder and mnemonic instructions.

Block programs enable programming operations that can be difficult to pro-
gram with ladder diagrams, such as conditional branches and step progres-
sions.

Instruction Mnemonic Function code Page

BLOCK PROGRAM BEGIN BPRG 096 979

BLOCK PROGRAM END BEND 801 979

BLOCK PROGRAM PAUSE BPPS 811 982

BLOCK PROGRAM RESTART BPRS 812 982

CONDITIONAL BLOCK EXIT
(NOT)

EXIT (NOT) 806 988

IF (NOT) IF (NOT) 802 984

ELSE ELSE 803 984

IF END IEND 804 984

ONE CYCLE AND WAIT (NOT) WAIT (NOT) 805 991

TIMER WAIT TIMW (BCD) 813 995

TIMWX (binary) 816

COUNTER WAIT CNTW (BCD) 814 998

CNTWX (binary) 818

HIGH-SPEED TIMER WAIT TMHW (BCD) 817 1001

TMHWX
(binary)

815

LOOP LOOP 809 1004

LOOP END (NOT) LEND (NOT) 810 1004
975

Block Programming Instructions Section 3-30
The following example shows two block programs.

Tasks and Block
Programs

Block programs can be located within tasks. While tasks are used to divide
large programming units, block programs can be used within tasks to further
divide programming into smaller units controlled with a single ladder diagram
execution condition.

Just like tasks, block programs that are that are not executed (i.e., which have
an OFF execution condition) do not require execution time and can thus be
used to reduce the cycle time (somewhat the same as jumps). Also like tasks,
other blocks can be paused or restarted from within a block program.

There are, however, differences between tasks and block programs. One dif-
ference is that input conditions are not used with block programs unless inten-
tionally programmed with IF(802), WAIT(805), EXIT(806), IEND(810) or other
instructions. Also, there are some instructions that cannot be used within
block programs, such as those that detect upward and downward differentia-
tion.

1

2

0.00

0.01

D1
100.00

0.03
0.04

1000
#000A
D1

D1

0.15

Block program area No. 1

When CIO 0.00 is ON, the contents of block
program 1 will be executed. The MOV(021)
and SET instructions will be executed
unconditionally and the block program will end.

Block program area No. 2

When CIO 0.01 is ON, the contents of block
program 2 will be executed. If CIO 0.03 and
CIO 0.04 are both ON, the binary addition will
be performed (CIO 1000 + #000A→D1).
If one or both of these bits is OFF, #0001 will
be moved to D1. CIO 0.15 will then be set
unconditionally and the block program will end.
976

Block Programming Instructions Section 3-30
Block programs can be used either within cyclic tasks or interrupt tasks. Each
block program number from 0 to 127 can be used only once and cannot be
use again, even in a different task.

Using Block
Programming
Instructions

Basically speaking, IF(802), ELSE(803), and IEND(810) are used for execu-
tion conditions (along with bits) inside block programs.

If “A” or “B” is to be executed then IF A ELSE B IEND are used as shown
below.

 If “A” or nothing is to be executed, IF A IEND are used as shown below.

If execution is to wait until an execution condition or bit is ON (e.g., for step
progressions), then WAIT(805) is used.

If execution is to wait until for a specified period of time (e.g., for timed step
progressions), then TIMW(813), TIMX(816), TMHW(815), or TMHWX(817) is
used.

If execution is to wait until for a specified count has been reached (e.g., for
step progressions with counters), then CNTW(814)/CNTWX(818) is used.

If execution is to be repeated within part of a block program until a condition is
met, then LOOP(809) and LEND(810) are used.

If execution of the block program is to be ended in the middle based on an
execution condition, the EXIT(806) is used.

If another block program that is being executed is to be paused or restarted
from within a block program, then BPPS(811) and BPRS(812) are used.

Program

Block program 001

Block program n

Task 1

Task 2

Task n

 "B" executed
(after ELSE).

 "A" executed (be-
tween IF and ELSE).

Execution
condition ON?

Execution
condition

Execution
condition Execution

condition ON?

 "A" executed (be-
tween IF and IEND).
977

Block Programming Instructions Section 3-30
Instructions Taking
Execution Conditions
within Block
Programs

The following instruction can take execution conditions within a block pro-
gram.

Instructions with
Application
Restrictions within
Block Programs

The instructions listed in the following table can be used only to create execu-
tion conditions for IF(802), WAIT(805), EXIT(806), LEND(810), CJP(510, or
CJPN(511) and cannot be used by themselves. The execution of these
instructions may be unpredictable if used by themselves or in combination
with any other instructions.

Instructions Not
Applicable in Block
Programs

The instructions listed in the following table cannot be used within block pro-
grams.

Instruction type Instruction name Mnemonic

Block programming instructions IF (NOT) IF(802) (NOT)

ONE CYCLE AND
WAIT (NOT)

 WAIT(805) (NOT)

EXIT EXIT(806) NOT

LOOP END LEND(810) NOT

Ladder diagram instructions CONDITIONAL JUMP CJP(510)

CONDITIONAL JUMP
NOT

CJPN(511)

Mnemonic Name

LD/LD NOT LOAD/LOAD NOT

AND/AND NOT AND/AND NOT

OR/OR NOT OR/OR NOT

UP/DOWN CONDITION ON/CONDITION OFF

>, <,=, >=, <=, <> (S) (L) Symbol Comparison Instruction (not
right-hand instructions)

LD TST/TST NOT LOAD Bit Test Instructions

AND TST/TST NOT AND Bit Test Instructions

OR TST/TST NOT OR Bit Test Instructions

>$, <$,=$, >=$, <=$, <>$ Text String Comparison Instruction

0.00
0.01
D0

0.00
0.01
D0

Good Example Bad Example

Used as
execution
condition
for IF.

Cannot be
used as
execution
condition
for
MOV(021).

Instruction
group

Mnemonic Name Alternative

Sequence
Output
Instructions

OUT OUTPUT Use SET and RSET.

OUT NOT OUTPUT NOT

DIFU(013) DIFFERENTIATE UP None

DIFD(014) DIFFERENTIATE DOWN None

KEEP(011) KEEP None
978

Block Programming Instructions Section 3-30
3-30-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801)
Purpose Define a block programming area. For every BPRG(096) there must be a cor-

responding BEND(801).

Ladder Symbols BLOCK PROGRAM BEGIN

BLOCK PROGRAM END

BEND(801)

Sequence
Control
Instructions

FOR(512)
and
NEXT(513)

FOR-NEXT LOOPS Use LOOP(809) and
LEND(810) (NOT).

BREAK(514) BREAK LOOP

IL(002) and
ILC(003)

INTERLOCK and INTER-
LOCK CLEAR

Divide the block program
into smaller blocks.

JMP(004)0
and
JME(005) 0

Multiple JUMP and Multi-
ple JUMP END

Use JMP(004 and
JME(005) (but the jump will
be made unconditionally).

END(001) END Use BEND(801).

Timer and
Counter
Instructions

TIM TIMER Use TIMW(813),
TIMWX(816), TMHW(815),
TMHWX(817),
CNTW(814), and
CNTWX(818). Other
instructions in the block
program will not be exe-
cuted until the timer times
out or the counter counts
out.

TIMH(015) HIGH-SPEED TIMER

TMHH(540) ONE-MS TIMER

TTIM(087) ACCUMULATIVE TIMER

TIML(542) LONG TIMER

MTIM(543) MULTI-OUTPUT TIMER

CNT COUNTER

CNTR(012) REVERSIBLE COUNTER

Subroutine
Instructions

SBN(092)
and
RET(093)

SUBROUTINE ENTRY
and SUBROUTINE
RETURN

None

Shift Instruc-
tions

SFT(010) SHIFT REGISTER Use other Shift Instruc-
tions.

Step Instruc-
tions

STEP(008)
and
SNXT(009)

STEP and STEP NEXT Use WAIT(805).

Data Con-
trol Instruc-
tions

PID(190) PID CONTROL None

Diagnostic
Instructions

FPD(269) FAILURE POINT DETEC-
TION

None

Upward and
Downward
Differenti-
ated Instruc-
tions

Mnemonics
with @

Upward Differentiated
Instructions

None

Mnemonics
with %

Downward Differentiated
Instructions

None

Instruction
group

Mnemonic Name Alternative

BPRG(096)

N N: Block program number
979

Block Programming Instructions Section 3-30
Variations BPRG(096)

BEND(801)

Applicable Program Areas

Note BPRG(096) is allowed only once at the beginning of each block program.

Operands N: Block Program Number

The block program number must be between 0 and 127 decimal.

Operand Specifications
(BPRG(096))

Description BPRG(096) executes the block program with the block number designated in
N, i.e., the one immediately after it and ending with BEND(801). All instruc-
tions between BPRG(096) and BEND(801) are executed with ON execution
conditions (i.e., unconditionally).

When the execution condition for BPRG(096) is OFF, the block program will
not be executed and no execution time will be required for the instruction in
the block program.

Variations Executed Each Cycle for ON Condition BPRG(096)

Executed Once for Upward Differentiation Not supported.

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

(See note.) OK OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0 to 127 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

Block program
Executed when the execution
condition is ON.
980

Block Programming Instructions Section 3-30
Execution of the block program can be stopped using BPPS(811) from within
another block program even if the execution condition for BPRG(096) is ON.

Flags BPRG(096)

BEND(801)

Precautions Each block program number can be used only once within the entire user pro-
gram.

Block programs cannot be nested.

If the block program is in an interlocked program section and the execution
condition for IL(002) is OFF, the block program will not be executed.

BPRG(096) and the corresponding BEND(801) must be in the same task.

An error will occur and the Error Flag will turn ON if BPRG(096) is in the mid-
dle of a block program, BEND(801) is not in a block program, N is not between
#0000 and #007F (binary), there is no block program, or if the same block pro-
gram number is used more than once.

Examples When CIO 0.00 turns ON in the following example, block program 0 will be
executed. When CIO 0.00 is OFF, the block program will not be executed.

Name Label Operation

Error Flag ER ON if BPRG(096) is already being executed.
ON if N is not between 0 and 127.
ON if the same block program number is used more than
once.
OFF in all other cases.

Name Label Operation

Error Flag ER ON if a block program is not being executed.

OFF in all other cases.

Nesting NOT possible.

0

0.00

Block program 0
981

Block Programming Instructions Section 3-30
The two program sections shown below both execute MOV(021), ++B(594),
and SET for the same execution condition (i.e., when CIO 0.00 turns ON).

3-30-3 BLOCK PROGRAM PAUSE/RESTART: BPPS(811)/BPRS(812)
Purpose Pause and restart the specified block program from another block program.

Ladder Symbol

Variations

Applicable Program Areas

Note BPRG(096) and BPRS(812) must be used in block programming regions even
within subroutines and interrupt tasks.

Operands N: Block Program Number

The block program number must be between 0 and 127 decimal.

Operand Specifications

0

0.00 0.00

D100

D200

D200

100.00

D100
D200
D200
100.00

BPPS(811) N

BPRS(812) N

N: Block program number

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 0 to 127 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

982

Block Programming Instructions Section 3-30
Description BPPS(811) is used inside one block program to pause the execution of
another block program specified by N, the block program number. The block
program that is paused with BPPS(811) even if the BPRG(096) for the block
program has an ON execution condition. The block program will not be
restarted until BPRS(812) is executed for it.

BPRS(812) restarts the block program specified by N, the block program num-
ber. Once restarted, the block program will be executed as long as the
BPRG(096) for the block program has an ON execution condition.

Flags

Precautions An error will occur and the Error Flag will turn ON if BPPS(811) or BPRS(812)
is not in a block program or if N is not between #0000 and #007F (binary).

BPPS(811) can be used to pause the block program that contains it. When
the block program is then restarted using BPRS(812) from another block pro-
gram, the paused block program will restart from the next instruction after
BPPS(811).

If a paused block program contains TIMW(813), TIMWX(816), TMHW(815), or
TMHWX(817), the PV of the time will continue to elapse even while the block
program is paused.

Examples The following diagram shows a basic example of pausing a block program.

to

BPRS(812) executed
for block program n.

Block program n. This block
program will now be executed
as long as bit "a" is ON.

BPPS(811) executed
for block program n.

Block program n. Once
paused this block program
will not be executed even
if bit "a" is ON.

to

to

to

to

to

Name Label Operation

Error Flag ER ON if BPPS(811) or BPRS(812) is not in a block program.

ON if N is not between 0 and 127.
OFF in all other cases.

0

0.00

0.02

0.01

1

Block program 0

Block program 1 will be paused if CIO 0.00 and
CIO 0.01 are both ON.

Block program 1 If the BPPS(811) in block program 0 has
been executed, block program 1 will not
be executed even if CIO 0.02 is ON.
983

Block Programming Instructions Section 3-30
Note If the block program that is being paused appears after BPPS(811), it will not
be executed. If the block program appears before BPPS(811), it will be
paused starting the next cycle.

If CIO 0.00 is ON, the following program pauses execution of either block pro-
gram 1 or block program 2 depending on the status of CIO 0.01. The block
program that was paused is then restarted after 10 seconds.

3-30-4 Branching: IF(802), ELSE(803), and IEND(804)
Purpose Branches the block program either based on an execution condition or on the

status of an operand bit.

Ladder Symbol

Variations

Applicable Program Areas

Note IF(802), ELSE(803), and IEND(804) must be used in block programming
regions even within subroutines and interrupt tasks.

Operand Specifications

0100

 000000 LD 0.00
 000001 BPRG(096) 00
 000002 IF(802) 0.01
 000003 BPPS(811) 01
 000004 ELSE(803)
 000005 BPPS(811) 02
 000006 IEND(804)
 000007 TIMW(803) 0

 000008 BPRS(812) 1
 000009 BPRS(812) 2
 000010 BEND(801)

0

0.00

0.01
Pauses block program 1

Pauses block program 2

Restarts block program 1
Restarts block program 2

Address Instruction Operands

IF(802) B

IF(802)

B

ELSE(803)

IEND(804)

IF(802) NOT

B: Bit operand

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A447.15
A448.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flags TK00 to TK31

Condition Flags ER, CY, >, =, <, N, OF, UF, >=, <>, <=, ON, OFF, AER
984

Block Programming Instructions Section 3-30
Description Operation without an Operand for IF(802)

If an operand bit is not specified, an execution must be created before IF(802)
starting with LD. If the execution condition is ON, the instructions between
IF(802) and ELSE(803) will be executed and if the execution condition is OFF,
the instructions between ELSE(803) and IEND(804) will be executed.

If the ELSE(803) instruction is omitted and the execution condition is ON, the
instructions between IF(802) and IEND(804) will be executed and if the execu-
tion condition is OFF, only the instructions after IEND(804) will be executed.

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area B

 "B" executed
(after ELSE).

Execution
condition ON?

 "A" executed (be-
tween IF and ELSE).

Execution
condition

Execution
condition ON?

 "A" executed (be-
tween IF and IEND).

Execution
condition
985

Block Programming Instructions Section 3-30
Operation with an Operand for IF(802) or IF NOT(802)

An operand bit, B, can be specified for IF(802) or IF NOT(802). If the operand
bit is ON, the instructions between IF(802) and ELSE(803) will be executed. If
the operand bit is OFF, the instructions between ELSE(803) and IEND(804)
will be executed. For IF NOT(802), the instructions between IF(802) and
ELSE(803) will be executed and if the operand bit is ON, the instructions be
ELSE(803) and IEND(804) will be executed is the operand bit is OFF.

If the ELSE(803) instruction is omitted and the operand bit is ON, the instruc-
tions between IF(802) and IEND(804) will be executed and if the operand bit
is OFF, only the instructions after IEND(804) will be executed. The same will
happen for the opposite status of the operand bit if IF NOT(802) is used.

Flags

Precautions Instructions in block programs are generally executed unconditionally. Branch-
ing, however, can be used to create conditional execution based on execution
conditions or operand bits.

Use IF A ELSE B IEND to branch between A and B.

Use IF A IEND to branch between A and doing nothing.

Branches can be nested to up to 253 levels.

A error will occur and the Error Flag will turn ON if the branch instructions are
not in a block program or if more than 254 branches are nested.

Operand bit
ON?

 "B" executed
(after ELSE).

 "A" executed (be-
tween IF and ELSE).

Operand bit
ON?

 "A" executed (be-
tween IF and IEND).

Name Label Operation

Error Flag ER ON if the branch instructions are not in a block program.
ON if more than 254 branches are nested.
OFF in all other cases.
986

Block Programming Instructions Section 3-30
Nesting Branches Up to 253 branches can be nested within the top level branch.

Examples The following example shows two different block programs controlled by
CIO 0.00 and CIO 0.02.

The first block executes one of two additions depending on the status of
CIO 0.01. This block is executed when CIO 0.00 is ON. If CIO 0.01 is ON,
0001 is added to the contents of CIO 1000. If CIO 0.01 is OFF, 0002 is added
to the contents of CIO 1000. In either case, the result is placed in D0.

The second block is executed when CIO 0.02 is ON and shows nesting two
levels. If CIO 0.03 and CIO 0.04 are both ON, the contents of CIO 1200 and
CIO 2000 are added and the result is placed in D10 and then 0001 is moved
into D11 based on the status of CY. If either CIO 0.03 or CIO 0.04 is OFF, then
the entire addition operation is skipped and CIO 200.01 is turned ON.
987

Block Programming Instructions Section 3-30
3-30-5 CONDITIONAL BLOCK EXIT (NOT): EXIT (NOT)(806)
Purpose Exists the block program (i.e., does not execute any other instruction in the

block program through BEND(801) depending on the status of the operand bit
or on the execution condition. EXIT(806) without an operand bit exits the pro-
gram if the execution condition is ON. EXIT(806) with an operand bit exits the
program if the bit is ON. EXIT NOT(806) must have an operand bit and exits
the program if the bit is OFF.

Ladder Symbol

Address Instruction Operands

000000 LD 0.00

000001 BPRG(096) 0

000002 IF(802) 0.01

000003 +B(404)

1000

#0001

D0

000004 ELSE(803)

000005 +B(404)

1000

#0002

D0

000006 IEND(804)

000007 BEND(801)

000008 LD 0.02

000009 BPRG(096) 1

000010 LD 0.03

000011 AND 0.04

000012 IF(802)

000013 +B(404)

1200

2000

D10

000014 IF(802) CY

000015 MOV(030)

#0001

D11

000016 IEND(804)

000017 ELSE(803)

000018 SET(016) 200.01

000019 IEND(804)

000020 BEND(801)

+B(404)

ELSE(803)
+B(404)

IEND(804)
BEND(801)

IF(802)
+B(404)

MOV(030)

IEND(804)
ELSE(803)

IF(802)

1000
#0001
 D0

1000
#0002

 D0

LD
AND

1200
2000
D10
CYIF(802)

#0001
D11

SET(016)
IEND(804)
BEND(801)

0.00

0.02

0

1

0.03
0.04

200.01

0.01

EXIT(806)

EXIT(806) B

EXIT NOT(806) B

B: Bit operand
988

Block Programming Instructions Section 3-30
Variations

Applicable Program Areas

Note EXIT(806) and EXIT NOT(806) must be used in block programming regions
even within subroutines and interrupt tasks.

Operand Specifications

Variations Always Executed in Block Program EXIT(806)
EXIT(806) B
EXIT NOT(806) B

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A447.15

A448.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flags TK00 to TK31

Condition Flags ER, CY, >, =, <, N, OF, UF, >=, <>, <=, ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
989

Block Programming Instructions Section 3-30
Description Operation without an Operand

EXIT(806) can be executed without an operand. If it is, then an execution con-
dition must be created for it starting with LD. If the execution condition is OFF,
the rest of the block program will be executed normally. If the execution condi-
tion is ON, the rest of the instructions in the block program through
BEND(801) will not be executed.

Operation with an Operand

If the operand bit, B, is OFF for EXIT(806) the rest of the block program will be
executed normally. If the operand bit is ON for EXIT(806), the rest of the
instructions in the block program through BEND(801) will not be executed. For
EXIT NOT(806), the rest of the block program will be executed for if the oper-
and bit is ON and skipped if the operand bit is OFF.

Flags

Precautions An error will occur and the Error Flag will turn ON if EXIT(806) or EXIT
NOT(806) is not in a block program.

Examples When CIO 0.00 is OFF, the block program is executed. If CIO 0.01 is ON, A is
executed and then B is skipped and program control jumps to BEND(801).
Section B of the program will continue to be skipped until CIO 0.01 turns OFF
again.

Execution
condition
OFF

Execution
condition
ON

 "A" executed. "A" executed.

 "B" executed.

Block ended.

Execution condition

Operand bit
OFF
(ON for EXIT
NOT)

Operand bit
ON
(OFF for EXIT
NOT)

 "A" executed. "A" executed.

 "B" executed.

Block ended.

Name Label Operation

Error Flag ER ON if EXIT(806) or EXIT NOT(806) is not in a block pro-
gram.
OFF in all other cases.
990

Block Programming Instructions Section 3-30
Although EXIT (NOT)(806) is similar to IF-IEND programming, execution time
is normally shorter for EXIT (NOT)(806) because the instructions from EXIT
(NOT)(806) to the end of the block program are not executed at all.

3-30-6 ONE CYCLE AND WAIT (NOT): WAIT(805)/WAIT(805) NOT
Purpose Stops execution of the rest of the block program until an execution condition

turns ON or an operand bit turns ON or OFF.

Ladder Symbol

Variations

Applicable Program Areas

Note WAIT(805)/WAIT(805) NOT must be used in block programming regions even
within subroutines and interrupt tasks.

Operand Specifications

Address Instruction Operands

000200 LD 0.00

000201 BPRG 0

: A :

000210 EXIT 0.01

: B :

000220 BEND ---

000221 LD 0.02

000222 BPRG 2

000223 LD 0.03

000224 AND 0.04

000225 EXIT ---

: C :

000230 BEND ---

CIO 0.01 ON

CIO 0.04 ON

CIO 0.01 OFF

CIO 0.04 OFF

0

2

0.00

0.02

0.01

0.03
0.04

Block ended

Block ended

CIO 0.03 and CIO 0.03 or

WAIT(805)

WAIT(805)

WAIT(805) NOT B

B B: Bit operand

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A447.15

A448.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095
991

Block Programming Instructions Section 3-30
Description Operation without an Operand

If an operand bit is not specified, an execution must be created before
WAIT(805)/WAIT(805 NOT starting with LD. If the execution condition is ON
for WAIT(805), the rest of the instruction in the block program will be skipped.
In the next cycle, none of the block program will be executed except for the
execution condition for WAIT(805). When the execution condition goes ON,
the instruction from WAIT(805) to the end of the program will be executed.

Task Flags TK00 to TK31

Condition Flags ER, CY, >, =, <, N, OF, UF, >=, <>, <=ON, OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area B

Execution
condition
OFF

Execution
condition
OFF

Execution
condition
ON

 "B" executed.

 "C" executed. "C"
executed.

 "C"
executed.

Wait

Execution
condition

 "A"
executed.
992

Block Programming Instructions Section 3-30
Operation with an Operand

An operand bit, B, can be specified for WAIT(805) or WAIT NOT(805). If the
operand bit is OFF (ON for WAIT NOT(805)), the rest of the instructions in the
block program will be skipped. In the next cycle, none of the block program will
be executed except for the execution condition for WAIT(805) or WAIT(805)
NOT. When the execution condition goes ON (OFF for WAIT(805) NOT), the
instruction from WAIT(805) or WAIT(805) NOT to the end of the program will
be executed.

Flags

Precautions WAIT(805) and WAIT(805) NOT can be used for step progressions inside
block programs.

An error will occur and the Error Flag will turn ON if WAIT(805) or WAIT(805)
NOT is not in a block program.

Note The program addresses of WAIT instructions with operands specified and the
program addresses of the first instruction creating the execution conditions for
WAIT instructions without operands are recorded in memory to enable execu-
tion to be continued based on the execution condition/bit operand. If online
editing performed from the CX-Programmer, however, the WAIT status will be
cleared and the block program will again be executed from the beginning.

Examples When CIO 0.00 is ON in the following example, block program 00 will be exe-
cuted. Execution would proceed as follows:

1,2,3... 1. If CIO 0.01 is OFF, none of the block program will be executed until
CIO 0.01 turns ON. When CIO 0.01 turns ON, “A” will be executed.

2. If CIO 0.02 is OFF after “A” is executed, the rest of the block program will
not be executed until CIO 0.02 turns ON. When CIO 0.02 turns ON, “B” will
be executed

Operand bit
OFF

Operand bit
OFF

Operand bit
ON

 "A"
executed.

 "B" executed.

 "C" executed. "C"
executed.

 "C"
executed.

Wait

Name Label Operation

Error Flag ER ON if WAIT(805) or WAIT(805) NOT is not in a block pro-
gram.
OFF in all other cases.
993

Block Programming Instructions Section 3-30
3. If CIO 0.03 is OFF after “B” is executed, the rest of the block program will
not be executed until CIO 0.03 turns ON. When CIO 0.03 turns ON, “C” will
be executed and the execution process will be repeated.

The following table shown the relationship between the operand bits and block
program execution.

As shown in this example, WAIT(805) and WAIT(805) NOT can be used to
progressively execute steps within a block program.

CIO 0.01
OFF0

0.00

0.01

0.02

0.03

CIO 0.01
ON and
CIO 0.02
OFF

CIO 0.01,
CIO 0.02,
and
CIO 0.03
ON

CIO 0.01
ON,
CIO 0.02
ON and
CIO 0.03
OFF

Operand bits Program execution

CIO 0.01 CIO 0.02 CIO 0.03 First cycle CIO 0.00 is
ON

Next cycle Following cycles

OFF Any status Any status Nothing executed. Nothing executed; wait-
ing for CIO 0.01.

When CIO 0.01 turns
ON “A” is executed and
the status of CIO 0.02 is
checked.

ON OFF Any status “A” executed. Waiting for CIO 0.02. When CIO 0.02 turns
ON “B” is executed and
the status of CIO 0.03 is
checked.

ON ON OFF “A” and “B” executed. Waiting for CIO 0.03. When CIO 0.03 turns
ON “C” is executed

ON ON ON “A,” “B,” and “C” exe-
cuted.

“A,” “B,” and “C” exe-
cuted.

0.01

0.02

0.03
994

Block Programming Instructions Section 3-30
3-30-7 TIMER WAIT: TIMW(813) and TIMWX(816)
Purpose Delays execution of the rest of the block program until the specified time has

elapsed. Execution will be continued from the next instruction after
TIMW(813)/TIMWX(816) when the timer times out.

Ladder Symbol PV Refresh Method: BCD

PV Refresh Method: Binary

Variations

Applicable Program Areas

Note TIMW(813)/TIMWX(816) must be used in block programming regions even
within subroutines.

Operands N: Timer Number

BCD: 0 to 4095 (decimal)
Binary: 0 to 4095 (decimal)

S: Set Value

BCD: #0000 to #9999 (BCD)
Binary: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

Operand Specifications

TIMW(813) N
SV

N: Timer number
SV: Set value

TIMWX(816) N
SV

N: Timer number
SV: Set value

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed.

Area N SV

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A447
A448 to A959

Timer Area 0000 to 4095 T0000 to T4095

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15
995

Block Programming Instructions Section 3-30
Description TIMW(813)/TIMWX(816) creates an ON-delay countdown timer (100-ms timer
set in SV) between execution of the block program instruction preceding it and
the instructions following. TIMW(813) can time from 0 to 999.9 s with a timer
accuracy of 0 to 0.01 s. TIMWX(816) can time from 0 to 6,553.5 s with a timer
accuracy of 0 to 0.01 s.

The first part of the block program is executed the first time the block program
is entered. When TIMW(813)/TIMWX(816) is reached, the Completion Flag is
reset to OFF, the timer is preset to the SV, and execution of the rest of the
block program will wait until SV has expired.

While the timer is timing down, only TIMW(813)/TIMWX(816) will be executed
to update the timer. When the timer times out, the Completion Flag will turn
ON and the rest of the block program will be executed. Once the entire block
program has been executed, the process will be repeated.

TIMW(813)/TIMWX(816) can be thought of as a WAIT instruction with a timer
for the execution condition and it can thus be used for timed step progres-
sions.

Flags

Precautions The rest of the block program following timer will be executed if the Comple-
tion Flag for the timer is force set.

If the Completion Flag for the timer is force reset, only TIMW(813/
TIMWX(816)) will be executed in the block program until the force reset status
is cleared.

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area N SV

Time elapsed.

 "A"
executed
and SV
preset.

 "B" executed.

 "C" executed.

Name Label Operation

Error Flag ER ON if TIMW(813)/TIMWX(816) is not in a block program.
ON if an indirect IR designation is used for N in BCD
mode and the address is not for a timer present value.
ON if in BCD mode and SV is not BCD.
OFF in all other cases.
996

Block Programming Instructions Section 3-30
The present value of timers programmed with timer numbers T0 to T2047 will
be updated even when the timer is on standby. The present value of timers
programmed with timer numbers T2048 to T4095 will be held when the timer
is on standby.

The timer numbers are also used by the other timer instructions. Operation
will not be predictable if the same timer number is used for more than one
timer instruction. Use each timer number only once. The only way that the
same timer number can be used dependably is if only one of the timers is ever
operating at the same time. An error will occur in the program check if the
same timer number is used in more than one timer instruction.

An error will occur and the Error Flag will turn ON if an indirect IR designation
is used for N in BCD mode and the address is not for a timer present value or
if SV is not BCD.

Examples In the following example, “B” will be executed 20 seconds after “A” whenever
CIO 0.00 is ON.

Program execution will flow from 2 to 3 to 4 and back to 2 during the 20 s
before “B” is executed, as shown in the following diagram.

Address Instruction Operand

000200 LD 0.00

000201 BPRG 0

.

.
A .

.

000210 TIMW 1

#0200

.

.
B .

.

000220 BEND ---

0

0.00

Timer times out.

1

2

3

4

997

Block Programming Instructions Section 3-30
3-30-8 COUNTER WAIT: CNTW(814) and CNTWX(818)
Purpose Delays execution of the rest of the block program until the specified count has

been achieved. Execution will be continued from the next instruction after
CNTW(814)/CNTWX(818) when the counter counts out.

Ladder Symbol PV Refresh Method: BCD

PV Refresh Method: Binary

Variations

Applicable Program Areas

Note CNTW(814)/CNTWX(818) must be used in block programming regions even
within subroutines and interrupt tasks.

Operands N: Counter Number

BCD: 0 to 4095 (decimal)
Binary: 0 to 4095 (decimal)

S: Set Value

BCD: #0000 to #9999 (BCD)
Binary: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

Operand Specifications

CNTW(814) N
SV
I

N: Counter number
SV: Set value
I: Count input

CNTWX(818) N
SV
I

N: Counter number
SV: Set value
I: Count input

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N SV I

CIO Area --- CIO 0 to CIO 6143 CIO 0.00 to
CIO 6143.15

Work Area --- W0 to W511 W0.00 to
W511.15

Holding Bit Area --- H0 to H511 H0.00 to H511.15

Auxiliary Bit Area --- A0 to A447
A448 to A959

A0.00 to A447.15
A448.00 to
A959.15

Timer Area --- T0000 to T4095 T0000 to T4095

Counter Area C0000 to
C4095

C0000 to C4095 C0000 to C4095

Task Flags --- TK00 to TK31

Condition Flags --- ER, CY, >, =, <, N,
OF, UF, >=, <>,
<=, ON,OFF, AER

Clock Pulses --- 0.02 s, 0.1 s,
0.2 s, 1 s, 1 min

DM Area --- D0 to D32767 ---
998

Block Programming Instructions Section 3-30
Description CNTW(814)/CNTWX(818) creates a decrementing counter that delays execu-
tion of the instructions following it in the block program until the counter has
counted out. The set value for CNTW(814) is specified in BCD between 0000
and 9999. The set value for CNTWX(818) is specified in binary between 0000
and FFFF hex.

The first part of the block program is executed the first time the block program
is entered. When CNTW(814)/CNTWX(818) is reached, the Completion Flag
is reset to 0, the counter is preset to SV, and execution of the rest of the block
program will wait until the counter has counted out. The counter counts pulses
(upward differentiation) on I, the counter input.

While the counter is counting down, only CNTW(814)/CNTWX(818) will be
executed to update the counter. When the counter counts out, the Completion
Flag will turn ON and the rest of the block program will be executed. Once the
entire block program has been executed, the process will be repeated.

CNTW(814)/CNTWX(818) can be thought of as a WAIT instruction with a
counter for the execution condition and it can thus be used for timed step pro-
gressions.

Indirect DM addresses
in binary

--- @ D0 to @ D3276 ---

Indirect DM addresses
in BCD

--- *D0 to *D32767 ---

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area N SV I

Count reached.

SV preset.

"A"
executed.

"B" executed.

"C"
executed.

"C"
executed.

"C"
executed.
999

Block Programming Instructions Section 3-30
Flags

Precautions The rest of the block program following CNTW(814)/CNTWX(818) will be exe-
cuted if the Completion Flag for the counter is force set.

If the Completion Flag for the counter is force reset, the only CNTW(814)/
CNTWX(818) will be executed in the block program until the force reset status
is cleared.

The counter numbers are also used by the other counter instructions. Opera-
tion will not be predictable if the same counter number is used for more than
one counter instruction. Use each counter number only once. The only way
that the same counter number can be used dependably is if only one of the
counters is ever operating at the same time. An error will occur in the program
check if the same counter number is used in more than one counter instruc-
tion.

An error will occur and the Error Flag will turn ON if an indirect IR designation
is used for N in BCD mode and the address is not for a counter present value
or if SV is not BCD when BCD mode is set.

Examples When CIO 0.00 is ON in the following example, “A” will be executed and then
execution of the rest of the block program “B” will wait until 7,000 counts of
CIO 1.00.

Name Label Operation

Error Flag ER ON if CNTW(814)/CNTWX(818) is not in a block program.
ON if an indirect IR designation is used for N in BCD
mode and the address is not for a counter present value.
ON if SV is not BCD when BCD mode is set.
OFF in all other cases.

Address Instruction Operand

000200 LD 0.00

000201 BPRG 0

.

.
A .

.

000210 CNTW 5

#7000

1.00

.

.
B .

.

000220 BEND ---

0

0.00

1.00 Counter counts out.

Updated

CIO 1.00
counted.

Updated
1000

Block Programming Instructions Section 3-30
Program execution will flow from 2 to 3 to 4 and back to 2 during the 7,000
counts before “B” is executed, as shown in the following diagram.

3-30-9 HIGH-SPEED TIMER WAIT: TMHW(815) and TMHWX(817)
Purpose Delays execution of the rest of the block program until the specified time has

elapsed. Execution will be continued from the next instruction after
TMHW(815)/TMHWX(817) when the timer times out.

Ladder Symbol PV Refresh Method: BCD

PV Refresh Method: Binary

Variations

Applicable Program Areas

Note TMHW(815)/TMHWX(817) must be used in block programming regions even
within subroutines.

Operands N: Timer Number

BCD: 0 to 4095 (decimal)
Binary: 0 to 4095 (decimal)

S: Set Value

BCD: #0000 to #9999 (BCD)
Binary: &0 to &65535 (decimal)

#0000 to #FFFF (hex)

Operand Specifications

1 4

2

3

TMHW(815) N
SV

N: Timer number
SV: Set value

TMHWX(817) N
SV

N: Timer number
SV: Set value

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed.

Area N SV

CIO Area --- CIO 0 to CIO 6143

Work Area --- W0 to W511

Holding Bit Area --- H0 to H511

Auxiliary Bit Area --- A0 to A447

A448 to A959

Timer Area 0000 to 4095 T0000 to T4095
1001

Block Programming Instructions Section 3-30
Description TMHW(815)/TMHWX(817) creates an ON-delay countdown timer (10-ms
timer set in SV) between execution of the block program instruction preceding
it and the instructions following. TMHW(815) can time from 0 to 99.99 s with a
timer accuracy of 0 to 0.01 s. TMHWX(817) can time from 0 to 655.35 s with a
timer accuracy of 0 to 0.01 s.

The first part of the block program is executed the first time the block program
is entered. When TMHW(815)/TMHWX(817) is reached, the Completion Flag
is reset to OFF, the timer is preset to the SV, and execution of the rest of the
block program will wait until SV has expired.

While the timer is timing down, only TMHW(815)/TMHWX(817) will be exe-
cuted to update the timer. When the timer times out, the Completion Flag will
turn ON and the rest of the block program will be executed. Once the entire
block program has been executed, the process will be repeated.

TMHW(815)/TMHWX(817) can be thought of as a WAIT instruction with a
timer for the execution condition and it can thus be used for timed step pro-
gressions.

Counter Area --- C0000 to C4095

DM Area --- D0 to D32767

Indirect DM addresses
in binary

--- @ D0 to @ D32767

Indirect DM addresses
in BCD

--- *D0 to *D32767

Constants --- BCD:
#0000 to 9999 (BCD)
“&” cannot be used.

Binary:
&0 to &65535 (decimal)
#0000 to #FFFF (hex)

Data Registers --- DR0 to DR15

Index Registers --- ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area N SV

Time elapsed.
SV preset.

 "C" executed.

 "B" executed.

 "A"
executed.
1002

Block Programming Instructions Section 3-30
Flags

Precautions The rest of the block program following TMHW(815)/TMHWX(817) will be exe-
cuted if the Completion Flag for the timer is force set.

If the Completion Flag for the timer is force reset, the only TMHW(815)/
TMHWX(817) will be executed in the block program until the force reset status
is cleared.

The present value of timers programmed with timer numbers T0 to T2047 will
be updated even when the timer is on standby. The present value of timers
programmed with timer numbers T2048 to T4095 will be held when the timer
is on standby.

The timer numbers are also used by the other timer instructions. Operation
will not be predictable if the same timer number is used for more than one
timer instruction. Use each timer number only once. The only way that the
same timer number can be used dependably is if only one of the timers is ever
operating at the same time. An error will occur in the program check if the
same timer number is used in more than one timer instruction.

An error will occur and the Error Flag will turn ON if an indirect IR designation
is used for N in BCD mode and the address is not for a timer present value or
if SV is not BCD.

Examples In the following example, “B” will be executed 20 seconds after “A” whenever
CIO 0.01 is ON.

Name Label Operation

Error Flag ER ON if TMHW(815)/TMHWX(817) is not in a block pro-
gram.

ON if an indirect IR designation is used for N in BCD
mode and the address is not for a timer present value.
ON if in BCD mode and SV is not BCD.

OFF in all other cases.

Address Instruction Operand

000221 LD 0.01

000222 BPRG 1

.

.
A .

.

000250 TMHW 2

#0020

.

.
B .

.

000281 BEND ---

1

0.01
1003

Block Programming Instructions Section 3-30
3-30-10 Loop Control: LOOP(809)/LEND(810)/LEND(810) NOT
Purpose Create a loop that is repeatedly executed until an execution condition turns

ON or OFF or until an execution condition turns ON.

Ladder Symbol

Variations

Applicable Program Areas

Note LOOP(809), LEND(810), and LEND(810) NOT must be used in block pro-
gramming regions even within subroutines and interrupt tasks.

Operand Specifications

Description LOOP(809) designates the beginning of the loop program. LEND(810) or
LEND(810) NOT specifies the end of the loop. When LEND(810) or
LEND(810) NOT is reached, program execution will loop back to the next pre-
vious LOOP(809) until the operand bit for LEND(810) or LEND(810) NOT
turns ON or OFF (respectively) or until the execution condition for LEND(810)
turns ON.

LOOP(809)

LEND(810)

LEND(810)

LEND(810) NOT B

B B: Bit operand

Variations Always Executed in Block Program

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area B

CIO Area CIO 0.00 to CIO 6143.15

Work Area W0.00 to W511.15

Holding Bit Area H0.00 to H511.15

Auxiliary Bit Area A0.00 to A447.15
A448.00 to A959.15

Timer Area T0000 to T4095

Counter Area C0000 to C4095

Task Flags TK00 to TK31

Condition Flags ER, CY, >, =, <, N, OF, UF, >=, <>, <=, ON,OFF, AER

Clock Pulses 0.02 s, 0.1 s, 0.2 s, 1 s, 1 min

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1004

Block Programming Instructions Section 3-30
Using an Execution Condition for LEND(810)

LEND(810) can be programmed either with or without an operand bit. If an
operand bit is not specified, an execution must be created before LEND(810)
starting with LD. If the execution condition is OFF, execution of the loop is
repeated starting with the next instruction after LOOP(809). If the execution
condition is ON, the loop is ended and execution continues to the next instruc-
tion after LEND(810).

Using a Bit Operand for LEND(810) or LEND(810) NOT

Both LEND(810) and LEND(810) NOT can be programmed with an operand
bit. If the operand bit is OFF for LEND(810) (or ON for LEND(810) NOT), exe-
cution of the loop is repeated starting with the next instruction after
LOOP(809). If the operand bit is ON for LEND(810) (or OFF for LEND(810)
NOT), the loop is ended and execution continues to the next instruction after
LEND(810) or LEND(810) NOT.

Note (1) Execution inside a loop does not refresh I/O data. If I/O data must be re-
freshed during the loop, use IORF(184).

(2) The maximum cycle time can be exceeded if loops are repeated too long.
Design the program so that the maximum cycle time is not exceeded.

Execution
condition
ON

Execution
condition
OFF

Execution
condition
OFF

Execution
condition
OFF

Loop repeated

Execution condition

LEND R (LEND NOT B)

Operand
bit ON

Operand
bit OFF

Operand
bit OFF

Operand
bit OFF

Loop repeated

Note The status of the operand bit would be reversed for LEND(810) NOT.
1005

Block Programming Instructions Section 3-30
Flags

Precautions Loops cannot be nested within loops.

Incorrect:
LOOP(809)
LOOP(809)
LEND(810)
LEND(810)

Do not reverse the order of LOOP and LEND.

Incorrect:
LEND(810)

:
:

LOOP(809)

Conditional block branching can be used within a loop, but the entire branch
operation must be within the loop.

Correct: Incorrect:

LOOP(809) LOOP(809)
IF(802) IF(802)
IF(802) IF(802)
IEND(804) IEND(804)
IEND(804) LEND(810)
LEND(810) IEND(804)

NOP processing will be performed if LOOP(809) is not executed.

An error will occur and the Error Flag will turn ON if a Loop Control Instruction
is not in a block program.

Examples When CIO 0.00 is ON in the following example, the block program is exe-
cuted. After “A” is executed, “B” and the IORF(184) after it will be executed
repeatedly until CIO 0.01 is ON, at which time C will be executed and the
block program will end.

Name Label Operation

Error Flag ER ON if a Loop Control Instruction is not in a block program.
OFF in all other cases.

0

0.00

0.01

Execution
condition
ON

Execution
condition
OFF

Execution
condition
OFF

Repeating
1006

Block Programming Instructions Section 3-30
Address Instruction Operand

000220 LD 0.00

000201 BPRG 0

.

.
A .

.

000210 LOOP ---

.

.
B .

.

000220 IORF .
.

0000

0000

000221 LEND 0.01

.

.
C .

.

000220 BEND ---
1007

Block Programming Instructions Section 3-30
1008

Text String Processing Instructions Section 3-31
3-31 Text String Processing Instructions
This section describes instructions used to manipulate text strings.

3-31-1 Text String Processing Overview
Data from the beginning until a NUL code (00 hex) is handled as text string
data expressed in ASCII (except for 1-byte, special characters). It is stored
from leftmost to rightmost bytes, and from rightmost to leftmost words.

When there is an odd number of characters, 00 hex (NUL code) is stored in
the available space in the rightmost byte of the final word.

When there is an even number of characters, 0000 hex (two NUL codes) is
stored in the leftmost and rightmost bytes of the word following the final word.

As shown in the following diagram, a text string can be specified by simply
designating the first word of that string. The text string data up until the next
NUL code (00 hex) will then be handled as a single block of ASCII data.

Instruction Mnemonic Function code Page

MOV STRING MOV$ 664 1010

CONCATENATE STRING +$ 656 1012

GET STRING LEFT LEFT$ 652 1014

GET STRING RIGHT RGHT$ 653 1017

GET STRING MIDDLE MID$ 654 1019

FIND IN STRING FIND$ 660 1021

STRING LENGTH LEN$ 650 1023

REPLACE IN STRING RPLC$ 661 1025

DELETE STRING DEL$ 658 1027

EXCHANGE STRING XCHG$ 665 1030

CLEAR STRING CLR$ 666 1031

INSERT INTO STRING INS$ 657 1033

String Comparison Instructions =$, <>$, <$, <=$,
>$, >=$

670 to 675 1036

=

Example: Text string ABCDE

42

42

=

Example: Text string ABCD

Example: MOV$ D0 D100

D0
D1
D2

D100
D101
D102
1009

Text String Processing Instructions Section 3-31
Text string processing instructions can be used to execute at a PLC the vari-
ous kinds of text string processing (product data, and so on) that used to be
executed at the host computer.

For example, production plan data such as product names can be transferred
from the host computer to the PLC. Various operations such as inserting and
rearranging text strings can be then be performed at the PLC, thereby reduc-
ing the data processing load at the host computer.

ASCII Characters The ASCII characters that can be handled by text string processing instruc-
tions are shown in the following table.

3-31-2 MOV STRING: MOV$(664)
Purpose Transfers a text string.

Ladder Symbol

PLC
Text string
processing

Text string

Host computerHost computerText string
processing

S
P

Four leftmost bits

F
ou

r
rig

ht
m

os
t b

its

S

D

MOV$(664)

S: First source word

D: First destination word
1010

Text String Processing Instructions Section 3-31
Variations

Applicable Program Areas

Operands S: First Source Word

D: First Destination Word

Note (1) The data from S to S +the maximum 2,047 words and from D to D + the
maximum 2,047 words must be in the same area.

(2) The data from S to S + the maximum 2,047 words and from D to D + the
maximum 2,047 words can overlap.

Operand Specifications

Variations Executed Each Cycle for ON Condition MOV$(664)

Executed Once for Upward Differentiation @MOV$(664)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

to

Text string data: 4,095 characters max. + NUL

S + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447

A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1011

Text String Processing Instructions Section 3-31
Description MOV$(664) transfers the text string data designated by S, just as it is, as text
string data (including the final NUL), to D. The maximum number of characters
that can be designated by S is 4,095 (0FFF hex).

Flags

Precautions If more than 4,095 characters are designated by S, an error will be generated
and the Error Flag will turn ON.

If 0000 (hex) is transferred to D, the Equals Flag will turn ON.

Example In this example, MOV$(664) is used to transfer the text string ABCDEF.

3-31-3 CONCATENATE STRING: +$(656)
Purpose Links one text string to another text string.

Ladder Symbol

Variations

Applicable Program Areas

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is transferred to D.

OFF in all other cases.

S: D0
D1
D2
D3

D: D100
D101
D102
D103

D0

D100

+$(656)

S1

S2

D

S1: Text string 1

S2: Text string 2

D: First destination word

Variations Executed Each Cycle for ON Condition +$(656)

Executed Once for Upward Differentiation @+$(656)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK
1012

Text String Processing Instructions Section 3-31
Operands S1: Text String 1

S2: Text String 2

D: First Destination Word

Note (1) The data from S1 to S1 + the maximum 2,047 words, from S2 to S2 + the
maximum 2,047 words, and from D to D + the maximum 2,047 words
must be in the same area.

(2) The data from S2 to S2 + the maximum 2,047 words and from D to D +
the maximum 2,047 words cannot overlap.

Operand Specifications

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447
A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0V to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15
1013

Text String Processing Instructions Section 3-31
Description +$(664) connects the text string data designated by S1 to the text string data
designated by S2, and outputs the result to D as text string data (including the
final NUL).

The maximum number of characters that can be designated by S1 and S2 is
4,095 (0FFF hex). If there is no NUL until 4,096 characters, an error will be
generated and the Error Flag will turn ON. Moreover, the result of the linkage
can be no more than 4,095 characters (0FFF hex). If the linkage results in
more characters than that, only the first 4,095 characters (with NUL added as
the 4,096th) will be output to D.

If there is a NUL for both S1 and S2, the two NUL characters (0000 hex) will
be output to D.

Flags

Precautions If more than 4,095 characters are designated by S1 and S2, an error will be
generated and the Error Flag will turn ON.

If 0000 (hex) is transferred to D, the Equals Flag will turn ON.

Do not overlap the beginning word designated by D with the character data
area for S2. If they overlap, the instruction cannot be executed properly.

Example In this example, +$(656) is used to connect the text strings ABCD and EFG
and output the result to D.

3-31-4 GET STRING LEFT: LEFT$(652)
Purpose Fetches a designated number of characters from the left (beginning) of a text

string.

Ladder Symbol

+
→ → → →

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1
and S2.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is transferred to D.

OFF in all other cases.

0.00

D100

D200

D300

S1: D100
D101
D102

S2: D200
D201

D: D300
D301
D302
D303

LEFT$(652)

S1

S2

D

S1: Text string first word

S2: Number of characters

D: First destination word
1014

Text String Processing Instructions Section 3-31
Variations

Applicable Program Areas

Operands S1: Text String

S2: Number of Characters (0000 to 0FFF hex or &0 to &4095)

Note (1) The data from S1 to S1 + the maximum 2,047 words and from D to D +
the maximum 2,047 words must be in the same area.

(2) The data from S1 to S1 + the maximum 2,047 words and from D to D +
the maximum 2,047 words can overlap.

Operand Specifications

Variations Executed Each Cycle for ON Condition LEFT$(652)

Executed Once for Upward Differentiation @LEFT$(652)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447

A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to #0FFF
(binary) or &0 to
&4095

Data Registers --- DR0 to DR15 ---
1015

Text String Processing Instructions Section 3-31
Description LEFT$(652) reads the number of characters designated by S2, from the left
(the beginning) of the first word of the text string designated by S1 until the
NUL code (00 hex), and outputs the result to D (with NUL added at the end).

If the number of characters fetched exceeds the number of characters desig-
nated by S1, the entire S1 text string will be output.

If 0 (0000 hex) is designated as the number of characters to be read, the two
NUL characters (0000 hex) will be output to D.

Flags

Precautions The maximum number of characters to be read that can be designated by S2
is 4,095 (0FFF hex). If more than that are designated, an error will be gener-
ated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Example In this example, LEFT$(652) is used to read four characters.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2 D

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1.

ON if more than 4,095 characters (0FFF hex) are desig-
nated by S2.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.

OFF in all other cases.

43 44

D

S2: D200

D: D300S1: D100
D101
D102
D103

D100

D200

D300

Text string ABCDE Text string ABCD

Four characters
(bytes) read.
1016

Text String Processing Instructions Section 3-31
3-31-5 GET STRING RIGHT: RGHT$(653)
Purpose Reads a designated number of characters from the right (end) of a text string.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Text String

S2: Number of Characters (0000 to 0FFF hex or &0 to &4095)

Note (1) The data from S1 to S1 + the maximum 2,047 words and from D to D +
the maximum 2,047 words must be in the same area.

(2) The data from S1 to S1 + the maximum 2,047 words and from D to D +
the maximum 2,047 words can overlap.

Operand Specifications

RGHT$(653)

S1

S2

D

S1: Text string first word

S2: Number of characters

D: First destination word

Variations Executed Each Cycle for ON Condition RGHT$(653)

Executed Once for Upward Differentiation @RGHT$(653)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447

A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767
1017

Text String Processing Instructions Section 3-31
Description RGHT$(653) reads the number of characters designated by S2, from the left
(the beginning) of the first word of the text string designated by S1 until the
NUL code (00 hex), and outputs the result to D (with NUL added at the end).

If the number of characters to be read exceeds the number of characters des-
ignated by S1, the entire S1 text string will be output.

If 0 (0000 hex) is designated as the number of characters to be read, the two
NUL characters (0000 hex) will be output to D.

Flags

Precautions The maximum number of characters to be read that can be designated by S2
is 4,095 (0FFF hex). If more than that are designated, an error will be gener-
ated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Example In this example, RGHT$(653) is used to read four characters.

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to #0FFF
(binary) or &0 to
&4095

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2 D

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1.

ON if more than 4,095 characters (0FFF hex) are desig-
nated by S2.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.

OFF in all other cases.

S2: 200

S1: D100
D101
D102
D103

D: D300
D301
D302

D100

D200

D300

Text string CDEF

Four characters
(bytes) read.

Text string ABCDEF
1018

Text String Processing Instructions Section 3-31
3-31-6 GET STRING MIDDLE: MID$(654)
Purpose Reads a designated number of characters from any position in the middle of a

text string.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Text String

S2: Number of Characters (0000 to 0FFF hex or &0 to &4095)
S3: Beginning Position (0001 to 0FFF hex or &1 to &4095)

Note (1) The data from S1 to S1 + the maximum 2,047 words and from D to D +
the maximum 2,047 words must be in the same area.

(2) The data from S1 to S1 + the maximum 2,047 words and from D to D +
the maximum 2,047 words can overlap.

Operand Specifications

MID$(654)

S1

S2

S3

D

S1: Text string first word

S2: Number of characters

S3: Beginning position

D: First destination word

Variations Executed Each Cycle for ON Condition MID$(654)

Executed Once for Upward Differentiation @MID$(654)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 S3 D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447
A448 to A959

A448 to
A959

Timer Area T0000 to T4095
1019

Text String Processing Instructions Section 3-31
Description Within the text string identified by the first word designated by S1 until the
NUL code (00 hex), MID$(654) reads the number of characters designated by
S2, from the beginning word designated by S3, and outputs the result to D as
text string data (with NUL added at the end).

If the number of characters to be read extends beyond the end of the text
string designated by S1, the string will be output up to the end.

Flags

Precautions The range for the beginning position designated by S3 is the 1st to the
4,095th character (0001 to 0FFF hex). If the setting is outside of this range, an
error will be generated and the Error Flag will turn ON.

Counter Area C0000 to C4095

DM Area D0 to 32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to
#0FFF
(binary) or
&0 to &4095

#0001 to
#0FFF
(binary) or
&1 to &4095

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15

–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)

,–(– –)IR0 to, –(– –)IR15

Area S1 S2 S3 D

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1.
ON if more than 4,095 characters (0FFF hex) are desig-
nated by S2.

ON if the S3 data is within the range of 1 to 4,095 (0001
to 0FFF hex).

ON if S3 is greater than S1.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.
OFF in all other cases.
1020

Text String Processing Instructions Section 3-31
The maximum number of characters to be read that can be designated by S2
is 4,095 (0FFF hex). If more than that are designated, an error will be gener-
ated and the Error Flag will turn ON.

If 0 (0000 hex) is designated as the number of characters to be read, the two
NUL characters (0000 hex) will be output to D.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Example In this example, MID$(654) is used to read three characters.

3-31-7 FIND IN STRING: FIND$(660)
Purpose Finds a designated text string from within a text string.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Source Text String

S2: Found Text String

Note The data from S1 to S1 + the maximum 2,047 words and from S2 to S2 + the
maximum 2,047 words must be in the same area.

D: D300

S2: D200

S3: D400

S1: D100
D101
D102
D103
D104
D105

D100

D200

D400

D300

Text string ABCDEFGHIJ

Three characters read.

From 5th character
(leftmost byte in D102).

Text string EFG

FIND$(660)

S1

S2

D

S1: Source text string first word

S2: Found text string first word

D: First destination word

Variations Executed Each Cycle for ON Condition FIND$(660)

Executed Once for Upward Differentiation @FIND$(660)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words
1021

Text String Processing Instructions Section 3-31
Operand Specifications

Description FIND$(660) finds the text string designated by S2 from within the text string
designated by S1, and outputs the result (a given number of characters from
the beginning of S1) in binary data to D. If there is no matching text string,
0000 hex is output to D.

Flags

Precautions The maximum number of characters to be read that can be designated by S1
or S2 is 4,095 (0FFF hex). If more than that are designated, an error will be
generated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Area S1 S2 D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447
A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

→ → →
Found data

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1
or S2.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.

OFF in all other cases.
1022

Text String Processing Instructions Section 3-31
Example In this example, FIND$(660) is used to find one character from within a text
string.

3-31-8 STRING LENGTH: LEN$(650)
Purpose Calculates the length of a text string.

Ladder Symbol

Variations

Applicable Program Areas

Operands S: Text String

Note The data from S to S + the maximum 2,047 words must be in the same area.

Operand Specifications

S1: D100

S2: D200

D: D300D100

D200

D300

Text string CText string: ABCDEF

LEN$(650)

S

D

S: Text string first word

D: First destination word

Variations Executed Each Cycle for ON Condition LEN$(650)

Executed Once for Upward Differentiation @LEN$(650)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

to

Text string data: 4,095 characters max. + NUL

S + maximum 2,047 words

Area S D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447

A448 to A959

A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---
1023

Text String Processing Instructions Section 3-31
Description LENS$(650) calculates the number of characters from the first word of the text
string, designated by S, until the NUL code (00 hex), including the NUL code
itself, and outputs the result to D as binary data. If there is a NUL at the begin-
ning of the text string, the result that is calculated will be 0000 hex.

Flags

Precautions The maximum number of characters is 4,095 (0FFF hex). If there are more
than that (i.e., if there is no NUL before the 4,096th character), an error will be
generated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Example In this example, LENS$(650) is used to calculate the number of characters
and output the result.

Data Registers --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S D

1
3
5

2
4

→

Name Label Operation

Error Flag ER ON if the calculated result comes to more than 4,095
characters.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if the calculated result is 0.

OFF in all other cases.

41
43
45

42
44
00

D: D200S: D100
D101
D102

D100

D200

Text string: ABCDE
1024

Text String Processing Instructions Section 3-31
3-31-9 REPLACE IN STRING: RPLC$(661)
Purpose Replaces a text string with a designated text string from a designated position.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Text String

S2: Replacement Text String

S3: Number of Characters (0000 to 0FFF hex or &0 to &4095)
S4: Beginning Position (0001 to 0FFF hex or &0 to &4095)

Note (1) The data from S1 to S1 + the maximum 2,047 words, from S2 to S2 + the
maximum 2,047 words, and from D to D + the maximum 2,047 words
must be in the same area.

RPLC$(661)

S1

S2

S3

S4

D

S1: Text string first word

S2: Replacement text string first word

S3: Number of characters

S4: Beginning position

D: First destination word

Variations Executed Each Cycle for ON Condition RPLC$(661)

Executed Once for Upward Differentiation @RPLC$(661)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words
1025

Text String Processing Instructions Section 3-31
(2) The data from D to D + the maximum 2,047 words and from either S1 to
S1 + the maximum 2,047 words or from S2 to S2 + the maximum 2,047
words can overlap.

Operand Specifications

Description RPLC$(661) replaces part of the text string designated by S1, from the begin-
ning position designated by S4, with the text string designated by S2, and out-
puts the result to D as text string data (with NUL added at the end). The
number of characters to be replaced is designated by S3.

The maximum number of characters in the result is 4,095 (0FFF hex). If the
number is greater than that, only 4,095 characters will be output (with NUL
added as the 4,096th).

From 0 to 4,095 characters (0000 to 0FFF hex) can be replaced. If the number
is 0, then the text string designated by S1 will be output to D just as it is, with
no change. If the S2 text string is NUL, then the operation will be the same as
deleting the designated range of text in S1.

If the S1 text string from beginning to end is replaced by NUL, then two NUL
characters (0000 hex) will be output to D.

Area S1 S2 S3 S4 D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447
A448 to A959

A448 to
A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to
#0FFF
(binary) or
&0 to
&4095

#0001 to
#0FFF
(binary) or
&1 to
&4095

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1026

Text String Processing Instructions Section 3-31
Flags

Precautions The maximum number of characters for S1 or S2 is 4,095 (0FFF hex). If there
are more than that (i.e., if there is no NUL before the 4,096th character), an
error will be generated and the Error Flag will turn ON.

The range for the beginning position designated by S4 is the 1st to the
4,095th character (0001 to 0FFF hex). If the setting is outside of this range, an
error will be generated and the Error Flag will turn ON.

If the beginning position designated by S4 is beyond the text string designated
by S1, an error will be generated and the Error Flag will turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Set the first destination word D so that it does not overlap with the areas set
with the replacement text string first word S2. RPLC$(654) will not work cor-
rectly if these areas overlap.

Example In this example, RPLC$(654) is used to read three characters.

3-31-10 DELETE STRING: DEL$(658)
Purpose Deletes a designated text string from the middle of a text string.

Ladder Symbol

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1
or S2.

ON if more than 4,095 characters (0FFF hex) are desig-
nated by S3.
ON if the S4 data is within the range of 1 to 4,095 (0001
to 0FFF hex).
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.
OFF in all other cases.

S3: D300

D2: D200

D4: D500

D: D400
D401
D402
D403

S1: D100
D101
D102
D103
D104

D100

D200

D300

D500

D400

Text string ABCDHI

From 5th byte.

Three characters replaced

Text string ABCDEFGHI

Text string M

DEL$(658)

S1

S2

S3

D

S1: Text string first word

S2: Number of characters

S3: Beginning position

D: First destination word
1027

Text String Processing Instructions Section 3-31
Variations

Applicable Program Areas

Operands S1: Text String

S2: Number of Characters (0000 to 0FFF hex or &0 to &4095)
S3: Beginning Position (0001 to 0FFF hex or &1 to &4095)

Note (1) The data from S1 to S1 + the maximum 2,047 words, from S2 to S2 + the
maximum 2,047 words, and from D to D + the maximum 2,047 words
must be in the same area.

(2) The data from S1 to S1 + the maximum 2,047 words and from D to D +
the maximum 2,047 words can overlap.

Operand Specifications

Variations Executed Each Cycle for ON Condition DEL$(658)

Executed Once for Upward Differentiation @DEL$(658)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 S3 D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447
A448 to A959

A448 to
A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to
#0FFF
(binary) or
&0 to &4095

#0001 to
#0FFF
(binary) or
&1 to &4095

Data Registers --- DR0 to DR15 ---
1028

Text String Processing Instructions Section 3-31
Description Within the text string designated by S1, DEL$(658) deletes the number of
characters designated by S2, from the beginning word designated by S3, and
outputs the result to D as text string data (with NUL added at the end).

Flags

Precautions The maximum number of characters for S1 is 4,095 (0FFF hex). If there are
more than that (i.e., if there is no NUL before the 4,096th character), an error
will be generated and the Error Flag will turn ON.

The range for the beginning position designated by S3 is the 1st to the
4,095th character (0001 to 0FFF hex). If the setting is outside of this range, an
error will be generated and the Error Flag will turn ON.

If the number of words specified for S1 exceeds the length of the text string,
the Error Flag will turn ON.

If the number of characters to be deleted extends beyond the end of the S1
text string, all of the characters up to the end will be deleted. If all of the char-
acters from the beginning of S1 to the end are designated to be deleted, then
000 hex will be output to D.

Example In this example, DEL$(658) is used to read three characters.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area S1 S2 S3 D

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1.
ON if more than 4,095 characters (0FFF hex) are desig-
nated by S2.

ON if the S3 data is within the range of 1 to 4,095 (0001 to
0FFF hex).
ON if S3 is greater than S1.

ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON when 0000 hex is output to D.
OFF in all other cases.

00
S3: D500

S1: D100
D101
D102
D103
D104

D: D300
D301
D302
D303

D100

D200

D500

D300

Text string ABCDMHI

From 5th character.

Three bytes discarded.

Text string ABCDEFGHI
S2: D200
1029

Text String Processing Instructions Section 3-31
3-31-11 EXCHANGE STRING: XCHG$(665)
Purpose Replaces a designated text string with another designated text string.

Ladder Symbol

Variations

Applicable Program Areas

Operands Ex1: First Exchange Word 1

Ex2: First Exchange Word 2

Note (1) The data from Ex1 to Ex1 + the maximum 2,047 words and from Ex2 to
Ex2 + the maximum 2,047 words must be in the same area.

(2) The data from Ex1 to Ex1 + the maximum 2,047 words and from Ex2 to
Ex2 + the maximum 2,047 words cannot overlap.

Operand Specifications

XCHG$(665)

Ex1

Ex2

Ex1: First exchange word 1

Ex2: First exchange word 2

Variations Executed Each Cycle for ON Condition XCHG$(665)

Executed Once for Upward Differentiation @XCHG$(665)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

Ex1

to

Text string data: 4,095 characters max. + NUL

Ex1 + maximum 2,047 words

15 0

to

Ex2 Text string data: 4,095 characters max. + NUL

Ex2 + maximum 2,047 words

Area Ex1 Ex2

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767
1030

Text String Processing Instructions Section 3-31
Description XCHG$(665) exchanges the text string designated by Ex1 with the text string
designated by Ex2. If either Ex1 or Ex2 is NUL, then two NUL characters
(0000 hex) will be output to the other one of them.

Flags

Precautions The maximum number of characters that can be designated by Ex1 or Ex2 is
4,095 (0FFF hex). If more than that are designated, an error will be generated
and the Error Flag will turn ON.

If the text string data designated by Ex1 and Ex2 overlaps, an error will be
generated and the Error Flag will turn ON.

Example In this example, XCHG$(665) is used to exchange two text strings.

3-31-12 CLEAR STRING: CLR$(666)
Purpose Clears an entire text string with NUL (00 hex).

Ladder Symbol

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Area Ex1 Ex2

Ex1

Ex2

Ex1

Ex2

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by Ex1
or Ex2.
ON the Ex1 and Ex2 data overlap.
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.

OFF in all other cases.

Ex1: D100

Ex2: D200

Ex1: D100

Ex2: D200

Ex1

Ex2

D100

D200

Text strings: FG and ABCDE

Previous data
remains.

Text strings ABCDE and FG

CLR$(666)

S S: Text string first word
1031

Text String Processing Instructions Section 3-31
Variations

Applicable Program Areas

Operands S: Text String First Word

Note The data from S to S + the maximum 2,047 words must be in the same area.

Operand Specifications

Description CLR$(666) clears with NUL (00 hex) the entire text string from the first word
designated by S until the NUL code (00 hex). The maximum number of char-
acters that can be cleared is 4,096. If there is no NUL before the 4,096 char-
acter, only 4,096 characters will be cleared.

Variations Executed Each Cycle for ON Condition CLR$(666)

Executed Once for Upward Differentiation @CLR$(666)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

to

Text string data: 4,095 characters max. + NUL

S + maximum 2,047 words

Area S

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

NUL

S SA B
DC
1032

Text String Processing Instructions Section 3-31
Flags

Example In this example, CLR$(666) is used to clear text string ABCDE.

3-31-13 INSERT INTO STRING: INS$(657)
Purpose Deletes a designated text string from the middle of a text string.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Base Text String

S2: Inserted Text String

Name Label Operation

Error Flag ER ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

S S: D100
D101
D102

S: D100
D101
D102

D100

Text string ABCDE

INS$(657)

S1

S2

S3

D

S1: Base text string first word

S2: Inserted text string first word

S3: Beginning position

D: First destination word

Variations Executed Each Cycle for ON Condition INS$(657)

Executed Once for Upward Differentiation @INS$(657)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words
1033

Text String Processing Instructions Section 3-31
S3: Beginning Position (0000 to 0FFF hex or &0 to &4095)

Note (1) The data from S1 to S1 + the maximum 2,047 words, from S2 to S2 + the
maximum 2,047 words, and from D to D + the maximum 2,047 words
must be in the same area.

(2) The data from S2 to S2 + the maximum 2,047 words and from D to D +
the maximum 2,047 words cannot overlap. The data from S1 to S1 + the
maximum 2,047 words and from D to D + the maximum 2,047 words can
overlap. The data from S1 to S1 + the maximum 2,047 words and from
S2 to S2 + the maximum 2,047 words can also overlap.

Operand Specifications

15 0

D

to

Text string data: 4,095 characters max. + NUL

D + maximum 2,047 words

Area S1 S2 S3 D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447
A448 to A959

A448 to
A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to
#0FFF
(binary) or
&0 to &4095

Data Registers --- DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1034

Text String Processing Instructions Section 3-31
Description Within the text string designated by S1, INS$(657) inserts the text string des-
ignated by S2, after the beginning word designated by S3, and outputs the
result to D as text string data (with NUL added at the end).

The maximum number of characters that can be inserted is 4,095 (0FFF hex).
If there are more than that, only 4,095 characters will be output to D (with NUL
added as the 4,096th character).

If either S1 or S2 is NUL, then the text string designated by the other one of
them will be output to D just as it is. If S1 and S2 are both NUL, then two NUL
characters (0000 hex) will be output to D.

Flags

Precautions The maximum number of characters for S1 and S2 is 4,095 (0FFF hex). If
there are more than that (i.e., if there is no NUL before the 4,096th character),
an error will be generated and the Error Flag will turn ON.

The range for the beginning position designated by S3 is 0 to 4,095. If the set-
ting is outside of this range, an error will be generated and the Error Flag will
turn ON.

If 0000 (hex) is output to D, the Equals Flag will turn ON.

Do not overlap the destination words designated by D with the text string data
designated by S2. If these overlap, the operation will not be executed properly.

Example In this example, INS$(657) is used to insert two characters.

→

→

Inserted characters

→

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1 or
S2.

ON if S3 exceeds 4,095 (0FFF hex).
ON if the Communications Port Enabled Flag for the com-
munications port number specified as the Com Port num-
ber for Background Execution is OFF when background
processing is specified.
OFF in all other cases.

Equals Flag = ON if 0000 (hex) is output to D.
OFF in all other cases.

S2: D200

S3: D400
S1: D100

D101
D102
D103
D104

D: D300
D301
D302
D303
D304
D305

D100

D200

D400

D300

Text string ABCDEFJKGHI
Text string JK

Text string ABCDEFGHI
1035

Text String Processing Instructions Section 3-31
3-31-14 String Comparison Instructions (670 to 675)
Purpose Sting comparison instructions (=$, <>$, <$, <=$, >$, >=$) compare two text

strings from the beginning, in terms of value of the ASCII codes. If the result of
the comparison is true, an ON execution condition is created for a LOAD,
AND, or OR.

Ladder Symbol

Variations

Applicable Program Areas

Operands S1: Text String 1

S2: Text String 2

S1

S2

S1

S2

S1

S2

Symbol

Symbol

Symbol

LD (Load)

AND (Series Connection)

OR (Parallel Connection)

S1: Text string 1

S2: Text string 2

S1: Text string 1

S2: Text string 2

S1: Text string 1

S2: Text string 2

Variations Creates ON Each Cycle Com-
parison is True

String comparison instructions

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S1

to

Text string data: 4,095 characters max. + NUL

S1 + maximum 2,047 words

15 0

S2

to

Text string data: 4,095 characters max. + NUL

S2 + maximum 2,047 words
1036

Text String Processing Instructions Section 3-31
Note (1) The data from S1 to S1 + the maximum 2,047 words and from S2 to S2
+ the maximum 2,047 words be in the same area.

(2) The data from S1 to S1 + the maximum 2,047 words and from S2 to S2
+ the maximum 2,047 words cannot overlap.

Operand Specifications

Description String comparison instructions compare the text strings designated by S1 and
S2. If the result of the comparison is true, an ON execution condition is cre-
ated in the ladder diagram. The maximum number of characters for either S1
or S2 is 4,095 (0FFF hex).

String comparison instructions are expressed using the 18 different mnemon-
ics listed below. (LD, AND, and OR do not appear in the ladder diagram.)

LD=$, AND=$, OR=$
LD<>$, AND<>$, OR<>$
LD<$, AND<$, OR<$
LD<=$, AND<=$, OR<=$
LD>$, AND>$, OR>$
LD>=$, AND>=$, OR>=$

The following table provides details on these instructions.

Area S1 S2

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A447
A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Mnemonic (including
function code)

Name Function

LD=$(670) LOAD STRING EQUALS True when S1 text string
equals S2 text string.AND=$(670) AND STRING EQUALS

OR=$(670) OR STRING EQUALS

LD<>$(671) LOAD STRING NOT EQUAL True when S1 text string
does not equal S2 text string.AND<>$(671) AND STRING NOT EQUAL

OR<>$(671) OR STRING NOT EQUAL

LD<$(672) LOAD STRING LESS THAN True when S1 text string is
less than S2 text string.AND<$(672) AND STRING LESS THAN

OR<$(672) OR STRING LESS THAN
1037

Text String Processing Instructions Section 3-31
Comparison Methods

The comparison methods are as follows:

The first character (byte) of each text string is compared with its counterpart
from the other string as ASCII code. If the two ASCII codes are not equal,
then that greater/lesser relationship becomes the greater/lesser relationship
for the two text strings. If the two ASCII codes are equal, the next characters
are compared. If these two ASCII codes are not equal, then, that greater/
lesser relationship becomes the greater/lesser relationship for the two text
strings.

In this manner, the two text strings are compared in order, character by char-
acter. If all of the characters, including the NUL, are equal, then the two text
strings will have an equal relationship.

If the two text strings are of differing lengths, then the NUL (00 hex) will be
added to the shorter of the two strings to fill in the difference, and the compar-
ison will be made on that basis.

Comparison Examples

AD (414400 hex) and BC (424300 hex):
AD < BC, because at the beginning of the text strings 41 (hex) is less than 42
(hex).

ADC (41444300 hex) and B (4200 hex):
ADC < B, because at the beginning of the text strings 41 (hex) is less than 42
(hex).

ABC (41424300 hex) and ABD (41424400 hex):
ABC < ABD, because at the beginning of the text strings the 41s and 42s
match, so the result is determined by 43 being less than 44.

ABC (41424300 hex) and AB (414200 hex):
ABC > AB, because at the beginning of the text strings the 41s and 42s
match, so the result is determined by 43 being greater than 00.

AB (414200 hex) and AB (414200 hex):
AB = AB, because the 41s, the 42s, and the 00s all match.

Continue programming one instruction after another, treating LD, AND, and
OR in the same way. LD and OR instructions can be connected directly to the
bus bar, but AND instructions cannot.

LD<=$(673) LOAD STRING LESS THAN
OR EQUALS

True when S1 text string is
less than or equal to S2 text
string.AND<=$(673) AND STRING LESS THAN

OR EQUALS

OR<=$(673) OR STRING LESS THAN
OR EQUALS

LD>$(674) LOAD STRING GREATER
THAN

True when S1 text string is
greater than S2 text string.

AND>$(674) AND STRING GREATER
THAN

OR>$(674) OR STRING GREATER
THAN

LD>=$(675) LOAD STRING GREATER
THAN OR EQUALS

True when S1 text string is
greater than or equal to S2
text string.AND>=$(675) AND STRING GREATER

THAN OR EQUALS

OR>=$(675) OR STRING GREATER
THAN OR EQUALS

Mnemonic (including
function code)

Name Function
1038

Text String Processing Instructions Section 3-31
Flags

Note String comparison instructions are used to rearrange the order of text strings
in order of ASCII. For example, the ASCII order from lower to higher is the
order of the alphabet from A to Z, so text strings can be arranged in alphabet-
ical order.

Precautions Please a right-hand instruction after these instructions. The String Compari-
son Instructions cannot appear on the right side of the ladder diagram.

These instructions cannot be used on the last rung of a logic block.

The maximum number of characters that can be compared is 4,095 (0FFF
hex). If that number is exceeded (i.e., if there is no NUL before the 4,096th
character), an error will occur and the Error Flag will turn ON. When this hap-
pens, an OFF execution condition will be output to the next instruction.

Name Label Operation

Error Flag ER ON if more than 4,095 characters are designated by S1
or S2.

OFF in all other cases.

Greater Than
Flag

> ON if the comparison results in S1 greater than S2.

OFF in all other cases.

Greater Than or
Equals Flag

>= ON if the comparison results in S1 greater than or equal
to S2.

OFF in all other cases.

Equals Flag = ON if the comparison results in S1 equal to S2.

OFF in all other cases.

Not Equal Flag <> ON if the comparison results in S1 not equal to S2.
OFF in all other cases.

Less Than Flag < ON if the comparison results in S1 less than S2.
OFF in all other cases.

Less Than or
Equals Flag

<= ON if the comparison results in S1 less than or equal to
S2.
OFF in all other cases.
1039

Text String Processing Instructions Section 3-31
Example In this example, string comparison instructions are used to compare data.

In this example, three text strings are rearranged in alphabetical order. The
original order is as follows:

D100: Milk
D200: Juice
D300: Beer

When rearranged alphabetically, the order is as follows: beer, juice, milk.

>

<>

100.00
0.01

200.02

0.03

200.04

> = <>

D100
D200

D100
D200

D100
D200

D100

D200

D100

D200

D100

D200

D100

D200

D100

D200

D100

D200

0.01

0.03

200.00

200.02

200.04

D100

D101

D102

D100

D101

D200

D201

D200

D201

Address Mnemonic Operand

Text string ABC

Text string ABCText string ABC

Text string ABCD

>$

>$

D100

D200

D200

D300

D100

D200

D200

D300

Milk

Beer

Beer

Milk

Beer

Milk

Alphabetical order

Two text strings beginning with D100 and D200 are compared in
ASCII order from lower to higher. If the text string beginning with
D100 is higher in ASCII order than the one beginning with D200,
then the position of the two text strings will be reversed.

Two text strings beginning with D200 and D300 are compared in
ASCII order from lower to higher. If the text string beginning with
D200 is higher in ASCII order than the one beginning with D300,
then the position of the two text strings will be reversed.

Juice

The juice and beer
text strings are
compared and
their positions are
reversed because
J > B.

JuiceThe milk and beer
text strings are
compared and
their positions are
reversed because
M > B.

JuiceThe milk and juice
text strings are
compared and their
positions are
reversed because
M > J.

D100: Milk

D200: Juice

D300: Beer

In this way, three text strings can be rearranged in alphabetical order.

Text string
1040

Task Control Instructions Section 3-32
3-32 Task Control Instructions
This section describes instructions used to control tasks.

3-32-1 TASK ON: TKON(820)
Purpose Makes the specified task executable. Also, causes an interrupt task to operate

as an extra cyclic task.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Task number

The allowed range for N depends on the kind of task being specified.

• Cyclic tasks:
N must be a constant between 0 and 31 decimal. (Values 0 to 31 specify
cyclic tasks 0 to 31.)

• Extra cyclic tasks:
N must be a constant between 8000 and 8255 decimal. (Values 8000 to
8255 specify extra cyclic tasks 0 to 255.)

Operand Specifications

Instruction Mnemonic Function code Page

TASK ON TKON 820 1041

TASK OFF TKOF 821 1044

N

TKON(820)

N: Task number

Variations Executed Each Cycle for ON Condition TKON(820)

Executed Once for Upward Differentiation @TKON(820)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses
in binary

Indirect DM addresses
in BCD

Constants 00 to 31 or 8000 to 8255 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

1041

Task Control Instructions Section 3-32
Description TKON(820) puts the specified cyclic task or extra cyclic task in executable sta-
tus. When N is 0 to 31 (specifying a cyclic task), the corresponding Task Flag
(TK00 to TK31) will be turned ON at the same time.

This instruction can be executed only in a regular cyclic task or an extra cyclic
task. An error will occur if an attempt is made to execute it in an interrupt task.

The cyclic task or extra cyclic task specified in TKON(820) will be also be exe-
cutable in later cycles as long as it is not put in standby status by TKOF(821).

Any task can be made executable from any cyclic task, although the specified
task will not be executed until the next cycle if its task number is lower than
the task number of the local task. The task will be executed in the same cycle
if its task number is higher than the local task’s task number.

TKON(820) will be treated as NOP(000) if the specified task is already execut-
able or the local task is specified.

A task in executable status can be put in standby status with TKOF(821), the
CX-Programmer, or a FINS command.

The terms executable and executing are not interchangeable. Executable
tasks are executed in order of their task numbers during cyclic program exe-
cution. An executable task will not be executed if it is put in standby status
before program execution reaches its task number.

Note (1) The CX-Programmer’s General Properties Tab for each task has a setting
(the Operation start box) that specifies whether the cyclic task will be ex-
ecutable at startup. When the Operation start box has been checked, the
corresponding cyclic task will be put in executable status automatically
when the PLC begins operation. All other cyclic tasks will be in non-exe-
cutable status.

(2) If a task is in non-executable status, TKON(820) can executed to put that
task into executable status. Likewise, a cyclic task in executable status
can be put into non-executable status with the TKOF(821) instruction.

(3) Cyclic tasks or extra cyclic tasks that were made executable will be put in
executable status in that cycle in task-number order. Consequently, a task
will not be executed if it is put into standby status before the cycle’s pro-
cessing reaches that task as each task is executed in task-number order.

The specified task's task number
is lower than the local task's task
number (m>n).

Task n

Task m

Becomes
executable
in the next
cycle.

The specified task's task number
is higher than the local task's task
number (m<n).

Task m

Becomes
executable
in that cycle.

Task n
1042

Task Control Instructions Section 3-32
Flags

Examples Specifying a Later Task

When CIO 0.00 is ON in the following example, task number 3 is made exe-
cutable in task number 1. Task number 3 will be executed in the same cycle
when program execution reaches task number 3.

Name Label Operation

Error Flag ER ON if N is not a constant between 00 and 31 or between
8000 and 8255.

ON if the task specified with N does not exist.
ON if TKON(820) is executed in an interrupt task.
OFF in all other cases.

Name Addresses Operation

Task Flags TK00 to TK31 These flags are turned ON when the corresponding
cyclic task is executable and they are OFF when the
corresponding cyclic task is not executable or in
standby status.

TK00 to TK31 correspond to cyclic task numbers 00
to 31.

03

0.00

Task number 3 is executed
in the same cycle.

Task 1

Task 3
1043

Task Control Instructions Section 3-32
Specifying an Earlier Task

When CIO 0.00 is ON in the following example, task number 1 is made exe-
cutable in task number 3. Task number 1 will be executed in the next cycle
when program execution reaches task number 1.

3-32-2 TASK OFF: TKOF(821)
Purpose Puts the specified cyclic task or extra cyclic task into standby status, i.e., dis-

ables execution of the task.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Task number

The allowed range for N depends on the kind of task being specified.

• Cyclic tasks:
N must be a constant between 0 and 31 decimal. (Values 0 to 31 specify
cyclic tasks 0 to 31.)

• Extra cyclic tasks:
N must be a constant between 8000 and 8255 decimal. (Values 8000 to
8255 specify extra cyclic tasks 0 to 255.)

Task number 1 is executed
in the next cycle.

0.00

Task 3

Task 1

N

TKOF(821)

N: Task number

Variations Executed Each Cycle for ON Condition TKOF(821)

Executed Once for Upward Differentiation @TKOF(821)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK Not allowed
1044

Task Control Instructions Section 3-32
Operand Specifications

Description TKOF(821) puts the specified cyclic task or extra cyclic into standby status
and turns OFF the corresponding Task Flag (TK00 to TK31).

The task specified in TKOF(821) will be also be in standby status in later
cycles as long as it is not put into executable status by TKON(820), the CX-
Programmer, or a FINS command.

A task can be put into standby status from any other regular task, although the
specified task will not be put into standby status until the next cycle if its task
number is lower than the task number of the local task (it would have been
executed already). The task will be in standby status in the same cycle if its
task number is higher than the local task’s task number.

If the local task is specified in TKOF(821), the task will be put into standby sta-
tus immediately and none of the subsequent instructions in the task will be
executed.

Note (1) The CX-Programmer’s General Properties Tab for each task has a setting
(the Operation start box) that specifies whether the cyclic task will be ex-
ecutable at startup. When the Operation start box has been checked, the
corresponding cyclic task will be put in executable status automatically
when the PLC begins operation. All other cyclic tasks will be in non-exe-
cutable status.

(2) If a task is in non-executable status, TKON(820) can executed to put that
task into executable status. Likewise, a cyclic task in executable status
can be put into non-executable status with the TKOF(821) instruction.

(3) Cyclic tasks or extra cyclic tasks that are in executable status can be put
into standby status by the TKOF(821) instruction.

Area N

CIO Area ---

Work Area ---

Holding Bit Area ---

Auxiliary Bit Area ---

Timer Area ---

Counter Area ---

DM Area ---

Indirect DM addresses in
binary

Indirect DM addresses in
BCD

Constants 00 to 31 or 8000 to 8255 (decimal)

Data Registers ---

Index Registers ---

Indirect addressing
using Index Registers

1045

Task Control Instructions Section 3-32
A regular task that has been set to be executed at startup will be put in execut-
able status automatically when the PLC begins operation. All other regular
tasks will be in non-executable status.

A task in executable status can be put in standby status with TKOF(821), the
CX-Programmer, or a FINS command.

The terms executable and executing are not interchangeable. Executable
tasks are executed in order of their task numbers during cyclic program exe-
cution. An executable task will not be executed if it is put in standby status
before program execution reaches its task number.

Unlike TKON(820), this instruction can be placed in interrupt tasks as well as
in cyclic tasks.

Flags

The specified task's task number
is higher than the local task's task
number (m<n).

The specified task's task number
is lower than the local task's task
number (m>n).

Task m

Task n

In standby
status that
cycle.

Task n

Task m

In standby
status the
next cycle.

Name Label Operation

Error Flag ER ON if N is not a constant between 00 and 31 or between
8000 and 8255.

ON if the task specified with N does not exist.
ON if TKOF(821) is executed in an interrupt task.
OFF in all other cases.

Name Addresses Operation

Task Flags TK00 to TK31 These flags are turned ON when the corresponding
cyclic task is executable and they are OFF when the
corresponding cyclic task is not executable or in
standby status.

TK00 to TK31 correspond to cyclic task numbers 00
to 31.
1046

Task Control Instructions Section 3-32
Examples Specifying a Later Task

When CIO 0.00 is ON in the following example, task number 3 is put into
standby status in task number 1. Task number 3 will be not be executed in the
that cycle when program execution reaches task number 3.

Specifying an Earlier Task

When CIO 0.00 is ON in the following example, task number 1 is put into
standby status in task number 3. Task number 1 will be not be executed in the
next cycle when program execution reaches task number 1.

03

0.00

Task number 3 is in standby
status in the same cycle,
i.e., it is not executed in the
current or following cycles.

Task 1

Task 3

01

0.00

Task number 1 is in standby
status in the next cycle, i.e.,
it is executed in the current
cycle but not in following
cycles.

Task 1

Task 3
1047

Model Conversion Instructions Section 3-33
3-33 Model Conversion Instructions
This section describes instructions used when changing PLC models.

The model conversion instructions provide the same functionality as other
instructions but use BCD data for the operands, like C-series instructions.
(The CP-series use binary data for the operands.) There are five model con-
version instructions, as shown in the above table, all of which have a C added
to the end of the mnemonic of the equivalent function for binary operand data.

The model conversion instructions enable converting C-series programs to
CP-series programs without changing the operand data for these instructions.

When converting C-series programs to CP-series programs on CX-Program-
mer (see note), these instructions will be automatically used when converting
(e.g., XFER will be converted to XFERC), eliminating the need to correct
operand data manually.

Note Conversion is achieved by specifying the CP Series as the “device type” in the
Change PLC Dialog Box.

Differences from C-series
Instructions

“C Series” includes the C200H, C1000H, C2000H, C200HS, C2000HX/HG/
HE(-Z), CQM1, CQM1H, CPM1/CPM1A, CPM2C, and SRM1.

Instruction Mnemonic Function code Page

BLOCK TRANSFER XFERC 565 1050

SINGLE WORD DISTRIBUTE DISTC 566 1052

DATA COLLECT COLLC 567 1055

MOVE BIT MOVBC 568 1060

BIT COUNTER BCNTC 621 1062

Name Model conversion
instruction

Corresponding
C-series

instruction

Differences from
C-series instructions

When converting
device type to CP with

CX-Programmer

Mnemonic
(function code)

Mnemonic
(function code)

C200H,
C1000H, or

C2000H

C200HS,
C2000HX/HG/
HE(-Z), CQM1,

CQM1H,
CPM1/CPM1A,

CPM2C, or
SRM1

BLOCK
TRANSFER

XFERC(565) XFER(70) Same Same XFER is converted to
XFERC. Operands do not
require correction.

SINGLE WORD
DISTRIBUTE

DISTC(566) DIST(80) Along with data
distribution oper-
ation, provides
stack push oper-
ation not previ-
ously supported.

Same
(distribution
operation and
stack push
operation)

DIST is converted to
DICTC. Operands do not
require correction.

DATA COLLECT COLLC(567) COLL(81) Along with data
collection opera-
tion, provides
stack read oper-
ation not previ-
ously supported.

Same
(data collection
operation and
stack read
operation)

COLL is converted to
COLLC. Operands do not
require correction.

MOVE BIT MOVBC(568) MOVB(82) Same Same MOVB is converted to
MOVBC. Operands do
not require correction.

BIT COUNTER BCNTC(621) BCNT(67) Same Same BCNT is converted to
BCNTC. Operands do not
require correction.
1048

Model Conversion Instructions Section 3-33
Note The operation of the Conditions Flags differs in the following ways. Refer to
the description of the Conditions Flags for each instruction for details.

• The operation of the Conditions Flags differs for all instructions when the
contents of a DM Area words used for indirect addressing is not BCD
(*BCD) or the DM Area addressing range is exceeded.

• For DISTC(566), the operation of the Conditions Flags differs in compari-
son with that for the C200H, C1000H, and C2000H for the stack push
operation.

• For COLLC(567), the operation of the Conditions Flags differs in compari-
son with that for the C200H, C1000H, and C2000H for the stack read
operation.

Differences from Standard CP-series Instructions

Note The operation of the Conditions Flags differs in the following ways. Refer to
the description of the Conditions Flags for each instruction for details.

• The Error Flag will turn ON if the data for the above operands is not BCD.

• For DISTC(566), the operation of the Conditions Flags was added for the
stack push operation.

• For COLLC(567), the operation of the Conditions Flags was added for the
stack read operation.

Name Model
conversion
instruction

Corresponding
standard CP-

series
instruction

Differences from standard CP-series instructions (See note.)

Mnemonic
(function code)

Mnemonic
(function code)

BLOCK
TRANSFER

XFERC(565) XFER(70) The data type for the first operand (number of words to transfer) is
BCD (0000 to 9999) instead of binary (0000 to FFFF hex).

SINGLE
WORD DIS-
TRIBUTE

DISTC(566) DIST(80) A stack push operation is supported in addition to the data distribu-
tion operation.
The data type for the third operand (offset data) is BCD (data distribu-
tion: 0000 to 7999, stack push: 0000 to 9999) instead of binary (0000
to FFFF hex).

DATA COL-
LECT

COLLC(567) COLL(81) A stack read operation is supported in addition to the data distribution
operation.

The data type for the second operand (offset data) is BCD (data dis-
tribution: 0000 to 7999, stack read for FIFO: 9000 to 9999, stack read
for LIFO: 8000 to 8999) instead of binary (0000 to FFFF hex).

MOVE BIT MOVBC(568) MOVB(82) The data type for the source and destination bit specifications in the
second operand (control data) is BCD (00 to 15) instead of binary (00
to 0F hex).

BIT
COUNTER

BCNTC(621) BCNT(67) The data type for the first operand (number of words to count) is BCD
(0000 to 9999) instead of binary (0000 to FFFF hex).

The data type stored for the third operand (count results) is BCD
(0000 to 9999) instead of binary (0000 to FFFF hex).
1049

Model Conversion Instructions Section 3-33
3-33-1 BLOCK TRANSFER: XFERC(565)
Purpose Transfers the specified number of consecutive words.

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of Words

Specifies the number of words to be transferred. The possible range for N is
0000 to 9999 BCD.

S: First Source Word

Specifies the first source word.

D: First Destination Word

Specifies the first destination word.

Operand Specifications

XFERC(565)

N

S

D

N: Number of words

S: First source word

D: First destination word

Variations Executed Each Cycle for ON Condition XFERC(565)

Executed Once for Upward Differentiation @XFERC(565)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

S

S+(N−1)

to to

15 0

D

D+(N−1)

to to

Area N S D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767
1050

Model Conversion Instructions Section 3-33
Description XFERC(565) copies N words beginning with S (S to S+(N–1)) to the N words
beginning with D (D to D+(N–1)).

It is possible for the source words and destination words to overlap, so
XFERC(565) can perform word-shift operations.

Flags

Note In C-series PLCs, the BLOCK TRANSFER (XFER) instruction will cause the
Error Flag to go ON if the content of an indirectly addressed DM word (*DM) is
not BCD, or the DM area boundary is exceeded. XFERC(565) will not cause
the Error Flag to go ON in these cases.

Precautions Be sure that the source words (S to S+N–1) and destination words (D to
D+N–1) do not exceed the end of the data area.

Some time will be required to complete XFERC(565) when a large number of
words is being transferred. In this case, the XFERC(565) transfer might not be
completed if a power interruption occurs during execution of the instruction.

The content of N must be BCD. If N is not BCD, an error will occur and the
Error Flag will be turned ON.

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #9999
(BCD)

--- ---

Data Registers DR0 to DR15 ---

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area N S D

D+S+(N−1)
(N−1)

to to
N words

&10

XFERC

#0010

D100
D102

D100

D109

D102

D111

Name Label Operation

Error Flag ER ON if the data in N (the number of words) is not BCD.
1051

Model Conversion Instructions Section 3-33
Example When CIO 0.00 is ON in the following example, the 10 words D100 through
D109 are copied to D200 through D209.

3-33-2 SINGLE WORD DISTRIBUTE: DISTC(566)
Purpose Transfers the source word to a destination word calculated by adding an offset

value to the base address.

Ladder Symbol

Variations

Applicable Program Areas

Operands Bs: Destination Base Address

Specifies the destination base address. The offset is added to this address to
calculate the destination word.

Of: Offset

• Data Distribution Operation (0000 to 7999 BCD)

This value is added to the base address to calculate the destination word.
The offset can be any value from 0000 to 7999 in BCD, but Bs and Bs+Of
must be in the same data area.

• Stack Push Operation (9000 to 9999 BCD)

When the leftmost digit of Of is 9, the rightmost 3 digits of Of specify the
number of words in the stack. The offset can be any value from 9000 to
9999 BCD.

#0010

XFERC

0.00

D100

D200

D100

D101

D102

D109

D200

D201

D202

D209

10
words

DISTC(566)

S S: Source word

Bs: Destination base address

Of: Offset

Bs

Of

Variations Executed Each Cycle for ON Condition DISTC(566)

Executed Once for Upward Differentiation @DISTC(566)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

to
to

Bs

Bs+Of
1052

Model Conversion Instructions Section 3-33
Operand Specifications

Description Data Distribution Operation

DISTC(566) copies S to the destination word calculated by adding Of to Bs.
The same DISTC(566) instruction can be used to distribute the source word
to various words in the data area by changing the value of Of.

Area S Bs Of

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959 A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

--- #0000 to #7999
for distribution
#9000 to #9999
for stack operation

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

S

Bs+n

OfBs
1053

Model Conversion Instructions Section 3-33
Stack Push Operation

When the leftmost digit (bits 12 to 15) of Of is 9 BCD, DISTC(566) operates a
stack from Bs to Bs+Of-9000. The destination base address (Bs) contains the
stack pointer and the rest of the words in the stack contain the stack data.

DISTC(566) copies S to the destination word calculated by adding the stack
pointer (content of Bs) + 1 to address Bs. The same DISTC(566) instruction
can be used to distribute the source word to various words in the data area by
changing the value of Of.

Each time that the content of S is copied to a word in the stack data area, the
stack pointer in Bs is automatically incremented by +1.

Note Use COLLC(567) to read stack data from the stack area.

Flags

Note In C-series PLCs, the SINGLE WORD DISTRIBUTE (DIST) instruction will
cause the Error Flag to go ON if the content of an indirectly addressed DM
word (*DM) is not BCD, or the DM area boundary is exceeded. DISTC(566)
will not cause the Error Flag to go ON in these cases.

Precautions Once DISTC(566) has been executed with Stack Push Operation to allocate a
stack area, always specify the same length stack area in subsequent
DISTC(566) instructions. Operation will be unreliable if a different stack area
size is specified in later DISTC(566) instructions.

Be sure that the offset or stack size specified by Of does not exceed the end
of the data area when added to Bs.

S

OfBs

Bs+1

Stack area

Stack
pointer

Stack
data area

m words Size of
stack area

9 m

Bs+ +1

Bs+(m-1)

S is copied to:
Bs + stack pointer +1.

Name Label Operation

Error Flag ER ON if Stack Push Operation is specified, but the stack
pointer data in Bs is not BCD.
ON if Stack Push Operation is specified and the stack
pointer indicates a word that exceeds the stack data area.

Equals Flag = ON if the source data is 0000.

OFF in all other cases.
1054

Model Conversion Instructions Section 3-33
Examples Data Distribution Operation

The leftmost byte of D300 is 0, so DISTC(566) performs the Data Distribution
Operation.

When CIO 0.00 is ON in the following example, the contents of D100 will be
copied to D210 (D200 + 10) if the content of D300 is 0010 BCD. The content
of D100 can be copied to other words by changing the offset in D300.

Stack Push Operation

The leftmost byte of Of is 9, so DISTC(566) performs the Stack Push Opera-
tion.

When CIO 0.00 is ON in the following example, DISTC(566) allocates a 10
word stack area (since the rightmost 3 digits of Of are #010) between D200
and D209. At the same time, the contents of D100 will be copied to the word
calculated by adding D200 + stack pointer +1. Finally, the stack pointer is
incremented by +1.

3-33-3 DATA COLLECT: COLLC(567)
Purpose Transfers the source word (calculated by adding an offset value to the base

address) to the destination word.

Ladder Symbol

Variations

S: D100

D210

S

0 0 1 0

DISTC

D300

D100

0.00

D200

D300

Copied by DISTC(566).

Offset +10 words

4-digit BCD

Of:
Bs: D200

D201

Bs

Of

S: D100

Bs: D200

D201

D209

Stack area

Stack
pointer

Stack
data area

S

DISTC

Bs

Of

D100

D200

#9010

0 0 0 F

Stack area Stack area

Allocated stack
Stack
Push

After 1s t execut ion After 2nd execution

Of 9 010

0 0 0 1

0 0 0 F

0 0 0 F

0 0 0 F

0 0 0 2
0.00

COLLC(567)

D

Bs: Source base address

Of: Offset

D: Destination word

Bs

Of

Variations Executed Each Cycle for ON Condition COLLC(567)

Executed Once for Upward Differentiation @COLLC(567)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported
1055

Model Conversion Instructions Section 3-33
Applicable Program Areas

Operands Bs: Source Base Address

Specifies the source base address. The offset is added to this address to cal-
culate the source word.

Of: Offset

The value of Of determines the operation of COLLC(567).

• Data Collect Operation (Of = 0000 to 7999 BCD)

The Of value is added to the base address to calculate the source word.
The offset can be any value from 0000 to 7999 BCD, but Bs and Bs+Of
must be in the same data area.

• LIFO Stack Read Operation (Of = 8000 to 8999 BCD)
If the leftmost digit of Of is 8, COLLC(567) will operate as a LIFO stack
instruction. The stack begins at Bs with a length specified in the rightmost
3 digits of Of.

• FIFO Stack Read Operation (Of = 9000 to 9999 BCD)
If the leftmost digit of Of is 9, COLLC(567) will operate as a FIFO stack
instruction. The stack begins at Bs with a length specified in the rightmost
3 digits of Of.

Operand Specifications

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 0

to
to

Bs

Bs+Of

Area Bs Of D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants --- #0000 to #7999 for
Data Collection

#8000 to #8999 for
LIFO Stack Read
#9000 to #9999 for
FIFO Stack Read

Data Registers --- DR0 to DR15
1056

Model Conversion Instructions Section 3-33
Description Depending on the value of Of, COLLC(567) will operate as a data collection
instruction, FIFO stack instruction, or LIFO stack instruction.

Data Collection Operation (Of = 0000 to 7999 BCD)

COLLC(567) copies the source word (calculated by adding Of to Bs) to the
destination word. The same COLLC(567) instruction can be used to collect
data from various source words in the data area by changing the value of Of.

LIFO Stack Read Operation (Of = 8000 to 8999 BCD)

If the leftmost digit of Of is 8, COLLC(567) will operate as a LIFO stack
instruction (LIFO stands for Last-In-First-Out). In this case, the rightmost 3
digits of Of specify the size of the stack.

COLLC(567) copies the data most recently recorded in the stack to D. The
source word is Bs + the stack pointer (content of Bs). After the data is copied,
the stack pointer is decremented by 1.

Note Use DISTC(566) to write stack data to the stack area.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area Bs Of D

Bs

Bs+n

Of

Bs

Bs+1

Stack area

Stack
pointer

Stack
data area

m words Size of
stack area

8 m

D

Data is copied from
Bs + stack pointer.
1057

Model Conversion Instructions Section 3-33
FIFO Stack Read Operation (Of = 9000 to 9999 BCD)

If the leftmost digit of Of is 9, COLLC(567) will operate as a FIFO stack
instruction (FIFO stands for First-In-First-Out). In this case, the rightmost 3
digits of Of specify the size of the stack.

COLLC(567) copies the data from the oldest word recorded in the stack to D.
The source word is Bs + 1. After the data is copied, the stack pointer is decre-
mented by 1.

Note Use DISTC(566) to write stack data to the stack area.

Flags

Note In C-series PLCs, the DATA COLLECT (COLL) instruction will cause the Error
Flag to go ON if the content of an indirectly addressed DM word (*DM) is not
BCD, or the DM area boundary is exceeded. COLLC(567) will not cause the
Error Flag to go ON in these cases.

Precautions Once DISTC(566) has been executed with Stack Push Operation to allocate a
stack area, always specify that same length stack area in the COLLC(567)
instructions. Operation will be unreliable if a different stack area size is speci-
fied in the COLLC(567) instructions.

Be sure that the offset or stack size specified by Of does not exceed the end
of the data area when added to Bs.

The offset data in Of must be BCD.

D

OfBs

Bs+1

Stack area

Stack
pointer

Stack
data area

m words Size of
stack area

9 m

S1+

Data is copied from
Bs + 1.

Name Label Operation

Error Flag ER ON if the offset data in Of is not BCD.

ON if LIFO or FIFO Stack Operation is specified, but the
stack pointer data in Bs is not BCD.
ON if LIFO or FIFO Stack Operation is specified and the
stack pointer indicates a word that exceeds the stack data
area.
OFF in all other cases.

Equals Flag = ON if the source data is 0000.
OFF in all other cases.
1058

Model Conversion Instructions Section 3-33
Examples Data Collection Operation

The leftmost byte of D200 is 0, so COLLC(567) performs the Data Collection
Operation.

When CIO 0.00 is ON in the following example, the contents of D110 (D100 +
10) will be copied to D300 if the content of D200 is 10 (0010 BCD). The con-
tents of other words can be copied to D300 by changing the offset in D200.

FIFO Stack Operation

The leftmost byte of Of is 9, so COLLC(567) performs the FIFO Stack Opera-
tion.

When CIO 0.0 is ON in the following example, COLLC(567) allocates a 10
word stack area (since the rightmost 3 digits of Of are #010) between D100
and D109. At the same time, the contents of D101 (Bs +1) are copied to
D300. Finally, the stack pointer is decremented by 1.

LIFO Stack Operation

The leftmost byte of Of is 8, so COLLC(567) performs the LIFO Stack Opera-
tion.

When CIO 0.00 is ON in the following example, COLLC(567) allocates a 10
word stack area (since the rightmost 3 digits of Of are #010) between D100
and D109. At the same time, the contents of the source word (D100 + stack
pointer) are copied to D300. Finally, the stack pointer is decremented by 1.

D110

 D100
0

D

0 1 0D200

D101

0.00

D100

D200

D300

D300

4-digit BCD

Offset +10 words

Copied by COLLC(567).

Bs:
Bs

Of

COLLC

D100

D101

D109

Stack area

Stack
pointer

Stack
data area

Bs

COLLC

Of

D

D100

D300

#9010

Stack area Stack area

Allocated stack After 1s t execut ion After 2nd execution

Of 9 010

0 0 0 1

5 6 7 8

0 0 0 0

FIFO
Read

5 6 7 8

1 2 3 4

0 0 0 2

D102

D300 1 2 3 4 5 6 7 8

0.00

D100

D101

D109

Stack area

Stack
pointer

Stack
data area

Bs

COLLC

Of

D

D100

D300

#8010

Stack area Stack area

Allocated stack After 1s t execut ion After 2nd execution

Of 8 010

0 0 0 1

1 2 3 4

0 0 0 0

LIFO
Read

5 6 7 8

1 2 3 4

0 0 0 2

D102

D300 5 6 7 8 1 2 3 4

0.00
1059

Model Conversion Instructions Section 3-33
3-33-4 MOVE BIT: MOVBC(568)
Purpose Transfers the specified bit.

Ladder Symbol

Variations

Applicable Program Areas

Operands C: Control Word

The rightmost two digits of C indicate which bit of S is the source bit and the
leftmost two digits of C indicate which bit of D is the destination bit.

Operand Specifications

S

C

D

MOVBC(568)

S: Source word or data

C: Control word

D: Destination word

Variations Executed Each Cycle for ON Condition MOVBC(568)

Executed Once for Upward Differentiation @MOVBC(568)

Executed Once for Downward Differentiation Not supported

Immediate Refreshing Specification Not supported

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

15 8 07

C

Source bit: 00 to 15
(Two-digit BCD)

Destination bit: 00 to 15
(Two-digit BCD)

m n

Area S C D

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0000 to #FFFF
(binary)

Specified values
only

Data Registers DR0 to DR15
1060

Model Conversion Instructions Section 3-33
Description MOVBC(568) copies the specified bit (n) from S to the specified bit (m) in D.
The other bits in the destination word are left unchanged.

Note The same word can be specified for both S and D to copy a bit within a word.

Flags

Note In C-series PLCs, the MOVE BIT (MOVB) instruction will cause the Error Flag
to go ON if the content of an indirectly addressed DM word (*DM) is not BCD,
or the DM area boundary is exceeded. MOVBC(568) will not cause the Error
Flag to go ON in these cases.

Examples When CIO 0.00 is ON in the following example, the 5th bit of the source word

(CIO 200) is copied to the 12th bit of the destination word (CIO 300) in accor-
dance with the control word’s value of 1205.

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047, IR0 to –2048 to +2047, IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –) IR0 to, –(– –) IR15

Area S C D

Name Label Operation

Error Flag ER ON if the rightmost and leftmost two digits of C are not
BCD or outside of the specified range of 00 to 15.

OFF in all other cases.

1 2 0 5

0.00

D200

C: D200

S: CIO 200

D: CIO 300
1061

Model Conversion Instructions Section 3-33
3-33-5 BIT COUNTER: BCNTC(621)
Purpose Counts the total number of ON bits in the specified word(s).

Ladder Symbol

Variations

Applicable Program Areas

Operands N: Number of words

The number of words must be 0001 to 9999 (BCD).

S: First source word

S and S+(N–1) must be in the same data area.

Operand Specifications

BCNTC(621)

N

S

R

N: Number of words

S: First source word

R: Result word

Variations Executed Each Cycle for ON Condition BCNTC(621)

Executed Once for Upward Differentiation @BCNTC(621)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area N S R

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959 A448 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants #0001 to #9999
(BCD)

Data Registers DR0 to DR15 --- DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15

DR0 to DR15, IR0 to IR15
,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15
1062

Model Conversion Instructions Section 3-33
Description BCNTC(621) counts the total number of bits that are ON in all words between
S and S+(N–1) and places the BCD result in R.

Flags

Note In C-series PLCs, the BIT COUNTER (BITC) instruction will cause the Error
Flag to go ON if the content of an indirectly addressed DM word (*DM) is not
BCD, or the DM area boundary is exceeded. BCNTC(621) will not cause the
Error Flag to go ON in these cases.

Precautions An error will occur if N is not BCD between 0001 and 9999, or the result
exceeds 9,999.

Example When CIO 0.00 is ON in the following example, BCNTC(621) counts the total
number of ON bits in the 10 words from CIO 1000 through CIO 1009 and
writes the result to D100.

3-33-6 GET VARIABLE ID: GETID(286)
Purpose Outputs the FINS command variable type (data area) code and word address

for the specified variable or address. This instruction is generally used to get
the assigned address of a variable in a function block.

Ladder Symbol

Variations

S+(N–1)

R

to

N words

BCD result

Counts the number
of ON bits.

Name Label Operation

Error Flag ER ON if N is not within the range 0001 to 9999 BCD.

ON if result exceeds 9999 BCD.
OFF in all other cases.

Equals Flag = ON if the result is 0000.

OFF in all other cases.

R:D100

0.00

#0010

1000

D100

N
S
R

BCNTC
1000
1001

1009

to to

Counts the number
of ON bits (35).

0035 BCD3 5

GETID(286)

S

D1

D2

S: Source data

D1: Variable code

D2: Word address

Variations Executed Each Cycle for ON Condition GETID(286)

Executed Once for Upward Differentiation @GETID(286)

Executed Once for Downward Differentiation Not supported.

Immediate Refreshing Specification Not supported.
1063

Model Conversion Instructions Section 3-33
Applicable Program Areas

Operands S: Source data

Specifies the variable or address for which the variable type and word address
will be retrieved.

D1: Variable code

Contains the FINS variable type code (data area code) of the source data.

D2: Word address

Contains the word address of the source data in 4-digit hexadecimal.

Operand Specifications

Description GETID(286) retrieves the data area address of the specified source variable
or address, outputs the data area code to D1 in 4-digit hexadecimal, and out-
puts the word address number to D2 in 4-digit hexadecimal.

The following table shows the variable type (data area) codes and corre-
sponding address ranges for the PLC’s data areas.

Block program areas Step program areas Subroutines Interrupt tasks

OK OK OK OK

Area S D1 D2

CIO Area CIO 0 to CIO 6143

Work Area W0 to W511

Holding Bit Area H0 to H511

Auxiliary Bit Area A0 to A959

Timer Area T0000 to T4095

Counter Area C0000 to C4095

DM Area D0 to D32767

Indirect DM addresses
in binary

@ D0 to @ D32767

Indirect DM addresses
in BCD

*D0 to *D32767

Constants ---

Data Registers DR0 to DR15

Index Registers ---

Indirect addressing
using Index Registers

,IR0 to ,IR15
–2048 to +2047 ,IR0 to –2048 to +2047 ,IR15
DR0 to DR15, IR0 to IR15

,IR0+(++) to ,IR15+(++)
,–(– –)IR0 to, –(– –)IR15

Data area Data
size

Data area code
(Output to D1.)

Address
(Output to D2.)

CIO Area CIO Word 00B0 hex 0000 to 17FF hex
(0000 to 6143)

Work Area W 00B1 hex 0000 to 01FF hex
(000 to 511)

Holding Bit Area H 00B2 hex 0000 to 01FF hex
(000 to 511)

Auxiliary Bit Area 00B3 hex 0000 to 03BF hex
(000 to 959)

DM Area 0082 hex 0000 to 7FFF hex
(00000 to 32767)
1064

Model Conversion Instructions Section 3-33
Variables in function blocks are automatically allocated addresses by CX-Pro-
grammer Ver. 5.0 and later systems, unless the AT specification is used. For
example, if it is necessary to indirectly specify the extended parameter set-
tings of a Special Unit such as a Motion Control Unit and a variable is used at
the beginning of the extended parameter settings area, that variable’s address
must be set. In this case, GETID(286) can be used to retrieve the variable’s
data area address.

Flags

Example

Name Label Operation

Error Flag ER ON if S is not within the allowed range.

#0082
&100

D100

#0082
&200

m
m+1

GETID
A
m

m+1

Normal Operation

Using Function Blocks

DM Area allocated to
Motion Control Unit

Extended parameter
settings area

Indirect
specifica-
tion

The starting address of the extended parameter set-
tings area is specified by the FINS command variable
type (data area) code and word address. In this exam-
ple, #0082 specifies the DM Area and &100 specifies a
100-word offset from the beginning of the area.

DM Area allocated to
Motion Control Unit

Extended parameter
settings area

Variable A D200 Data

Variable A's data area
address is retrieved by
GETID(286).
1065

Model Conversion Instructions Section 3-33
1066

SECTION 4
Instruction Execution Times and Number of Steps

This section lists the execution times and number of steps for all instructions supported by the CP1H PLCs, and describes
the execution times for function block instances.

4-1 Instruction Execution Times and Number of Steps . 1068

4-2 Function Block Instance Execution Time . 1089
1067

Instruction Execution Times and Number of Steps Section 4-1
4-1 Instruction Execution Times and Number of Steps
The following table lists the execution times for all instructions that are avail-
able for CP PLCs.

The total execution time of instructions within one whole user program is the
process time for program execution when calculating the cycle time (See
note.).

Note User programs are allocated tasks that can be executed within cyclic tasks
and interrupt tasks that satisfy interrupt conditions.

Execution times for most instructions depend the conditions when the instruc-
tion is executed. The execution time is also required when the execution con-
dition is OFF.

The following table also lists the length of each instruction in the Length
(steps) column. The number of steps required in the user program area for
each of the CP-series instructions varies from 1 to 7 steps, depending upon
the instruction and the operands used with it. The number of steps in a pro-
gram is not the same as the number of instructions.

Note (1) Program capacity for is measured in steps. Basically speaking, 1 step is
equivalent to 1 word. (Program capacity for previous OMRON PLCs was
measured in words.)

(2) Most instructions are supported in differentiated form (indicated with ↑ , ↓,
@, and %). Specifying differentiation will increase the execution times by
the following amounts.

(3) Use the following times as guidelines when instructions are not executed.
CP1H CPU Unit: Approx. 0.1 µs

(4) When converting programs from previous models of PLC (C-series or
CV/CVM1-series) to a CP-series PLC, the following guidelines can be
used to convert the program size from words to steps. Add the values (n)
given in the following table for each instruction to calculate the CP-series
program size in steps. Conversion is not necessary when converting pro-
grams from CS/CJ-series PLCs (i.e., the sizes will not change).

Symbol CP1H CPU Unit
↑ or ↓ +0.24 µs

@ or % +0.24 µs

Previous size in “a” words - CP1H size in “a+n” steps

Instruction
type

Instruction
options

Value of “n”
when converting
C-series PLC to
CP-series PLC

Value of “n”
when converting
CV/CVM1-series
PLC to CP-series

PLC

Basic instruc-
tions

None −1 for OUT, SET,
RESET, and KEEP
0 for all other
instructions

0

Upward differentia-
tion

0 +1

Immediate refresh-
ing

--- 0

Upward differentia-
tion and immediate
refreshing

--- +2
1068

Instruction Execution Times and Number of Steps Section 4-1
Examples:
For a C-series PLC, the OUTPUT instruction requires 2 words per instruc-
tion, so 1 step (2 − 1) would be required for a CP-series PLC.
For a CV/CVM1-series PLC, the immediate refresh variation of the MOVE
instruction (!MOV) requires 4 words per instruction, so 7 steps (4 + 3)
would be required for a CP-series PLC.

Sequence Input
Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table

Special instruc-
tions

None 0 −1

Upward differentia-
tion

+1 0

Immediate refresh-
ing

--- +3

Upward differentia-
tion and immediate
refreshing

--- +4

Previous size in “a” words - CP1H size in “a+n” steps

Instruction
type

Instruction
options

Value of “n”
when converting
C-series PLC to
CP-series PLC

Value of “n”
when converting
CV/CVM1-series
PLC to CP-series

PLC

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

LOAD LD --- 1 0.10 ---

!LD --- 2 +24.10 Increase for immediate refresh

LOAD NOT LD NOT --- 1 0.10 ---

!LD NOT --- 2 +24.10 Increase for immediate refresh

AND AND --- 1 0.10 ---

!AND --- 2 +24.10 Increase for immediate refresh

AND NOT AND NOT --- 1 0.10 ---

!AND NOT --- 2 +24.10 Increase for immediate refresh

OR OR --- 1 0.10 ---

!OR --- 2 +24.10 Increase for immediate refresh

OR NOT OR NOT --- 1 0.10 ---

!OR NOT --- 2 +24.10 Increase for immediate refresh

AND LOAD AND LD --- 1 0.05 ---

OR LOAD OR LD --- 1 0.05 ---

NOT NOT 520 1 0.05 ---

CONDITION ON UP 521 3 0.50 ---

CONDITION OFF DOWN 522 4 0.50 ---

LOAD BIT TEST LD TST 350 4 0.35 ---

LOAD BIT TEST
NOT

LD TSTN 351 4 0.35 ---

AND BIT TEST NOT AND TSTN 351 4 0.35 ---

OR BIT TEST OR TST 350 4 0.35 ---

OR BIT TEST NOT OR TSTN 351 4 0.35 ---
1069

Instruction Execution Times and Number of Steps Section 4-1
Sequence Output Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Sequence Control Instructions

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

OUTPUT OUT --- 1 0.35 ---

!OUT --- 2 +23.07 Increase for immediate refresh

OUTPUT NOT OUT NOT --- 1 0.35 ---

!OUT NOT --- 2 +23.07 Increase for immediate refresh

KEEP KEEP 11 1 0.40 ---

DIFFERENTIATE
UP

DIFU 13 2 0.50 ---

DIFFERENTIATE
DOWN

DIFD 14 2 0.50 ---

SET SET --- 1 0.30 ---

!SET --- 2 +23.17 Increase for immediate refresh

RESET RSET --- 1 0.30 Word specified

!RSET --- 2 +23.17 Increase for immediate refresh

MULTIPLE BIT SET SETA 530 4 11.77 With 1-bit set

67.03 With 1,000-bit set

MULTIPLE BIT
RESET

RSTA 531 4 11.8 With 1-bit reset

69.63 With 1,000-bit reset

SINGLE BIT SET SETB 532 2 0.5 ---

!SETB 3 +23.31 ---

SINGLE BIT RESET RSTB 533 2 0.5 ---

!RSTB 3 +23.31 ---

SINGLE BIT
OUTPUT

OUTB 534 2 0.45 ---

!OUTB 3 +23.22 ---

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Conditions

END END 1 1 9.18 ---

NO OPERATION NOP 0 1 0.05 ---

INTERLOCK IL 2 1 0.15 ---

INTERLOCK CLEAR ILC 3 1 0.15 ---

MULTI-INTERLOCK
DIFFERENTIATION
HOLD

MILH 517 3 10.3 During interlock

13.3 Not during interlock and interlock not set

16.6 Not during interlock and interlock set

MULTI-INTERLOCK
DIFFERENTIATION
RELEASE

MILR 518 3 10.3 During interlock

13.3 Not during interlock and interlock not set

16.6 Not during interlock and interlock set

MULTI-INTERLOCK
CLEAR

MILC 519 2 8.3 Interlock not cleared

9.6 Interlock cleared

JUMP JMP 4 2 0.95 ---

JUMP END JME 5 2 --- ---

CONDITIONAL
JUMP

CJP 510 2 0.95 When JMP condition is satisfied
1070

Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Timer and Counter Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

CONDITIONAL
JUMP NOT

CJPN 511 2 0.95 When JMP condition is satisfied

MULTIPLE JUMP JMP0 515 1 0.15 ---

MULTIPLE JUMP
END

JME0 516 1 0.15 ---

FOR LOOP FOR 512 2 1.00 Designating a constant

BREAK LOOP BREAK 514 1 0.15 ---

NEXT LOOP NEXT 513 1 0.45 When loop is continued

0.55 When loop is ended

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

TIMER TIM --- 3 1.30 ---

TIMX 550

COUNTER CNT --- 3 1.30 ---

CNTX 546

HIGH-SPEED
TIMER

TIMH 15 3 1.80 ---

TIMHX 551

ONE-MS TIMER TMHH 540 3 1.75 ---

TMHHX 552

ACCUMULATIVE
TIMER

TTIM 87 3 24.81 ---

17.79 When resetting

13.97 When interlocking

TTIMX 555 23.78 ---

17.76 When resetting

14.11 When interlocking

LONG TIMER TIML 542 4 15.69 ---

13.61 When interlocking

TIMLX 553 17.51 ---

13.11 When interlocking

MULTI-OUTPUT
TIMER

MTIM 543 4 35.36 ---

12.81 When resetting

MTIMX 554 41.95 ---

17.42 When resetting

REVERSIBLE
COUNTER

CNTR 12 3 29.03 ---

CNTRX 548 22.44

RESET TIMER/
COUNTER

CNR 545 3 15.27 When resetting 1 word

5.95 ms When resetting 1,000 words

CNRX 547 14.44 When resetting 1 word

5.95 ms When resetting 1,000 words

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Conditions
1071

Instruction Execution Times and Number of Steps Section 4-1
Comparison Instructions
Instruction Mnemonic Code Length

(steps)
(See note.)

ON execution
time (µs)

Conditions

Input Comparison
Instructions
(unsigned)

LD, AND, OR += 300 4 0.35 ---

LD, AND, OR + <> 305

LD, AND, OR + < 310

LD, AND, OR +<= 315

LD, AND, OR +> 320

LD, AND, OR +>= 325

Input Comparison
Instructions (double,
unsigned)

LD, AND, OR +=+L 301 4 0.35 ---

LD, AND, OR +<>+L 306 ---

LD, AND, OR +<+L 311 ---

LD, AND, OR +<=+L 316 ---

LD, AND, OR +>+L 321 ---

LD, AND, OR +>=+L 326 ---

Input Comparison
Instructions (signed)

LD, AND, OR +=+S 302 4 0.35 ---

LD, AND, OR +<>+S 307

LD, AND, OR +<+S 312

LD, AND, OR +<= 317

LD, AND, OR +>+S 322

LD, AND, OR +>=+S 327

Input Comparison
Instructions (double,
signed)

LD, AND, OR +=+SL 303 4 0.35 ---

LD, AND, OR
+<>+SL

308

LD, AND, OR +<+SL 313

LD, AND, OR
+<=+SL

318

LD, AND, OR +>+SL 323

LD, AND, OR
+>=+SL

328

Time Comparison
Instructions

LD, AND, OR +DT 341 4 18.8 ---

LD, AND, OR +<>DT 342 4 45.6 ---

LD, AND, OR +<DT 343 4 45.6 ---

LD, AND, OR +<=DT 344 4 18.8 ---

LD, AND, OR +>DT 345 4 45.6 ---

LD, AND, OR +>=DT 346 4 18.8 ---

COMPARE CMP 20 3 0.10 ---

!CMP 20 7 +45.2 Increase for immediate refresh

DOUBLE COMPARE CMPL 60 3 0.50 ---

SIGNED BINARY
COMPARE

CPS 114 3 0.30 ---

!CPS 114 7 +45.2 Increase for immediate refresh

DOUBLE SIGNED
BINARY COMPARE

CPSL 115 3 0.50 ---

TABLE COMPARE TCMP 85 4 27.66 ---

MULTIPLE
COMPARE

MCMP 19 4 42.33 ---

UNSIGNED BLOCK
COMPARE

BCMP 68 4 47.21 ---

EXPANDED BLOCK
COMPARE

BCMP2 502 4 13.20 Number of data words: 1

650.0 Number of data words: 255
1072

Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Data Movement Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Data Shift Instructions

AREA RANGE
COMPARE

ZCP 88 3 11.53 ---

DOUBLE AREA
RANGE COMPARE

ZCPL 116 3 11.28 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

MOVE MOV 21 3 0.30 ---

!MOV 21 7 +35.1 Increase for immediate refresh

DOUBLE MOVE MOVL 498 3 0.60 ---

MOVE NOT MVN 22 3 0.35 ---

DOUBLE MOVE
NOT

MVNL 499 3 0.60 ---

MOVE BIT MOVB 82 4 0.50 ---

MOVE DIGIT MOVD 83 4 0.50 ---

MULTIPLE BIT
TRANSFER

XFRB 62 4 20.1 Transferring 1 bit

266.30 Transferring 255 bits

BLOCK TRANSFER XFER 70 4 8.80 Transferring 1 word

1.18 ms Transferring 1,000 words

BLOCK SET BSET 71 4 14.63 Setting 1 word

570.17 Setting 1,000 words

DATA EXCHANGE XCHG 73 3 0.80 ---

DOUBLE DATA
EXCHANGE

XCGL 562 3 1.5 ---

SINGLE WORD
DISTRIBUTE

DIST 80 4 12.77 ---

DATA COLLECT COLL 81 4 12.85 ---

MOVE TO REGIS-
TER

MOVR 560 3 0.60 ---

MOVE TIMER/
COUNTER PV TO
REGISTER

MOVRW 561 3 0.60 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

SHIFT REGISTER SFT 10 3 12.68 Shifting 1 word

1.49 ms Shifting 1,000 words

REVERSIBLE
SHIFT REGISTER

SFTR 84 4 13.76 Shifting 1 word

1.54 ms Shifting 1,000 words

ASYNCHRONOUS
SHIFT REGISTER

ASFT 17 4 14.21 Shifting 1 word

2.94 ms Shifting 1,000 words

WORD SHIFT WSFT 16 4 11.20 Shifting 1 word

1.47 ms Shifting 1,000 words

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions
1073

Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

ARITHMETIC SHIFT
LEFT

ASL 25 2 0.45 ---

DOUBLE SHIFT
LEFT

ASLL 570 2 0.80 ---

ARITHMETIC SHIFT
RIGHT

ASR 26 2 0.45 ---

DOUBLE SHIFT
RIGHT

ASRL 571 2 0.80 ---

ROTATE LEFT ROL 27 2 0.45 ---

DOUBLE ROTATE
LEFT

ROLL 572 2 0.80 ---

ROTATE LEFT
WITHOUT CARRY

RLNC 574 2 0.45 ---

DOUBLE ROTATE
LEFT WITHOUT
CARRY

RLNL 576 2 0.80 ---

ROTATE RIGHT ROR 28 2 0.45 ---

DOUBLE ROTATE
RIGHT

RORL 573 2 0.80 ---

ROTATE RIGHT
WITHOUT CARRY

RRNC 575 2 0.45 ---

DOUBLE ROTATE
RIGHT WITHOUT
CARRY

RRNL 577 2 0.80 ---

ONE DIGIT SHIFT
LEFT

SLD 74 3 11.86 Shifting 1 word

1.24 ms Shifting 1,000 words

ONE DIGIT SHIFT
RIGHT

SRD 75 3 13.95 Shifting 1 word

1.85 ms Shifting 1,000 words

SHIFT N-BIT DATA
LEFT

NSFL 578 4 14.39 Shifting 1 bit

90.10 Shifting 1,000 bits

SHIFT N-BIT DATA
RIGHT

NSFR 579 4 14.43 Shifting 1 bit

130.27 Shifting 1,000 bits

SHIFT N-BITS LEFT NASL 580 3 0.45 ---

DOUBLE SHIFT N-
BITS LEFT

NSLL 582 3 0.80 ---

SHIFT N-BITS
RIGHT

NASR 581 3 0.45 ---

DOUBLE SHIFT N-
BITS RIGHT

NSRL 583 3 0.80 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions
1074

Instruction Execution Times and Number of Steps Section 4-1
Increment/Decrement Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Symbol Math Instructions

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

INCREMENT BINARY ++ 590 2 0.45 ---

DOUBLE INCREMENT
BINARY

++L 591 2 0.80 ---

DECREMENT BINARY – – 592 2 0.45 ---

DOUBLE DECREMENT
BINARY

– –L 593 2 0.80 ---

INCREMENT BCD ++B 594 2 12.09 ---

DOUBLE INCREMENT
BCD

++BL 595 2 10.59 ---

DECREMENT BCD – –B 596 2 11.63 ---

DOUBLE DECREMENT
BCD

– –BL 597 2 9.59 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

SIGNED BINARY ADD
WITHOUT CARRY

+ 400 4 0.30 ---

DOUBLE SIGNED
BINARY ADD WITHOUT
CARRY

+L 401 4 0.60 ---

SIGNED BINARY ADD
WITH CARRY

+C 402 4 0.40 ---

DOUBLE SIGNED
BINARY ADD WITH
CARRY

+CL 403 4 0.60 ---

BCD ADD WITHOUT
CARRY

+B 404 4 18.14 ---

DOUBLE BCD ADD
WITHOUT CARRY

+BL 405 4 22.87 ---

BCD ADD WITH CARRY +BC 406 4 19.7 ---

DOUBLE BCD ADD
WITH CARRY

+BCL 407 4 23.63 ---

SIGNED BINARY
SUBTRACT WITHOUT
CARRY

– 410 4 0.3 ---

DOUBLE SIGNED
BINARY SUBTRACT
WITHOUT CARRY

–L 411 4 0.60 ---

SIGNED BINARY
SUBTRACT WITH
CARRY

–C 412 4 0.40 ---

DOUBLE SIGNED
BINARY SUBTRACT
WITH CARRY

–CL 413 4 0.60 ---

BCD SUBTRACT
WITHOUT CARRY

–B 414 4 17.57 ---

DOUBLE BCD
SUBTRACT WITHOUT
CARRY

–BL 415 4 22.09 ---
1075

Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Conversion Instructions

BCD SUBTRACT WITH
CARRY

–BC 416 4 18.37 ---

DOUBLE BCD
SUBTRACT WITH
CARRY

–BCL 417 4 22.91 ---

SIGNED BINARY
MULTIPLY

* 420 4 0.65 ---

DOUBLE SIGNED
BINARY MULTIPLY

*L 421 4 13.02 ---

UNSIGNED BINARY
MULTIPLY

*U 422 4 0.75 ---

DOUBLE UNSIGNED
BINARY MULTIPLY

*UL 423 4 13.23 ---

BCD MULTIPLY *B 424 4 16.83 ---

DOUBLE BCD
MULTIPLY

*BL 425 4 33.33 ---

SIGNED BINARY DIVIDE / 430 4 0.70 ---

DOUBLE SIGNED
BINARY DIVIDE

/L 431 4 13.35 ---

UNSIGNED BINARY
DIVIDE

/U 432 4 0.8 ---

DOUBLE UNSIGNED
BINARY DIVIDE

/UL 433 4 12.91 ---

BCD DIVIDE /B 434 4 18.03 ---

DOUBLE BCD DIVIDE /BL 435 4 27.77 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

BCD-TO-BINARY BIN 023 3 0.40 ---

DOUBLE BCD-TO-
DOUBLE BINARY

BINL 058 3 10.41 ---

BINARY-TO-BCD BCD 024 3 10.22 ---

DOUBLE BINARY-
TO-DOUBLE BCD

BCDL 059 3 10.18 ---

2’S COMPLEMENT NEG 160 3 0.35 ---

DOUBLE 2’S
COMPLEMENT

NEGL 161 3 0.60 ---

16-BIT TO 32-BIT
SIGNED BINARY

SIGN 600 3 0.60 ---

DATA DECODER MLPX 076 4 12.09 Decoding 1 digit (4 to 16)

14.15 Decoding 4 digits (4 to 16)

24.01 Decoding 1 digit 8 to 256

37.72 Decoding 2 digits (8 to 256)

DATA ENCODER DMPX 077 4 11.90 Encoding 1 digit (16 to 4)

58.70 Encoding 4 digits (16 to 4)

19.76 Encoding 1 digit (256 to 8)

80.32 Encoding 2 digits (256 to 8)

ASCII CONVERT ASC 086 4 12.49 Converting 1 digit into ASCII

18.03 Converting 4 digits into ASCII

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions
1076

Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Logic Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

ASCII TO HEX HEX 162 4 12.64 Converting 1 digit

COLUMN TO LINE LINE 063 4 34.95 ---

LINE TO COLUMN COLM 064 4 42.09 ---

SIGNED BCD-TO-
BINARY

BINS 470 4 15.73 Data format setting No. 0

15.93 Data format setting No. 1

15.93 Data format setting No. 2

16.00 Data format setting No. 3

DOUBLE SIGNED
BCD-TO-BINARY

BISL 472 4 18.59 Data format setting No. 0

18.66 Data format setting No. 1

18.41 Data format setting No. 2

18.47 Data format setting No. 3

SIGNED BINARY-
TO-BCD

BCDS 471 4 13.16 Data format setting No. 0

13.18 Data format setting No. 1

13.00 Data format setting No. 2

13.12 Data format setting No. 3

DOUBLE SIGNED
BINARY-TO-BCD

BDSL 473 4 13.74 Data format setting No. 0

13.58 Data format setting No. 1

13.79 Data format setting No. 2

13.75 Data format setting No. 3

GRAY CODE
CONVERSION

GRY 474 4 82.99 8-bit binary

81.67 8-bit BCD

98.65 8-bit angle

97.67 15-bit binary

98.99 15-bit BCD

110.67 15-bit angle

97.00 360° binary

108.33 360° BCD

113.00 360° angle

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

LOGICAL AND ANDW 034 4 0.30 ---

DOUBLE LOGICAL AND ANDL 610 4 0.60 ---

LOGICAL OR ORW 035 4 0.45 ---

DOUBLE LOGICAL OR ORWL 611 4 0.60 ---

EXCLUSIVE OR XORW 036 4 0.45 ---

DOUBLE EXCLUSIVE OR XORL 612 4 0.60 ---

EXCLUSIVE NOR XNRW 037 4 0.45 ---

DOUBLE EXCLUSIVE NOR XNRL 613 4 0.60 ---

COMPLEMENT COM 029 2 0.45 ---

DOUBLE COMPLEMENT COML 614 2 0.80 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions
1077

Instruction Execution Times and Number of Steps Section 4-1
Special Math Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Floating-point Math Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Conditions

BINARY ROOT ROTB 620 3 43.99 ---

BCD SQUARE
ROOT

ROOT 072 3 49.32 ---

ARITHMETIC
PROCESS

APR 069 4 13.96 Designating SIN and COS

30.51 Designating line-segment approximation

FLOATING POINT
DIVIDE

FDIV 079 4 222.90 ---

BIT COUNTER BCNT 067 4 29.70 Counting 1 word

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Conditions

FLOATING TO 16-BIT FIX 450 3 13.03 ---

FLOATING TO 32-BIT FIXL 451 3 12.03 ---
16-BIT TO FLOATING FLT 452 3 8.97 ---
32-BIT TO FLOATING FLTL 453 3 9.92 ---

FLOATING-POINT ADD +F 454 4 12.60 ---
FLOATING-POINT
SUBTRACT

–F 455 4 12.70 ---

FLOATING-POINT DIVIDE /F 457 4 13.40 ---
FLOATING-POINT MULTIPLY *F 456 4 12.67 ---
DEGREES TO RADIANS RAD 458 3 15.00 ---

RADIANS TO DEGREES DEG 459 3 17.97 ---
SINE SIN 460 3 37.10 ---
COSINE COS 461 3 41.97 ---

TANGENT TAN 462 3 30.86 ---
ARC SINE ASIN 463 3 65.14 ---
ARC COSINE ACOS 464 3 31.26 ---

ARC TANGENT ATAN 465 3 53.07 ---
SQUARE ROOT SQRT 466 3 20.73 ---

EXPONENT EXP 467 3 53.07 ---
LOGARITHM LOG 468 3 50.08 ---
EXPONENTIAL POWER PWR 840 4 185.77 ---

Floating Symbol Comparison LD, AND, OR +=F 329 3 11.01 ---
LD, AND, OR +<>F 330
LD, AND, OR +<F 331

LD, AND, OR +<=F 332
LD, AND, OR +>F 333
LD, AND, OR +>=F 334

FLOATING- POINT TO ASCII FSTR 448 4 46.57 ---
ASCII TO FLOATING-POINT FVAL 449 3 25.37 ---
1078

Instruction Execution Times and Number of Steps Section 4-1
Double-precision Floating-point Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Table Data Processing Instructions

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions

DOUBLE SYMBOL
COMPARISON

LD, AND, OR +=D 335 3 16.04 ---

LD, AND, OR +<>D 336

LD, AND, OR +<D 337

LD, AND, OR +<=D 338

LD, AND, OR +>D 339

LD, AND, OR +>=D 340

DOUBLE FLOATING TO 16-
BIT BINARY

FIXD 841 3 15.63 ---

DOUBLE FLOATING TO 32-
BIT BINARY

FIXLD 842 3 14.90 ---

16-BIT BINARY TO DOUBLE
FLOATING

DBL 843 3 12.29 ---

32-BIT BINARY TO DOUBLE
FLOATING

DBLL 844 3 14.13 ---

DOUBLE FLOATING-POINT
ADD

+D 845 4 17.89 ---

DOUBLE FLOATING-POINT
SUBTRACT

−D 846 4 17.96 ---

DOUBLE FLOATING-POINT
MULTIPLY

*D 847 4 17.96 ---

DOUBLE FLOATING-POINT
DIVIDE

/D 848 4 37.09 ---

DOUBLE DEGREES TO
RADIANS

RADD 849 3 32.07 ---

DOUBLE RADIANS TO
DEGREES

DEGD 850 3 33.76 ---

DOUBLE SINE SIND 851 3 66.97 ---

DOUBLE COSINE COSD 852 3 55.89 ---

DOUBLE TANGENT TAND 853 3 85.56 ---

DOUBLE ARC SINE ASIND 854 3 22.64 ---

DOUBLE ARC COSINE ACOSD 855 3 15.64 ---

DOUBLE ARC TANGENT ATAND 856 3 14.91 ---

DOUBLE SQUARE ROOT SQRTD 857 3 46.97 ---

DOUBLE EXPONENT EXPD 858 3 102.49 ---

DOUBLE LOGARITHM LOGD 859 3 19.03 ---

DOUBLE EXPONENTIAL
POWER

PWRD 860 4 182.83 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions

SET STACK SSET 630 3 16.97 Designating 5 words in stack area

700.67 Designating 1,000 words in stack area

PUSH ONTO STACK PUSH 632 3 14.20 ---

FIRST IN FIRST
OUT

FIFO 633 3 11.50 Designating 5 words in stack area

1.48 ms Designating 1,000 words in stack area
1079

Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Data Control Instructions

LAST IN FIRST OUT LIFO 634 3 16.94 ---

DIMENSION
RECORD TABLE

DIM 631 5 30.69 ---

SET RECORD
LOCATION

SETR 635 4 12.82 ---

GET RECORD
NUMBER

GETR 636 4 15.78 ---

DATA SEARCH SRCH 181 4 29.11 Searching for 1 word

4.86 ms Searching for 1,000 words

SWAP BYTES SWAP 637 3 22.67 Swapping 1 word

3.79 ms Swapping 1,000 words

FIND MAXIMUM MAX 182 4 34.17 Searching for 1 word

4.46 ms Searching for 1,000 words

FIND MINIMUM MIN 183 4 34.97 Searching for 1 word

4.74 ms Searching for 1,000 words

SUM SUM 184 4 46.63 Adding 1 word

2.37 ms Adding 1,000 words

FRAME
CHECKSUM

FCS 180 4 33.17 For 1-word table length

3.30 ms For 1,000-word table length

STACK SIZE READ SNUM 638 3 12.21 ---

STACK DATA READ SREAD 639 4 14.24 ---

STACK DATA
OVERWRITE

SWRIT 640 4 13.20 ---

STACK DATA
INSERT

SINS 641 4 17.78 ---

758.04 For 1,000-word table

STACK DATA
DELETE

SDEL 642 4 19.83 ---

763.61 For 1,000-word table

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions

PID CONTROL PID 190 4 550.12 Initial execution

546.43 Sampling

152.87 Not sampling

LIMIT CONTROL LMT 680 4 27.1 ---

DEAD BAND
CONTROL

BAND 681 4 27.23 ---

DEAD ZONE
CONTROL

ZONE 682 4 26.43 ---

TIME-
PROPORTIONAL
OUTPUT

TPO 685 4 19.85 OFF execution time

86.03 ON execution time with duty designa-
tion or displayed output limit

95.27 ON execution time with manipulated
variable designation and output limit
enabled

SCALING SCL 194 4 23.30 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions
1080

Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Subroutine Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Interrupt Control Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

SCALING 2 SCL2 486 4 20.93 ---

SCALING 3 SCL3 487 4 24.37 ---

AVERAGE AVG 195 4 63.4 Average of an operation

540.87 Average of 64 operations

PID CONTROL
WITH AUTOTUNING

PIDAT 191 4 740.97 Initial execution

611.30 Sampling

197.97 Not sampling

212.86 Initial execution of autotuning

548.97 Autotuning when sampling

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions

SUBROUTINE CALL SBS 91 2 2.04 ---

SUBROUTINE ENTRY SBN 92 2 --- ---

SUBROUTINE RETURN RET 93 1 1.80 ---

MACRO MCRO 99 4 47.9 ---

GLOBAL SUBROUTINE CALL GSBN 751 2 --- ---

GLOBAL SUBROUTINE ENTRY GRET 752 1 2.04 ---

GLOBAL SUBROUTINE RETURN GSBS 750 2 1.80 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions

SET INTERRUPT MASK MSKS 690 3 51.90 Set

63.09 Reset

READ INTERRUPT MASK MSKR 692 3 19.99 Set

43.67 Reset

CLEAR INTERRUPT CLI 691 3 49.46 Set

38.93 Reset

DISABLE INTERRUPTS DI 693 1 14.83 ---

ENABLE INTERRUPTS EI 694 1 27.44 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions
1081

Instruction Execution Times and Number of Steps Section 4-1
High-speed Counter and Pulse Output Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Conditions

MODE CONTROL INI 880 4 80.39 Starting high-speed counter comparison

47.99 Stopping high-speed counter comparison

47.99 Changing pulse output PV

48.01 Changing high-speed counter PV

27.92 Changing PV of counter in interrupt input
mode

48.45 Stopping pulse output

26.08 Stopping PWM(891) output

HIGH-SPEED
COUNTER PV
READ

PRV 881 4 80.39 Reading pulse output PV

40.92 Reading high-speed counter PV

28.63 Reading PV of counter in interrupt input
mode

39.20 Reading pulse output status

66.43 Reading high-speed counter status

34.63 Reading PWM(891) status

145.52 Reading high-speed counter range compar-
ison results

47.48 Reading frequency of high-speed counter 0

COUNTER
FREQUENCY
CONVERT

PRV2 883 4 20.03 ---

COMPARISON
TABLE LOAD

CTBL 882 4 221.63 Registering target value table and starting
comparison for 1 target value

9.578 ms Registering target value table and starting
comparison for 48 target values

262.37 Registering range table and starting com-
parison

166.03 Only registering target value table for 1 tar-
get value

9.557 ms Only registering target value table for 48 tar-
get values

241.70 Only registering range table

SPEED OUTPUT SPED 885 4 89.24 Continuous mode

94.47 Independent mode

SET PULSES PULS 886 4 32.63 ---

PULSE OUTPUT PLS2 887 5 103.19 ---

ACCELERATION
CONTROL

ACC 888 4 111.26 Continuous mode

121.73 Independent mode

ORIGIN SEARCH ORG 889 3 112.93 Origin search

98.65 Origin return

PULSE WITH
VARIABLE DUTY
FACTOR

PWM 891 4 30.26 ---
1082

Instruction Execution Times and Number of Steps Section 4-1
Step Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

I/O Unit Instructions

Note (1) When a double-length operand is used, add 1 to the value shown in the
length column in the following table.

(2) The execution times of IORD(222) and IOWR(223) depend on the Spe-
cial I/O Unit for which the instruction is executed.

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

STEP DEFINE STEP 008 2 36.10 Step control bit ON

18.77 Step control bit OFF

STEP START SNXT 009 2 10.35 ---

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Conditions

I/O REFRESH IORF 097 3 119.50 Refreshing 1 input word for CPM1A Unit
122.17 Refreshing 1 output word for CPM1A Unit
282.20 Refreshing 1 input word for CJ-series Spe-

cial I/O Unit
390.50 Refreshing 1 output word for CJ-series Spe-

cial I/O Unit

1.58 ms Refreshing 10 input words for CPM1A Unit
1.50 ms Refreshing 10 output words for CPM1A Unit
720.83 Refreshing 60 input words for CJ-series

Special I/O Unit
1.032 ms Refreshing 60 output words for CJ-series

Special I/O Unit

7-SEGMENT
DECODER

SDEC 078 4 12.53 ---

DIGITAL SWITCH
INPUT

DSW 210 6 85.43 4 digits, data input value: 0

80.43 4 digits, data input value: F
82.11 8 digits, data input value: 0
75.23 8 digits, data input value: F

TEN KEY INPUT TKY 211 4 17.49 Data input value: 0
18.69 Data input value: F

HEXADECIMAL
KEY INPUT

HKY 212 5 72.77 Data input value: 0

75.63 Data input value: F
MATRIX INPUT MTR 213 5 71.55 Data input value: 0

79.77 Data input value: F

7-SEGMENT
DISPLAY OUTPUT

7SEG 214 5 88.23 4 digits
86.97 8 digits

INTELLIGENT I/O
READ

IORD 222 4 232.10 First execution

237.10 When busy
229.57 At end

INTELLIGENT I/O
WRITE

IOWR 223 4 261.10 First execution

259.10 When busy
259.77 At end

CPU BUS I/O
REFRESH

DLNK 226 4 425.69 Allocated 1 word
1083

Instruction Execution Times and Number of Steps Section 4-1
Serial Communications Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Network Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Display Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length
(steps)

(See
note.)

ON execution
time (µs)

Conditions

PROTOCOL
MACRO

PMCR 260 5 152.83 Sending 0 words, receiving 0 words
186.37 Sending 249 words, receiving 249 words

TRANSMIT TXD 236 4 107.67 Sending 1 byte

1.22 ms Sending 256 bytes
RECEIVE RXD 235 4 149.3 Storing 1 byte

1.33 ms Storing 256 bytes

TRANSMIT VIA
SERIAL
COMMUNICATIONS
UNIT

TXDU 256 4 145.64 Sending 1 byte

RECEIVE VIA
SERIAL
COMMUNICATIONS
UNIT

RXDU 255 4 44.48 Storing 1 byte

CHANGE SERIAL
PORT SETUP

STUP 237 3 479.3 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions

NETWORK SEND SEND 090 4 174.63 ---
NETWORK RECEIVE RECV 098 4 173.97 ---
DELIVER COMMAND CMND 490 4 195.97 ---

EXPLICIT MESSAGE SEND EXPLT 720 4 228.63 ---
EXPLICIT GET ATTRIBUTE EGATR 721 4 203.30 ---
EXPLICIT SET ATTRIBUTE ESATR 722 3 197.30 ---

EXPLICIT WORD READ ECHRD 723 4 188.63 ---
EXPLICIT WORD WRITE ECHWR 724 4 181.97 ---
TRANSMIT VIA SERIAL
COMMUNICATIONS UNIT

TXDU 256 4 205.05 ---

RECEIVE VIA SERIAL
COMMUNICATIONS UNIT

RXDU 255 4 200.44 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

DISPLAY MESSAGE MSG 046 3 17.16 Displaying message
15.43 Deleting displayed message

7-SEGMENT LED
WORD DATA DIS-
PLAY

SCH 047 3 48.13 ---

7-SEGMENT LED
CONTROL

SCTRL 048 2 36.40 ---
1084

Instruction Execution Times and Number of Steps Section 4-1
Clock Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Debugging Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Failure Diagnosis Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

CALENDAR ADD CADD 730 4 212.90 ---

CALENDAR SUBTRACT CSUB 731 4 176.23 ---

HOURS TO SECONDS SEC 065 3 34.19 ---

SECONDS TO HOURS HMS 066 3 40.95 ---

CLOCK ADJUSTMENT DATE 735 2 134.67 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

TRACE MEMORY
SAMPLING

TRSM 045 1 201.33 Sampling 1 bit and 0 words

1.12 ms Sampling 31 bits and 6 words

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

FAILURE ALARM FAL 006 3 23.24 Recording errors

266.57 Deleting errors (in order of priority)

817.17 Deleting errors (all errors)

305.33 Deleting errors (individually)

SEVERE FAILURE
ALARM

FALS 007 3 --- ---

FAILURE POINT
DETECTION

FPD 269 4 245.07 When executed

258.2 First time

317.73 When executed

316.4 First time
1085

Instruction Execution Times and Number of Steps Section 4-1
Other Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Block Programming Instructions

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions

SET CARRY STC 040 1 0.15 ---

CLEAR CARRY CLC 041 1 0.15 ---

EXTEND MAXIMUM CYCLE
TIME

WDT 094 2 23.94 ---

SAVE CONDITION FLAGS CCS 282 1 14.97 ---

LOAD CONDITION FLAGS CCL 283 1 17.83 ---

CONVERT ADDRESS FROM CV FRMCV 284 3 31.03 ---

CONVERT ADDRESS TO CV TOCV 285 3 34.90 ---

DISABLE PERIPHERAL
SERVICING

IOSP 287 1 21.5 ---

ENABLE PERIPHERAL
SERVICING

IORS 288 1 22.2 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

BLOCK PROGRAM
BEGIN

BPRG 096 2 26.59 ---

BLOCK PROGRAM
END

BEND 801 1 24.19 ---

BLOCK PROGRAM
PAUSE

BPPS 811 2 18.13 ---

BLOCK PROGRAM
RESTART

BPRS 812 2 9.29 ---

CONDITIONAL
BLOCK EXIT

(Execution con-
dition) EXIT

806 1 23.33 EXIT condition satisfied

9.33 EXIT condition not satisfied

CONDITIONAL
BLOCK EXIT

EXIT (bit
address)

806 2 26.78 EXIT condition satisfied

11.47 EXIT condition not satisfied

CONDITIONAL
BLOCK EXIT (NOT)

EXIT NOT (bit
address)

806 2 26.74 EXIT condition satisfied

11.41 EXIT condition not satisfied

Branching IF (execution
condition)

802 1 7.4 IF true

13.5 IF false

Branching IF (relay num-
ber)

802 2 11.55 IF true

13.55 IF false

Branching (NOT) IF NOT (relay
number)

802 2 11.61 IF true

13.61 IF false

Branching ELSE 803 1 7.71 IF true

13.55 IF false

Branching IEND 804 1 13.58 IF true

7.49 IF false

ONE CYCLE AND
WAIT

WAIT (execu-
tion condition)

805 1 27.53 WAIT condition satisfied

6.15 WAIT condition not satisfied

ONE CYCLE AND
WAIT

WAIT (relay
number)

805 2 28.78 WAIT condition satisfied

9.82 WAIT condition not satisfied

ONE CYCLE AND
WAIT (NOT)

WAIT NOT
(relay number)

805 2 26.27 WAIT condition satisfied

9.78 WAIT condition not satisfied
1086

Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Text String Processing Instructions

COUNTER WAIT CNTW 814 4 36.57 First execution

36.40 Normal execution

CNTWX 818 4 43.69 First execution

36.95 Normal execution

HIGH-SPEED
TIMER WAIT

TMHW 815 3 48.37 First execution

48.20 Normal execution

TMHWX 817 3 50.59 First execution

45.52 Normal execution

Loop Control LOOP 809 1 17.03 ---

Loop Control LEND (execu-
tion condition)

810 1 17.13 LEND condition satisfied

18.07 LEND condition not satisfied

Loop Control LEND (relay
number)

810 2 20.77 LEND condition satisfied

23.63 LEND condition not satisfied

Loop Control LEND NOT
(relay number)

810 2 23.43 LEND condition satisfied

20.97 LEND condition not satisfied

TIMER WAIT TIMW 813 3 48.40 Default setting

46.33 Normal execution

TIMWX 816 3 48.02 Default setting

47.09 Normal execution

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions

MOV STRING MOV$ 664 3 68.44 Transferring 1 character

CONCATENATE
STRING

+$ 656 4 145.10 1 character + 1 character

GET STRING LEFT LEFT$ 652 4 87.81 Retrieving 1 character from 2 char-
acters

GET STRING
RIGHT

RGHT$ 653 4 91.81 Retrieving 1 character from 2 char-
acters

GET STRING
MIDDLE

MID$ 654 5 94.77 Retrieving 1 character from 3 char-
acters

FIND IN STRING FIND$ 660 4 82.81 Searching for 1 character from 2
characters

STRING LENGTH LEN$ 650 3 32.61 Detecting 1 character

REPLACE IN
STRING

RPLC$ 661 6 269.43 Replacing the first of 2 characters
with 1 character

DELETE STRING DEL$ 658 5 114.00 Deleting the leading character of 2
characters

EXCHANGE
STRING

XCHG$ 665 3 108.54 Exchanging 1 character with 1
character

CLEAR STRING CLR$ 666 2 37.33 Clearing 1 character

INSERT INTO
STRING

INS$ 657 5 199.43 Inserting 1 character after the first
of 2 characters

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions
1087

Instruction Execution Times and Number of Steps Section 4-1
Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Task Control Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Model Conversion Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

Special Function Block Instructions

Note When a double-length operand is used, add 1 to the value shown in the length
column in the following table.

String Comparison
Instructions

LD, AND, OR +=$ 670 4 64.47 Comparing 1 character with 1
characterLD, AND, OR +<>$ 671

LD, AND, OR +<$ 672

LD, AND, OR +>$ 674

LD, AND, OR +>=$ 675

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

TASK ON TKON 820 2 30.65 ---

TASK OFF TKOF 821 2 18.30 ---

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

BLOCK TRANSFER XFERC 565 4 37.04 Transferring 1 word

2,922 ms Transferring 1,000 words

SINGLE WORD
DISTRIBUTE

DISTC 566 4 24.80 Data distribute

35.57 Stack operation

DATA COLLECT COLLC 567 4 29.83 Data distribute

30.13 Stack operation

31.10 Stack operation
1 word FIFO Read

8,100 ms Stack operation
1,000 word FIFO Read

MOVE BIT MOVBC 568 4 28.03 ---

BIT COUNTER BCNTC 621 4 32.97 Counting 1 word

5,703 ms Counting 1,000 words

Instruction Mnemonic Code Length (steps)
(See note.)

ON execution
time (µs)

Conditions

GET VARIABLE ID GETID 286 4 26.5 ---

Instruction Mnemonic Code Length
(steps)

(See note.)

ON execution
time (µs)

Conditions
1088

Function Block Instance Execution Time Section 4-2
4-2 Function Block Instance Execution Time
Use the following equation to calculate the effect of instance execution on the
cycle time when function block definitions have been created and the
instances copied into the user program.

The following table shows the length of time for A, B, and C.

Example:
Input variables with a 1-word data type (INT): 3
Output variables with a 1-word data type (INT): 2
Total instruction processing time in function block definition section: 10 µs
Execution time for 1 instance = 6.8 µs + (3 + 2) × 0.3 µs + 10 µs = 18.3 µs

Note The execution time is increased according to the number of multiple instances
when the same function block definition has been copied to multiple locations.

Number of Function Block
Program Steps

Use the following equation to calculate the number of program steps when
function block definitions have been created and the instances copied into the
user program.

Effect of Instance Execution on Cycle Time
= Startup time (A)
 + I/O parameter transfer processing time (B)
 + Execution time of instructions in function block definition (C)

Operation CP1H CPU Unit

A Startup time Startup time not including I/O
parameter transfer

6.8 µs

B I/O parameter transfer
processing time

The data type is indi-
cated in parentheses.

1-bit I/O variable (BOOL) 0.4 µs

1-word I/O variable (INT,
UINT, WORD)

0.3 µs

2-word I/O variable (DINT,
UDINT, DWORD, REAL)

0.5 µs

4-word I/O variable (LINT,
ULINT, LWORD, LREAL)

1.0 µs

C Function block definition
instruction execution
time

Total instruction processing time (same as standard
user program)

Number of steps
= Number of instances × (Call part size m + I/O parameter transfer part size n × Num-
ber of parameters) + Number of instruction steps in the function block definition p
(See note.)
1089

Function Block Instance Execution Time Section 4-2
Note The number of instruction steps in the function block definition (p) will not be
diminished in subsequence instances when the same function block definition
is copied to multiple locations (i.e., for multiple instances). Therefore, in the
above equation, the number of instances is not multiplied by the number of
instruction steps in the function block definition (p).

Example:
Input variables with a 1-word data type (INT): 5
Output variables with a 1-word data type (INT): 5
Function block definition section: 100 steps
Number of steps for 1 instance = 57 + (5 + 5) × 6 steps + 100 steps + 27 steps
= 244 steps

Contents CP/CS/CJ-series CPU Units

m Call part 57 steps

n I/O parameter
transfer part
The data type is
shown in parenthe-
ses.

1-bit I/O variable (BOOL) 6 steps

1-word I/O variable (INT,
UINT, WORD)

6 steps

2-word I/O variable (DINT,
UDINT, DWORD, REAL)

6 steps

4-word I/O variable (LINT,
ULINT, LWORD, LREAL)

12 steps

p Number of instruc-
tion steps in func-
tion block definition

The total number of instruction steps (same as standard
user program) + 27 steps.
1090

Appendix A
Instruction Classifications by Function

The following table lists the CP-series instructions by function. (The instructions appear by order of their func-
tion in Section 3 Instructions.)

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction

Basic
instructions

Input LD LOAD LD NOT LOAD NOT AND AND

AND NOT AND NOT OR OR OR NOT OR NOT

AND LD AND LOAD OR LD OR LOAD --- ---

Output OUT OUTPUT OUT NOT OUTPUT NOT --- ---

Sequence
input
instructions

--- NOT NOT UP CONDITION
ON

DOWN CONDITION
OFF

Bit test LD TST LD BIT TEST LD TSTN LD BIT TEST
NOT

AND TST AND BIT
TEST NOT

AND TSTN AND BIT
TEST NOT

OR TST OR BIT TEST OR TSTN OR BIT TEST
NOT

Sequence
output
instructions

--- KEEP KEEP DIFU DIFFERENTI-
ATE UP

DIFD DIFFERENTI-
ATE DOWN

OUTB SINGLE BIT
OUTPUT

--- --- --- ---

Set/Reset SET SET RSET RESET SETA MULTIPLE
BIT SET

RSTA MULTIPLE
BIT RESET

SETB SINGLE BIT
SET

RSTB SINGLE BIT
RESET

Sequence
control
instructions

--- END END NOP NO OPERA-
TION

--- ---

Interlock IL INTERLOCK ILC INTERLOCK
CLEAR

MILH MULTI-INTER-
LOCK DIFFER-
ENTIATION
HOLD

MILR MULTI-INTER-
LOCK DIFFER-
ENTIATION
RELEASE

MILC MULTI-INTER-
LOCK CLEAR

--- ---

Jump JMP JUMP JME JUMP END CJP CONDI-
TIONAL
JUMP

CJPN CONDI-
TIONAL
JUMP

JMP0 MULTIPLE
JUMP

JME0 MULTIPLE
JUMP END

Repeat FOR FOR-NEXT
LOOPS

BREAK BREAK LOOP NEXT FOR-NEXT
LOOPS
1091

Instruction Classifications by Function Appendix A
Timer and
counter
instructions

BCD
(See
note.)

Timer
(with
timer
numbers)

TIM TIMER TIMH HIGH-SPEED
TIMER

TMHH ONE-MS
TIMER

TTIM ACCUMULA-
TIVE TIMER

--- --- --- ---

Timer
(without
timer
numbers)

TIML LONG TIMER MTIM MULTI-OUT-
PUT TIMER

--- ---

Counter
(with
counter
numbers)

CNT COUNTER CNTR REVERSIBLE
TIMER

CNR RESET
TIMER/
COUNTER

Binary
(See
note.)

Timer
(with
timer
numbers)

TIMX TIMER TIMHX HIGH-SPEED
TIMER

TMHHX ONE-MS
TIMER

TTIMX ACCUMULA-
TIVE TIMER

--- --- --- ---

Timer
(without
timer
numbers)

TIMLX LONG TIMER MTIMX MULTI-OUT-
PUT TIMER

--- ---

Counter
(with
counter
numbers)

CNTX COUNTER CNTRX REVERSIBLE
TIMER

CNRX RESET
TIMER/
COUNTER

Comparison
instructions

Symbol
comparison

LD, AND, OR
+
=, <>, <, <=, >,
>=

Symbol com-
parison
(unsigned)

LD, AND, OR
+
=, <>, <, <=, >,
>= + L

Symbol com-
parison (dou-
ble-word,
unsigned)

LD, AND, OR
+
=, <>, <, <=, >,
>= +S

Symbol com-
parison
(signed)

LD, AND, OR
+
=, <>, <, <=, >,
>= + SL

Symbol com-
parison (dou-
ble-word,
signed)

LD, AND, OR
+
= DT, <> DT, <
DT, <= DT, >
DT, >= DT
(See note 1.)

Time compari-
son

--- ---

Data comparison
(Condition Flags)

CMP UNSIGNED
COMPARE

CMPL DOUBLE
UNSIGNED
COMPARE

CPS SIGNED
BINARY
COMPARE

CPSL DOUBLE
SIGNED
BINARY
COMPARE

ZCP AREA RANGE
COMPARE

ZCPL DOUBLE
AREA RANGE
COMPARE

Table compare MCMP MULTIPLE
COMPARE

TCMP TABLE COM-
PARE

BCMP UNSIGNED
BLOCK COM-
PARE

BCMP2 EXPANDED
BLOCK COM-
PARE

--- --- --- ---

Data
movement
instructions

Single/double-word MOV MOVE MOVL DOUBLE
MOVE

MVN MOVE NOT

MVNL DOUBLE
MOVE NOT

--- --- --- ---

Bit/digit MOVB MOVE BIT MOVD MOVE DIGIT --- ---

Exchange XCHG DATA
EXCHANGE

XCGL DOUBLE
DATA
EXCHANGE

--- ---

Block/bit transfer XFRB MULTIPLE
BIT TRANS-
FER

XFER BLOCK
TRANSFER

BSET BLOCK SET

Distribute/ collect DIST SINGLE
WORD DIS-
TRIBUTE

COLL DATA COL-
LECT

--- ---

Index register MOVR MOVE TO
REGISTER

MOVRW MOVE TIMER/
COUNTER PV
TO REGIS-
TER

--- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
1092

Instruction Classifications by Function Appendix A
Data shift
instructions

1-bit shift SFT SHIFT REG-
ISTER

SFTR REVERSIBLE
SHIFT REG-
ISTER

ASLL DOUBLE
SHIFT LEFT

ASL ARITHMETIC
SHIFT LEFT

ASR ARITHMETIC
SHIFT RIGHT

ASRL DOUBLE
SHIFT RIGHT

0000 hex asynchro-
nous

ASFT ASYNCHRO-
NOUS SHIFT
REGISTER

--- --- --- ---

Word shift WSFT WORD SHIFT --- --- --- ---

1-bit rotate ROL ROTATE LEFT ROLL DOUBLE
ROTATE LEFT

RLNC ROTATE LEFT
WITHOUT
CARRY

RLNL DOUBLE
ROTATE LEFT
WITHOUT
CARRY

ROR ROTATE
RIGHT

RORL DOUBLE
ROTATE
RIGHT

RRNC ROTATE
RIGHT WITH-
OUT CARRY

RRNL DOUBLE
ROTATE
RIGHT WITH-
OUT CARRY

--- ---

1 digit shift SLD ONE DIGIT
SHIFT LEFT

SRD ONE DIGIT
SHIFT RIGHT

--- ---

Shift n-bit data NSFL SHIFT N-BIT
DATA LEFT

NSFR SHIFT N-BIT
DATA RIGHT

--- ---

Shift n-bit NASL SHIFT N-BITS
LEFT

NSLL DOUBLE
SHIFT N-BITS
LEFT

NASR SHIFT N-BITS
RIGHT

NSRL DOUBLE
SHIFT N-BITS
RIGHT

--- --- --- ---

Increment/
decrement
instructions

BCD ++B INCREMENT
BCD

++BL DOUBLE
INCREMENT
BCD

– –B DECRE-
MENT BCD

– –BL DOUBLE
DECRE-
MENT BCD

--- --- --- ---

Binary ++ INCREMENT
BINARY

++L DOUBLE
INCREMENT
BINARY

– – DECRE-
MENT
BINARY

– –L DOUBLE
DECRE-
MENT
BINARY

--- --- --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
1093

Instruction Classifications by Function Appendix A
Symbol
math
instructions

Binary add + SIGNED
BINARY ADD
WITHOUT
CARRY

+L DOUBLE
SIGNED
BINARY ADD
WITHOUT
CARRY

+C SIGNED
BINARY ADD
WITH CARRY

+CL DOUBLE
SIGNED
BINARY ADD
WITH CARRY

--- --- --- ---

BCD add +B BCD ADD
WITHOUT
CARRY

+BL DOUBLE BCD
ADD WITH-
OUT CARRY

+BC BCD ADD
WITH CARRY

+BCL DOUBLE BCD
ADD WITH
CARRY

--- --- --- ---

Binary subtract – SIGNED
BINARY SUB-
TRACT WITH-
OUT CARRY

–L DOUBLE
SIGNED
BINARY SUB-
TRACT WITH-
OUT CARRY

–C SIGNED
BINARY SUB-
TRACT WITH
CARRY

–CL DOUBLE
SIGNED
BINARY WITH
CARRY

--- --- --- ---

BCD subtract –B BCD SUB-
TRACT WITH-
OUT CARRY

–BL DOUBLE BCD
SUBTRACT
WITHOUT
CARRY

–BC BCD SUB-
TRACT WITH
CARRY

–BCL DOUBLE BCD
SUBTRACT
WITH CARRY

--- --- --- ---

Binary multiply * SIGNED
BINARY MUL-
TIPLY

*L DOUBLE
SIGNED
BINARY MUL-
TIPLY

*U UNSIGNED
BINARY MUL-
TIPLY

*UL DOUBLE
UNSIGNED
BINARY MUL-
TIPLY

--- --- --- ---

BCD multiply *B BCD MULTI-
PLY

*BL DOUBLE BCD
MULTIPLY

--- ---

Binary divide / SIGNED
BINARY
DIVIDE

/L DOUBLE
SIGNED
BINARY
DIVIDE

/U UNSIGNED
BINARY
DIVIDE

/UL DOUBLE
UNSIGNED
BINARY
DIVIDE

--- --- --- ---

BCD divide /B BCD DIVIDE /BL DOUBLE BCD
DIVIDE

--- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
1094

Instruction Classifications by Function Appendix A
Conversion
instructions

BCD/Binary con-
vert

BIN BCD-TO-
BINARY

BINL DOUBLE
BCD-TO-
DOUBLE
BINARY

BCD BINARY-TO-
BCD

BCDL DOUBLE
BINARY-TO-
DOUBLE BCD

NEG 2’S COMPLE-
MENT

NEGL DOUBLE 2’S
COMPLE-
MENT

SIGN 16-BIT TO 32-
BIT SIGNED
BINARY

--- --- --- ---

Decoder/ encoder MLPX DATA
DECODER

DMPX DATA
ENCODER

--- ---

ASCII/HEX convert ASC ASCII CON-
VERT

HEX ASCII TO HEX --- ---

Line/column con-
vert

LINE COLUMN TO
LINE

COLM LINE TO
COLUMN

--- ---

Signed binary/BCD
convert

BINS SIGNED BCD-
TO- BINARY

BISL DOUBLE
SIGNED BCD-
TO- BINARY

BCDS SIGNED
BINARY-TO-
BCD

BDSL DOUBLE
SIGNED
BINARY-TO-
BCD

--- --- --- ---

Gray scale convert GRY GRAY CODE
CONVER-
SION

--- --- --- ---

Logic
instructions

Logical AND/OR ANDW LOGICAL
AND

ANDL DOUBLE
LOGICAL
AND

ORW LOGICAL OR

ORWL DOUBLE
LOGICAL OR

XORW EXCLUSIVE
OR

XORL DOUBLE
EXCLUSIVE
OR

XNRW EXCLUSIVE
NOR

XNRL DOUBLE
EXCLUSIVE
NOR

--- ---

Complement COM COMPLE-
MENT

COML DOUBLE
COMPLE-
MENT

--- ---

Special
math
instructions

--- ROTB BINARY
ROOT

ROOT BCD SQUARE
ROOT

APR ARITHMETIC
PROCESS

FDIV FLOATING
POINT
DIVIDE

BCNT BIT
COUNTER

--- ---

Floating-
point math
instructions

Floating point/
binary convert

FIX FLOATING TO
16-BIT

FIXL FLOATING TO
32-BIT

FLT 16-BIT TO
FLOATING

FLTL 32-BIT TO
FLOATING

--- --- --- ---

Floating- point
basic math

+F FLOATING-
POINT ADD

–F FLOATING-
POINT SUB-
TRACT

/F FLOATING-
POINT
DIVIDE

*F FLOATING-
POINT MULTI-
PLY

--- --- --- ---

Floating-point
trigonometric

RAD DEGREES TO
RADIANS

DEG RADIANS TO
DEGREES

SIN SINE

COS COSINE TAN TANGENT ASIN ARC SINE

ACOS ARC COSINE ATAN ARC TAN-
GENT

--- ---

Floating- point
math

SQRT SQUARE
ROOT

EXP EXPONENT LOG LOGARITHM

PWR EXPONEN-
TIAL POWER

--- --- --- ---

Symbol compari-
son and conver-
sion

LD, AND, OR
+
=, <>, <, <=, >,
>= + F

Symbol com-
parison (sin-
gle-precision
floating point)

FSTR FLOATING-
POINT TO
ASCII

FVAL ASCII TO
FLOATING-
POINT

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
1095

Instruction Classifications by Function Appendix A
Double-pre-
cision float-
ing-point
instructions

Floating point/
binary convert

FIXD DOUBLE
FLOATING TO
16-BIT

FIXLD DOUBLE
FLOATING TO
32-BIT

DBL 16-BIT TO
DOUBLE
FLOATING

DBLL 32-BIT TO
DOUBLE
FLOATING

--- --- --- ---

Floating-point
basic math

+D DOUBLE
FLOATING-
POINT ADD

–D DOUBLE
FLOATING-
POINT SUB-
TRACT

/D DOUBLE
FLOATING-
POINT
DIVIDE

*D DOUBLE
FLOATING-
POINT MULTI-
PLY

--- --- --- ---

Floating-point
trigonometric

RADD DOUBLE
DEGREES TO
RADIANS

DEGD DOUBLE
RADIANS TO
DEGREES

SIND DOUBLE
SINE

COSD DOUBLE
COSINE

TAND DOUBLE
TANGENT

ASIND DOUBLE ARC
SINE

ACOSD DOUBLE ARC
COSINE

ATAND DOUBLE ARC
TANGENT

--- ---

Floating-point math SQRTD DOUBLE
SQUARE
ROOT

EXPD DOUBLE
EXPONENT

LOGD DOUBLE
LOGARITHM

PWRD DOUBLE
EXPONEN-
TIAL POWER

--- --- --- ---

Symbol compari-
son

LD, AND, OR
+
=, <>, <, <=, >,
>= + D

Symbol com-
parison (dou-
ble-precision
floating point)

--- --- --- ---

Table data
processing
instructions

Stack processing SSET SET STACK PUSH PUSH ONTO
STACK

LIFO LAST IN
FIRST OUT

FIFO FIRST IN
FIRST OUT

SNUM STACK SIZE
READ

SREAD STACK DATA
READ

SWRIT STACK DATA
OVERWRITE

SINS STACK DATA
INSERT

SDEL STACK DATA
DELETE

1-record/multiple-
word processing

DIM DIMENSION
RECORD
TABLE

SETR SET RECORD
LOCATION

GETR GET
RECORD
NUMBER

Record-to-word
processing

SRCH DATA
SEARCH

MAX FIND MAXI-
MUM

MIN FIND MINI-
MUM

SUM SUM FCS FRAME
CHECKSUM

--- ---

Byte processing SWAP SWAP BYTES --- --- --- ---

Data control
instructions

--- PID PID CON-
TROL

PIDAT PID CON-
TROL WITH
AUTOTUNING

LMT LIMIT CON-
TROL

BAND DEAD BAND
CONTROL

ZONE DEAD ZONE
CONTROL

TPO TIME-PRO-
PORTIONAL
OUTPUT

SCL SCALING SCL2 SCALING 2 SCL3 SCALING 3

AVG AVERAGE --- --- --- ---

Subroutines
instructions

--- SBS SUBROU-
TINE CALL

MCRO MACRO SBN SUBROU-
TINE ENTRY

RET SUBROU-
TINE
RETURN

GSBS GLOBAL
SUBROU-
TINE CALL

GSBN GLOBAL
SUBROU-
TINE ENTRY

GRET GLOBAL
SUBROU-
TINE
RETURN

--- --- --- ---

Interrupt
control
instructions

--- MSKS SET INTER-
RUPT MASK

MSKR READ INTER-
RUPT MASK

CLI CLEAR
INTERRUPT

DI DISABLE
INTERRUPTS

EI ENABLE
INTERRUPTS

--- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
1096

Instruction Classifications by Function Appendix A
High-speed
counter/
pulse out-
put instruc-
tions
(See note.)

--- INI MODE CON-
TROL

PRV HIGH-SPEED
COUNTER PV
READ

PRV2 COUNTER
FREQUENCY
CONVERT

CTBL COMPARI-
SON TABLE
LOAD

SPED SPEED OUT-
PUT

PULS SET PULSES

PLS2 PULSE OUT-
PUT

ACC ACCELERA-
TION Control

ORG ORIGIN
SEARCH

PWM PULSE WITH
VARIABLE
DUTY FAC-
TOR

--- --- --- ---

Step instruc-
tions

--- STEP STEP DEFINE SNXT STEP START --- ---

I/O Unit
instructions

--- IORF I/O REFRESH SDEC 7-SEGMENT
DECODER

DSW DIGITAL
SWITCH
INPUT

TKY TEN KEY
INPUT

HKY HEXADECI-
MAL KEY
INPUT

MTR MATRIX
INPUT

7SEG 7-SEGMENT
DISPLAY
OUTPUT

IORD INTELLI-
GENT I/O
READ

IOWR INTELLI-
GENT I/O
WRITE

DLNK
(See note.)

CPU BUS
UNIT I/O
REFRESH

--- --- --- ---

Serial com-
munica-
tions
instructions

--- PMCR PROTOCOL
MACRO

TXD TRANSMIT RXD RECEIVE

STUP CHANGE
SERIAL PORT
SETUP

--- --- --- ---

Network
instructions

--- SEND NETWORK
SEND

RECV NETWORK
RECEIVE

CMND DELIVER
COMMAND

EXPLT SEND GEN-
ERAL
EXPICIT

EGATR EXPLICIT
GET
ATTRIBUTE

ESATR EXPLICIT
SET
ATTRIBUTE

ECHRD EXPLICIT
WORD READ

ECHWR EXPLICIT
WORD
WRITE

--- ---

Display
instructions

--- MSG DISPLAY
MESSAGE

SCH 7-SEGMENT
LED WORD
DATA DIS-
PLAY

SCTRL 7-SEGMENT
LED CON-
TROL

Clock
instructions

--- CADD CALENDAR
ADD

CSUB CALENDAR
SUBTRACT

SEC HOURS TO
SECONDS

HMS SECONDS TO
HOURS

DATE CLOCK
ADJUST-
MENT

--- ---

Debugging
instructions

--- TRSM TRACE MEM-
ORY SAM-
PLING

--- --- --- ---

Failure diag-
nosis
instructions

--- FAL FAILURE
ALARM

FALS SEVERE
FAILURE
ALARM

FPD FAILURE
POINT
DETECTION

Other
instructions

--- STC SET CARRY CLC CLEAR
CARRY

--- ---

WDT EXTEND
MAXIMUM
CYCLE TIME

CCS SAVE CONDI-
TION FLAGS

CCL LOAD CONDI-
TION FLAGS

FRMCV CONVERT
ADDRESS
FROM CV

TOCV CONVERT
ADDRESS TO
CV

--- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
1097

Instruction Classifications by Function Appendix A
Note Timers and counters are switched between BCD and binary data from the CX-Programmer.

Block pro-
gramming
instructions

Define block pro-
gram area

BPRG BLOCK PRO-
GRAM BEGIN

BEND BLOCK PRO-
GRAM END

--- ---

Block program
start/stop

BPPS BLOCK PRO-
GRAM PAUSE

BPRS BLOCK PRO-
GRAM
RESTART

--- ---

EXIT EXIT
bit_address

Conditional
END

EXIT NOT
bit_address

Conditional
END NOT

input_condition
EXIT

Conditional
END

IF branch process-
ing

IF bit_address CONDI-
TIONAL
BLOCK
BRANCHING

IF NOT
bit_address

CONDI-
TIONAL
BLOCK
BRANCHING
(NOT)

ELSE CONDI-
TIONAL
BLOCK
BRANCHING
(ELSE)

IEND CONDI-
TIONAL
BLOCK
BRANCHING
END

--- --- --- ---

WAIT WAIT
bit_address

ONE CYCLE
AND WAIT

WAIT NOT
bit_address

ONE CYCLE
AND WAIT
NOT

input_condition
WAIT

ONE CYCLE
AND WAIT

Timer/
counter

BCD (See
note.)

TIMW TIMER WAIT CNTW COUNTER
WAIT

TMHW HIGH-SPEED
TIMER WAIT

Binary
(See
note.)

TIMWX TIMER WAIT CNTWX COUNTER
WAIT

TMHWX HIGH-SPEED
TIMER WAIT

Repeat LOOP LOOP BLOCK LEND
bit_address

LOOP BLOCK
END

LEND NOT
bit_address

LOOP BLOCK
END NOT

input_condition
LEND

LOOP BLOCK
END

--- --- --- ---

Text string
processing
instructions

--- MOV$ MOV STRING +$ CONCATE-
NATE
STRING

LEFT$ GET STRING
LEFT

RIGHT$ GET STRING
RIGHT

MID$ GET STRING
MIDDLE

FIND$ FIND IN
STRING

LEN$ STRING
LENGTH

RPLC$ REPLACE IN
STRING

DEL$ DELETE
STRING

XCHG$ EXCHANGE
STRING

CLR$ CLEAR
STRING

INS$ INSERT INTO
STRING

LD, AND, OR
+
=$, <>$, <$,
<=$, >$, >=$

STRING
COMPARI-
SON

--- --- --- ---

Task control
instructions

--- TKON TASK ON TKOF TASK OFF --- ---

Model con-
version
instruction

--- XFERC BLOCK
TRANSFER

DISTC SINGLE
WORD DIS-
TRIBUTE

COLLC DATA COL-
LECT

MOVBC MOVE BIT BCNTC BIT
COUNTER

--- ---

Special
function
block
instructions

--- GETID GET VARI-
ABLE ID

--- --- --- ---

Classifica-
tion

Sub-class Mnemonic Instruction Mnemonic Instruction Mnemonic Instruction
1098

Appendix B
List of Instructions by Function Code

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page

--- LD LOAD @LD %LD !LD 89

--- LD NOT LOAD NOT --- --- !LD NOT 91

--- AND AND @AND %AND !AND 93

--- AND NOT AND NOT --- --- !AND NOT 95

--- OR OR @OR %OR !OR 97

--- OR NOT OR NOT --- --- !OR NOT 98

--- AND LD AND LOAD --- --- --- 100

--- OR LD OR LOAD --- --- --- 102

--- OUT OUTPUT --- --- !OUT 113

--- OUT NOT OUTPUT NOT --- --- !OUT NOT 114

--- SET SET @SET %SET !SET 122

--- RSET RESET @RSET %RSET !RSET 122

--- TIM TIMER --- --- --- 171

--- TIMX TIMER --- --- --- 171

--- CNT COUNTER --- --- --- 194

000 NOP NO OPERATION --- --- --- 133

001 END END --- --- --- 132

002 IL INTERLOCK --- --- --- 136

003 ILC INTERLOCK CLEAR --- --- --- 136

004 JMP JUMP --- --- --- 154

005 JME JUMP END --- --- --- 154

006 FAL FAILURE ALARM @FAL --- --- 937

007 FALS SEVERE FAILURE
ALARM

--- --- --- 945

008 STEP STEP DEFINE --- --- --- 754

009 SNXT STEP START --- --- --- 754

010 SFT SHIFT REGISTER --- --- --- 276

011 KEEP KEEP --- --- !KEEP 115

012 CNTR REVERSIBLE
COUNTER

--- --- --- 197

013 DIFU DIFFERENTIATE UP --- --- !DIFU 119

014 DIFD DIFFERENTIATE
DOWN

--- --- !DIFD 119

015 TIMH HIGH-SPEED TIMER --- --- --- 175

016 WSFT WORD SHIFT @WSFT --- --- 283

017 ASFT ASYNCHRONOUS
SHIFT REGISTER

@ASFT --- --- 281

019 MCMP MULTIPLE COMPARE @MCMP --- --- 232

020 CMP UNSIGNED COMPARE --- --- !CMP 222

021 MOV MOVE @MOV --- !MOV 249

022 MVN MOVE NOT @MVN --- --- 250

023 BIN BCD-TO-BINARY @BIN --- --- 392

024 BCD BINARY-TO-BCD @BCD --- --- 395

025 ASL ARITHMETIC SHIFT
LEFT

@ASL --- --- 285

026 ASR ARITHMETIC SHIFT
RIGHT

@ASR --- --- 288

027 ROL ROTATE LEFT @ROL --- --- 291

028 ROR ROTATE RIGHT @ROR --- --- 294
1099

List of Instructions by Function Code Appendix B
029 COM COMPLEMENT @COM --- --- 452

034 ANDW LOGICAL AND @ANDW --- --- 439

035 ORW LOGICAL OR @ORW --- --- 442

036 XORW EXCLUSIVE OR @XORW --- --- 445

037 XNRW EXCLUSIVE NOR @XNRW --- --- 448

040 STC SET CARRY @STC --- --- 961

041 CLC CLEAR CARRY @CLC --- --- 961

045 TRSM TRACE MEMORY
SAMPLING

--- --- --- 933

046 MSG DISPLAY MESSAGE @MSG --- --- 912

047 SCH 7-SEGMENT LED
WORD DATA
DISPLAY

@SCH --- --- 914

048 SCTRL 7-SEGMENT LED
CONTROL

@SCTRL --- --- 916

058 BINL DOUBLE BCD-TO-
DOUBLE BINARY

@BINL --- --- 393

059 BCDL DOUBLE BINARY-TO-
BCD

@BCDL --- --- 396

060 CMPL DOUBLE UNSIGNED
COMPARE

--- --- --- 224

062 XFRB MULTIPLE BIT
TRANSFER

@XFRB --- --- 259

063 LINE COLUMN TO LINE @LINE --- --- 418

064 COLM LINE TO COLUMN @COLM --- --- 420

065 SEC HOURS TO SECONDS @SEC --- --- 925

066 HMS SECONDS TO HOURS @HMS --- --- 928

067 BCNT BIT COUNTER @BCNT --- --- 473

068 BCMP UNSIGNED BLOCK
COMPARE

@BCMP --- --- 237

069 APR ARITHMETIC
PROCESS

@APR --- --- 459

070 XFER BLOCK TRANSFER @XFER --- --- 262

071 BSET BLOCK SET @BSET --- --- 264

072 ROOT BCD SQUARE ROOT @ROOT --- --- 456

073 XCHG DATA EXCHANGE @XCHG --- --- 266

074 SLD ONE DIGIT SHIFT
LEFT

@SLD --- --- 304

075 SRD ONE DIGIT SHIFT
RIGHT

@SRD --- --- 305

076 MLPX DATA DECODER @MLPX --- --- 403

077 DMPX DATA ENCODER @DMPX --- --- 407

078 SDEC 7-SEGMENT
DECODER

@SDEC --- --- 773

079 FDIV FLOATING POINT
DIVIDE

@FDIV --- --- 470

080 DIST SINGLE WORD
DISTRIBUTE

@DIST --- --- 269

081 COLL DATA COLLECT @COLL --- --- 271

082 MOVB MOVE BIT @MOVB --- --- 255

083 MOVD MOVE DIGIT @MOVD --- --- 257

084 SFTR REVERSIBLE SHIFT
REGISTER

@SFTR --- --- 278

085 TCMP TABLE COMPARE @TCMP --- --- 235

086 ASC ASCII CONVERT @ASC --- --- 411

087 TTIM ACCUMULATIVE
TIMER

--- --- --- 182

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1100

List of Instructions by Function Code Appendix B
088 ZCP AREA RANGE
COMPARE

--- --- --- 244

090 SEND NETWORK SEND @SEND --- --- 866

091 SBS SUBROUTINE CALL @SBS --- --- 672

092 SBN SUBROUTINE ENTRY --- --- --- 682

093 RET SUBROUTINE
RETURN

--- --- --- 684

094 WDT EXTEND MAXIMUM
CYCLE TIME

@WDT --- --- 962

096 BPRG BLOCK PROGRAM
BEGIN

--- --- --- 979

097 IORF I/O REFRESH @IORF --- --- 770

098 RECV NETWORK RECEIVE @RECV --- --- 872

099 MCRO MACRO @MCRO --- --- 678

114 CPS SIGNED BINARY
COMPARE

--- --- !CPS 227

115 CPSL DOUBLE SIGNED
BINARY COMPARE

--- --- --- 229

116 ZCPL DOUBLE AREA
RANGE COMPARE

--- --- --- 246

160 NEG 2’S COMPLEMENT @NEG --- --- 398

161 NEGL DOUBLE 2’S
COMPLEMENT

@NEGL --- --- 400

162 HEX ASCII TO HEX @HEX --- --- 414

180 FCS FRAME CHECKSUM @FCS --- --- 600

181 SRCH DATA SEARCH @SRCH --- --- 587

182 MAX FIND MAXIMUM @MAX --- --- 591

183 MIN FIND MINIMUM @MIN --- --- 594

184 SUM SUM @SUM --- --- 597

190 PID PID CONTROL --- --- --- 619

191 PIDAT PID CONTROL WITH
AUTOTUNING

--- --- --- 631

194 SCL SCALING @SCL --- --- 656

195 AVG AVERAGE --- --- --- 668

210 DSW DIGITAL SWITCH
INPUT

--- --- --- 776

211 TKY TEN KEY INPUT @TKY --- --- 780

212 HKY HEXADECIMAL KEY
INPUT

--- --- --- 783

213 MTR MATRIX INPUT --- --- --- 787

214 7SEG 7-SEGMENT DISPLAY
OUTPUT

--- --- --- 791

222 IORD INTELLIGENT I/O
READ

@IORD --- --- 795

223 IOWR INTELLIGENT I/O
WRITE

@IOWR --- --- 798

226 DLNK CPU BUS UNIT I/O
REFRESH

@DLNK --- --- 801

235 RXD RECEIVE @RXD --- --- 821

236 TXD TRANSMIT @TXD --- --- 816

237 STUP CHANGE SERIAL
PORT SETUP

@STUP --- --- 842

255 RXDU RECEIVE VIA SERIAL
COMMUNICATIONS
UNIT

@RXDU --- --- 834

256 TXDU TRANSMIT VIA
SERIAL
COMMUNICATIONS
UNIT

@TXDU --- --- 826

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1101

List of Instructions by Function Code Appendix B
260 PMCR PROTOCOL MACRO @PMCR --- --- 807

269 FPD FAILURE POINT
DETECTION

--- --- --- 951

282 CCS SAVE CONDITION
FLAGS

@CCS --- --- 964

283 CCL LOAD CONDITION
FLAGS

@CCL --- --- 966

284 FRMCV CONVERT ADDRESS
FROM CV

@FRMCV --- --- 967

285 TOCV CONVERT ADDRESS
TO CV

@TOCV --- --- 971

286 GETID GET VARIABLE ID @GETID --- --- 1063

300 AND = AND EQUAL --- --- --- 211

300 LD = LOAD EQUAL --- --- --- 211

300 OR = OR EQUAL --- --- --- 211

301 AND =L AND DOUBLE EQUAL --- --- --- 211

301 LD =L LOAD DOUBLE
EQUAL

--- --- --- 211

301 OR =L OR DOUBLE EQUAL --- --- --- 211

302 AND =S AND SIGNED EQUAL --- --- --- 211

302 LD =S LOAD SIGNED EQUAL --- --- --- 211

302 OR =S OR SIGNED EQUAL --- --- --- 211

303 AND =SL AND DOUBLE
SIGNED EQUAL

--- --- --- 211

303 LD =SL LOAD DOUBLE
SIGNED EQUAL

--- --- --- 211

303 OR =SL OR DOUBLE SIGNED
EQUAL

--- --- --- 211

305 AND <> AND NOT EQUAL --- --- --- 211

305 LD <> LOAD NOT EQUAL --- --- --- 211

305 OR <> OR NOT EQUAL --- --- --- 211

306 AND <>L AND DOUBLE NOT
EQUAL

--- --- --- 211

306 LD <>L LOAD DOUBLE NOT
EQUAL

--- --- --- 211

306 OR <>L OR DOUBLE NOT
EQUAL

--- --- --- 211

307 AND <>S AND SIGNED NOT
EQUAL

--- --- --- 211

307 LD <>S LOAD SIGNED NOT
EQUAL

--- --- --- 211

307 OR <>S OR SIGNED NOT
EQUAL

--- --- --- 211

308 AND <>SL AND DOUBLE
SIGNED NOT EQUAL

--- --- --- 211

308 LD <>SL LOAD DOUBLE
SIGNED NOT EQUAL

--- --- --- 211

308 OR <>SL OR DOUBLE SIGNED
NOT EQUAL

--- --- --- 211

310 AND < AND LESS THAN --- --- --- 211

310 LD < LOAD LESS THAN --- --- --- 211

310 OR < OR LESS THAN --- --- --- 211

311 AND <L AND DOUBLE LESS
THAN

--- --- --- 211

311 LD <L LOAD DOUBLE LESS
THAN

--- --- --- 211

311 OR <L OR DOUBLE LESS
THAN

--- --- --- 211

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1102

List of Instructions by Function Code Appendix B
312 AND <S AND SIGNED LESS
THAN

--- --- --- 211

312 LD <S LOAD SIGNED LESS
THAN

--- --- --- 211

312 OR <S OR SIGNED LESS
THAN

--- --- --- 211

313 AND <SL AND DOUBLE
SIGNED LESS THAN

--- --- --- 211

313 LD <SL LOAD DOUBLE
SIGNED LESS THAN

--- --- --- 211

313 OR <SL OR DOUBLE SIGNED
LESS THAN

--- --- --- 211

315 AND <= AND LESS THAN OR
EQUAL

--- --- --- 211

315 LD <= LOAD LESS THAN OR
EQUAL

--- --- --- 211

315 OR <= OR LESS THAN OR
EQUAL

--- --- --- 211

316 AND <=L AND DOUBLE LESS
THAN OR EQUAL

--- --- --- 211

316 LD <=L LOAD DOUBLE LESS
THAN OR EQUAL

--- --- --- 211

316 OR <=L OR DOUBLE LESS
THAN OR EQUAL

--- --- --- 211

317 AND <=S AND SIGNED LESS
THAN OR EQUAL

--- --- --- 211

317 LD <=S LOAD SIGNED LESS
THAN OR EQUAL

--- --- --- 211

317 OR <=S OR SIGNED LESS
THAN OR EQUAL

--- --- --- 211

318 AND <=SL AND DOUBLE
SIGNED LESS THAN
OR EQUAL

--- --- --- 211

318 LD <=SL LOAD DOUBLE
SIGNED LESS THAN
OR EQUAL

--- --- --- 211

318 OR <=SL OR DOUBLE SIGNED
LESS THAN OR
EQUAL

--- --- --- 211

320 AND > AND GREATER THAN --- --- --- 211

320 LD > LOAD GREATER
THAN

--- --- --- 211

320 OR > OR GREATER THAN --- --- --- 211

321 AND >L AND DOUBLE
GREATER THAN

--- --- --- 211

321 LD >L LOAD DOUBLE
GREATER THAN

--- --- --- 211

321 OR >L OR DOUBLE
GREATER THAN

--- --- --- 211

322 AND >S AND SIGNED
GREATER THAN

--- --- --- 211

322 LD >S LOAD SIGNED
GREATER THAN

--- --- --- 211

322 OR >S OR SIGNED
GREATER THAN

--- --- --- 211

323 AND >SL AND DOUBLE
SIGNED GREATER
THAN

--- --- --- 211

323 LD >SL LOAD DOUBLE
SIGNED GREATER
THAN

--- --- --- 211

323 OR >SL OR DOUBLE SIGNED
GREATER THAN

--- --- --- 211

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1103

List of Instructions by Function Code Appendix B
325 AND >= AND GREATER THAN
OR EQUAL

--- --- --- 211

325 LD >= LOAD GREATER
THAN OR EQUAL

--- --- --- 211

325 OR >= OR GREATER THAN
OR EQUAL

--- --- --- 211

326 AND >=L AND DOUBLE
GREATER THAN OR
EQUAL

--- --- --- 211

326 LD >=L LOAD DOUBLE
GREATER THAN OR
EQUAL

--- --- --- 211

326 OR >=L OR DOUBLE
GREATER THAN OR
EQUAL

--- --- --- 211

327 AND >=S AND SIGNED
GREATER THAN OR
EQUAL

--- --- --- 211

327 LD >=S LOAD SIGNED
GREATER THAN OR
EQUAL

--- --- --- 211

327 OR >=S OR SIGNED
GREATER THAN OR
EQUAL

--- --- --- 211

328 AND >=SL AND DOUBLE
SIGNED GREATER
THAN OR EQUAL

--- --- --- 211

328 LD >=SL LOAD DOUBLE
SIGNED GREATER
THAN OR EQUAL

--- --- --- 211

328 OR >=SL OR DOUBLE SIGNED
GREATER THAN OR
EQUAL

--- --- --- 211

329 AND =F AND FLOATING
EQUAL

--- --- --- 515

329 LD =F LOAD FLOATING
EQUAL

--- --- --- 515

329 OR =F OR FLOATING EQUAL --- --- --- 515

330 AND <>F AND FLOATING NOT
EQUAL

--- --- --- 515

330 LD <>F LOAD FLOATING NOT
EQUAL

--- --- --- 515

330 OR <>F OR FLOATING NOT
EQUAL

--- --- --- 515

331 AND <F AND FLOATING LESS
THAN

--- --- --- 515

331 LD <F LOAD FLOATING
LESS THAN

--- --- --- 515

331 OR <F OR FLOATING LESS
THAN

--- --- --- 515

332 AND <=F AND FLOATING LESS
THAN OR EQUAL

--- --- --- 515

332 LD <=F LOAD FLOATING
LESS THAN OR
EQUAL

--- --- --- 515

332 OR <=F OR FLOATING LESS
THAN OR EQUAL

--- --- --- 515

333 AND >F AND FLOATING
GREATER THAN

--- --- --- 515

333 LD >F LOAD FLOATING
GREATER THAN

--- --- --- 515

333 OR >F OR FLOATING
GREATER THAN

--- --- --- 515

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1104

List of Instructions by Function Code Appendix B
334 AND >=F AND FLOATING
GREATER THAN OR
EQUAL

--- --- --- 515

334 LD >=F LOAD FLOATING
GREATER THAN OR
EQUAL

--- --- --- 515

334 OR >=F OR FLOATING
GREATER THAN OR
EQUAL

--- --- --- 515

335 AND =D AND DOUBLE
FLOATING EQUAL

--- --- --- 566

335 LD =D LOAD DOUBLE
FLOATING EQUAL

--- --- --- 566

335 OR =D OR DOUBLE
FLOATING EQUAL

--- --- --- 566

336 AND <>D AND DOUBLE
FLOATING NOT
EQUAL

--- --- --- 566

336 LD <>D LOAD DOUBLE
FLOATING NOT
EQUAL

--- --- --- 566

336 OR <>D OR DOUBLE
FLOATING NOT
EQUAL

--- --- --- 566

337 AND <D AND DOUBLE
FLOATING LESS
THAN

--- --- --- 566

337 LD <D LOAD DOUBLE
FLOATING LESS
THAN

--- --- --- 566

337 OR <D OR DOUBLE
FLOATING LESS
THAN

--- --- --- 566

338 AND <=D AND DOUBLE
FLOATING LESS
THAN OR EQUAL

--- --- --- 566

338 LD <=D LOAD DOUBLE
FLOATING LESS
THAN OR EQUAL

--- --- --- 566

338 OR <=D OR DOUBLE
FLOATING LESS
THAN OR EQUAL

--- --- --- 566

339 AND >D AND DOUBLE
FLOATING GREATER
THAN

--- --- --- 566

339 LD >D LOAD DOUBLE
FLOATING GREATER
THAN

--- --- --- 566

339 OR >D OR DOUBLE
FLOATING GREATER
THAN

--- --- --- 566

340 AND >=D AND DOUBLE
FLOATING GREATER
THAN OR EQUAL

--- --- --- 566

340 LD >=D LOAD DOUBLE
FLOATING GREATER
THAN OR EQUAL

--- --- --- 566

340 OR >=D OR DOUBLE
FLOATING GREATER
THAN OR EQUAL

--- --- --- 566

341 AND = DT AND TIME EQUAL --- --- --- 217

341 LD = DT LOAD TIME EQUAL --- --- --- 217

341 OR = DT OR TIME EQUAL --- --- --- 217

342 AND <> DT AND TIME NOT
EQUAL

--- --- --- 217

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1105

List of Instructions by Function Code Appendix B
342 LD <> DT LOAD TIME NOT
EQUAL

--- --- --- 217

342 OR <> DT OR TIME NOT EQUAL --- --- --- 217

343 AND < DT AND TIME LESS
THAN

--- --- --- 217

343 LD < DT LOAD TIME LESS
THAN

--- --- --- 217

343 OR < DT OR TIME LESS THAN --- --- --- 217

344 AND <= DT AND TIME LESS
THAN OR EQUAL

--- --- --- 217

344 LD <= DT LD TIME LESS THAN
OR EQUAL

--- --- --- 217

344 OR <= DT OR TIME LESS THAN
OR EQUAL

--- --- --- 217

345 AND > DT AND TIME GREATER
THAN

--- --- --- 217

345 LD > DT LOAD TIME GREATER
THAN

--- --- --- 217

345 OR > DT OR TIME GREATER
THAN

--- --- --- 217

346 AND >= DT AND TIME GREATER
THAN OR EQUAL

--- --- --- 217

346 LD >= DT LOAD TIME GREATER
THAN OR EQUAL

--- --- --- 217

346 OR >= DT OR TIME GREATER
THAN OR EQUAL

--- --- --- 217

350 AND TST AND BIT TEST --- --- --- 110

350 LD TST LOAD BIT TEST --- --- --- 110

350 OR TST OR BIT TEST --- --- --- 110

351 AND TSTN AND BIT TEST NOT --- --- --- 110

351 LD TSTN LOAD BIT TEST NOT --- --- --- 110

351 OR TSTN OR BIT TEST NOT --- --- --- 110

400 + SIGNED BINARY ADD
WITHOUT CARRY

@+ --- --- 340

401 +L DOUBLE SIGNED
BINARY ADD
WITHOUT CARRY

@+L --- --- 342

402 +C SIGNED BINARY ADD
WITH CARRY

@+C --- --- 344

403 +CL DOUBLE SIGNED
BINARY ADD WITH
CARRY

@+CL --- --- 346

404 +B BCD ADD WITHOUT
CARRY

@+B --- --- 348

405 +BL DOUBLE BCD ADD
WITHOUT CARRY

@+BL --- --- 349

406 +BC BCD ADD WITH
CARRY

@+BC --- --- 351

407 +BCL DOUBLE BCD ADD
WITH CARRY

@+BCL --- --- 352

410 – SIGNED BINARY
SUBTRACT WITHOUT
CARRY

@– --- --- 354

411 –L DOUBLE SIGNED
BINARY SUBTRACT
WITHOUT CARRY

@–L --- --- 356

412 –C SIGNED BINARY
SUBTRACT WITH
CARRY

@–C --- --- 360

413 –CL DOUBLE SIGNED
BINARY SUBTRACT
WITH CARRY

@–CL --- --- 362

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1106

List of Instructions by Function Code Appendix B
414 –B BCD SUBTRACT
WITHOUT CARRY

@–B --- --- 364

415 –BL DOUBLE BCD
SUBTRACT WITHOUT
CARRY

@–BL --- --- 366

416 –BC BCD SUBTRACT
WITH CARRY

@–BC --- --- 369

417 –BCL DOUBLE BCD
SUBTRACT WITH
CARRY

@–BCL --- --- 370

420 * SIGNED BINARY
MULTIPLY

@* --- --- 372

421 *L DOUBLE SIGNED
BINARY MULTIPLY

@*L --- --- 374

422 *U UNSIGNED BINARY
MULTIPLY

@*U --- --- 375

423 *UL DOUBLE UNSIGNED
BINARY MULTIPLY

@*UL --- --- 377

424 *B BCD MULTIPLY @*B --- --- 378

425 *BL DOUBLE BCD
MULTIPLY

@*BL --- --- 380

430 / SIGNED BINARY
DIVIDE

@/ --- --- 381

431 /L DOUBLE SIGNED
BINARY DIVIDE

@/L --- --- 383

432 /U UNSIGNED BINARY
DIVIDE

@/U --- --- 385

433 /UL DOUBLE UNSIGNED
BINARY DIVIDE

@/UL --- --- 387

434 /B BCD DIVIDE @/B --- --- 388

435 /BL DOUBLE BCD DIVIDE @/BL --- --- 390

448 FSTR FLOATING POINT TO
ASCII

@FSTR --- --- 519

449 FVAL ASCII TO FLOATING
POINT

@FVAL --- --- 524

450 FIX FLOATING TO 16-BIT @FIX --- --- 533

451 FIXL FLOATING TO 32-BIT @FIXL --- --- 535

452 FLT 16-BIT TO FLOATING @FLT --- --- 536

453 FLTL 32-BIT TO FLOATING @FLTL --- --- 537

454 +F FLOATING-POINT
ADD

@+F --- --- 487

455 –F FLOATING-POINT
SUBTRACT

@–F --- --- 489

456 *F FLOATING-POINT
MULTIPLY

@*F --- --- 491

457 /F FLOATING-POINT
DIVIDE

@/F --- --- 493

458 RAD DEGREES TO
RADIANS

@RAD --- --- 495

459 DEG RADIANS-TO
DEGREES

@DEG --- --- 496

460 SIN SINE @SIN --- --- 498

461 COS COSINE @COS --- --- 499

462 TAN TANGENT @TAN --- --- 501

463 ASIN ARC SINE @ASIN --- --- 503

464 ACOS ARC COSINE @ACOS --- --- 505

465 ATAN ARC TANGENT @ATAN --- --- 506

466 SQRT SQUARE ROOT @SQRT --- --- 508

467 EXP EXPONENT @EXP --- --- 510

468 LOG LOGARITHM @LOG --- --- 512

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1107

List of Instructions by Function Code Appendix B
470 BINS SIGNED BCD-TO-
BINARY

@BINS --- --- 422

471 BCDS SIGNED BINARY-TO-
BCD

@BCDS --- --- 428

472 BISL DOUBLE SIGNED
BCD-TO-BINARY

@BISL --- --- 425

473 BDSL DOUBLE SIGNED
BINARY-TO-BCD

@BDSL --- --- 430

474 GRY GRAY CODE
CONVERSION

@GRY --- --- 433

486 SCL2 SCALING 2 @SCL2 --- --- 660

487 SCL3 SCALING 3 @SCL3 --- --- 664

490 CMND DELIVER COMMAND @CMND --- --- 878

498 MOVL DOUBLE MOVE @MOVL --- --- 252

499 MVNL DOUBLE MOVE NOT @MVNL --- --- 253

502 BCMP2 EXPANDED BLOCK
COMPARE

@BCMP2 --- --- 240

510 CJP CONDITIONAL JUMP --- --- --- 158

511 CJPN CONDITIONAL JUMP --- --- --- 158

512 FOR FOR-NEXT LOOPS --- --- --- 164

513 NEXT FOR-NEXT LOOPS --- --- --- 164

514 BREAK BREAK LOOP --- --- --- 167

515 JMP0 MULTIPLE JUMP --- --- --- 162

516 JME0 MULTIPLE JUMP END --- --- --- 162

517 MILH MULTI-INTERLOCK
DIFFERENTIATION
HOLD

--- --- --- 140

518 MILR MULTI-INTERLOCK
DIFFERENTIATIONRE
LEASE

--- --- --- 140

519 MILC MULTI-INTERLOCK
CLEAR

--- --- --- 140

520 NOT NOT --- --- --- 108

521 UP CONDITION ON --- --- --- 109

522 DOWN CONDITION OFF --- --- --- 109

530 SETA MULTIPLE BIT SET @SETA --- --- 124

531 RSTA MULTIPLE BIT RESET @RSTA --- --- 124

532 SETB SINGLE BIT SET @SETB --- !SETB 127

533 RSTB SINGLE BIT RESET @RSTB --- !RSTB 127

534 OUTB SINGLE BIT OUTPUT @OUTB --- !OUTB 130

540 TMHH ONE-MS TIMER --- --- --- 179

542 TIML LONG TIMER --- --- --- 185

543 MTIM MULTI-OUTPUT
TIMER

--- --- --- 188

545 CNR RESET TIMER/
COUNTER

@CNR --- --- 201

546 CNTX COUNTER --- --- --- 194

547 CNRX RESET TIMER/
COUNTER

--- --- --- 201

548 CNTRX REVERSIBLE
COUNTER

--- --- --- 197

550 TIMX TIMER --- --- --- 171

551 TIMHX HIGH-SPEED TIMER --- --- --- 175

552 TMHHX ONE-MS TIMER --- --- --- 179

553 TIMLX LONG TIMER --- --- --- 185

554 MTIMX MULTI-OUTPUT
TIMER

--- --- --- 188

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1108

List of Instructions by Function Code Appendix B
555 TTIMX ACCUMULATIVE
TIMER

--- --- --- 182

560 MOVR MOVE TO REGISTER @MOVR --- --- 272

561 MOVRW MOVE TIMER/
COUNTER PV TO
REGISTER

@MOVRW --- --- 274

562 XCGL DOUBLE DATA
EXCHANGE

@XCGL --- --- 267

565 XFERC BLOCK TRANSFER @XFERC --- --- 1050

566 DISTC SINGLE WORD
DISTRIBUTE

@DISTC --- --- 1052

567 COLLC DATA COLLECT @COLLC --- --- 1055

568 MOVBC MOVE BIT @MOVBC --- --- 1060

570 ASLL DOUBLE SHIFT LEFT @ASLL --- --- 286

571 ASRL DOUBLE SHIFT
RIGHT

@ASRL --- --- 289

572 ROLL DOUBLE ROTATE
LEFT

@ROLL --- --- 292

573 RORL DOUBLE ROTATE
RIGHT

@RORL --- --- 296

574 RLNC ROTATE LEFT
WITHOUT CARRY

@RLNC --- --- 297

575 RRNC ROTATE RIGHT
WITHOUT CARRY

@RRNC --- --- 301

576 RLNL DOUBLE ROTATE
LEFT WITHOUT
CARRY

@RLNL --- --- 299

577 RRNL DOUBLE ROTATE
RIGHT WITHOUT
CARRY

@RRNL --- --- 302

578 NSFL SHIFT N-BIT DATA
LEFT

@NSFL --- --- 307

579 NSFR SHIFT N-BIT DATA
RIGHT

@NSFR --- --- 309

580 NASL SHIFT N-BITS LEFT @NASL --- --- 311

581 NASR SHIFT N-BITS RIGHT @NASR --- --- 316

582 NSLL DOUBLE SHIFT
N-BITS LEFT

@NSLL --- --- 313

583 NSRL DOUBLE SHIFT
N-BITS RIGHT

@NSRL --- --- 319

590 ++ INCREMENT BINARY @++ --- --- 323

591 ++L DOUBLE INCREMENT
BINARY

@++L --- --- 325

592 – – DECREMENT BINARY @– – --- --- 327

593 – –L DOUBLE
DECREMENT BINARY

@– –L --- --- 329

594 ++B INCREMENT BCD @++B --- --- 331

595 ++BL DOUBLE INCREMENT
BCD

@++BL --- --- 333

596 – –B DECREMENT BCD @– –B --- --- 335

597 – –BL DOUBLE
DECREMENT BCD

@– –BL --- --- 337

600 SIGN 16-BIT TO 32-BIT
SIGNED BINARY

@SIGN --- --- 401

610 ANDL DOUBLE LOGICAL
AND

@ANDL --- --- 440

611 ORWL DOUBLE LOGICAL OR @ORWL --- --- 443

612 XORL DOUBLE EXCLUSIVE
OR

@XORL --- --- 447

613 XNRL DOUBLE EXCLUSIVE
NOR

@XNRL --- --- 450

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1109

List of Instructions by Function Code Appendix B
614 COML DOUBLE
COMPLEMENT

@COML --- --- 453

620 ROTB BINARY ROOT @ROTB --- --- 454

621 BCNTC BIT COUNTER @BCNTC --- --- 1062

630 SSET SET STACK @SSET --- --- 570

631 DIM DIMENSION RECORD
TABLE

@DIM --- --- 581

632 PUSH PUSH ONTO STACK @PUSH --- --- 573

633 FIFO FIRST IN FIRST OUT @FIFO --- --- 576

634 LIFO LAST IN FIRST OUT @LIFO --- --- 578

635 SETR SET RECORD
LOCATION

@SETR --- --- 583

636 GETR GET RECORD
NUMBER

@GETR --- --- 585

637 SWAP SWAP BYTES @SWAP --- --- 589

638 SNUM STACK SIZE READ @SNUM --- --- 603

639 SREAD STACK DATA READ @SREAD --- --- 606

640 SWRIT STACK DATA WRITE @SWRIT --- --- 609

641 SINS STACK DATA INSERT @SINS --- --- 612

642 SDEL STACK DATA DELETE @SDEL --- --- 615

650 LEN$ STRING LENGTH @LEN$ --- --- 1023

652 LEFT$ GET STRING LEFT @LEFT$ --- --- 1014

653 RGHT$ GET STRING RIGHT @RGHT$ --- --- 1017

654 MID$ GET STRING MIDDLE @MID$ --- --- 1019

656 +$ CONCATENATE
STRING

@+$ --- --- 1012

657 INS$ INS$ @INS$ --- --- 1033

658 DEL$ DELETE STRING @DEL$ --- --- 1027

660 FIND$ FIND IN STRING @FIND$ --- --- 1021

661 RPLC$ REPLACE IN STRING @RPLC$ --- --- 1025

664 MOV$ MOV STRING @MOV$ --- --- 1010

665 XCHG$ EXCHANGE STRING @XCHG$ --- --- 1030

666 CLR$ CLEAR STRING @CLR$ --- --- 1031

670 AND =$ AND STRING EQUALS --- --- --- 1036

670 LD =$ LOAD STRING
EQUALS

--- --- --- 1036

670 OR =$ OR STRING EQUALS --- --- --- 1036

671 AND <>$ AND STRING NOT
EQUAL

--- --- --- 1036

671 LD <>$ LOAD STRING NOT
EQUAL

--- --- --- 1036

671 OR <>$ OR STRING NOT
EQUAL

--- --- --- 1036

672 AND <$ AND STRING LESS
THAN

--- --- --- 1036

672 LD <$ LOAD STRING LESS
THAN

--- --- --- 1036

672 OR <$ OR STRING LESS
THAN

--- --- --- 1036

673 AND <=$ AND STRING LESS
THAN OR EQUALS

--- --- --- 1036

673 LD <=$ LOAD STRING LESS
THAN OR EQUAL

--- --- --- 1036

673 OR <=$ OR STRING LESS
THAN OR EQUALS

--- --- --- 1036

674 AND >$ AND STRING
GREATER THAN

--- --- --- 1036

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1110

List of Instructions by Function Code Appendix B
674 LD >$ LOAD STRING
GREATER THAN

--- --- --- 1036

674 OR >$ OR STRING GREATER
THAN

--- --- --- 1036

675 AND >=$ AND STRING
GREATER THAN OR
EQUALS

--- --- --- 1036

675 LD >=$ LOAD STRING
GREATER THAN OR
EQUALS

--- --- --- 1036

675 OR >=$ OR STRING GREATER
THAN OR EQUALS

--- --- --- 1036

680 LMT LIMIT CONTROL @LMT --- --- 641

681 BAND DEAD BAND
CONTROL

@BAND --- --- 643

682 ZONE DEAD ZONE
CONTROL

@ZONE --- --- 646

685 TPO TIME-
PROPORTIONAL
OUTPUT

--- --- --- 648

690 MSKS SET INTERRUPT
MASK

@MSKS --- --- 696

691 CLI CLEAR INTERRUPT @CLI --- --- 703

692 MSKR READ INTERRUPT
MASK

@MSKR --- --- 700

693 DI DISABLE
INTERRUPTS

@DI --- --- 706

694 EI ENABLE
INTERRUPTS

--- --- --- 707

720 EXPLT EXPLICIT MESSAGE
SEND

@EXPLT --- --- 885

721 EGATR EXPLICIT GET
ATTRIBUTE

@EGATR --- --- 892

722 ESATR EXPLICIT SET
ATTRIBUTE

@ESATR --- --- 899

723 ECHRD EXPLICIT WORD
READ

@ECHRD --- --- 904

724 ECHWR EXPLICIT WORD
CLEAR

@ECHWR --- --- 908

730 CADD CALENDAR ADD @CADD --- --- 919

731 CSUB CALENDAR
SUBTRACT

@CSUB --- --- 922

735 DATE CLOCK ADJUSTMENT @DATE --- --- 930

750 GSBS GLOBAL
SUBROUTINE CALL

@GSBS --- --- 685

751 GSBN GLOBAL
SUBROUTINE ENTRY

--- --- --- 692

752 GRET GLOBAL
SUBROUTINE
RETURN

--- --- --- 695

801 BEND BLOCK PROGRAM
END

--- --- --- 979

802 IF CONDITIONAL
BRANCHING BLOCK

--- --- --- 984

802 IF CONDITIONAL
BRANCHING BLOCK

--- --- --- 984

802 IF NOT CONDITIONAL
BRANCHING BLOCK
NOT

--- --- --- 984

803 ELSE ELSE --- --- --- 984

804 IEND IF END --- --- --- 984

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1111

List of Instructions by Function Code Appendix B
805 WAIT ONE CYCLE AND
WAIT

--- --- --- 991

805 WAIT ONE CYCLE AND
WAIT

--- --- --- 991

805 WAIT NOT ONE CYCLE AND
WAIT NOT

--- --- --- 991

806 EXIT CONDITIONAL BLOCK
EXIT

--- --- --- 988

806 EXIT CONDITIONAL BLOCK
EXIT

--- --- --- 988

806 EXIT NOT CONDITIONAL BLOCK
EXIT NOT

--- --- --- 988

809 LOOP LOOP --- --- --- 1004

810 LEND LOOP END --- --- --- 1004

810 LEND LOOP END --- --- --- 1004

810 LEND NOT LOOP END NOT --- --- --- 1004

811 BPPS BLOCK PROGRAM
PAUSE

--- --- --- 979

812 BPRS BLOCK PROGRAM
RESTART

--- --- --- 982

813 TIMW TIMER WAIT --- --- --- 995

814 CNTW COUNTER WAIT --- --- --- 998

815 TMHW HIGH-SPEED TIMER
WAIT

--- --- --- 1001

816 TIMWX TIMER WAIT --- --- --- 995

817 TMHWX HIGH-SPEED TIMER
WAIT

--- --- --- 1001

818 CNTWX COUNTER WAIT --- --- --- 998

820 TKON TASK ON @TKON --- --- 1041

821 TKOF TASK OFF @TKOF --- --- 1044

840 PWR EXPONENTIAL
POWER

@PWR --- --- 514

841 FIXD DOUBLE FLOATING
TO 16-BIT BINARY

@FIXD --- --- 533

842 FIXLD DOUBLE FLOATING
TO 32-BIT BINARY

@FIXLD --- --- 535

843 DBL 16-BIT BINARY TO
DOUBLE FLOATING

@DBL --- --- 536

844 DBLL 32-BIT BINARY TO
DOUBLE FLOATING

@DBLL --- --- 537

845 +D DOUBLE FLOATING-
POINT ADD

@+D --- --- 539

846 −D DOUBLE FLOATING-
POINT SUBTRACT

@−D --- --- 541

847 *D DOUBLE FLOATING-
POINT MULTIPLY

@*D --- --- 543

848 /D DOUBLE FLOATING-
POINT DIVIDE

@/D --- --- 545

849 RADD DOUBLE DEGREES
TO RADIANS

@RADD --- --- 547

850 DEGD DOUBLE RADIANS TO
DEGREES

@RADD --- --- 548

851 SIND DOUBLE SINE @SIND --- --- 550

852 COSD DOUBLE COSINE @COSD --- --- 551

853 TAND DOUBLE TANGENT @TAND --- --- 553

854 ASIND DOUBLE ARC SINE @ASIND --- --- 554

855 ACOSD DOUBLE ARC
COSINE

@ACOSD --- --- 556

856 ATAND DOUBLE ARC
TANGENT

@ATAND --- --- 558

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1112

List of Instructions by Function Code Appendix B
857 SQRTD DOUBLE SQUARE
ROOT

@SQRTD --- --- 560

858 EXPD DOUBLE EXPONENT @EXPD --- --- 561

859 LOGD DOUBLE LOGARITHM @LOGD --- --- 563

860 PWRD DOUBLE
EXPONENTIAL
POWER

@PWRD --- --- 535

880 INI MODE CONTROL @INI --- --- 709

881 PRV HIGH-SPEED
COUNTER PV READ

@PRV --- --- 713

882 CTBL COMPARISON TABLE
LOAD

@CTBL --- --- 722

883 PRV2 COUNTER
FREQUENCY
CONVERT

@PRV2 --- --- 719

885 SPED SPEED OUTPUT @SPED --- --- 726

886 PULS SET PULSES @PULS --- --- 731

887 PLS2 PULSE OUTPUT @PLS2 --- --- 734

888 ACC ACCELERATION
CONTROL

@ACC --- --- 741

889 ORG ORIGIN SEARCH @ORG --- --- 747

891 PWN PULSE WITH
VARIABLE DUTY
FACTOR

@PWN --- --- 751

Function code Mnemonic Instruction Upward
Differentiation

Downward
Differentiation

Immediate
Refreshing

Specification

Page
1113

List of Instructions by Function Code Appendix B
1114

Appendix C
Alphabetical List of Instructions by Mnemonic

Symbols

Mnemonic Function code Instruction Page

7SEG 214 7-SEGMENT DISPLAY OUTPUT 791

+ 400 SIGNED BINARY ADD WITHOUT CARRY 340

+$ 656 CONCATENATE STRING 1012

++ 590 INCREMENT BINARY 323

++B 594 INCREMENT BCD 331

++BL 595 DOUBLE INCREMENT BCD 333

++L 591 DOUBLE INCREMENT BINARY 325

+B 404 BCD ADD WITHOUT CARRY 348

+BC 406 BCD ADD WITH CARRY 351

+BCL 407 DOUBLE BCD ADD WITH CARRY 352

+BL 405 DOUBLE BCD ADD WITHOUT CARRY 349

+C 402 SIGNED BINARY ADD WITH CARRY 344

+CL 403 DOUBLE SIGNED BINARY ADD WITH CARRY 346

+D 845 DOUBLE FLOATING-POINT ADD 539

+F 454 FLOATING-POINT ADD 487

+L 401 DOUBLE SIGNED BINARY ADD WITHOUT CARRY 342

– 410 SIGNED BINARY SUBTRACT WITHOUT CARRY 354

– – 592 DECREMENT BINARY 327

– –B 596 DECREMENT BCD 335

– –BL 597 DOUBLE DECREMENT BCD 337

– –L 593 DOUBLE DECREMENT BINARY 329

–B 414 BCD SUBTRACT WITHOUT CARRY 364

–BC 416 BCD SUBTRACT WITH CARRY 369

–BCL 417 DOUBLE BCD SUBTRACT WITH CARRY 370

–BL 415 DOUBLE BCD SUBTRACT WITHOUT CARRY 366

–C 412 SIGNED BINARY SUBTRACT WITH CARRY 360

–CL 413 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY 362

−D 846 DOUBLE FLOATING-POINT SUBTRACT 541

–F 455 FLOATING-POINT SUBTRACT 489

* 420 SIGNED BINARY MULTIPLY 372

*B 424 BCD MULTIPLY 378

*BL 425 DOUBLE BCD MULTIPLY 380

*D 847 DOUBLE FLOATING-POINT MULTIPLY 543

*F 456 FLOATING-POINT MULTIPLY 491

*L 421 DOUBLE SIGNED BINARY MULTIPLY 374

*U 422 UNSIGNED BINARY MULTIPLY 375

*UL 423 DOUBLE UNSIGNED BINARY MULTIPLY 377

–L 411 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY 356

/ 430 SIGNED BINARY DIVIDE 381

/B 434 BCD DIVIDE 388

/BL 435 DOUBLE BCD DIVIDE 390

/D 848 DOUBLE FLOATING-POINT DIVIDE 545
1115

Alphabetical List of Instructions by Mnemonic Appendix C
A

/F 457 FLOATING-POINT DIVIDE 493

/L 431 DOUBLE SIGNED BINARY DIVIDE 383

/U 432 UNSIGNED BINARY DIVIDE 385

/UL 433 DOUBLE UNSIGNED BINARY DIVIDE 387

Mnemonic Function code Instruction Page

ACC 888 ACCELERATION CONTROL 741

ACOS 464 ARC COSINE 505

ACOSD 855 DOUBLE ARC COSINE 558

AND --- AND 93

AND < 310 AND LESS THAN 211

AND <$ 672 AND STRING LESS THAN 1036

AND <> 305 AND NOT EQUAL 211

AND <>$ 671 AND STRING NOT EQUAL 1036

AND <>D 336 AND DOUBLE FLOATING NOT EQUAL 566

AND <> DT 342 AND TIME NOT EQUAL 217

AND <>F 330 AND FLOATING NOT EQUAL 515

AND <>L 306 AND DOUBLE NOT EQUAL 211

AND <>S 307 AND SIGNED NOT EQUAL 211

AND <>SL 308 AND DOUBLE SIGNED NOT EQUAL 211

AND <D 337 AND DOUBLE FLOATING LESS THAN 566

AND <DT 343 AND TIME LESS THAN 217

AND <F 331 AND FLOATING LESS THAN 515

AND <L 311 AND DOUBLE LESS THAN 211

AND <S 312 AND SIGNED LESS THAN 211

AND <SL 313 AND DOUBLE SIGNED LESS THAN 211

AND = 300 AND EQUAL 211

AND =$ 670 AND STRING EQUALS 1036

AND =D 335 AND DOUBLE FLOATING EQUAL 566

AND =DT 341 AND TIME EQUAL 217

AND =F 329 AND FLOATING EQUAL 515

AND =L 301 AND DOUBLE EQUAL 211

AND =S 302 AND SIGNED EQUAL 211

AND =SL 303 AND DOUBLE SIGNED EQUAL 211

AND > 320 AND GREATER THAN 211

AND >$ 674 AND STRING GREATER THAN 1036

AND >D 339 AND DOUBLE FLOATING GREATER THAN 566

AND >DT 345 AND TIME GREATER THAN 217

AND >F 333 AND FLOATING GREATER THAN 515

AND >L 321 AND DOUBLE GREATER THAN 211

AND >S 322 AND SIGNED GREATER THAN 211

AND >SL 323 AND DOUBLE SIGNED GREATER THAN 211

AND LD --- AND LOAD 100

AND NOT --- AND NOT 95

AND TST 350 AND BIT TEST 110

AND TSTN 351 AND BIT TEST 110

AND <= 315 AND LESS THAN OR EQUAL 211

AND <=$ 673 AND STRING LESS THAN OR EQUAL 1036

Mnemonic Function code Instruction Page
1116

Alphabetical List of Instructions by Mnemonic Appendix C
B

AND <=D 338 AND DOUBLE FLOATING LESS THAN OR EQUAL 566

AND <=DT 344 AND TIME LESS THAN OR EQUAL 217

AND <=F 332 AND FLOATING LESS THAN OR EQUAL 515

AND <=L 316 AND DOUBLE LESS THAN OR EQUAL 211

AND <=S 317 AND SIGNED LESS THAN OR EQUAL 211

AND <=SL 318 AND DOUBLE SIGNED LESS THAN OR EQUAL 211

AND >= 325 AND GREATER THAN OR EQUAL 211

AND >=$ 675 AND STRING GREATER THAN OR EQUALS 1036

AND >=D 340 AND DOUBLE FLOATING GREATER THAN OR EQUAL 566

AND >=DT 346 AND TIME GREATER THAN OR EQUAL 217

AND >=F 334 AND FLOATING GREATER THAN OR EQUAL 211

AND >=L 326 AND DOUBLE GREATER THAN OR EQUAL 211

AND >=S 327 AND SIGNED GREATER THAN OR EQUAL 211

AND >=SL 328 AND DOUBLE SIGNED GREATER THAN OR EQUAL 211

ANDL 610 DOUBLE LOGICAL AND 440

ANDW 034 LOGICAL AND 439

APR 069 ARITHMETIC PROCESS 459

ASC 086 ASCII CONVERT 411

ASFT 017 ASYNCHRONOUS SHIFT REGISTER 281

ASIN 463 ARC SINE 503

ASIND 854 DOUBLE ARC SINE 554

ASL 025 ARITHMETIC SHIFT LEFT 285

ASLL 570 DOUBLE SHIFT LEFT 286

ASR 026 ARITHMETIC SHIFT RIGHT 288

ASRL 571 DOUBLE SHIFT RIGHT 289

ATAN 465 ARC TANGENT 506

ATAND 856 DOUBLE ARC TANGENT 558

AVG 195 AVERAGE 668

Mnemonic Function code Instruction Page

BAND 681 DEAD BAND CONTROL 643

BCD 024 BINARY-TO-BCD 395

BCDL 059 DOUBLE BINARY-TO-BCD 396

BCDS 471 SIGNED BINARY-TO-BCD 428

BCMP 068 UNSIGNED BLOCK COMPARE 237

BCMP2 502 EXPANDED BLOCK COMPARE 240

BCNT 067 BIT COUNTER 473

BCNTC 621 BIT COUNTER 1062

BDSL 473 DOUBLE SIGNED BINARY-TO-BCD 430

BEND 801 BLOCK PROGRAM END 979

BIN 023 BCD-TO-BINARY 392

BINL 058 DOUBLE BCD-TO-DOUBLE BINARY 393

BINS 470 SIGNED BCD-TO-BINARY 422

BISL 472 DOUBLE SIGNED BCD-TO-BINARY 425

BPPS 811 BLOCK PROGRAM PAUSE 979

BPRG 096 BLOCK PROGRAM BEGIN 979

BPRS 812 BLOCK PROGRAM RESTART 982

Mnemonic Function code Instruction Page
1117

Alphabetical List of Instructions by Mnemonic Appendix C
C

D

BREAK 514 BREAK LOOP 167

BSET 071 BLOCK SET 264

Mnemonic Function code Instruction Page

CADD 730 CALENDAR ADD 919

CCL 283 LOAD CONDITION FLAGS 966

CCS 282 SAVE CONDITION FLAGS 964

CJP 510 CONDITIONAL JUMP 158

CJPN 511 CONDITIONAL JUMP 158

CLC 041 CLEAR CARRY 961

CLI 691 CLEAR INTERRUPT 703

CLR$ 666 CLEAR STRING 1031

CMND 490 DELIVER COMMAND 878

CMP 020 COMPARE 222

CMPL 060 DOUBLE COMPARE 224

CNR 545 RESET TIMER/COUNTER 201

CNRX 547 RESET TIMER/COUNTER 201

CNT --- COUNTER 194

CNTX 546 COUNTER 194

CNTR 012 REVERSIBLE COUNTER 197

CNTRX 548 REVERSIBLE COUNTER 197

CNTW 814 COUNTER WAIT 998

CNTWX 818 COUNTER WAIT 998

COLL 081 DATA COLLECT 271

COLLC 567 DATA COLLECT 1055

COLM 064 LINE TO COLUMN 420

COM 029 COMPLEMENT 452

COML 614 DOUBLE COMPLEMENT 453

COS 461 COSINE 499

COSD 852 DOUBLE COSINE 551

CPS 114 SIGNED BINARY COMPARE 227

CPSL 115 DOUBLE SIGNED BINARY COMPARE 229

CSUB 731 CALENDAR SUBTRACT 922

CTBL 882 COMPARISON TABLE LOAD 722

Mnemonic Function code Instruction Page

DATE 735 CLOCK ADJUSTMENT 930

DBL 843 16-BIT BINARY TO DOUBLE FLOATING 536

DBLL 844 32-BIT BINARY TO DOUBLE FLOATING 537

DEG 459 RADIANS-TO DEGREES 496

DEGD 850 DOUBLE RADIANS TO DEGREES 548

DEL$ 658 DELETE STRING 1027

DI 693 DISABLE INTERRUPTS 706

DIFD 014 DIFFERENTIATE DOWN 119

DIFU 013 DIFFERENTIATE UP 119

DIM 631 DIMENSION RECORD TABLE 581

DIST 080 SINGLE WORD DISTRIBUTE 269

Mnemonic Function code Instruction Page
1118

Alphabetical List of Instructions by Mnemonic Appendix C
E

F

G

DISTC 566 SINGLE WORD DISTRIBUTE 1052

DLNK 226 CPU BUS UNIT I/O REFRESH 801

DMPX 077 DATA ENCODER 407

DOWN 522 CONDITION OFF 109

DSW 210 DIGITAL SWITCH INPUT 776

Mnemonic Function code Instruction Page

ECHRD 723 EXPLICIT WORD READ 904

ECHWR 724 EXPLICIT WORD WRITE 908

EGATR 721 EXPLICIT GET ATTRIBUTE 892

EI 694 ENABLE INTERRUPTS 707

ELSE 803 ELSE 984

END 001 END 132

ESATR 722 EXPLICIT SET ATTRIBUTE 899

EXIT NOT
(operand)

806 CONDITIONAL BLOCK EXIT NOT 988

EXIT (input con-
dition)

806 CONDITIONAL BLOCK EXIT 988

EXIT (operand) 806 CONDITIONAL BLOCK EXIT 988

EXP 467 EXPONENT 510

EXPD 858 DOUBLE EXPONENT 561

EXPLT 720 EXPLICIT MESSAGE SEND 885

Mnemonic Function code Instruction Page

FAL 006 FAILURE ALARM 937

FALS 007 SEVERE FAILURE ALARM 945

FCS 180 FRAME CHECKSUM 600

FDIV 079 FLOATING POINT DIVIDE 470

FIFO 633 FIRST IN FIRST OUT 576

FIND$ 660 FIND IN STRING 1021

FIX 450 FLOATING TO 16-BIT 533

FIXD 841 DOUBLE FLOATING TO 16-BIT BINARY 533

FIXL 451 FLOATING TO 32-BIT 535

FIXLD 842 DOUBLE FLOATING TO 32-BIT BINARY 535

FLT 452 16-BIT TO FLOATING 536

FLTL 453 32-BIT TO FLOATING 537

FOR 512 FOR-NEXT LOOPS 164

FPD 269 FAILURE POINT DETECTION 951

FRMCV 284 CONVERT ADDRESS FROM CV 967

FSTR 448 FLOATING POINT TO ASCII 519

FVAL 449 ASCII TO FLOATING POINT 524

Mnemonic Function code Instruction Page

GETID 286 GET VARIABLE ID 1063

GETR 636 GET RECORD NUMBER 585

GRET 752 GLOBAL SUBROUTINE RETURN 695

GRY 474 GRAY CODE CONVERSION 433

Mnemonic Function code Instruction Page
1119

Alphabetical List of Instructions by Mnemonic Appendix C
H

I

J

K

L

GSBN 751 GLOBAL SUBROUTINE ENTRY 692

GSBS 750 GLOBAL SUBROUTINE CALL 685

Mnemonic Function code Instruction Page

HEX 162 ASCII TO HEX 414

HKY 212 HEXADECIMAL KEY INPUT 783

HMS 066 SECONDS TO HOURS 928

Mnemonic Function code Instruction Page

IEND 804 IF END 984

IF NOT (oper-
and)

802 IF NOT 984

IF (input condi-
tion)

802 IF 984

IF (operand) 802 IF 984

IL 002 INTERLOCK 136

ILC 003 INTERLOCK CLEAR 136

INI 880 MODE CONTROL 709

INS$ 657 INS$ 1033

IORD 222 INTELLIGENT I/O READ 795

IORF 097 I/O REFRESH 770

IOWR 223 INTELLIGENT I/O WRITE 798

Mnemonic Function code Instruction Page

JME 005 JUMP END 154

JME0 516 MULTIPLE JUMP END 162

JMP 004 JUMP 154

JMP0 515 MULTIPLE JUMP 162

Mnemonic Function code Instruction Page

KEEP 011 KEEP 115

Mnemonic Function code Instruction Page

LD --- LOAD 89

LD < 310 LOAD LESS THAN 211

LD <$ 672 LOAD STRING LESS THAN 1036

LD <D 337 LOAD DOUBLE FLOATING LESS THAN 566

LD <DT 343 LOAD TIME LESS THAN 217

LD <F 331 LOAD FLOATING LESS THAN 515

LD <> 305 LOAD NOT EQUAL 211

LD <>$ 671 LOAD STRING NOT EQUAL 1036

LD <>D 336 LOAD DOUBLE FLOATING NOT EQUAL 566

LD <>DT 342 LOAD TIME NOT EQUAL 217

LD <>F 330 LOAD FLOATING NOT EQUAL 515

LD <>L 306 LOAD DOUBLE NOT EQUAL 211

Mnemonic Function code Instruction Page
1120

Alphabetical List of Instructions by Mnemonic Appendix C
LD <>S 307 LOAD SIGNED NOT EQUAL 211

LD <>SL 308 LOAD DOUBLE SIGNED NOT EQUAL 211

LD <L 311 LOAD DOUBLE LESS THAN 211

LD <S 312 LOAD SIGNED LESS THAN 211

LD <SL 313 LOAD DOUBLE SIGNED LESS THAN 211

LD = 300 LOAD EQUAL 211

LD =$ 670 LOAD STRING EQUALS 1036

LD =D 335 LOAD DOUBLE FLOATING EQUAL 566

LD =DT 341 LOAD TIME EQUAL 217

LD =F 329 LOAD FLOATING EQUAL 515

LD =L 301 LOAD DOUBLE EQUAL 211

LD =S 302 LOAD SIGNED EQUAL 211

LD =SL 303 LOAD DOUBLE SIGNED EQUAL 211

LD > 320 LOAD GREATER THAN 211

LD >$ 674 LOAD STRING GREATER THAN 1036

LD >D 339 LOAD DOUBLE FLOATING GREATER THAN 566

LD >DT 345 LOAD TIME GREATER THAN 217

LD >F 333 LOAD FLOATING GREATER THAN 515

LD >L 321 LOAD DOUBLE GREATER THAN 211

LD >S 322 LOAD SIGNED GREATER THAN 211

LD >SL 323 LOAD DOUBLE SIGNED GREATER THAN 211

LD NOT --- LOAD NOT 91

LD TST 350 LOAD BIT TEST 110

LD TSTN 351 LOAD BIT TEST 110

LD <= 315 LOAD LESS THAN OR EQUAL 211

LD <=$ 673 LOAD STRING LESS THAN OR EQUAL 1036

LD <=D 338 LOAD DOUBLE FLOATING LESS THAN OR EQUAL 566

LD <=DT 344 LOAD TIME LESS THAN OR EQUAL 217

LD <=F 332 LOAD FLOATING LESS THAN OR EQUAL 515

LD <=L 316 LOAD DOUBLE LESS THAN OR EQUAL 211

LD <=S 317 LOAD SIGNED LESS THAN OR EQUAL 211

LD <=SL 318 LOAD DOUBLE SIGNED LESS THAN OR EQUAL 211

LD >= 325 LOAD GREATER THAN OR EQUAL 211

LD >=$ 675 LOAD STRING GREATER THAN OR EQUALS 1036

LD >=D 340 LOAD DOUBLE FLOATING GREATER THAN OR EQUAL 566

LD >=DT 346 LOAD TIME GREATER THAN OR EQUAL 217

LD >=F 334 LOAD FLOATING GREATER THAN OR EQUAL 515

LD >=L 326 LOAD DOUBLE GREATER THAN OR EQUAL 211

LD >=S 327 LOAD SIGNED GREATER THAN OR EQUAL 211

LD >=SL 328 LOAD DOUBLE SIGNED GREATER THAN OR EQUAL 211

LEFT$ 652 GET STRING LEFT 1014

LEN$ 650 STRING LENGTH 1023

LEND NOT
(operand)

810 LOOP END NOT 1004

LEND (input
condition)

810 LOOP END 1004

LEND (operand) 810 LOOP END 1004

LIFO 634 LAST IN FIRST OUT 578

LINE 063 COLUMN TO LINE 418

Mnemonic Function code Instruction Page
1121

Alphabetical List of Instructions by Mnemonic Appendix C
M

N

LMT 680 LIMIT CONTROL 641

LOG 468 LOGARITHM 512

LOGD 859 DOUBLE LOGARITHM 563

LOOP 809 LOOP 1004

Mnemonic Function code Instruction Page

MAX 182 FIND MAXIMUM 591

MCMP 019 MULTIPLE COMPARE 232

MCRO 099 MACRO 678

MID$ 654 GET STRING MIDDLE 1019

MILC 519 MULTI-INTERLOCK CLEAR 140

MILH 517 MULTI-INTERLOCK DIFFERENTIATION HOLD 140

MILR 518 MULTI-INTERLOCK DIFFERENTIATION RELEASE 140

MIN 183 FIND MINIMUM 594

MLPX 076 DATA DECODER 403

MOV 021 MOVE 249

MOV$ 664 MOVE STRING 1010

MOVB 082 MOVE BIT 255

MOVBC 568 MOVE BIT 1060

MOVD 083 MOVE DIGIT 257

MOVL 498 DOUBLE MOVE 252

MOVR 560 MOVE TO REGISTER 272

MOVRW 561 MOVE TIMER/COUNTER PV TO REGISTER 274

MSG 046 DISPLAY MESSAGE 912

MSKR 692 READ INTERRUPT MASK 700

MSKS 690 SET INTERRUPT MASK 696

MTIM 543 MULTI-OUTPUT TIMER 188

MTIMX 554 MULTI-OUTPUT TIMER 188

MTR 213 MATRIX INPUT 787

MVN 022 MOVE NOT 250

MVNL 499 DOUBLE MOVE NOT 253

Mnemonic Function code Instruction Page

NASL 580 SHIFT N-BITS LEFT 311

NASR 581 SHIFT N-BITS RIGHT 316

NEG 160 2’S COMPLEMENT 398

NEGL 161 DOUBLE 2’S COMPLEMENT 400

NEXT 513 FOR-NEXT LOOPS 164

NOP 000 NO OPERATION 133

NOT 520 NOT 108

NSFL 578 SHIFT N-BIT DATA LEFT 307

NSFR 579 SHIFT N-BIT DATA RIGHT 309

NSLL 582 DOUBLE SHIFT N-BITS LEFT 313

NSRL 583 DOUBLE SHIFT N-BITS RIGHT 319

Mnemonic Function code Instruction Page
1122

Alphabetical List of Instructions by Mnemonic Appendix C
O

Mnemonic Function code Instruction Page

OR --- OR 97

OR < 310 OR LESS THAN 211

OR <$ 672 OR STRING LESS THAN 1036

OR <> 305 OR NOT EQUAL 211

OR <>$ 671 OR STRING NOT EQUAL 1036

OR <>D 336 OR DOUBLE FLOATING NOT EQUAL 566

OR <>DT 342 OR TIME NOT EQUAL 217

OR <>F 330 OR FLOATING NOT EQUAL 515

OR <>L 306 OR DOUBLE NOT EQUAL 211

OR <>S 307 OR SIGNED NOT EQUAL 211

OR <>SL 308 OR DOUBLE SIGNED NOT EQUAL 211

OR <D 337 OR DOUBLE FLOATING LESS THAN 566

OR <DT 343 OR TIME LESS THAN 217

OR <F 331 OR FLOATING LESS THAN 515

OR <L 311 OR DOUBLE LESS THAN 211

OR <S 312 OR SIGNED LESS THAN 211

OR <SL 313 OR DOUBLE SIGNED LESS THAN 211

OR = 300 OR EQUAL 211

OR =$ 670 OR STRING EQUALS 1036

OR =D 335 OR DOUBLE FLOATING EQUAL 566

OR =DT 341 OR TIME EQUAL 217

OR =F 329 OR FLOATING EQUAL 515

OR =L 301 OR DOUBLE EQUAL 211

OR =S 302 OR SIGNED EQUAL 211

OR =SL 303 OR DOUBLE SIGNED EQUAL 211

OR > 320 OR GREATER THAN 211

OR >$ 674 OR STRING GREATER THAN 1036

OR >D 339 OR DOUBLE FLOATING GREATER THAN 566

OR >DT 345 OR TIME GREATER THAN 217

OR >F 333 OR FLOATING GREATER THAN 515

OR >L 321 OR DOUBLE GREATER THAN 211

OR >S 322 OR SIGNED GREATER THAN 211

OR >SL 323 OR DOUBLE SIGNED GREATER THAN 211

OR LD --- OR LOAD 102

OR NOT --- OR NOT 98

OR TST 350 OR BIT TEST 110

OR TSTN 351 OR BIT TEST 110

OR <= 315 OR LESS THAN OR EQUAL 211

OR <=$ 673 OR STRING LESS THAN OR EQUALS 1036

OR <=D 338 OR DOUBLE FLOATING LESS THAN OR EQUAL 566

OR <=DT 344 OR TIME LESS THAN OR EQUAL 217

OR <=F 332 OR FLOATING LESS THAN OR EQUAL 515

OR <=L 316 OR DOUBLE LESS THAN OR EQUAL 211

OR <=S 317 OR SIGNED LESS THAN OR EQUAL 211

OR <=SL 318 OR DOUBLE SIGNED LESS THAN OR EQUAL 211

OR >= 325 OR GREATER THAN OR EQUAL 211

OR >=$ 675 OR STRING GREATER THAN OR EQUALS 1036
1123

Alphabetical List of Instructions by Mnemonic Appendix C
P

R

OR >=D 340 OR DOUBLE FLOATING GREATER THAN OR EQUAL 566

OR >=DT 346 OR TIME GREATER THAN OR EQUAL 217

OR >=F 334 OR FLOATING GREATER THAN OR EQUAL 515

OR >=L 326 OR DOUBLE GREATER THAN OR EQUAL 211

OR >=S 327 OR SIGNED GREATER THAN OR EQUAL 211

OR >=SL 328 OR DOUBLE SIGNED GREATER THAN OR EQUAL 211

ORG 889 ORIGIN SEARCH 747

ORW 035 LOGICAL OR 442

ORWL 611 DOUBLE LOGICAL OR 443

OUT --- OUTPUT 113

OUTB 534 SINGLE BIT OUTPUT 130

OUT NOT --- OUTPUT NOT 114

Mnemonic Function code Instruction Page

PID 190 PID CONTROL 619

PIDAT 191 PID CONTROL WITH AUTOTUNING 631

PMCR 260 PROTOCOL MACRO 807

PRV 881 HIGH-SPEED COUNTER PV READ 713

PRV2 883 COUNTER FREQUENCY CONVERT 719

PULS 886 SET PULSES 731

PLS2 887 PULSE OUTPUT 734

PUSH 632 PUSH ONTO STACK 573

PWM 891 PULSE WITH VARIABLE DUTY FACTOR 751

PWR 840 EXPONENTIAL POWER 514

PWRD 860 DOUBLE EXPONENTIAL POWER 535

Mnemonic Function code Instruction Page

RAD 458 DEGREES TO RADIANS 495

RADD 849 DOUBLE DEGREES TO RADIANS 547

RECV 098 NETWORK RECEIVE 872

RET 093 SUBROUTINE RETURN 684

RGHT$ 653 GET STRING RIGHT 1017

RLNC 574 ROTATE LEFT WITHOUT CARRY 297

RLNL 576 DOUBLE ROTATE LEFT WITHOUT CARRY 299

ROL 027 ROTATE LEFT 291

ROLL 572 DOUBLE ROTATE LEFT 292

ROOT 072 BCD SQUARE ROOT 456

ROR 028 ROTATE RIGHT 294

RORL 573 DOUBLE ROTATE RIGHT 296

ROTB 620 BINARY ROOT 454

RPLC$ 661 REPLACE IN STRING 1025

RRNC 575 ROTATE RIGHT WITHOUT CARRY 301

RRNL 577 DOUBLE ROTATE RIGHT WITHOUT CARRY 302

RSET --- RESET 122

RSTA 531 MULTIPLE BIT RESET 124

RSTB 533 SINGLE BIT RESET 127

Mnemonic Function code Instruction Page
1124

Alphabetical List of Instructions by Mnemonic Appendix C
S

T

RXD 235 RECEIVE 821

RXDU 255 RECEIVE VIA SERIAL COMMUNICATIONS UNIT 826

Mnemonic Function code Instruction Page

SBN 092 SUBROUTINE ENTRY 682

SBS 091 SUBROUTINE CALL 672

SCH 047 7-SEGMENT LED CONTROL 914

SCL 194 SCALING 656

SCL2 486 SCALING 2 660

SCL3 487 SCALING 3 664

SCTRL 048 7-SEGMENT LED WORD DATA DISPLAY 916

SDEC 078 7-SEGMENT DECODER 773

SDEL 642 STACK DATA DELETE 615

SEC 065 HOURS TO SECONDS 925

SEND 090 NETWORK SEND 866

SET --- SET 122

SETA 530 MULTIPLE BIT SET 124

SETB 532 SINGLE BIT SET 127

SETR 635 SET RECORD LOCATION 583

SFT 010 SHIFT REGISTER 276

SFTR 084 REVERSIBLE SHIFT REGISTER 278

SIGN 600 16-BIT TO 32-BIT SIGNED BINARY 401

SIN 460 SINE 498

SIND 851 DOUBLE SINE 550

SINS 641 STACK DATA INSERT 612

SLD 074 ONE DIGIT SHIFT LEFT 304

SNUM 638 STACK SIZE READ 603

SNXT 009 STEP START 754

SPED 885 SPEED OUTPUT 726

SQRT 466 SQUARE ROOT 508

SQRTD 857 DOUBLE SQUARE ROOT 560

SRCH 181 DATA SEARCH 587

SRD 075 ONE DIGIT SHIFT RIGHT 305

SREAD 639 STACK DATA READ 606

SSET 630 SET STACK 570

STC 040 SET CARRY 961

STEP 008 STEP DEFINE 754

STUP 237 CHANGE SERIAL PORT SETUP 842

SUM 184 SUM 597

SWAP 637 SWAP BYTES 589

SWRIT 640 STACK DATA WRITE 609

Mnemonic Function code Instruction Page

TAN 462 TANGENT 501

TAND 853 DOUBLE TANGENT 553

TCMP 085 TABLE COMPARE 235

TIM --- TIMER 171

Mnemonic Function code Instruction Page
1125

Alphabetical List of Instructions by Mnemonic Appendix C
U

W

X

TIMH 015 HIGH-SPEED TIMER 175

TIMHX 551 HIGH-SPEED TIMER 175

TIML 542 LONG TIMER 185

TIMLX 553 LONG TIMER 185

TIMW 813 TIMER WAIT 995

TIMWX 816 TIMER WAIT 995

TIMX --- TIMER 171

TKOF 821 TASK OFF 1044

TKON 820 TASK ON 1041

TKY 211 TEN KEY INPUT 780

TMHH 540 ONE-MS TIMER 179

TMHHX 552 ONE-MS TIMER 179

TMHW 815 HIGH-SPEED TIMER WAIT 1001

TMHWX 817 HIGH-SPEED TIMER WAIT 1001

TOCV 285 CONVERT ADDRESS TO CV 1063

TPO 685 TIME-PROPORTIONAL OUTPUT 648

TRSM 045 TRACE MEMORY SAMPLING 933

TTIM 087 ACCUMULATIVE TIMER 182

TTIMX 555 ACCUMULATIVE TIMER 182

TXD 236 TRANSMIT 816

TXDU 256 TRANSMIT VIA SERIAL COMMUNICATIONS UNIT 826

Mnemonic Function code Instruction Page

UP 521 CONDITION ON 109

Mnemonic Function code Instruction Page

WAIT NOT
(operand)

805 ONE CYCLE AND WAIT NOT 991

WAIT (input
condition)

805 ONE CYCLE AND WAIT 991

WAIT (operand) 805 ONE CYCLE AND WAIT 991

WDT 094 EXTEND MAXIMUM CYCLE TIME 962

WSFT 016 WORD SHIFT 283

Mnemonic Function code Instruction Page

XCGL 562 DOUBLE DATA EXCHANGE 267

XCHG 073 DATA EXCHANGE 266

XCHG$ 665 EXCHANGE STRING 1030

XFER 070 BLOCK TRANSFER 262

XFERC 565 BLOCK TRANSFER 1052

XFRB 062 MULTIPLE BIT TRANSFER 259

XNRL 613 DOUBLE EXCLUSIVE NOR 450

XNRW 037 EXCLUSIVE NOR 448

XORL 612 DOUBLE EXCLUSIVE OR 447

XORW 036 EXCLUSIVE OR 445

Mnemonic Function code Instruction Page
1126

Alphabetical List of Instructions by Mnemonic Appendix C
Z

Mnemonic Function code Instruction Page

ZCP 088 AREA RANGE COMPARE 244

ZCPL 116 DOUBLE AREA RANGE COMPARE 246

ZONE 682 DEAD ZONE CONTROL 646
1127

Alphabetical List of Instructions by Mnemonic Appendix C
1128

Index

A
addressing

counter numbers, 207

indirect addresses, 8, 9
memory addresses, 7
operands, 8
See also index registers

timer numbers, 207

applications

precautions, xxiii

ASCII

converting ASCII to hexadecimal, 414

converting from floating-point data, 519

converting hexadecimal to ASCII, 411

converting to floating-point data, 524

text string processing, 1009

ASCII characters, 12

B
backup

precautions, xxii

Basic I/O Units

Basic I/O Unit instructions, 770, 801

battery

precautions, xxv

Battery Error Flag, xxii

BCD data, 13

bits

setting and resetting, 127

block programs, 5, 38, 40

block programming instructions, 975, 1007

branching, 984, 991, 995, 998, 1001, 1004

description, 975, 979

instruction execution times, 1086

pausing and restarting, 982

relationship to tasks, 67

C
Carry Flag, 37

checksum

calculating, 600

checksum instructions, 570

clock

adding to clock time, 919

clock instructions, 919, 974

subtracting from clock time, 922

clock instructions

execution times, 1085

communications

description of serial communications, 806

instruction execution times, 1084

network instruction execution times, 1084

receiving from RS-232C port, 821

serial communications instructions, 806, 844

transmitting from RS-232C port, 816

comparing tables, 722

comparison, 722

comparison instructions

execution times, 1072, 1073

computer system requirements, 47

Condition Flags, 33

loading status, 966

operation in tasks, 61

saving status, 964

constants

operands, 11

control bits

Sampling Start Bit, 935

Trace Start Bit, 935

converting

See also data, converting

converting memory addresses, 967, 971

countermeasures

noise, xxvii

counters, 169, 209

example applications, 204

execution times, 1071

resetting with CNR(545), 201

reversible counter, 197

CPU Bus Units

refreshing, 801

CPU Unit

basic operation, 53

capacities, 22

CV-series PLCs

converting memory addresses, 967, 971

CX-Programmer

task operations, 75

cycle time

extending the maximum cycle time, 962

cyclic refreshing, 20

cyclic tasks, 54
1129

Index
Disabled status (INI), 56

READY status, 56

RUN status, 57

status, 56

WAIT status, 57

D
data

converting

radians and degrees, 495, 496, 547, 548

searching, 587

data areas

addressing, 7
data control instructions

execution times, 1080

data format

floating-point data, 528

data formats, 13

data movement instructions

execution times, 1073

data shift instructions

execution times, 1073

data tracing

See also tracing

debugging

debugging instructions, 933, 936

failure diagnosis instructions, 937, 960

debugging instructions

execution times, 1085

decrement instructions

execution times, 1075

degrees

converting degrees to radians, 495, 547

differentiated instructions, 19

display instructions

execution times, 1084

DM Area

using DM Area bits in execution conditions, 110

Double-precision Floating-point Input Comparison Instruc-
tions, 566

Double-precision Floating-point Instructions, 528

down-differentiated instructions, 18

duty factor

pulse with variable duty factor, 751

E
EC Directives, xxvi

electromagnetic fields, xxii

EMC Directives, xxvi

Equals Flag, 37

error log

preventing storage of user-defined errors, 941

errors

access error, 43

codes

programming, 937, 945

communications error flags, 831, 839, 854

fatal, 45

clearing, 945

generating, 945

illegal instruction error, 43

instruction processing error, 43

messages

programming, 912

non-fatal

clearing, 937

generating, 937

programming errors, 45

programming messages, 912

UM overflow error, 43

user-programmed errors, 937, 945

execution condition

outputting, 130

execution conditions

tasks, 56

variations, 17

exponents, 510, 561

external interrupts

tasks, 55, 72

extra cyclic tasks, 1041, 1044

F
failure diagnosis instructions

execution times, 1085

FALS instruction, xxi, xxv

fatal operating errors

generating and clearing, 945

features, 46

files

library, 48

project text files, 48

FINS commands, 878
1130

Index
flags, 5
Condition Flags, 33

CY

clearing, 961

Trace Busy Flag, 935

Trace Completed Flag, 935

Trace Trigger Monitor Flag, 935

floating-point data, 476, 529

comparing, 515

comparison, 515

conversion, 528

converting to ASCII, 519, 524

division, 470

exponents, 510, 561

floating-point math instructions, 475, 515, 528, 566

format, 528

logarithms, 512, 563

math functions, 528

square roots, 508, 560

trigonometry functions, 528

floating-point decimal, 14

floating-point math instructions

execution times, 1078

FOR-NEXT loop, 38

frame checksum

calculating, 600

function codes

instructions listed by function codes, 1099

functions, 46

restrictions, 47

G
Greater Than Flag, 37

H
high-speed counter and pulse output instructions, 709

high-speed counting

reading the PV, 713, 719

I
I/O Hold Bit, xxv

I/O memory

addressing, 7
tasks, 60

I/O memory address

See also internal I/O memory address

I/O refreshing, 20

IEC 61131-3, 47

immediate refreshing, 17, 21

increment instructions

execution times, 1075

index registers, 9
setting a timer/counter PV address in an index register,
274

setting a word/bit address in an index register, 272

Initial Task Execution Flag, 62

input instructions

execution times, 1069

installation

location, xxii

instruction conditions

description, 5
instruction set

7SEG(214), 791

DSW(210), 776

HKY(212), 783

TKY(211), 780

instruction sets

-(410), 354

--(592), 327

*(420), 372

*B(424), 378

*BL(425), 380

*D(847), 543

*F(456), 491, 543

*L(421), 374

*U(422), 375

*UL(423), 377

+$(656), 1012

+(400), 340

++(590), 323

++B(594), 331

++BL(595), 333

++L(591), 325

+B(404), 348

+BC(406), 351

+BCL(407), 352

+BL(405), 349

+C(402), 344

+CL(403), 346

+D(845), 539

+F(454), 487, 539

+L(401), 342

/(430), 381

/B(434), 388

/BL(435), 390
1131

Index
/D(848), 545

/F(457), 493

/L(431), 383

/U(432), 385

/UL(433), 387

ACC(888), 741

ACOS(464), 505, 556

ACOSD(855), 556

AND, 93

AND LD, 100

AND NOT, 95

ANDL(610), 440

ANDW(034), 439

APR(069), 459

ASC(086), 411

ASIN(463), 503, 554

ASIND(854), 554

ATAN(465), 506, 558

ATAND(856), 558

AVG(195), 668

-B(414), 364

--B(596), 335

BAND(681), 643

-BC(416), 369

BCD(024), 395

BCDL(059), 396

BCDS(471), 428

-BCL(417), 370

BCMP(068), 237

BCNT(067), 473

BDSL(473), 430

BIN(023), 392

BINL(058), 393

BINS(470), 422

BISL(472), 425

-BL(415), 366

--BL(597), 337

BPPS(811), 982

BPRS(812), 982

BREAK(514), 167

BSET(071), 264

-C(412), 360

CADD(730), 919

CCL(283), 966

CCS(282), 964

CJP(510), 158

CJPN(511), 158

-CL(413), 362

CLC(041), 961

CLI(691), 703

CLR$(666), 1031

CMND(490), 846

CMP(020), 222

CMPL(060), 224

CNR(545), 201

CNT, 194

CNTR(012), 197

CNTRX(548), 197

CNTW(814), 998

CNTWX(818), 998

CNTX(546), 194

COLL(081), 271, 1055

COLM(064), 420

COM(029), 452

COML(614), 453

COS(461), 499, 551

COSD(852), 551

CPS(114), 227

CPSL(115), 229

CSUB(731), 922

CTBL(882), 722

–D(846), 541

DBL(843), 536

DBLL(844), 537

DEG(459), 496, 548

DEGD(850), 548

DEL$(658), 1027

DI(693), 706

DIFD(014), 119, 121

using in interlocks, 137

using in jumps, 157, 161, 163

DIFU(013), 119, 121

using in interlocks, 137

using in jumps, 157, 161, 163

DIM(631), 581

DIST(080), 269

DLNK(226), 801

DMPX(077), 407

Double-precision Floating-point Input Comparison In-
structions (335 to 340), 566

DOWN(522), 109

EI(694), 707

ELSE(803), 984

END(001), 132

EXIT(806), 988

EXP(467), 510, 561

EXPD(858), 561

-F(455), 489, 541

FAL(006), 937

FALS(007), 945

FCS(180), 600

FDIV(079), 470

FIFO(633), 576

FIND$(660), 1021
1132

Index
FIX(450), 481, 533

FIXD(841), 533

FIXL(451), 483, 519, 535

FIXLD(842), 535

FLT(452), 484, 536

FLTL(453), 486, 537

FOR(512), 164

FRMCV(284), 967

FSTR(448), 519

FVAL(449), 524

GETR(636), 585

GRET(752), 695

GSBN(751), 692

GSBS(750), 685

HEX(162), 414

HMS(066), 928

IEND(804), 984

IF(802), 984, 991

IL(002), 136, 154

ILC(003), 136, 154

INI(880), 709

INS$(657), 1033

IORD(222), 795

IORF(097), 770

IOWR(223), 798

JME(005), 154

JME0(516), 162

JMP(004), 154

JMP0(515), 162

KEEP(011), 115

-L(411), 356

--L(593), 329

LD, 89

LD NOT, 91

LEFT$(652), 1014

LEN$(650), 1023

LEND(810), 1004

LIFO(634), 578

LINE(063), 418

LMT(680), 641

LOG(468), 512, 563

LOGD(859), 563

LOOP(809), 1004

MAX(182), 591

MCMP(019), 232, 246

MCRO(099), 678

MID$(654), 1019

MIN(183), 594

MLPX(076), 403

MOV$(664), 914, 916, 1010

MOV(021), 249

MOVB(082), 255

MOVD(083), 257

MOVL(498), 252

MOVR(560), 272

MOVRW(561), 274

MSG(046), 912

MSKR(692), 700

MSKS(690), 696

MTIM(543), 188

MTIMX(554), 188

MVN(022), 250

MVNL(499), 253

NEG(160), 398

NEGL(161), 400

NEXT(513), 164

NOP(000), 133

NOT(520), 108

OR, 97

OR LD, 102

OR NOT, 98

ORG(889), 747

ORW(035), 442

ORWL(611), 443

OUT, 113

OUT NOT, 114

OUTB(534), 130

PID(190), 619, 631, 967, 971

PIDAT(191), 631

PLS2(887), 734

PMCR(260), 807

PRV(881), 713, 719

PULS(886), 731

PUSH(632), 573

PWM(891), 751

PWRD(860), 565

RAD(458), 495, 547

RADD(849), 547

RECV(098), 846

RET(093), 684, 695

RGHT$(653), 1017

ROOT(072), 456

ROTB(620), 454

RPLC$(661), 1025

RSET, 122

RSTA(531), 124, 127, 130

RSTB(533), 127

RXD(235), 821

SBN(092), 682, 692

SBS(091), 672, 685, 801

SCL(194), 656

SCL2(486), 660

SCL3(487), 664

SDEC(078), 773
1133

SDEL(642), 615

SEC(065), 925

SEND(090), 846

SET, 122

SETA(530), 124, 127, 130

SETB(532), 127

SETR(635), 583

SIGN(600), 401

SIN(460), 498, 550

SIND(851), 550

Single-precision Floating-point Input Comparison In-
structions (329 to 334), 515

SINS(641), 612

SNUM(638), 603

SNXT(009), 754

SPED(885), 726

SQRT(466), 508, 560

SQRTD(857), 560

SRCH(181), 587

SREAD(639), 606

SSET(630), 570

STEP(008), 754

STUP(237), 842

SUM(184), 597

SWAP(637), 589, 603, 606, 609, 612, 615

SWRIT(640), 609

TAN(462), 501

TAND(853), 553

TCMP(085), 235

testing bit status, 110

TIM, 171

TIMH(015), 175

TIMHWX(817), 1001

TIMHX(551), 175

TIML(542), 185

TIMLX(553), 185

TIMW(813), 995

TIMWX(816), 995

TIMX(550), 171

TKOF(821), 1044

TKON(820), 1041

TMHH(540), 179

TMHHX(552), 179

TMHW(815), 1001

TOCV(285), 971

TRSM(045), 933

TST(350), 110

TSTN(351), 110

TTIM(087), 182

TTIMX(555), 182

TXD(236), 816

UP(521), 109

WDT(094), 962

XCGL(562), 267

XCHG$(665), 1030

XCHG(073), 266

XFER(070), 262

XFRB(062), 259

XNRL(613), 450

XNRW(037), 448

XORL(612), 447

XORW(036), 445

ZCP(088), 244

ZCPL(116), 246

ZONE(682), 646

instructions, 77, 209

Basic I/O Unit instructions, 770, 801

basic instructions, 4
block programming instructions, 975, 1007

block programs, 40

clock instructions, 919, 974

comparison instructions, 211, 243

controlling execution conditions

UP(521) and DOWN(522), 109

controlling high-speed counters and pulse outputs, 709

controlling tasks, 58

conversion instructions, 392, 433

counter instructions, 169, 209

data control instructions, 619, 671

data movement instructions, 249

data shift instructions, 276, 321

debugging instructions, 933, 936

decrement instructions, 323, 339

differentiated instructions, 19

display instructions, 912, 914

execution conditions, 17

failure diagnosis instructions, 937, 960

floating-point math instructions, 475, 515, 528, 566

high-speed counter instructions, 709

increment instructions, 323, 339

input and output instructions, 4, 6
input comparison instructions, 211, 217, 515, 566

input differentiation, 17

instruction conditions, 5
interrupt control instructions, 696

listed by function code, 1099

logic instructions, 439, 454

loops, 5, 38

network instructions, 846

operands, 5
programming locations, 6
pulse output instructions, 709

restrictions in tasks, 61

sequence control instructions, 132, 168

Index
sequence input instructions, 89, 113

sequence output instructions, 113, 127

serial communications instructions, 806, 844

special math instructions, 454, 1063

step instructions, 753, 769

string comparison instructions, 1036, 1040

subroutine instructions, 672, 695

symbol math instructions, 339, 391

table data processing instructions, 570, 603, 1079

task control instructions, 1041, 1048

text string processing instructions, 1009, 1040

timer instructions, 169, 209

timing, 19

variations, 17

interlocks, 5, 20, 38, 136, 154

internal I/O memory address

setting a timer/counter PV address in an index register,
274

setting a word/bit address in an index register, 272

interrupt control instructions

execution times, 1081

interrupt tasks, 54, 69, 75

precautions, 74

related flags and words, 73

interrupts

clearing, 703

disabling, 74

disabling all, 706

enabling all, 707

masking, 696

reading mask status, 700

scheduled

reading interval, 700

See also external interrupts

IORF(097) refreshing, 21

interrupt tasks, 74

J
jumps, 20, 38, 154, 162

CJP(510) and CJPN(511), 158

L
ladder diagrams

controlling bit status

using DIFU(013) and DIFD(014), 119, 121

using KEEP(011), 115, 119

using SET and RSET, 122, 124

using SETA(530) and RSTA(531), 124, 127, 130

latching relays

using KEEP(011), 115

Less Than Flag, 37

logarithm, 512, 563

logic instructions

execution times, 1077

loops

BREAK(514), 167

FOR(512) and NEXT(513), 164

FOR/NEXT loops, 38

Low Voltage Directive, xxvi

M
mathematics

adding a range of words, 597

averaging, 668

exponents, 510, 561

finding the maximum in a range, 591

finding the minimum in a range, 594

floating-point addition, 487, 539

floating-point division, 470, 493

floating-point math instructions, 475, 515, 528, 566

floating-point multiplication, 491, 543

floating-point subtraction, 489, 541

linear extrapolation, 461

logarithm, 512, 563

See also trigonometric functions

special math instructions, 454, 1063

square root, 454, 456, 508, 560

symbol math instructions, 339, 391

trigonometric functions, 459

maximum cycle time

extending, 962

messages

programming, 912

mnemonics, 23

inputting, 27

N
Negative Flag, 37

network instructions

execution times, 1084

networks

network instructions, 846

noise, xxii

reducing, xxvi

non-fatal operating errors
1135

Index
generating and clearing, 937

O
operands

constants, 11

description, 5
specifying, 8
text strings, 12

operating environment, xxii

precautions, xxii

operation

basic operation, 53

output instructions

execution times, 1070

outputs

precautions, xxi, xxv

P
PID control, 619, 631, 967, 971

PLC memory address

See also internal I/O memory address

power flow

description, 4
power supply, xxii

precautions, xxv

precautions, xix

applications, xxiii

general, xx

interrupt tasks, 74

operating environment, xxii

programming, 33

safety, xx

program capacity, 22

program errors, 45

program structure, 22

programming

basic concepts, 22

block programs, 5, 38

restrictions, 40

checking programs, 41

creating step programs, 753

designing tasks, 66

examples, 28

instruction locations, 6
mnemonics, 23

pausing/restarting block programs, 982

power flow, 4

precautions, 33

preparing data in data areas, 264

program capacity, 22

program structure, 2, 22

programming messages, 912

programs and tasks, 2
restrictions, 25

See also block programs

step programming, 38

restrictions, 39

tasks and programs, 52

use of TR Bits, 107

programs

See also programming

protocol macro, 807

pulse outputs, 709

controlling, 709, 741

R
radians

converting radians to degrees, 496, 548

radioactivity, xxii

range comparison, 244, 246, 725

refreshing

cyclic refreshing, 20

differentiated refreshing instructions, 105

I/O refreshing, 20

immediate refreshing, 17, 21

immediate refreshing instructions, 105

IORF(097), 21, 74

with IORF(097), 770

resetting bits, 127

RS-232C port

receiving from RS-232C port, 821

transmitting from RS-232C port, 816

S
safety precautions, xx

scheduled interrupts

tasks, 55, 72

searching instructions, 570

self-maintaining bits

using KEEP(011), 117

sequence control instructions

execution times, 1070

serial communications

description, 806
1136

Index
serial communications instructions

execution times, 1084

setting bits, 127

seven-segment displays

converting data, 773

signed binary data, 13

removing sign, 401

simulating system errors, 938, 945

Single-precision Floating-point Input Comparison Instruc-
tions, 515

Special I/O Units

reading Unit memory, 795

writing Unit memory, 798

special math instructions

execution times, 1078

specifications

CX-Programmer Ver. 5.0, 47

speed outputs, 726

square root

BCD data, 456

floating-point data, 508, 560

signed binary data

See also mathematics

stack instructions, 570

execution times, 1079

stack processing

execution times, 1079

stacks

stack instructions, 570

static electricity, xxii

step instructions

execution times, 1082, 1083

step programming, 38

step programs

creating, 753

subroutine instructions

execution times, 1081

subroutines, 38

execution times, 1081

symbol math instructions

execution times, 1075

SYSMAC LINK System

communications, 846, 852

SYSMAC NET Link System

communications, 846, 852

system errors

preventing storage in error log, 939

T
task control instructions

execution times, 1088

Task Error Flag, 63

Task Flags, 62

tasks, xii, 2, 49

advantages, 50

block programs within tasks, 976

creating tasks, 75

cyclic tasks, 54

designing, 66

examples, 65

execution, 59

execution conditions, 56

features, 50

flags, 62

instruction execution times, 1088

interrupt tasks, 54, 69

introduction, 54

limitations, 61

operation of Condition Flags, 61

relationship to block programs, 67

See also cyclic tasks

See also interrupt tasks

task control instructions, 1041, 1048

task numbers, 60

timers, 61

text strings

instruction execution times, 1088

operands, 12

text string processing instructions, 1009, 1040

time

converting time notation, 925, 928

timers, 169, 209

block program delay timer, 1001

example applications, 204

execution times, 1071

resetting with CNR(545), 201

tracing

flags and control bits, 935

trigonometric functions

arc cosine, 505, 556

arc sine, 503, 554

arc tangent, 506, 558

converting degrees to radians, 495, 547

converting radians to degrees, 496, 548

cosine, 499, 551

sine, 498, 550

tangent, 501, 553
1137

Index
U
unsigned binary data, 13

up-differentiated instructions, 17

W
watchdog timer

extending, 962
1138

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

The following table outlines the changes made to the manual during each revision. Page numbers refer to the
previous version.

Revision code Date Revised content

01 October 2005 Original production

Cat. No. W451-E1-01

Revision code
1139

Revision History
1140

OMRON Corporation
Control Devices Division H.Q.
Shiokoji Horikawa, Shimogyo-ku,
Kyoto, 600-8530 Japan
Tel: (81)75-344-7109/Fax: (81)75-344-7149

Regional Headquarters

OMRON EUROPE B.V.
Wegalaan 67-69, NL-2132 JD Hoofddorp
The Netherlands
Tel: (31)2356-81-300/Fax: (31)2356-81-388

OMRON ELECTRONICS LLC
1 East Commerce Drive, Schaumburg, IL 60173
U.S.A.
Tel: (1)847-843-7900/Fax: (1)847-843-8568

OMRON ASIA PACIFIC PTE. LTD.
83 Clemenceau Avenue,
#11-01, UE Square,
Singapore 239920
Tel: (65)6835-3011/Fax: (65)6835-2711

OMRON (CHINA) CO., LTD.
Room 2211, Bank of China Tower,
200 Yin Cheng Zhong Road,
PuDong New Area, Shanghai, 200120 China
Tel: (86)21-5037-2222/Fax: (86)21-5037-2200

Cat. No.

This ma
Authorized Distributor:

 W450-E1-01 Note: Specifications subject to change without notice Printed in Japan
nual is printed on 100% recycled paper.

	CP1H CPU Unit
	About this Manual:
	Related Manuals
	PRECAUTIONS
	1 Intended Audience
	2 General Precautions
	3 Safety Precautions
	4 Operating Environment Precautions
	5 Application Precautions
	6 Conformance to EC Directives
	6-1 Applicable Directives
	6-2 Concepts
	6-3 Conformance to EC Directives
	6-4 Relay Output Noise Reduction Methods
	6-5 Conditions for Meeting EMC Directives when Using CPM1A Relay Expansion I/O Units

	SECTION 1 Programming Concepts
	1-1 Programming Concepts
	1-1-1 Programs and Tasks
	1-1-2 Basic Information on Instructions
	1-1-3 Instruction Location and Execution Conditions
	1-1-4 Addressing I/O Memory Areas
	1-1-5 Specifying Instruction Operands
	1-1-6 Data Formats
	1-1-7 Instruction Variations
	1-1-8 Execution Conditions
	1-1-9 I/O Instruction Timing
	1-1-10 Refresh Timing
	1-1-11 Program Capacity
	1-1-12 Basic Ladder Programming Concepts
	1-1-13 Inputting Mnemonics
	1-1-14 Program Examples

	1-2 Precautions
	1-2-1 Condition Flags
	1-2-2 Special Program Sections

	1-3 Checking Programs
	1-3-1 CX-Programmer
	1-3-2 Program Checks with the CX-Programmer
	1-3-3 Program Execution Check
	1-3-4 Checking Fatal Errors

	1-4 Introducing Function Blocks
	1-4-1 Overview and Features
	1-4-2 Function Block Specifications
	1-4-3 Files Created with CX-Programmer Ver. 6.0

	SECTION 2 Tasks
	2-1 Programming with Tasks
	2-1-1 Overview
	2-1-2 Tasks and Programs
	2-1-3 Basic CPU Unit Operation
	2-1-4 Types of Tasks
	2-1-5 Task Execution Conditions and Settings
	2-1-6 Cyclic Task Status
	2-1-7 Status Transitions

	2-2 Using Tasks
	2-2-1 TASK ON and TASK OFF
	2-2-2 Task Instruction Limitations
	2-2-3 Flags Related to Tasks
	2-2-4 Examples of Tasks
	2-2-5 Designing Tasks
	2-2-6 Global Subroutine

	2-3 Interrupt Tasks
	2-3-1 Types of Interrupt Tasks
	2-3-2 Interrupt Task Flags and Words
	2-3-3 Application Precautions

	2-4 CX-Programmer Operations for Tasks

	SECTION 3 Instructions
	3-1 Notation and Layout of Instruction Descriptions
	3-2 Sequence Input Instructions
	3-2-1 LOAD: LD
	3-2-2 LOAD NOT: LD NOT
	3-2-3 AND: AND
	3-2-4 AND NOT: AND NOT
	3-2-5 OR: OR
	3-2-6 OR NOT: OR NOT
	3-2-7 AND LOAD: AND LD
	3-2-8 OR LOAD: OR LD
	3-2-9 Differentiated and Immediate Refreshing Instructions
	3-2-10 Operation Timing for I/O Instructions
	3-2-11 TR Bits
	3-2-12 NOT: NOT(520)
	3-2-13 CONDITION ON/OFF: UP(521) and DOWN(522)
	3-2-14 BIT TEST: TST(350) and TSTN(351)

	3-3 Sequence Output Instructions
	3-3-1 OUTPUT: OUT
	3-3-2 OUTPUT NOT: OUT NOT
	3-3-3 KEEP: KEEP(011)
	3-3-4 DIFFERENTIATE UP/DOWN: DIFU(013) and DIFD(014)
	3-3-5 SET and RESET: SET and RSET
	3-3-6 MULTIPLE BIT SET/RESET: SETA(530)/RSTA(531)
	3-3-7 SINGLE BIT SET/RESET: SETB(532)/RSTB(533)
	3-3-8 SINGLE BIT OUTPUT: OUTB(534)

	3-4 Sequence Control Instructions
	3-4-1 END: END(001)
	3-4-2 NO OPERATION: NOP(000)
	3-4-3 Overview of Interlock Instructions
	3-4-4 INTERLOCK and INTERLOCK CLEAR: IL(002) and ILC(003)
	3-4-5 MULTI-INTERLOCK DIFFERENTIATION HOLD, MULTI-INTERLOCK DIFFERENTIATION RELEASE, and MULTI-IN...
	3-4-6 JUMP and JUMP END: JMP(004) and JME(005)
	3-4-7 CONDITIONAL JUMP: CJP(510)/CJPN(511)
	3-4-8 MULTIPLE JUMP and JUMP END: JMP0(515) and JME0(516)
	3-4-9 FOR-NEXT LOOPS: FOR(512)/NEXT(513)
	3-4-10 BREAK LOOP: BREAK(514)

	3-5 Timer and Counter Instructions
	3-5-1 TIMER: TIM/TIMX(550)
	3-5-2 HIGH-SPEED TIMER: TIMH(015)/TIMHX(551)
	3-5-3 ONE-MS TIMER: TMHH(540)/TMHHX(552)
	3-5-4 ACCUMULATIVE TIMER: TTIM(087)/TTIMX(555)
	3-5-5 LONG TIMER: TIML(542)/TIMLX(553)
	3-5-6 MULTI-OUTPUT TIMER: MTIM(543)/MTIMX(554)
	3-5-7 COUNTER: CNT/CNTX(546)
	3-5-8 REVERSIBLE COUNTER: CNTR(012)/CNTRX(548)
	3-5-9 RESET TIMER/COUNTER: CNR(545)/CNRX(547)
	3-5-10 Example Timer and Counter Applications
	3-5-11 Indirect Addressing of Timer/Counter Numbers

	3-6 Comparison Instructions
	3-6-1 Input Comparison Instructions (300 to 328)
	3-6-2 Time Comparison Instructions (341 to 346)
	3-6-3 COMPARE: CMP(020)
	3-6-4 DOUBLE COMPARE: CMPL(060)
	3-6-5 SIGNED BINARY COMPARE: CPS(114)
	3-6-6 DOUBLE SIGNED BINARY COMPARE: CPSL(115)
	3-6-7 MULTIPLE COMPARE: MCMP(019)
	3-6-8 TABLE COMPARE: TCMP(085)
	3-6-9 BLOCK COMPARE: BCMP(068)
	3-6-10 EXPANDED BLOCK COMPARE: BCMP2(502)
	3-6-11 AREA RANGE COMPARE: ZCP(088)
	3-6-12 DOUBLE AREA RANGE COMPARE: ZCPL(116)

	3-7 Data Movement Instructions
	3-7-1 MOVE: MOV(021)
	3-7-2 MOVE NOT: MVN(022)
	3-7-3 DOUBLE MOVE: MOVL(498)
	3-7-4 DOUBLE MOVE NOT: MVNL(499)
	3-7-5 MOVE BIT: MOVB(082)
	3-7-6 MOVE DIGIT: MOVD(083)
	3-7-7 MULTIPLE BIT TRANSFER: XFRB(062)
	3-7-8 BLOCK TRANSFER: XFER(070)
	3-7-9 BLOCK SET: BSET(071)
	3-7-10 DATA EXCHANGE: XCHG(073)
	3-7-11 DOUBLE DATA EXCHANGE: XCGL(562)
	3-7-12 SINGLE WORD DISTRIBUTE: DIST(080)
	3-7-13 DATA COLLECT: COLL(081)
	3-7-14 MOVE TO REGISTER: MOVR(560)
	3-7-15 MOVE TIMER/COUNTER PV TO REGISTER: MOVRW(561)

	3-8 Data Shift Instructions
	3-8-1 SHIFT REGISTER: SFT(010)
	3-8-2 REVERSIBLE SHIFT REGISTER: SFTR(084)
	3-8-3 ASYNCHRONOUS SHIFT REGISTER: ASFT(017)
	3-8-4 WORD SHIFT: WSFT(016)
	3-8-5 ARITHMETIC SHIFT LEFT: ASL(025)
	3-8-6 DOUBLE SHIFT LEFT: ASLL(570)
	3-8-7 ARITHMETIC SHIFT RIGHT: ASR(026)
	3-8-8 DOUBLE SHIFT RIGHT: ASRL(571)
	3-8-9 ROTATE LEFT: ROL(027)
	3-8-10 DOUBLE ROTATE LEFT: ROLL(572)
	3-8-11 ROTATE RIGHT: ROR(028)
	3-8-12 DOUBLE ROTATE RIGHT: RORL(573)
	3-8-13 ROTATE LEFT WITHOUT CARRY: RLNC(574)
	3-8-14 DOUBLE ROTATE LEFT WITHOUT CARRY: RLNL(576)
	3-8-15 ROTATE RIGHT WITHOUT CARRY: RRNC(575)
	3-8-16 DOUBLE ROTATE RIGHT WITHOUT CARRY: RRNL(577)
	3-8-17 ONE DIGIT SHIFT LEFT: SLD(074)
	3-8-18 ONE DIGIT SHIFT RIGHT: SRD(075)
	3-8-19 SHIFT N-BIT DATA LEFT: NSFL(578)
	3-8-20 SHIFT N-BIT DATA RIGHT: NSFR(579)
	3-8-21 SHIFT N-BITS LEFT: NASL(580)
	3-8-22 DOUBLE SHIFT N-BITS LEFT: NSLL(582)
	3-8-23 SHIFT N-BITS RIGHT: NASR(581)
	3-8-24 DOUBLE SHIFT N-BITS RIGHT: NSRL(583)

	3-9 Increment/Decrement Instructions
	3-9-1 INCREMENT BINARY: ++(590)
	3-9-2 DOUBLE INCREMENT BINARY: ++L(591)
	3-9-3 DECREMENT BINARY: –�–(592)
	3-9-4 DOUBLE DECREMENT BINARY: – –L(593)
	3-9-5 INCREMENT BCD: ++B(594)
	3-9-6 DOUBLE INCREMENT BCD: ++BL(595)
	3-9-7 DECREMENT BCD: –�–B(596)
	3-9-8 DOUBLE DECREMENT BCD: –�–BL(597)

	3-10 Symbol Math Instructions
	3-10-1 SIGNED BINARY ADD WITHOUT CARRY: +(400)
	3-10-2 DOUBLE SIGNED BINARY ADD WITHOUT CARRY: +L(401)
	3-10-3 SIGNED BINARY ADD WITH CARRY: +C(402)
	3-10-4 DOUBLE SIGNED BINARY ADD WITH CARRY: +CL(403)
	3-10-5 BCD ADD WITHOUT CARRY: +B(404)
	3-10-6 DOUBLE BCD ADD WITHOUT CARRY: +BL(405)
	3-10-7 BCD ADD WITH CARRY: +BC(406)
	3-10-8 DOUBLE BCD ADD WITH CARRY: +BCL(407)
	3-10-9 SIGNED BINARY SUBTRACT WITHOUT CARRY: –(410)
	3-10-10 DOUBLE SIGNED BINARY SUBTRACT WITHOUT CARRY: –L(411)
	3-10-11 SIGNED BINARY SUBTRACT WITH CARRY: –C(412)
	3-10-12 DOUBLE SIGNED BINARY SUBTRACT WITH CARRY: –CL(413)
	3-10-13 BCD SUBTRACT WITHOUT CARRY: –B(414)
	3-10-14 DOUBLE BCD SUBTRACT WITHOUT CARRY: –BL(415)
	3-10-15 BCD SUBTRACT WITH CARRY: –BC(416)
	3-10-16 DOUBLE BCD SUBTRACT WITH CARRY: –BCL(417)
	3-10-17 SIGNED BINARY MULTIPLY: *(420)
	3-10-18 DOUBLE SIGNED BINARY MULTIPLY: *L(421)
	3-10-19 UNSIGNED BINARY MULTIPLY: *U(422)
	3-10-20 DOUBLE UNSIGNED BINARY MULTIPLY: *UL(423)
	3-10-21 BCD MULTIPLY: *B(424)
	3-10-22 DOUBLE BCD MULTIPLY: *BL(425)
	3-10-23 SIGNED BINARY DIVIDE: /(430)
	3-10-24 DOUBLE SIGNED BINARY DIVIDE: /L(431)
	3-10-25 UNSIGNED BINARY DIVIDE: /U(432)
	3-10-26 DOUBLE UNSIGNED BINARY DIVIDE: /UL(433)
	3-10-27 BCD DIVIDE: /B(434)
	3-10-28 DOUBLE BCD DIVIDE: /BL(435)

	3-11 Conversion Instructions
	3-11-1 BCD-TO-BINARY: BIN(023)
	3-11-2 DOUBLE BCD-TO-DOUBLE BINARY: BINL(058)
	3-11-3 BINARY-TO-BCD: BCD(024)
	3-11-4 DOUBLE BINARY-TO-DOUBLE BCD: BCDL(059)
	3-11-5 2’S COMPLEMENT: NEG(160)
	3-11-6 DOUBLE 2’S COMPLEMENT: NEGL(161)
	3-11-7 16-BIT TO 32-BIT SIGNED BINARY: SIGN(600)
	3-11-8 DATA DECODER: MLPX(076)
	3-11-9 DATA ENCODER: DMPX(077)
	3-11-10 ASCII CONVERT: ASC(086)
	3-11-11 ASCII TO HEX: HEX(162)
	3-11-12 COLUMN TO LINE: LINE(063)
	3-11-13 LINE TO COLUMN: COLM(064)
	3-11-14 SIGNED BCD-TO-BINARY: BINS(470)
	3-11-15 DOUBLE SIGNED BCD-TO-BINARY: BISL(472)
	3-11-16 SIGNED BINARY-TO-BCD: BCDS(471)
	3-11-17 DOUBLE SIGNED BINARY-TO-BCD: BDSL(473)
	3-11-18 GRAY CODE CONVERT: GRY(474)

	3-12 Logic Instructions
	3-12-1 LOGICAL AND: ANDW(034)
	3-12-2 DOUBLE LOGICAL AND: ANDL(610)
	3-12-3 LOGICAL OR: ORW(035)
	3-12-4 DOUBLE LOGICAL OR: ORWL(611)
	3-12-5 EXCLUSIVE OR: XORW(036)
	3-12-6 DOUBLE EXCLUSIVE OR: XORL(612)
	3-12-7 EXCLUSIVE NOR: XNRW(037)
	3-12-8 DOUBLE EXCLUSIVE NOR: XNRL(613)
	3-12-9 COMPLEMENT: COM(029)
	3-12-10 DOUBLE COMPLEMENT: COML(614)

	3-13 Special Math Instructions
	3-13-1 BINARY ROOT: ROTB(620)
	3-13-2 BCD SQUARE ROOT: ROOT(072)
	3-13-3 ARITHMETIC PROCESS: APR(069)
	3-13-4 FLOATING POINT DIVIDE: FDIV(079)
	3-13-5 BIT COUNTER: BCNT(067)

	3-14 Floating-point Math Instructions
	3-14-1 FLOATING TO 16-BIT: FIX(450)
	3-14-2 FLOATING TO 32-BIT: FIXL(451)
	3-14-3 16-BIT TO FLOATING: FLT(452)
	3-14-4 32-BIT TO FLOATING: FLTL(453)
	3-14-5 FLOATING-POINT ADD: +F(454)
	3-14-6 FLOATING-POINT SUBTRACT: –F(455)
	3-14-7 FLOATING-POINT MULTIPLY: *F(456)
	3-14-8 FLOATING-POINT DIVIDE: /F(457)
	3-14-9 DEGREES TO RADIANS: RAD(458)
	3-14-10 RADIANS TO DEGREES: DEG(459)
	3-14-11 SINE: SIN(460)
	3-14-12 COSINE: COS(461)
	3-14-13 TANGENT: TAN(462)
	3-14-14 ARC SINE: ASIN(463)
	3-14-15 ARC COSINE: ACOS(464)
	3-14-16 ARC TANGENT: ATAN(465)
	3-14-17 SQUARE ROOT: SQRT(466)
	3-14-18 EXPONENT: EXP(467)
	3-14-19 LOGARITHM: LOG(468)
	3-14-20 EXPONENTIAL POWER: PWR(840)
	3-14-21 Single-precision Floating-point Comparison Instructions
	3-14-22 FLOATING-POINT TO ASCII: FSTR(448)
	3-14-23 ASCII TO FLOATING-POINT: FVAL(449)

	3-15 Double-precision Floating-point Instructions
	3-15-1 DOUBLE FLOATING TO 16-BIT: FIXD(841)
	3-15-2 DOUBLE FLOATING TO 32-BIT: FIXLD(842)
	3-15-3 16-BIT TO DOUBLE FLOATING: DBL(843)
	3-15-4 32-BIT TO DOUBLE FLOATING: DBLL(844)
	3-15-5 DOUBLE FLOATING-POINT ADD: +D(845)
	3-15-6 DOUBLE FLOATING-POINT SUBTRACT: –D(846)
	3-15-7 DOUBLE FLOATING-POINT MULTIPLY: *D(847)
	3-15-8 DOUBLE FLOATING-POINT DIVIDE: /D(848)
	3-15-9 DOUBLE DEGREES TO RADIANS: RADD(849)
	3-15-10 DOUBLE RADIANS TO DEGREES: DEGD(850)
	3-15-11 DOUBLE SINE: SIND(851)
	3-15-12 DOUBLE COSINE: COSD(852)
	3-15-13 DOUBLE TANGENT: TAND(853)
	3-15-14 DOUBLE ARC SINE: ASIND(854)
	3-15-15 DOUBLE ARC COSINE: ACOSD(855)
	3-15-16 DOUBLE ARC TANGENT: ATAND(856)
	3-15-17 DOUBLE SQUARE ROOT: SQRTD(857)
	3-15-18 DOUBLE EXPONENT: EXPD(858)
	3-15-19 DOUBLE LOGARITHM: LOGD(859)
	3-15-20 DOUBLE EXPONENTIAL POWER: PWRD(860)
	3-15-21 Double-precision Floating-point Input Instructions

	3-16 Table Data Processing Instructions
	3-16-1 SET STACK: SSET(630)
	3-16-2 PUSH ONTO STACK: PUSH(632)
	3-16-3 FIRST IN FIRST OUT: FIFO(633)
	3-16-4 LAST IN FIRST OUT: LIFO(634)
	3-16-5 DIMENSION RECORD TABLE: DIM(631)
	3-16-6 SET RECORD LOCATION: SETR(635)
	3-16-7 GET RECORD NUMBER: GETR(636)
	3-16-8 DATA SEARCH: SRCH(181)
	3-16-9 SWAP BYTES: SWAP(637)
	3-16-10 FIND MAXIMUM: MAX(182)
	3-16-11 FIND MINIMUM: MIN(183)
	3-16-12 SUM: SUM(184)
	3-16-13 FRAME CHECKSUM: FCS(180)
	3-16-14 STACK SIZE READ: SNUM(638)
	3-16-15 STACK DATA READ: SREAD(639)
	3-16-16 STACK DATA OVERWRITE: SWRIT(640)
	3-16-17 STACK DATA INSERT: SINS(641)
	3-16-18 STACK DATA DELETE: SDEL(642)

	3-17 Data Control Instructions
	3-17-1 PID CONTROL: PID(190)
	3-17-2 PID CONTROL WITH AUTOTUNING: PIDAT(191)
	3-17-3 LIMIT CONTROL: LMT(680)
	3-17-4 DEAD BAND CONTROL: BAND(681)
	3-17-5 DEAD ZONE CONTROL: ZONE(682)
	3-17-6 TIME-PROPORTIONAL OUTPUT: TPO(685)
	3-17-7 SCALING: SCL(194)
	3-17-8 SCALING 2: SCL2(486)
	3-17-9 SCALING 3: SCL3(487)
	3-17-10 AVERAGE: AVG(195)

	3-18 Subroutines
	3-18-1 SUBROUTINE CALL: SBS(091)
	3-18-2 MACRO: MCRO(099)
	3-18-3 SUBROUTINE ENTRY: SBN(092)
	3-18-4 SUBROUTINE RETURN: RET(093)
	3-18-5 GLOBAL SUBROUTINE CALL: GSBS(750)
	3-18-6 GLOBAL SUBROUTINE ENTRY: GSBN(751)
	3-18-7 GLOBAL SUBROUTINE RETURN: GRET(752)

	3-19 Interrupt Control Instructions
	3-19-1 SET INTERRUPT MASK: MSKS(690)
	3-19-2 READ INTERRUPT MASK: MSKR(692)
	3-19-3 CLEAR INTERRUPT: CLI(691)
	3-19-4 DISABLE INTERRUPTS: DI(693)
	3-19-5 ENABLE INTERRUPTS: EI(694)

	3-20 High-speed Counter/Pulse Output Instructions
	3-20-1 MODE CONTROL: INI(880)
	3-20-2 HIGH-SPEED COUNTER PV READ: PRV(881)
	3-20-3 COUNTER FREQUENCY CONVERT: PRV2(883)
	3-20-4 REGISTER COMPARISON TABLE: CTBL(882)
	3-20-5 SPEED OUTPUT: SPED(885)
	3-20-6 SET PULSES: PULS(886)
	3-20-7 PULSE OUTPUT: PLS2(887)
	3-20-8 ACCELERATION CONTROL: ACC(888)
	3-20-9 ORIGIN SEARCH: ORG(889)
	3-20-10 PULSE WITH VARIABLE DUTY FACTOR: PWM(891)

	3-21 Step Instructions
	3-21-1 STEP DEFINE and STEP START: STEP(008)/SNXT(009)

	3-22 Basic I/O Unit Instructions
	3-22-1 I/O REFRESH: IORF(097)
	3-22-2 7-SEGMENT DECODER: SDEC(078)
	3-22-3 DIGITAL SWITCH INPUT – DSW(210)
	3-22-4 TEN KEY INPUT – TKY(211)
	3-22-5 HEXADECIMAL KEY INPUT – HKY(212)
	3-22-6 MATRIX INPUT: MTR(213)
	3-22-7 7-SEGMENT DISPLAY OUTPUT – 7SEG(214)
	3-22-8 INTELLIGENT I/O READ: IORD(222)
	3-22-9 INTELLIGENT I/O WRITE: IOWR(223)
	3-22-10 CPU BUS UNIT I/O REFRESH: DLNK(226)

	3-23 Serial Communications Instructions
	3-23-1 Serial Communications
	3-23-2 PROTOCOL MACRO: PMCR(260)
	3-23-3 TRANSMIT: TXD(236)
	3-23-4 RECEIVE: RXD(235)
	3-23-5 TRANSMIT VIA SERIAL COMMUNICATIONS UNIT: TXDU(256)
	3-23-6 RECEIVE VIA SERIAL COMMUNICATIONS UNIT: RXDU(255)
	3-23-7 CHANGE SERIAL PORT SETUP: STUP(237)

	3-24 Network Instructions
	3-24-1 About Network Instructions
	3-24-2 About Explicit Message Instructions
	3-24-3 NETWORK SEND: SEND(090)
	3-24-4 NETWORK RECEIVE: RECV(098)
	3-24-5 DELIVER COMMAND: CMND(490)
	3-24-6 EXPLICIT MESSAGE SEND: EXPLT(720)
	3-24-7 EXPLICIT GET ATTRIBUTE: EGATR(721)
	3-24-8 EXPLICIT SET ATTRIBUTE: ESATR(722)
	3-24-9 EXPLICIT WORD READ: ECHRD(723)
	3-24-10 EXPLICIT WORD WRITE: ECHWR(724)

	3-25 Display Instructions
	3-25-1 DISPLAY MESSAGE: MSG(046)
	3-25-2 SEVEN-SEGMENT LED WORD DATA DISPLAY: SCH(047)
	3-25-3 SEVEN-SEGMENT LED CONTROL: SCTRL(048)

	3-26 Clock Instructions
	3-26-1 CALENDAR ADD: CADD(730)
	3-26-2 CALENDAR SUBTRACT: CSUB(731)
	3-26-3 HOURS TO SECONDS: SEC(065)
	3-26-4 SECONDS TO HOURS: HMS(066)
	3-26-5 CLOCK ADJUSTMENT: DATE(735)

	3-27 Debugging Instructions
	3-27-1 Trace Memory Sampling: TRSM(045)

	3-28 Failure Diagnosis Instructions
	3-28-1 FAILURE ALARM: FAL(006)
	3-28-2 SEVERE FAILURE ALARM: FALS(007)
	3-28-3 FAILURE POINT DETECTION: FPD(269)

	3-29 Other Instructions
	3-29-1 SET CARRY: STC(040)
	3-29-2 CLEAR CARRY: CLC(041)
	3-29-3 EXTEND MAXIMUM CYCLE TIME: WDT(094)
	3-29-4 SAVE CONDITION FLAGS: CCS(282)
	3-29-5 LOAD CONDITION FLAGS: CCL(283)
	3-29-6 CONVERT ADDRESS FROM CV: FRMCV(284)
	3-29-7 CONVERT ADDRESS TO CV: TOCV(285)

	3-30 Block Programming Instructions
	3-30-1 Introduction
	3-30-2 BLOCK PROGRAM BEGIN/END: BPRG(096)/BEND(801)
	3-30-3 BLOCK PROGRAM PAUSE/RESTART: BPPS(811)/BPRS(812)
	3-30-4 Branching: IF(802), ELSE(803), and IEND(804)
	3-30-5 CONDITIONAL BLOCK EXIT (NOT): EXIT (NOT)(806)
	3-30-6 ONE CYCLE AND WAIT (NOT): WAIT(805)/WAIT(805) NOT
	3-30-7 TIMER WAIT: TIMW(813) and TIMWX(816)
	3-30-8 COUNTER WAIT: CNTW(814) and CNTWX(818)
	3-30-9 HIGH-SPEED TIMER WAIT: TMHW(815) and TMHWX(817)
	3-30-10 Loop Control: LOOP(809)/LEND(810)/LEND(810) NOT

	3-31 Text String Processing Instructions
	3-31-1 Text String Processing Overview
	3-31-2 MOV STRING: MOV$(664)
	3-31-3 CONCATENATE STRING: +$(656)
	3-31-4 GET STRING LEFT: LEFT$(652)
	3-31-5 GET STRING RIGHT: RGHT$(653)
	3-31-6 GET STRING MIDDLE: MID$(654)
	3-31-7 FIND IN STRING: FIND$(660)
	3-31-8 STRING LENGTH: LEN$(650)
	3-31-9 REPLACE IN STRING: RPLC$(661)
	3-31-10 DELETE STRING: DEL$(658)
	3-31-11 EXCHANGE STRING: XCHG$(665)
	3-31-12 CLEAR STRING: CLR$(666)
	3-31-13 INSERT INTO STRING: INS$(657)
	3-31-14 String Comparison Instructions (670 to 675)

	3-32 Task Control Instructions
	3-32-1 TASK ON: TKON(820)
	3-32-2 TASK OFF: TKOF(821)

	3-33 Model Conversion Instructions
	3-33-1 BLOCK TRANSFER: XFERC(565)
	3-33-2 SINGLE WORD DISTRIBUTE: DISTC(566)
	3-33-3 DATA COLLECT: COLLC(567)
	3-33-4 MOVE BIT: MOVBC(568)
	3-33-5 BIT COUNTER: BCNTC(621)
	3-33-6 GET VARIABLE ID: GETID(286)

	SECTION 4 Instruction Execution Times and Number of Steps
	4-1 Instruction Execution Times and Number of Steps
	4-2 Function Block Instance Execution Time

	Appendix A Instruction Classifications by Function
	Appendix B List of Instructions by Function Code
	Appendix C Alphabetical List of Instructions by Mnemonic
	Index
	Revision History

